devmap.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* Devmaps primary use is as a backend map for XDP BPF helper call
  13. * bpf_redirect_map(). Because XDP is mostly concerned with performance we
  14. * spent some effort to ensure the datapath with redirect maps does not use
  15. * any locking. This is a quick note on the details.
  16. *
  17. * We have three possible paths to get into the devmap control plane bpf
  18. * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  19. * will invoke an update, delete, or lookup operation. To ensure updates and
  20. * deletes appear atomic from the datapath side xchg() is used to modify the
  21. * netdev_map array. Then because the datapath does a lookup into the netdev_map
  22. * array (read-only) from an RCU critical section we use call_rcu() to wait for
  23. * an rcu grace period before free'ing the old data structures. This ensures the
  24. * datapath always has a valid copy. However, the datapath does a "flush"
  25. * operation that pushes any pending packets in the driver outside the RCU
  26. * critical section. Each bpf_dtab_netdev tracks these pending operations using
  27. * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
  28. * until all bits are cleared indicating outstanding flush operations have
  29. * completed.
  30. *
  31. * BPF syscalls may race with BPF program calls on any of the update, delete
  32. * or lookup operations. As noted above the xchg() operation also keep the
  33. * netdev_map consistent in this case. From the devmap side BPF programs
  34. * calling into these operations are the same as multiple user space threads
  35. * making system calls.
  36. *
  37. * Finally, any of the above may race with a netdev_unregister notifier. The
  38. * unregister notifier must search for net devices in the map structure that
  39. * contain a reference to the net device and remove them. This is a two step
  40. * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  41. * check to see if the ifindex is the same as the net_device being removed.
  42. * When removing the dev a cmpxchg() is used to ensure the correct dev is
  43. * removed, in the case of a concurrent update or delete operation it is
  44. * possible that the initially referenced dev is no longer in the map. As the
  45. * notifier hook walks the map we know that new dev references can not be
  46. * added by the user because core infrastructure ensures dev_get_by_index()
  47. * calls will fail at this point.
  48. */
  49. #include <linux/bpf.h>
  50. #include <linux/jhash.h>
  51. #include <linux/filter.h>
  52. #include <linux/rculist_nulls.h>
  53. #include "percpu_freelist.h"
  54. #include "bpf_lru_list.h"
  55. #include "map_in_map.h"
  56. struct bpf_dtab_netdev {
  57. struct net_device *dev;
  58. int key;
  59. struct rcu_head rcu;
  60. struct bpf_dtab *dtab;
  61. };
  62. struct bpf_dtab {
  63. struct bpf_map map;
  64. struct bpf_dtab_netdev **netdev_map;
  65. unsigned long int __percpu *flush_needed;
  66. struct list_head list;
  67. };
  68. static DEFINE_SPINLOCK(dev_map_lock);
  69. static LIST_HEAD(dev_map_list);
  70. static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
  71. {
  72. struct bpf_dtab *dtab;
  73. u64 cost;
  74. int err;
  75. /* check sanity of attributes */
  76. if (attr->max_entries == 0 || attr->key_size != 4 ||
  77. attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  78. return ERR_PTR(-EINVAL);
  79. dtab = kzalloc(sizeof(*dtab), GFP_USER);
  80. if (!dtab)
  81. return ERR_PTR(-ENOMEM);
  82. /* mandatory map attributes */
  83. dtab->map.map_type = attr->map_type;
  84. dtab->map.key_size = attr->key_size;
  85. dtab->map.value_size = attr->value_size;
  86. dtab->map.max_entries = attr->max_entries;
  87. dtab->map.map_flags = attr->map_flags;
  88. dtab->map.numa_node = bpf_map_attr_numa_node(attr);
  89. err = -ENOMEM;
  90. /* make sure page count doesn't overflow */
  91. cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
  92. cost += BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
  93. if (cost >= U32_MAX - PAGE_SIZE)
  94. goto free_dtab;
  95. dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  96. /* if map size is larger than memlock limit, reject it early */
  97. err = bpf_map_precharge_memlock(dtab->map.pages);
  98. if (err)
  99. goto free_dtab;
  100. err = -ENOMEM;
  101. /* A per cpu bitfield with a bit per possible net device */
  102. dtab->flush_needed = __alloc_percpu(
  103. BITS_TO_LONGS(attr->max_entries) *
  104. sizeof(unsigned long),
  105. __alignof__(unsigned long));
  106. if (!dtab->flush_needed)
  107. goto free_dtab;
  108. dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
  109. sizeof(struct bpf_dtab_netdev *),
  110. dtab->map.numa_node);
  111. if (!dtab->netdev_map)
  112. goto free_dtab;
  113. spin_lock(&dev_map_lock);
  114. list_add_tail_rcu(&dtab->list, &dev_map_list);
  115. spin_unlock(&dev_map_lock);
  116. return &dtab->map;
  117. free_dtab:
  118. free_percpu(dtab->flush_needed);
  119. kfree(dtab);
  120. return ERR_PTR(err);
  121. }
  122. static void dev_map_free(struct bpf_map *map)
  123. {
  124. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  125. int i, cpu;
  126. /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  127. * so the programs (can be more than one that used this map) were
  128. * disconnected from events. Wait for outstanding critical sections in
  129. * these programs to complete. The rcu critical section only guarantees
  130. * no further reads against netdev_map. It does __not__ ensure pending
  131. * flush operations (if any) are complete.
  132. */
  133. synchronize_rcu();
  134. /* To ensure all pending flush operations have completed wait for flush
  135. * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
  136. * Because the above synchronize_rcu() ensures the map is disconnected
  137. * from the program we can assume no new bits will be set.
  138. */
  139. for_each_online_cpu(cpu) {
  140. unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
  141. while (!bitmap_empty(bitmap, dtab->map.max_entries))
  142. cpu_relax();
  143. }
  144. /* Although we should no longer have datapath or bpf syscall operations
  145. * at this point we we can still race with netdev notifier, hence the
  146. * lock.
  147. */
  148. for (i = 0; i < dtab->map.max_entries; i++) {
  149. struct bpf_dtab_netdev *dev;
  150. dev = dtab->netdev_map[i];
  151. if (!dev)
  152. continue;
  153. dev_put(dev->dev);
  154. kfree(dev);
  155. }
  156. /* At this point bpf program is detached and all pending operations
  157. * _must_ be complete
  158. */
  159. spin_lock(&dev_map_lock);
  160. list_del_rcu(&dtab->list);
  161. spin_unlock(&dev_map_lock);
  162. free_percpu(dtab->flush_needed);
  163. bpf_map_area_free(dtab->netdev_map);
  164. kfree(dtab);
  165. }
  166. static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  167. {
  168. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  169. u32 index = key ? *(u32 *)key : U32_MAX;
  170. u32 *next = (u32 *)next_key;
  171. if (index >= dtab->map.max_entries) {
  172. *next = 0;
  173. return 0;
  174. }
  175. if (index == dtab->map.max_entries - 1)
  176. return -ENOENT;
  177. *next = index + 1;
  178. return 0;
  179. }
  180. void __dev_map_insert_ctx(struct bpf_map *map, u32 key)
  181. {
  182. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  183. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  184. __set_bit(key, bitmap);
  185. }
  186. struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
  187. {
  188. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  189. struct bpf_dtab_netdev *dev;
  190. if (key >= map->max_entries)
  191. return NULL;
  192. dev = READ_ONCE(dtab->netdev_map[key]);
  193. return dev ? dev->dev : NULL;
  194. }
  195. /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
  196. * from the driver before returning from its napi->poll() routine. The poll()
  197. * routine is called either from busy_poll context or net_rx_action signaled
  198. * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
  199. * net device can be torn down. On devmap tear down we ensure the ctx bitmap
  200. * is zeroed before completing to ensure all flush operations have completed.
  201. */
  202. void __dev_map_flush(struct bpf_map *map)
  203. {
  204. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  205. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  206. u32 bit;
  207. for_each_set_bit(bit, bitmap, map->max_entries) {
  208. struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
  209. struct net_device *netdev;
  210. /* This is possible if the dev entry is removed by user space
  211. * between xdp redirect and flush op.
  212. */
  213. if (unlikely(!dev))
  214. continue;
  215. netdev = dev->dev;
  216. __clear_bit(bit, bitmap);
  217. if (unlikely(!netdev || !netdev->netdev_ops->ndo_xdp_flush))
  218. continue;
  219. netdev->netdev_ops->ndo_xdp_flush(netdev);
  220. }
  221. }
  222. /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
  223. * update happens in parallel here a dev_put wont happen until after reading the
  224. * ifindex.
  225. */
  226. static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
  227. {
  228. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  229. struct bpf_dtab_netdev *dev;
  230. u32 i = *(u32 *)key;
  231. if (i >= map->max_entries)
  232. return NULL;
  233. dev = READ_ONCE(dtab->netdev_map[i]);
  234. return dev ? &dev->dev->ifindex : NULL;
  235. }
  236. static void dev_map_flush_old(struct bpf_dtab_netdev *old_dev)
  237. {
  238. if (old_dev->dev->netdev_ops->ndo_xdp_flush) {
  239. struct net_device *fl = old_dev->dev;
  240. unsigned long *bitmap;
  241. int cpu;
  242. for_each_online_cpu(cpu) {
  243. bitmap = per_cpu_ptr(old_dev->dtab->flush_needed, cpu);
  244. __clear_bit(old_dev->key, bitmap);
  245. fl->netdev_ops->ndo_xdp_flush(old_dev->dev);
  246. }
  247. }
  248. }
  249. static void __dev_map_entry_free(struct rcu_head *rcu)
  250. {
  251. struct bpf_dtab_netdev *old_dev;
  252. old_dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
  253. dev_map_flush_old(old_dev);
  254. dev_put(old_dev->dev);
  255. kfree(old_dev);
  256. }
  257. static int dev_map_delete_elem(struct bpf_map *map, void *key)
  258. {
  259. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  260. struct bpf_dtab_netdev *old_dev;
  261. int k = *(u32 *)key;
  262. if (k >= map->max_entries)
  263. return -EINVAL;
  264. /* Use synchronize_rcu() here to ensure any rcu critical sections
  265. * have completed, but this does not guarantee a flush has happened
  266. * yet. Because driver side rcu_read_lock/unlock only protects the
  267. * running XDP program. However, for pending flush operations the
  268. * dev and ctx are stored in another per cpu map. And additionally,
  269. * the driver tear down ensures all soft irqs are complete before
  270. * removing the net device in the case of dev_put equals zero.
  271. */
  272. old_dev = xchg(&dtab->netdev_map[k], NULL);
  273. if (old_dev)
  274. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  275. return 0;
  276. }
  277. static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
  278. u64 map_flags)
  279. {
  280. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  281. struct net *net = current->nsproxy->net_ns;
  282. struct bpf_dtab_netdev *dev, *old_dev;
  283. u32 i = *(u32 *)key;
  284. u32 ifindex = *(u32 *)value;
  285. if (unlikely(map_flags > BPF_EXIST))
  286. return -EINVAL;
  287. if (unlikely(i >= dtab->map.max_entries))
  288. return -E2BIG;
  289. if (unlikely(map_flags == BPF_NOEXIST))
  290. return -EEXIST;
  291. if (!ifindex) {
  292. dev = NULL;
  293. } else {
  294. dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
  295. map->numa_node);
  296. if (!dev)
  297. return -ENOMEM;
  298. dev->dev = dev_get_by_index(net, ifindex);
  299. if (!dev->dev) {
  300. kfree(dev);
  301. return -EINVAL;
  302. }
  303. dev->key = i;
  304. dev->dtab = dtab;
  305. }
  306. /* Use call_rcu() here to ensure rcu critical sections have completed
  307. * Remembering the driver side flush operation will happen before the
  308. * net device is removed.
  309. */
  310. old_dev = xchg(&dtab->netdev_map[i], dev);
  311. if (old_dev)
  312. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  313. return 0;
  314. }
  315. const struct bpf_map_ops dev_map_ops = {
  316. .map_alloc = dev_map_alloc,
  317. .map_free = dev_map_free,
  318. .map_get_next_key = dev_map_get_next_key,
  319. .map_lookup_elem = dev_map_lookup_elem,
  320. .map_update_elem = dev_map_update_elem,
  321. .map_delete_elem = dev_map_delete_elem,
  322. };
  323. static int dev_map_notification(struct notifier_block *notifier,
  324. ulong event, void *ptr)
  325. {
  326. struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
  327. struct bpf_dtab *dtab;
  328. int i;
  329. switch (event) {
  330. case NETDEV_UNREGISTER:
  331. /* This rcu_read_lock/unlock pair is needed because
  332. * dev_map_list is an RCU list AND to ensure a delete
  333. * operation does not free a netdev_map entry while we
  334. * are comparing it against the netdev being unregistered.
  335. */
  336. rcu_read_lock();
  337. list_for_each_entry_rcu(dtab, &dev_map_list, list) {
  338. for (i = 0; i < dtab->map.max_entries; i++) {
  339. struct bpf_dtab_netdev *dev, *odev;
  340. dev = READ_ONCE(dtab->netdev_map[i]);
  341. if (!dev ||
  342. dev->dev->ifindex != netdev->ifindex)
  343. continue;
  344. odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
  345. if (dev == odev)
  346. call_rcu(&dev->rcu,
  347. __dev_map_entry_free);
  348. }
  349. }
  350. rcu_read_unlock();
  351. break;
  352. default:
  353. break;
  354. }
  355. return NOTIFY_OK;
  356. }
  357. static struct notifier_block dev_map_notifier = {
  358. .notifier_call = dev_map_notification,
  359. };
  360. static int __init dev_map_init(void)
  361. {
  362. register_netdevice_notifier(&dev_map_notifier);
  363. return 0;
  364. }
  365. subsys_initcall(dev_map_init);