tree.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate_wait.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/sched/debug.h>
  39. #include <linux/nmi.h>
  40. #include <linux/atomic.h>
  41. #include <linux/bitops.h>
  42. #include <linux/export.h>
  43. #include <linux/completion.h>
  44. #include <linux/moduleparam.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <uapi/linux/sched/types.h>
  54. #include <linux/prefetch.h>
  55. #include <linux/delay.h>
  56. #include <linux/stop_machine.h>
  57. #include <linux/random.h>
  58. #include <linux/trace_events.h>
  59. #include <linux/suspend.h>
  60. #include <linux/ftrace.h>
  61. #include "tree.h"
  62. #include "rcu.h"
  63. #ifdef MODULE_PARAM_PREFIX
  64. #undef MODULE_PARAM_PREFIX
  65. #endif
  66. #define MODULE_PARAM_PREFIX "rcutree."
  67. /* Data structures. */
  68. /*
  69. * In order to export the rcu_state name to the tracing tools, it
  70. * needs to be added in the __tracepoint_string section.
  71. * This requires defining a separate variable tp_<sname>_varname
  72. * that points to the string being used, and this will allow
  73. * the tracing userspace tools to be able to decipher the string
  74. * address to the matching string.
  75. */
  76. #ifdef CONFIG_TRACING
  77. # define DEFINE_RCU_TPS(sname) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  80. # define RCU_STATE_NAME(sname) sname##_varname
  81. #else
  82. # define DEFINE_RCU_TPS(sname)
  83. # define RCU_STATE_NAME(sname) __stringify(sname)
  84. #endif
  85. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  86. DEFINE_RCU_TPS(sname) \
  87. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  88. struct rcu_state sname##_state = { \
  89. .level = { &sname##_state.node[0] }, \
  90. .rda = &sname##_data, \
  91. .call = cr, \
  92. .gp_state = RCU_GP_IDLE, \
  93. .gpnum = 0UL - 300UL, \
  94. .completed = 0UL - 300UL, \
  95. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  96. .name = RCU_STATE_NAME(sname), \
  97. .abbr = sabbr, \
  98. .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
  99. .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
  100. }
  101. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  102. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  103. static struct rcu_state *const rcu_state_p;
  104. LIST_HEAD(rcu_struct_flavors);
  105. /* Dump rcu_node combining tree at boot to verify correct setup. */
  106. static bool dump_tree;
  107. module_param(dump_tree, bool, 0444);
  108. /* Control rcu_node-tree auto-balancing at boot time. */
  109. static bool rcu_fanout_exact;
  110. module_param(rcu_fanout_exact, bool, 0444);
  111. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  112. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  113. module_param(rcu_fanout_leaf, int, 0444);
  114. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  115. /* Number of rcu_nodes at specified level. */
  116. int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  117. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  118. /* panic() on RCU Stall sysctl. */
  119. int sysctl_panic_on_rcu_stall __read_mostly;
  120. /*
  121. * The rcu_scheduler_active variable is initialized to the value
  122. * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
  123. * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
  124. * RCU can assume that there is but one task, allowing RCU to (for example)
  125. * optimize synchronize_rcu() to a simple barrier(). When this variable
  126. * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
  127. * to detect real grace periods. This variable is also used to suppress
  128. * boot-time false positives from lockdep-RCU error checking. Finally, it
  129. * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
  130. * is fully initialized, including all of its kthreads having been spawned.
  131. */
  132. int rcu_scheduler_active __read_mostly;
  133. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  134. /*
  135. * The rcu_scheduler_fully_active variable transitions from zero to one
  136. * during the early_initcall() processing, which is after the scheduler
  137. * is capable of creating new tasks. So RCU processing (for example,
  138. * creating tasks for RCU priority boosting) must be delayed until after
  139. * rcu_scheduler_fully_active transitions from zero to one. We also
  140. * currently delay invocation of any RCU callbacks until after this point.
  141. *
  142. * It might later prove better for people registering RCU callbacks during
  143. * early boot to take responsibility for these callbacks, but one step at
  144. * a time.
  145. */
  146. static int rcu_scheduler_fully_active __read_mostly;
  147. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  148. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  149. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  150. static void invoke_rcu_core(void);
  151. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  152. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  153. struct rcu_data *rdp, bool wake);
  154. static void sync_sched_exp_online_cleanup(int cpu);
  155. /* rcuc/rcub kthread realtime priority */
  156. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  157. module_param(kthread_prio, int, 0644);
  158. /* Delay in jiffies for grace-period initialization delays, debug only. */
  159. static int gp_preinit_delay;
  160. module_param(gp_preinit_delay, int, 0444);
  161. static int gp_init_delay;
  162. module_param(gp_init_delay, int, 0444);
  163. static int gp_cleanup_delay;
  164. module_param(gp_cleanup_delay, int, 0444);
  165. /*
  166. * Number of grace periods between delays, normalized by the duration of
  167. * the delay. The longer the delay, the more the grace periods between
  168. * each delay. The reason for this normalization is that it means that,
  169. * for non-zero delays, the overall slowdown of grace periods is constant
  170. * regardless of the duration of the delay. This arrangement balances
  171. * the need for long delays to increase some race probabilities with the
  172. * need for fast grace periods to increase other race probabilities.
  173. */
  174. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  175. /*
  176. * Track the rcutorture test sequence number and the update version
  177. * number within a given test. The rcutorture_testseq is incremented
  178. * on every rcutorture module load and unload, so has an odd value
  179. * when a test is running. The rcutorture_vernum is set to zero
  180. * when rcutorture starts and is incremented on each rcutorture update.
  181. * These variables enable correlating rcutorture output with the
  182. * RCU tracing information.
  183. */
  184. unsigned long rcutorture_testseq;
  185. unsigned long rcutorture_vernum;
  186. /*
  187. * Compute the mask of online CPUs for the specified rcu_node structure.
  188. * This will not be stable unless the rcu_node structure's ->lock is
  189. * held, but the bit corresponding to the current CPU will be stable
  190. * in most contexts.
  191. */
  192. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  193. {
  194. return READ_ONCE(rnp->qsmaskinitnext);
  195. }
  196. /*
  197. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  198. * permit this function to be invoked without holding the root rcu_node
  199. * structure's ->lock, but of course results can be subject to change.
  200. */
  201. static int rcu_gp_in_progress(struct rcu_state *rsp)
  202. {
  203. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  204. }
  205. /*
  206. * Note a quiescent state. Because we do not need to know
  207. * how many quiescent states passed, just if there was at least
  208. * one since the start of the grace period, this just sets a flag.
  209. * The caller must have disabled preemption.
  210. */
  211. void rcu_sched_qs(void)
  212. {
  213. RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
  214. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
  215. return;
  216. trace_rcu_grace_period(TPS("rcu_sched"),
  217. __this_cpu_read(rcu_sched_data.gpnum),
  218. TPS("cpuqs"));
  219. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  220. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  221. return;
  222. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  223. rcu_report_exp_rdp(&rcu_sched_state,
  224. this_cpu_ptr(&rcu_sched_data), true);
  225. }
  226. void rcu_bh_qs(void)
  227. {
  228. RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
  229. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  230. trace_rcu_grace_period(TPS("rcu_bh"),
  231. __this_cpu_read(rcu_bh_data.gpnum),
  232. TPS("cpuqs"));
  233. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  234. }
  235. }
  236. /*
  237. * Steal a bit from the bottom of ->dynticks for idle entry/exit
  238. * control. Initially this is for TLB flushing.
  239. */
  240. #define RCU_DYNTICK_CTRL_MASK 0x1
  241. #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
  242. #ifndef rcu_eqs_special_exit
  243. #define rcu_eqs_special_exit() do { } while (0)
  244. #endif
  245. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  246. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  247. .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  248. };
  249. /*
  250. * There's a few places, currently just in the tracing infrastructure,
  251. * that uses rcu_irq_enter() to make sure RCU is watching. But there's
  252. * a small location where that will not even work. In those cases
  253. * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
  254. * can be called.
  255. */
  256. static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
  257. bool rcu_irq_enter_disabled(void)
  258. {
  259. return this_cpu_read(disable_rcu_irq_enter);
  260. }
  261. /*
  262. * Record entry into an extended quiescent state. This is only to be
  263. * called when not already in an extended quiescent state.
  264. */
  265. static void rcu_dynticks_eqs_enter(void)
  266. {
  267. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  268. int seq;
  269. /*
  270. * CPUs seeing atomic_add_return() must see prior RCU read-side
  271. * critical sections, and we also must force ordering with the
  272. * next idle sojourn.
  273. */
  274. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  275. /* Better be in an extended quiescent state! */
  276. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  277. (seq & RCU_DYNTICK_CTRL_CTR));
  278. /* Better not have special action (TLB flush) pending! */
  279. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  280. (seq & RCU_DYNTICK_CTRL_MASK));
  281. }
  282. /*
  283. * Record exit from an extended quiescent state. This is only to be
  284. * called from an extended quiescent state.
  285. */
  286. static void rcu_dynticks_eqs_exit(void)
  287. {
  288. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  289. int seq;
  290. /*
  291. * CPUs seeing atomic_add_return() must see prior idle sojourns,
  292. * and we also must force ordering with the next RCU read-side
  293. * critical section.
  294. */
  295. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  296. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  297. !(seq & RCU_DYNTICK_CTRL_CTR));
  298. if (seq & RCU_DYNTICK_CTRL_MASK) {
  299. atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
  300. smp_mb__after_atomic(); /* _exit after clearing mask. */
  301. /* Prefer duplicate flushes to losing a flush. */
  302. rcu_eqs_special_exit();
  303. }
  304. }
  305. /*
  306. * Reset the current CPU's ->dynticks counter to indicate that the
  307. * newly onlined CPU is no longer in an extended quiescent state.
  308. * This will either leave the counter unchanged, or increment it
  309. * to the next non-quiescent value.
  310. *
  311. * The non-atomic test/increment sequence works because the upper bits
  312. * of the ->dynticks counter are manipulated only by the corresponding CPU,
  313. * or when the corresponding CPU is offline.
  314. */
  315. static void rcu_dynticks_eqs_online(void)
  316. {
  317. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  318. if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
  319. return;
  320. atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  321. }
  322. /*
  323. * Is the current CPU in an extended quiescent state?
  324. *
  325. * No ordering, as we are sampling CPU-local information.
  326. */
  327. bool rcu_dynticks_curr_cpu_in_eqs(void)
  328. {
  329. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  330. return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
  331. }
  332. /*
  333. * Snapshot the ->dynticks counter with full ordering so as to allow
  334. * stable comparison of this counter with past and future snapshots.
  335. */
  336. int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
  337. {
  338. int snap = atomic_add_return(0, &rdtp->dynticks);
  339. return snap & ~RCU_DYNTICK_CTRL_MASK;
  340. }
  341. /*
  342. * Return true if the snapshot returned from rcu_dynticks_snap()
  343. * indicates that RCU is in an extended quiescent state.
  344. */
  345. static bool rcu_dynticks_in_eqs(int snap)
  346. {
  347. return !(snap & RCU_DYNTICK_CTRL_CTR);
  348. }
  349. /*
  350. * Return true if the CPU corresponding to the specified rcu_dynticks
  351. * structure has spent some time in an extended quiescent state since
  352. * rcu_dynticks_snap() returned the specified snapshot.
  353. */
  354. static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
  355. {
  356. return snap != rcu_dynticks_snap(rdtp);
  357. }
  358. /*
  359. * Do a double-increment of the ->dynticks counter to emulate a
  360. * momentary idle-CPU quiescent state.
  361. */
  362. static void rcu_dynticks_momentary_idle(void)
  363. {
  364. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  365. int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
  366. &rdtp->dynticks);
  367. /* It is illegal to call this from idle state. */
  368. WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
  369. }
  370. /*
  371. * Set the special (bottom) bit of the specified CPU so that it
  372. * will take special action (such as flushing its TLB) on the
  373. * next exit from an extended quiescent state. Returns true if
  374. * the bit was successfully set, or false if the CPU was not in
  375. * an extended quiescent state.
  376. */
  377. bool rcu_eqs_special_set(int cpu)
  378. {
  379. int old;
  380. int new;
  381. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  382. do {
  383. old = atomic_read(&rdtp->dynticks);
  384. if (old & RCU_DYNTICK_CTRL_CTR)
  385. return false;
  386. new = old | RCU_DYNTICK_CTRL_MASK;
  387. } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
  388. return true;
  389. }
  390. /*
  391. * Let the RCU core know that this CPU has gone through the scheduler,
  392. * which is a quiescent state. This is called when the need for a
  393. * quiescent state is urgent, so we burn an atomic operation and full
  394. * memory barriers to let the RCU core know about it, regardless of what
  395. * this CPU might (or might not) do in the near future.
  396. *
  397. * We inform the RCU core by emulating a zero-duration dyntick-idle period.
  398. *
  399. * The caller must have disabled interrupts.
  400. */
  401. static void rcu_momentary_dyntick_idle(void)
  402. {
  403. raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
  404. rcu_dynticks_momentary_idle();
  405. }
  406. /*
  407. * Note a context switch. This is a quiescent state for RCU-sched,
  408. * and requires special handling for preemptible RCU.
  409. * The caller must have disabled interrupts.
  410. */
  411. void rcu_note_context_switch(bool preempt)
  412. {
  413. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  414. trace_rcu_utilization(TPS("Start context switch"));
  415. rcu_sched_qs();
  416. rcu_preempt_note_context_switch(preempt);
  417. /* Load rcu_urgent_qs before other flags. */
  418. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
  419. goto out;
  420. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  421. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
  422. rcu_momentary_dyntick_idle();
  423. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  424. if (!preempt)
  425. rcu_note_voluntary_context_switch_lite(current);
  426. out:
  427. trace_rcu_utilization(TPS("End context switch"));
  428. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  429. }
  430. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  431. /*
  432. * Register a quiescent state for all RCU flavors. If there is an
  433. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  434. * dyntick-idle quiescent state visible to other CPUs (but only for those
  435. * RCU flavors in desperate need of a quiescent state, which will normally
  436. * be none of them). Either way, do a lightweight quiescent state for
  437. * all RCU flavors.
  438. *
  439. * The barrier() calls are redundant in the common case when this is
  440. * called externally, but just in case this is called from within this
  441. * file.
  442. *
  443. */
  444. void rcu_all_qs(void)
  445. {
  446. unsigned long flags;
  447. if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
  448. return;
  449. preempt_disable();
  450. /* Load rcu_urgent_qs before other flags. */
  451. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
  452. preempt_enable();
  453. return;
  454. }
  455. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  456. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  457. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
  458. local_irq_save(flags);
  459. rcu_momentary_dyntick_idle();
  460. local_irq_restore(flags);
  461. }
  462. if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
  463. rcu_sched_qs();
  464. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  465. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  466. preempt_enable();
  467. }
  468. EXPORT_SYMBOL_GPL(rcu_all_qs);
  469. #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
  470. static long blimit = DEFAULT_RCU_BLIMIT;
  471. #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
  472. static long qhimark = DEFAULT_RCU_QHIMARK;
  473. #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
  474. static long qlowmark = DEFAULT_RCU_QLOMARK;
  475. module_param(blimit, long, 0444);
  476. module_param(qhimark, long, 0444);
  477. module_param(qlowmark, long, 0444);
  478. static ulong jiffies_till_first_fqs = ULONG_MAX;
  479. static ulong jiffies_till_next_fqs = ULONG_MAX;
  480. static bool rcu_kick_kthreads;
  481. module_param(jiffies_till_first_fqs, ulong, 0644);
  482. module_param(jiffies_till_next_fqs, ulong, 0644);
  483. module_param(rcu_kick_kthreads, bool, 0644);
  484. /*
  485. * How long the grace period must be before we start recruiting
  486. * quiescent-state help from rcu_note_context_switch().
  487. */
  488. static ulong jiffies_till_sched_qs = HZ / 20;
  489. module_param(jiffies_till_sched_qs, ulong, 0644);
  490. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  491. struct rcu_data *rdp);
  492. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
  493. static void force_quiescent_state(struct rcu_state *rsp);
  494. static int rcu_pending(void);
  495. /*
  496. * Return the number of RCU batches started thus far for debug & stats.
  497. */
  498. unsigned long rcu_batches_started(void)
  499. {
  500. return rcu_state_p->gpnum;
  501. }
  502. EXPORT_SYMBOL_GPL(rcu_batches_started);
  503. /*
  504. * Return the number of RCU-sched batches started thus far for debug & stats.
  505. */
  506. unsigned long rcu_batches_started_sched(void)
  507. {
  508. return rcu_sched_state.gpnum;
  509. }
  510. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  511. /*
  512. * Return the number of RCU BH batches started thus far for debug & stats.
  513. */
  514. unsigned long rcu_batches_started_bh(void)
  515. {
  516. return rcu_bh_state.gpnum;
  517. }
  518. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  519. /*
  520. * Return the number of RCU batches completed thus far for debug & stats.
  521. */
  522. unsigned long rcu_batches_completed(void)
  523. {
  524. return rcu_state_p->completed;
  525. }
  526. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  527. /*
  528. * Return the number of RCU-sched batches completed thus far for debug & stats.
  529. */
  530. unsigned long rcu_batches_completed_sched(void)
  531. {
  532. return rcu_sched_state.completed;
  533. }
  534. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  535. /*
  536. * Return the number of RCU BH batches completed thus far for debug & stats.
  537. */
  538. unsigned long rcu_batches_completed_bh(void)
  539. {
  540. return rcu_bh_state.completed;
  541. }
  542. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  543. /*
  544. * Return the number of RCU expedited batches completed thus far for
  545. * debug & stats. Odd numbers mean that a batch is in progress, even
  546. * numbers mean idle. The value returned will thus be roughly double
  547. * the cumulative batches since boot.
  548. */
  549. unsigned long rcu_exp_batches_completed(void)
  550. {
  551. return rcu_state_p->expedited_sequence;
  552. }
  553. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
  554. /*
  555. * Return the number of RCU-sched expedited batches completed thus far
  556. * for debug & stats. Similar to rcu_exp_batches_completed().
  557. */
  558. unsigned long rcu_exp_batches_completed_sched(void)
  559. {
  560. return rcu_sched_state.expedited_sequence;
  561. }
  562. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
  563. /*
  564. * Force a quiescent state.
  565. */
  566. void rcu_force_quiescent_state(void)
  567. {
  568. force_quiescent_state(rcu_state_p);
  569. }
  570. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  571. /*
  572. * Force a quiescent state for RCU BH.
  573. */
  574. void rcu_bh_force_quiescent_state(void)
  575. {
  576. force_quiescent_state(&rcu_bh_state);
  577. }
  578. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  579. /*
  580. * Force a quiescent state for RCU-sched.
  581. */
  582. void rcu_sched_force_quiescent_state(void)
  583. {
  584. force_quiescent_state(&rcu_sched_state);
  585. }
  586. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  587. /*
  588. * Show the state of the grace-period kthreads.
  589. */
  590. void show_rcu_gp_kthreads(void)
  591. {
  592. struct rcu_state *rsp;
  593. for_each_rcu_flavor(rsp) {
  594. pr_info("%s: wait state: %d ->state: %#lx\n",
  595. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  596. /* sched_show_task(rsp->gp_kthread); */
  597. }
  598. }
  599. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  600. /*
  601. * Record the number of times rcutorture tests have been initiated and
  602. * terminated. This information allows the debugfs tracing stats to be
  603. * correlated to the rcutorture messages, even when the rcutorture module
  604. * is being repeatedly loaded and unloaded. In other words, we cannot
  605. * store this state in rcutorture itself.
  606. */
  607. void rcutorture_record_test_transition(void)
  608. {
  609. rcutorture_testseq++;
  610. rcutorture_vernum = 0;
  611. }
  612. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  613. /*
  614. * Send along grace-period-related data for rcutorture diagnostics.
  615. */
  616. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  617. unsigned long *gpnum, unsigned long *completed)
  618. {
  619. struct rcu_state *rsp = NULL;
  620. switch (test_type) {
  621. case RCU_FLAVOR:
  622. rsp = rcu_state_p;
  623. break;
  624. case RCU_BH_FLAVOR:
  625. rsp = &rcu_bh_state;
  626. break;
  627. case RCU_SCHED_FLAVOR:
  628. rsp = &rcu_sched_state;
  629. break;
  630. default:
  631. break;
  632. }
  633. if (rsp == NULL)
  634. return;
  635. *flags = READ_ONCE(rsp->gp_flags);
  636. *gpnum = READ_ONCE(rsp->gpnum);
  637. *completed = READ_ONCE(rsp->completed);
  638. }
  639. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  640. /*
  641. * Record the number of writer passes through the current rcutorture test.
  642. * This is also used to correlate debugfs tracing stats with the rcutorture
  643. * messages.
  644. */
  645. void rcutorture_record_progress(unsigned long vernum)
  646. {
  647. rcutorture_vernum++;
  648. }
  649. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  650. /*
  651. * Return the root node of the specified rcu_state structure.
  652. */
  653. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  654. {
  655. return &rsp->node[0];
  656. }
  657. /*
  658. * Is there any need for future grace periods?
  659. * Interrupts must be disabled. If the caller does not hold the root
  660. * rnp_node structure's ->lock, the results are advisory only.
  661. */
  662. static int rcu_future_needs_gp(struct rcu_state *rsp)
  663. {
  664. struct rcu_node *rnp = rcu_get_root(rsp);
  665. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  666. int *fp = &rnp->need_future_gp[idx];
  667. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
  668. return READ_ONCE(*fp);
  669. }
  670. /*
  671. * Does the current CPU require a not-yet-started grace period?
  672. * The caller must have disabled interrupts to prevent races with
  673. * normal callback registry.
  674. */
  675. static bool
  676. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  677. {
  678. RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
  679. if (rcu_gp_in_progress(rsp))
  680. return false; /* No, a grace period is already in progress. */
  681. if (rcu_future_needs_gp(rsp))
  682. return true; /* Yes, a no-CBs CPU needs one. */
  683. if (!rcu_segcblist_is_enabled(&rdp->cblist))
  684. return false; /* No, this is a no-CBs (or offline) CPU. */
  685. if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
  686. return true; /* Yes, CPU has newly registered callbacks. */
  687. if (rcu_segcblist_future_gp_needed(&rdp->cblist,
  688. READ_ONCE(rsp->completed)))
  689. return true; /* Yes, CBs for future grace period. */
  690. return false; /* No grace period needed. */
  691. }
  692. /*
  693. * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
  694. *
  695. * Enter idle, doing appropriate accounting. The caller must have
  696. * disabled interrupts.
  697. */
  698. static void rcu_eqs_enter_common(bool user)
  699. {
  700. struct rcu_state *rsp;
  701. struct rcu_data *rdp;
  702. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  703. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
  704. trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
  705. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  706. !user && !is_idle_task(current)) {
  707. struct task_struct *idle __maybe_unused =
  708. idle_task(smp_processor_id());
  709. trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
  710. rcu_ftrace_dump(DUMP_ORIG);
  711. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  712. current->pid, current->comm,
  713. idle->pid, idle->comm); /* must be idle task! */
  714. }
  715. for_each_rcu_flavor(rsp) {
  716. rdp = this_cpu_ptr(rsp->rda);
  717. do_nocb_deferred_wakeup(rdp);
  718. }
  719. rcu_prepare_for_idle();
  720. __this_cpu_inc(disable_rcu_irq_enter);
  721. rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
  722. rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
  723. __this_cpu_dec(disable_rcu_irq_enter);
  724. rcu_dynticks_task_enter();
  725. /*
  726. * It is illegal to enter an extended quiescent state while
  727. * in an RCU read-side critical section.
  728. */
  729. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  730. "Illegal idle entry in RCU read-side critical section.");
  731. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  732. "Illegal idle entry in RCU-bh read-side critical section.");
  733. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  734. "Illegal idle entry in RCU-sched read-side critical section.");
  735. }
  736. /*
  737. * Enter an RCU extended quiescent state, which can be either the
  738. * idle loop or adaptive-tickless usermode execution.
  739. */
  740. static void rcu_eqs_enter(bool user)
  741. {
  742. struct rcu_dynticks *rdtp;
  743. rdtp = this_cpu_ptr(&rcu_dynticks);
  744. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  745. (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
  746. if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
  747. rcu_eqs_enter_common(user);
  748. else
  749. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  750. }
  751. /**
  752. * rcu_idle_enter - inform RCU that current CPU is entering idle
  753. *
  754. * Enter idle mode, in other words, -leave- the mode in which RCU
  755. * read-side critical sections can occur. (Though RCU read-side
  756. * critical sections can occur in irq handlers in idle, a possibility
  757. * handled by irq_enter() and irq_exit().)
  758. *
  759. * We crowbar the ->dynticks_nesting field to zero to allow for
  760. * the possibility of usermode upcalls having messed up our count
  761. * of interrupt nesting level during the prior busy period.
  762. */
  763. void rcu_idle_enter(void)
  764. {
  765. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
  766. rcu_eqs_enter(false);
  767. }
  768. #ifdef CONFIG_NO_HZ_FULL
  769. /**
  770. * rcu_user_enter - inform RCU that we are resuming userspace.
  771. *
  772. * Enter RCU idle mode right before resuming userspace. No use of RCU
  773. * is permitted between this call and rcu_user_exit(). This way the
  774. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  775. * when the CPU runs in userspace.
  776. */
  777. void rcu_user_enter(void)
  778. {
  779. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
  780. rcu_eqs_enter(true);
  781. }
  782. #endif /* CONFIG_NO_HZ_FULL */
  783. /**
  784. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  785. *
  786. * Exit from an interrupt handler, which might possibly result in entering
  787. * idle mode, in other words, leaving the mode in which read-side critical
  788. * sections can occur. The caller must have disabled interrupts.
  789. *
  790. * This code assumes that the idle loop never does anything that might
  791. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  792. * architecture violates this assumption, RCU will give you what you
  793. * deserve, good and hard. But very infrequently and irreproducibly.
  794. *
  795. * Use things like work queues to work around this limitation.
  796. *
  797. * You have been warned.
  798. */
  799. void rcu_irq_exit(void)
  800. {
  801. struct rcu_dynticks *rdtp;
  802. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
  803. rdtp = this_cpu_ptr(&rcu_dynticks);
  804. /* Page faults can happen in NMI handlers, so check... */
  805. if (rdtp->dynticks_nmi_nesting)
  806. return;
  807. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  808. rdtp->dynticks_nesting < 1);
  809. if (rdtp->dynticks_nesting <= 1) {
  810. rcu_eqs_enter_common(true);
  811. } else {
  812. trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
  813. rdtp->dynticks_nesting--;
  814. }
  815. }
  816. /*
  817. * Wrapper for rcu_irq_exit() where interrupts are enabled.
  818. */
  819. void rcu_irq_exit_irqson(void)
  820. {
  821. unsigned long flags;
  822. local_irq_save(flags);
  823. rcu_irq_exit();
  824. local_irq_restore(flags);
  825. }
  826. /*
  827. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  828. *
  829. * If the new value of the ->dynticks_nesting counter was previously zero,
  830. * we really have exited idle, and must do the appropriate accounting.
  831. * The caller must have disabled interrupts.
  832. */
  833. static void rcu_eqs_exit_common(long long oldval, int user)
  834. {
  835. RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
  836. rcu_dynticks_task_exit();
  837. rcu_dynticks_eqs_exit();
  838. rcu_cleanup_after_idle();
  839. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  840. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  841. !user && !is_idle_task(current)) {
  842. struct task_struct *idle __maybe_unused =
  843. idle_task(smp_processor_id());
  844. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  845. oldval, rdtp->dynticks_nesting);
  846. rcu_ftrace_dump(DUMP_ORIG);
  847. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  848. current->pid, current->comm,
  849. idle->pid, idle->comm); /* must be idle task! */
  850. }
  851. }
  852. /*
  853. * Exit an RCU extended quiescent state, which can be either the
  854. * idle loop or adaptive-tickless usermode execution.
  855. */
  856. static void rcu_eqs_exit(bool user)
  857. {
  858. struct rcu_dynticks *rdtp;
  859. long long oldval;
  860. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
  861. rdtp = this_cpu_ptr(&rcu_dynticks);
  862. oldval = rdtp->dynticks_nesting;
  863. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  864. if (oldval & DYNTICK_TASK_NEST_MASK) {
  865. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  866. } else {
  867. __this_cpu_inc(disable_rcu_irq_enter);
  868. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  869. rcu_eqs_exit_common(oldval, user);
  870. __this_cpu_dec(disable_rcu_irq_enter);
  871. }
  872. }
  873. /**
  874. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  875. *
  876. * Exit idle mode, in other words, -enter- the mode in which RCU
  877. * read-side critical sections can occur.
  878. *
  879. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  880. * allow for the possibility of usermode upcalls messing up our count
  881. * of interrupt nesting level during the busy period that is just
  882. * now starting.
  883. */
  884. void rcu_idle_exit(void)
  885. {
  886. unsigned long flags;
  887. local_irq_save(flags);
  888. rcu_eqs_exit(false);
  889. local_irq_restore(flags);
  890. }
  891. #ifdef CONFIG_NO_HZ_FULL
  892. /**
  893. * rcu_user_exit - inform RCU that we are exiting userspace.
  894. *
  895. * Exit RCU idle mode while entering the kernel because it can
  896. * run a RCU read side critical section anytime.
  897. */
  898. void rcu_user_exit(void)
  899. {
  900. rcu_eqs_exit(1);
  901. }
  902. #endif /* CONFIG_NO_HZ_FULL */
  903. /**
  904. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  905. *
  906. * Enter an interrupt handler, which might possibly result in exiting
  907. * idle mode, in other words, entering the mode in which read-side critical
  908. * sections can occur. The caller must have disabled interrupts.
  909. *
  910. * Note that the Linux kernel is fully capable of entering an interrupt
  911. * handler that it never exits, for example when doing upcalls to
  912. * user mode! This code assumes that the idle loop never does upcalls to
  913. * user mode. If your architecture does do upcalls from the idle loop (or
  914. * does anything else that results in unbalanced calls to the irq_enter()
  915. * and irq_exit() functions), RCU will give you what you deserve, good
  916. * and hard. But very infrequently and irreproducibly.
  917. *
  918. * Use things like work queues to work around this limitation.
  919. *
  920. * You have been warned.
  921. */
  922. void rcu_irq_enter(void)
  923. {
  924. struct rcu_dynticks *rdtp;
  925. long long oldval;
  926. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
  927. rdtp = this_cpu_ptr(&rcu_dynticks);
  928. /* Page faults can happen in NMI handlers, so check... */
  929. if (rdtp->dynticks_nmi_nesting)
  930. return;
  931. oldval = rdtp->dynticks_nesting;
  932. rdtp->dynticks_nesting++;
  933. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  934. rdtp->dynticks_nesting == 0);
  935. if (oldval)
  936. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  937. else
  938. rcu_eqs_exit_common(oldval, true);
  939. }
  940. /*
  941. * Wrapper for rcu_irq_enter() where interrupts are enabled.
  942. */
  943. void rcu_irq_enter_irqson(void)
  944. {
  945. unsigned long flags;
  946. local_irq_save(flags);
  947. rcu_irq_enter();
  948. local_irq_restore(flags);
  949. }
  950. /**
  951. * rcu_nmi_enter - inform RCU of entry to NMI context
  952. *
  953. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  954. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  955. * that the CPU is active. This implementation permits nested NMIs, as
  956. * long as the nesting level does not overflow an int. (You will probably
  957. * run out of stack space first.)
  958. */
  959. void rcu_nmi_enter(void)
  960. {
  961. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  962. int incby = 2;
  963. /* Complain about underflow. */
  964. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  965. /*
  966. * If idle from RCU viewpoint, atomically increment ->dynticks
  967. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  968. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  969. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  970. * to be in the outermost NMI handler that interrupted an RCU-idle
  971. * period (observation due to Andy Lutomirski).
  972. */
  973. if (rcu_dynticks_curr_cpu_in_eqs()) {
  974. rcu_dynticks_eqs_exit();
  975. incby = 1;
  976. }
  977. rdtp->dynticks_nmi_nesting += incby;
  978. barrier();
  979. }
  980. /**
  981. * rcu_nmi_exit - inform RCU of exit from NMI context
  982. *
  983. * If we are returning from the outermost NMI handler that interrupted an
  984. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  985. * to let the RCU grace-period handling know that the CPU is back to
  986. * being RCU-idle.
  987. */
  988. void rcu_nmi_exit(void)
  989. {
  990. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  991. /*
  992. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  993. * (We are exiting an NMI handler, so RCU better be paying attention
  994. * to us!)
  995. */
  996. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  997. WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
  998. /*
  999. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  1000. * leave it in non-RCU-idle state.
  1001. */
  1002. if (rdtp->dynticks_nmi_nesting != 1) {
  1003. rdtp->dynticks_nmi_nesting -= 2;
  1004. return;
  1005. }
  1006. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  1007. rdtp->dynticks_nmi_nesting = 0;
  1008. rcu_dynticks_eqs_enter();
  1009. }
  1010. /**
  1011. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  1012. *
  1013. * Return true if RCU is watching the running CPU, which means that this
  1014. * CPU can safely enter RCU read-side critical sections. In other words,
  1015. * if the current CPU is in its idle loop and is neither in an interrupt
  1016. * or NMI handler, return true.
  1017. */
  1018. bool notrace rcu_is_watching(void)
  1019. {
  1020. bool ret;
  1021. preempt_disable_notrace();
  1022. ret = !rcu_dynticks_curr_cpu_in_eqs();
  1023. preempt_enable_notrace();
  1024. return ret;
  1025. }
  1026. EXPORT_SYMBOL_GPL(rcu_is_watching);
  1027. /*
  1028. * If a holdout task is actually running, request an urgent quiescent
  1029. * state from its CPU. This is unsynchronized, so migrations can cause
  1030. * the request to go to the wrong CPU. Which is OK, all that will happen
  1031. * is that the CPU's next context switch will be a bit slower and next
  1032. * time around this task will generate another request.
  1033. */
  1034. void rcu_request_urgent_qs_task(struct task_struct *t)
  1035. {
  1036. int cpu;
  1037. barrier();
  1038. cpu = task_cpu(t);
  1039. if (!task_curr(t))
  1040. return; /* This task is not running on that CPU. */
  1041. smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
  1042. }
  1043. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  1044. /*
  1045. * Is the current CPU online? Disable preemption to avoid false positives
  1046. * that could otherwise happen due to the current CPU number being sampled,
  1047. * this task being preempted, its old CPU being taken offline, resuming
  1048. * on some other CPU, then determining that its old CPU is now offline.
  1049. * It is OK to use RCU on an offline processor during initial boot, hence
  1050. * the check for rcu_scheduler_fully_active. Note also that it is OK
  1051. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  1052. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  1053. * offline to continue to use RCU for one jiffy after marking itself
  1054. * offline in the cpu_online_mask. This leniency is necessary given the
  1055. * non-atomic nature of the online and offline processing, for example,
  1056. * the fact that a CPU enters the scheduler after completing the teardown
  1057. * of the CPU.
  1058. *
  1059. * This is also why RCU internally marks CPUs online during in the
  1060. * preparation phase and offline after the CPU has been taken down.
  1061. *
  1062. * Disable checking if in an NMI handler because we cannot safely report
  1063. * errors from NMI handlers anyway.
  1064. */
  1065. bool rcu_lockdep_current_cpu_online(void)
  1066. {
  1067. struct rcu_data *rdp;
  1068. struct rcu_node *rnp;
  1069. bool ret;
  1070. if (in_nmi())
  1071. return true;
  1072. preempt_disable();
  1073. rdp = this_cpu_ptr(&rcu_sched_data);
  1074. rnp = rdp->mynode;
  1075. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  1076. !rcu_scheduler_fully_active;
  1077. preempt_enable();
  1078. return ret;
  1079. }
  1080. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  1081. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  1082. /**
  1083. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  1084. *
  1085. * If the current CPU is idle or running at a first-level (not nested)
  1086. * interrupt from idle, return true. The caller must have at least
  1087. * disabled preemption.
  1088. */
  1089. static int rcu_is_cpu_rrupt_from_idle(void)
  1090. {
  1091. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  1092. }
  1093. /*
  1094. * Snapshot the specified CPU's dynticks counter so that we can later
  1095. * credit them with an implicit quiescent state. Return 1 if this CPU
  1096. * is in dynticks idle mode, which is an extended quiescent state.
  1097. */
  1098. static int dyntick_save_progress_counter(struct rcu_data *rdp)
  1099. {
  1100. rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
  1101. if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
  1102. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1103. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
  1104. rdp->mynode->gpnum))
  1105. WRITE_ONCE(rdp->gpwrap, true);
  1106. return 1;
  1107. }
  1108. return 0;
  1109. }
  1110. /*
  1111. * Return true if the specified CPU has passed through a quiescent
  1112. * state by virtue of being in or having passed through an dynticks
  1113. * idle state since the last call to dyntick_save_progress_counter()
  1114. * for this same CPU, or by virtue of having been offline.
  1115. */
  1116. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
  1117. {
  1118. unsigned long jtsq;
  1119. bool *rnhqp;
  1120. bool *ruqp;
  1121. unsigned long rjtsc;
  1122. struct rcu_node *rnp;
  1123. /*
  1124. * If the CPU passed through or entered a dynticks idle phase with
  1125. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1126. * already acknowledged the request to pass through a quiescent
  1127. * state. Either way, that CPU cannot possibly be in an RCU
  1128. * read-side critical section that started before the beginning
  1129. * of the current RCU grace period.
  1130. */
  1131. if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
  1132. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1133. rdp->dynticks_fqs++;
  1134. return 1;
  1135. }
  1136. /* Compute and saturate jiffies_till_sched_qs. */
  1137. jtsq = jiffies_till_sched_qs;
  1138. rjtsc = rcu_jiffies_till_stall_check();
  1139. if (jtsq > rjtsc / 2) {
  1140. WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
  1141. jtsq = rjtsc / 2;
  1142. } else if (jtsq < 1) {
  1143. WRITE_ONCE(jiffies_till_sched_qs, 1);
  1144. jtsq = 1;
  1145. }
  1146. /*
  1147. * Has this CPU encountered a cond_resched_rcu_qs() since the
  1148. * beginning of the grace period? For this to be the case,
  1149. * the CPU has to have noticed the current grace period. This
  1150. * might not be the case for nohz_full CPUs looping in the kernel.
  1151. */
  1152. rnp = rdp->mynode;
  1153. ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
  1154. if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
  1155. READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
  1156. READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
  1157. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
  1158. return 1;
  1159. } else {
  1160. /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
  1161. smp_store_release(ruqp, true);
  1162. }
  1163. /* Check for the CPU being offline. */
  1164. if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
  1165. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1166. rdp->offline_fqs++;
  1167. return 1;
  1168. }
  1169. /*
  1170. * A CPU running for an extended time within the kernel can
  1171. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1172. * even context-switching back and forth between a pair of
  1173. * in-kernel CPU-bound tasks cannot advance grace periods.
  1174. * So if the grace period is old enough, make the CPU pay attention.
  1175. * Note that the unsynchronized assignments to the per-CPU
  1176. * rcu_need_heavy_qs variable are safe. Yes, setting of
  1177. * bits can be lost, but they will be set again on the next
  1178. * force-quiescent-state pass. So lost bit sets do not result
  1179. * in incorrect behavior, merely in a grace period lasting
  1180. * a few jiffies longer than it might otherwise. Because
  1181. * there are at most four threads involved, and because the
  1182. * updates are only once every few jiffies, the probability of
  1183. * lossage (and thus of slight grace-period extension) is
  1184. * quite low.
  1185. *
  1186. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  1187. * is set too high, we override with half of the RCU CPU stall
  1188. * warning delay.
  1189. */
  1190. rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
  1191. if (!READ_ONCE(*rnhqp) &&
  1192. (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
  1193. time_after(jiffies, rdp->rsp->jiffies_resched))) {
  1194. WRITE_ONCE(*rnhqp, true);
  1195. /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
  1196. smp_store_release(ruqp, true);
  1197. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  1198. }
  1199. /*
  1200. * If more than halfway to RCU CPU stall-warning time, do
  1201. * a resched_cpu() to try to loosen things up a bit.
  1202. */
  1203. if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
  1204. resched_cpu(rdp->cpu);
  1205. return 0;
  1206. }
  1207. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1208. {
  1209. unsigned long j = jiffies;
  1210. unsigned long j1;
  1211. rsp->gp_start = j;
  1212. smp_wmb(); /* Record start time before stall time. */
  1213. j1 = rcu_jiffies_till_stall_check();
  1214. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1215. rsp->jiffies_resched = j + j1 / 2;
  1216. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1217. }
  1218. /*
  1219. * Convert a ->gp_state value to a character string.
  1220. */
  1221. static const char *gp_state_getname(short gs)
  1222. {
  1223. if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
  1224. return "???";
  1225. return gp_state_names[gs];
  1226. }
  1227. /*
  1228. * Complain about starvation of grace-period kthread.
  1229. */
  1230. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1231. {
  1232. unsigned long gpa;
  1233. unsigned long j;
  1234. j = jiffies;
  1235. gpa = READ_ONCE(rsp->gp_activity);
  1236. if (j - gpa > 2 * HZ) {
  1237. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
  1238. rsp->name, j - gpa,
  1239. rsp->gpnum, rsp->completed,
  1240. rsp->gp_flags,
  1241. gp_state_getname(rsp->gp_state), rsp->gp_state,
  1242. rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
  1243. rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
  1244. if (rsp->gp_kthread) {
  1245. sched_show_task(rsp->gp_kthread);
  1246. wake_up_process(rsp->gp_kthread);
  1247. }
  1248. }
  1249. }
  1250. /*
  1251. * Dump stacks of all tasks running on stalled CPUs. First try using
  1252. * NMIs, but fall back to manual remote stack tracing on architectures
  1253. * that don't support NMI-based stack dumps. The NMI-triggered stack
  1254. * traces are more accurate because they are printed by the target CPU.
  1255. */
  1256. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1257. {
  1258. int cpu;
  1259. unsigned long flags;
  1260. struct rcu_node *rnp;
  1261. rcu_for_each_leaf_node(rsp, rnp) {
  1262. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1263. for_each_leaf_node_possible_cpu(rnp, cpu)
  1264. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
  1265. if (!trigger_single_cpu_backtrace(cpu))
  1266. dump_cpu_task(cpu);
  1267. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1268. }
  1269. }
  1270. /*
  1271. * If too much time has passed in the current grace period, and if
  1272. * so configured, go kick the relevant kthreads.
  1273. */
  1274. static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
  1275. {
  1276. unsigned long j;
  1277. if (!rcu_kick_kthreads)
  1278. return;
  1279. j = READ_ONCE(rsp->jiffies_kick_kthreads);
  1280. if (time_after(jiffies, j) && rsp->gp_kthread &&
  1281. (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
  1282. WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
  1283. rcu_ftrace_dump(DUMP_ALL);
  1284. wake_up_process(rsp->gp_kthread);
  1285. WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
  1286. }
  1287. }
  1288. static inline void panic_on_rcu_stall(void)
  1289. {
  1290. if (sysctl_panic_on_rcu_stall)
  1291. panic("RCU Stall\n");
  1292. }
  1293. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1294. {
  1295. int cpu;
  1296. long delta;
  1297. unsigned long flags;
  1298. unsigned long gpa;
  1299. unsigned long j;
  1300. int ndetected = 0;
  1301. struct rcu_node *rnp = rcu_get_root(rsp);
  1302. long totqlen = 0;
  1303. /* Kick and suppress, if so configured. */
  1304. rcu_stall_kick_kthreads(rsp);
  1305. if (rcu_cpu_stall_suppress)
  1306. return;
  1307. /* Only let one CPU complain about others per time interval. */
  1308. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1309. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1310. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1311. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1312. return;
  1313. }
  1314. WRITE_ONCE(rsp->jiffies_stall,
  1315. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1316. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1317. /*
  1318. * OK, time to rat on our buddy...
  1319. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1320. * RCU CPU stall warnings.
  1321. */
  1322. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1323. rsp->name);
  1324. print_cpu_stall_info_begin();
  1325. rcu_for_each_leaf_node(rsp, rnp) {
  1326. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1327. ndetected += rcu_print_task_stall(rnp);
  1328. if (rnp->qsmask != 0) {
  1329. for_each_leaf_node_possible_cpu(rnp, cpu)
  1330. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
  1331. print_cpu_stall_info(rsp, cpu);
  1332. ndetected++;
  1333. }
  1334. }
  1335. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1336. }
  1337. print_cpu_stall_info_end();
  1338. for_each_possible_cpu(cpu)
  1339. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1340. cpu)->cblist);
  1341. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1342. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1343. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1344. if (ndetected) {
  1345. rcu_dump_cpu_stacks(rsp);
  1346. /* Complain about tasks blocking the grace period. */
  1347. rcu_print_detail_task_stall(rsp);
  1348. } else {
  1349. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1350. READ_ONCE(rsp->completed) == gpnum) {
  1351. pr_err("INFO: Stall ended before state dump start\n");
  1352. } else {
  1353. j = jiffies;
  1354. gpa = READ_ONCE(rsp->gp_activity);
  1355. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1356. rsp->name, j - gpa, j, gpa,
  1357. jiffies_till_next_fqs,
  1358. rcu_get_root(rsp)->qsmask);
  1359. /* In this case, the current CPU might be at fault. */
  1360. sched_show_task(current);
  1361. }
  1362. }
  1363. rcu_check_gp_kthread_starvation(rsp);
  1364. panic_on_rcu_stall();
  1365. force_quiescent_state(rsp); /* Kick them all. */
  1366. }
  1367. static void print_cpu_stall(struct rcu_state *rsp)
  1368. {
  1369. int cpu;
  1370. unsigned long flags;
  1371. struct rcu_node *rnp = rcu_get_root(rsp);
  1372. long totqlen = 0;
  1373. /* Kick and suppress, if so configured. */
  1374. rcu_stall_kick_kthreads(rsp);
  1375. if (rcu_cpu_stall_suppress)
  1376. return;
  1377. /*
  1378. * OK, time to rat on ourselves...
  1379. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1380. * RCU CPU stall warnings.
  1381. */
  1382. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1383. print_cpu_stall_info_begin();
  1384. print_cpu_stall_info(rsp, smp_processor_id());
  1385. print_cpu_stall_info_end();
  1386. for_each_possible_cpu(cpu)
  1387. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1388. cpu)->cblist);
  1389. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1390. jiffies - rsp->gp_start,
  1391. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1392. rcu_check_gp_kthread_starvation(rsp);
  1393. rcu_dump_cpu_stacks(rsp);
  1394. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1395. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1396. WRITE_ONCE(rsp->jiffies_stall,
  1397. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1398. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1399. panic_on_rcu_stall();
  1400. /*
  1401. * Attempt to revive the RCU machinery by forcing a context switch.
  1402. *
  1403. * A context switch would normally allow the RCU state machine to make
  1404. * progress and it could be we're stuck in kernel space without context
  1405. * switches for an entirely unreasonable amount of time.
  1406. */
  1407. resched_cpu(smp_processor_id());
  1408. }
  1409. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1410. {
  1411. unsigned long completed;
  1412. unsigned long gpnum;
  1413. unsigned long gps;
  1414. unsigned long j;
  1415. unsigned long js;
  1416. struct rcu_node *rnp;
  1417. if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
  1418. !rcu_gp_in_progress(rsp))
  1419. return;
  1420. rcu_stall_kick_kthreads(rsp);
  1421. j = jiffies;
  1422. /*
  1423. * Lots of memory barriers to reject false positives.
  1424. *
  1425. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1426. * then rsp->gp_start, and finally rsp->completed. These values
  1427. * are updated in the opposite order with memory barriers (or
  1428. * equivalent) during grace-period initialization and cleanup.
  1429. * Now, a false positive can occur if we get an new value of
  1430. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1431. * the memory barriers, the only way that this can happen is if one
  1432. * grace period ends and another starts between these two fetches.
  1433. * Detect this by comparing rsp->completed with the previous fetch
  1434. * from rsp->gpnum.
  1435. *
  1436. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1437. * and rsp->gp_start suffice to forestall false positives.
  1438. */
  1439. gpnum = READ_ONCE(rsp->gpnum);
  1440. smp_rmb(); /* Pick up ->gpnum first... */
  1441. js = READ_ONCE(rsp->jiffies_stall);
  1442. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1443. gps = READ_ONCE(rsp->gp_start);
  1444. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1445. completed = READ_ONCE(rsp->completed);
  1446. if (ULONG_CMP_GE(completed, gpnum) ||
  1447. ULONG_CMP_LT(j, js) ||
  1448. ULONG_CMP_GE(gps, js))
  1449. return; /* No stall or GP completed since entering function. */
  1450. rnp = rdp->mynode;
  1451. if (rcu_gp_in_progress(rsp) &&
  1452. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1453. /* We haven't checked in, so go dump stack. */
  1454. print_cpu_stall(rsp);
  1455. } else if (rcu_gp_in_progress(rsp) &&
  1456. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1457. /* They had a few time units to dump stack, so complain. */
  1458. print_other_cpu_stall(rsp, gpnum);
  1459. }
  1460. }
  1461. /**
  1462. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1463. *
  1464. * Set the stall-warning timeout way off into the future, thus preventing
  1465. * any RCU CPU stall-warning messages from appearing in the current set of
  1466. * RCU grace periods.
  1467. *
  1468. * The caller must disable hard irqs.
  1469. */
  1470. void rcu_cpu_stall_reset(void)
  1471. {
  1472. struct rcu_state *rsp;
  1473. for_each_rcu_flavor(rsp)
  1474. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1475. }
  1476. /*
  1477. * Determine the value that ->completed will have at the end of the
  1478. * next subsequent grace period. This is used to tag callbacks so that
  1479. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1480. * been dyntick-idle for an extended period with callbacks under the
  1481. * influence of RCU_FAST_NO_HZ.
  1482. *
  1483. * The caller must hold rnp->lock with interrupts disabled.
  1484. */
  1485. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1486. struct rcu_node *rnp)
  1487. {
  1488. lockdep_assert_held(&rnp->lock);
  1489. /*
  1490. * If RCU is idle, we just wait for the next grace period.
  1491. * But we can only be sure that RCU is idle if we are looking
  1492. * at the root rcu_node structure -- otherwise, a new grace
  1493. * period might have started, but just not yet gotten around
  1494. * to initializing the current non-root rcu_node structure.
  1495. */
  1496. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1497. return rnp->completed + 1;
  1498. /*
  1499. * Otherwise, wait for a possible partial grace period and
  1500. * then the subsequent full grace period.
  1501. */
  1502. return rnp->completed + 2;
  1503. }
  1504. /*
  1505. * Trace-event helper function for rcu_start_future_gp() and
  1506. * rcu_nocb_wait_gp().
  1507. */
  1508. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1509. unsigned long c, const char *s)
  1510. {
  1511. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1512. rnp->completed, c, rnp->level,
  1513. rnp->grplo, rnp->grphi, s);
  1514. }
  1515. /*
  1516. * Start some future grace period, as needed to handle newly arrived
  1517. * callbacks. The required future grace periods are recorded in each
  1518. * rcu_node structure's ->need_future_gp field. Returns true if there
  1519. * is reason to awaken the grace-period kthread.
  1520. *
  1521. * The caller must hold the specified rcu_node structure's ->lock.
  1522. */
  1523. static bool __maybe_unused
  1524. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1525. unsigned long *c_out)
  1526. {
  1527. unsigned long c;
  1528. bool ret = false;
  1529. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1530. lockdep_assert_held(&rnp->lock);
  1531. /*
  1532. * Pick up grace-period number for new callbacks. If this
  1533. * grace period is already marked as needed, return to the caller.
  1534. */
  1535. c = rcu_cbs_completed(rdp->rsp, rnp);
  1536. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1537. if (rnp->need_future_gp[c & 0x1]) {
  1538. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1539. goto out;
  1540. }
  1541. /*
  1542. * If either this rcu_node structure or the root rcu_node structure
  1543. * believe that a grace period is in progress, then we must wait
  1544. * for the one following, which is in "c". Because our request
  1545. * will be noticed at the end of the current grace period, we don't
  1546. * need to explicitly start one. We only do the lockless check
  1547. * of rnp_root's fields if the current rcu_node structure thinks
  1548. * there is no grace period in flight, and because we hold rnp->lock,
  1549. * the only possible change is when rnp_root's two fields are
  1550. * equal, in which case rnp_root->gpnum might be concurrently
  1551. * incremented. But that is OK, as it will just result in our
  1552. * doing some extra useless work.
  1553. */
  1554. if (rnp->gpnum != rnp->completed ||
  1555. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1556. rnp->need_future_gp[c & 0x1]++;
  1557. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1558. goto out;
  1559. }
  1560. /*
  1561. * There might be no grace period in progress. If we don't already
  1562. * hold it, acquire the root rcu_node structure's lock in order to
  1563. * start one (if needed).
  1564. */
  1565. if (rnp != rnp_root)
  1566. raw_spin_lock_rcu_node(rnp_root);
  1567. /*
  1568. * Get a new grace-period number. If there really is no grace
  1569. * period in progress, it will be smaller than the one we obtained
  1570. * earlier. Adjust callbacks as needed.
  1571. */
  1572. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1573. if (!rcu_is_nocb_cpu(rdp->cpu))
  1574. (void)rcu_segcblist_accelerate(&rdp->cblist, c);
  1575. /*
  1576. * If the needed for the required grace period is already
  1577. * recorded, trace and leave.
  1578. */
  1579. if (rnp_root->need_future_gp[c & 0x1]) {
  1580. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1581. goto unlock_out;
  1582. }
  1583. /* Record the need for the future grace period. */
  1584. rnp_root->need_future_gp[c & 0x1]++;
  1585. /* If a grace period is not already in progress, start one. */
  1586. if (rnp_root->gpnum != rnp_root->completed) {
  1587. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1588. } else {
  1589. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1590. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1591. }
  1592. unlock_out:
  1593. if (rnp != rnp_root)
  1594. raw_spin_unlock_rcu_node(rnp_root);
  1595. out:
  1596. if (c_out != NULL)
  1597. *c_out = c;
  1598. return ret;
  1599. }
  1600. /*
  1601. * Clean up any old requests for the just-ended grace period. Also return
  1602. * whether any additional grace periods have been requested.
  1603. */
  1604. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1605. {
  1606. int c = rnp->completed;
  1607. int needmore;
  1608. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1609. rnp->need_future_gp[c & 0x1] = 0;
  1610. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1611. trace_rcu_future_gp(rnp, rdp, c,
  1612. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1613. return needmore;
  1614. }
  1615. /*
  1616. * Awaken the grace-period kthread for the specified flavor of RCU.
  1617. * Don't do a self-awaken, and don't bother awakening when there is
  1618. * nothing for the grace-period kthread to do (as in several CPUs
  1619. * raced to awaken, and we lost), and finally don't try to awaken
  1620. * a kthread that has not yet been created.
  1621. */
  1622. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1623. {
  1624. if (current == rsp->gp_kthread ||
  1625. !READ_ONCE(rsp->gp_flags) ||
  1626. !rsp->gp_kthread)
  1627. return;
  1628. swake_up(&rsp->gp_wq);
  1629. }
  1630. /*
  1631. * If there is room, assign a ->completed number to any callbacks on
  1632. * this CPU that have not already been assigned. Also accelerate any
  1633. * callbacks that were previously assigned a ->completed number that has
  1634. * since proven to be too conservative, which can happen if callbacks get
  1635. * assigned a ->completed number while RCU is idle, but with reference to
  1636. * a non-root rcu_node structure. This function is idempotent, so it does
  1637. * not hurt to call it repeatedly. Returns an flag saying that we should
  1638. * awaken the RCU grace-period kthread.
  1639. *
  1640. * The caller must hold rnp->lock with interrupts disabled.
  1641. */
  1642. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1643. struct rcu_data *rdp)
  1644. {
  1645. bool ret = false;
  1646. lockdep_assert_held(&rnp->lock);
  1647. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1648. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1649. return false;
  1650. /*
  1651. * Callbacks are often registered with incomplete grace-period
  1652. * information. Something about the fact that getting exact
  1653. * information requires acquiring a global lock... RCU therefore
  1654. * makes a conservative estimate of the grace period number at which
  1655. * a given callback will become ready to invoke. The following
  1656. * code checks this estimate and improves it when possible, thus
  1657. * accelerating callback invocation to an earlier grace-period
  1658. * number.
  1659. */
  1660. if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
  1661. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1662. /* Trace depending on how much we were able to accelerate. */
  1663. if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
  1664. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1665. else
  1666. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1667. return ret;
  1668. }
  1669. /*
  1670. * Move any callbacks whose grace period has completed to the
  1671. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1672. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1673. * sublist. This function is idempotent, so it does not hurt to
  1674. * invoke it repeatedly. As long as it is not invoked -too- often...
  1675. * Returns true if the RCU grace-period kthread needs to be awakened.
  1676. *
  1677. * The caller must hold rnp->lock with interrupts disabled.
  1678. */
  1679. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1680. struct rcu_data *rdp)
  1681. {
  1682. lockdep_assert_held(&rnp->lock);
  1683. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1684. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1685. return false;
  1686. /*
  1687. * Find all callbacks whose ->completed numbers indicate that they
  1688. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1689. */
  1690. rcu_segcblist_advance(&rdp->cblist, rnp->completed);
  1691. /* Classify any remaining callbacks. */
  1692. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1693. }
  1694. /*
  1695. * Update CPU-local rcu_data state to record the beginnings and ends of
  1696. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1697. * structure corresponding to the current CPU, and must have irqs disabled.
  1698. * Returns true if the grace-period kthread needs to be awakened.
  1699. */
  1700. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1701. struct rcu_data *rdp)
  1702. {
  1703. bool ret;
  1704. bool need_gp;
  1705. lockdep_assert_held(&rnp->lock);
  1706. /* Handle the ends of any preceding grace periods first. */
  1707. if (rdp->completed == rnp->completed &&
  1708. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1709. /* No grace period end, so just accelerate recent callbacks. */
  1710. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1711. } else {
  1712. /* Advance callbacks. */
  1713. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1714. /* Remember that we saw this grace-period completion. */
  1715. rdp->completed = rnp->completed;
  1716. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1717. }
  1718. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1719. /*
  1720. * If the current grace period is waiting for this CPU,
  1721. * set up to detect a quiescent state, otherwise don't
  1722. * go looking for one.
  1723. */
  1724. rdp->gpnum = rnp->gpnum;
  1725. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1726. need_gp = !!(rnp->qsmask & rdp->grpmask);
  1727. rdp->cpu_no_qs.b.norm = need_gp;
  1728. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  1729. rdp->core_needs_qs = need_gp;
  1730. zero_cpu_stall_ticks(rdp);
  1731. WRITE_ONCE(rdp->gpwrap, false);
  1732. }
  1733. return ret;
  1734. }
  1735. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1736. {
  1737. unsigned long flags;
  1738. bool needwake;
  1739. struct rcu_node *rnp;
  1740. local_irq_save(flags);
  1741. rnp = rdp->mynode;
  1742. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1743. rdp->completed == READ_ONCE(rnp->completed) &&
  1744. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1745. !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
  1746. local_irq_restore(flags);
  1747. return;
  1748. }
  1749. needwake = __note_gp_changes(rsp, rnp, rdp);
  1750. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1751. if (needwake)
  1752. rcu_gp_kthread_wake(rsp);
  1753. }
  1754. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1755. {
  1756. if (delay > 0 &&
  1757. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1758. schedule_timeout_uninterruptible(delay);
  1759. }
  1760. /*
  1761. * Initialize a new grace period. Return false if no grace period required.
  1762. */
  1763. static bool rcu_gp_init(struct rcu_state *rsp)
  1764. {
  1765. unsigned long oldmask;
  1766. struct rcu_data *rdp;
  1767. struct rcu_node *rnp = rcu_get_root(rsp);
  1768. WRITE_ONCE(rsp->gp_activity, jiffies);
  1769. raw_spin_lock_irq_rcu_node(rnp);
  1770. if (!READ_ONCE(rsp->gp_flags)) {
  1771. /* Spurious wakeup, tell caller to go back to sleep. */
  1772. raw_spin_unlock_irq_rcu_node(rnp);
  1773. return false;
  1774. }
  1775. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1776. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1777. /*
  1778. * Grace period already in progress, don't start another.
  1779. * Not supposed to be able to happen.
  1780. */
  1781. raw_spin_unlock_irq_rcu_node(rnp);
  1782. return false;
  1783. }
  1784. /* Advance to a new grace period and initialize state. */
  1785. record_gp_stall_check_time(rsp);
  1786. /* Record GP times before starting GP, hence smp_store_release(). */
  1787. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1788. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1789. raw_spin_unlock_irq_rcu_node(rnp);
  1790. /*
  1791. * Apply per-leaf buffered online and offline operations to the
  1792. * rcu_node tree. Note that this new grace period need not wait
  1793. * for subsequent online CPUs, and that quiescent-state forcing
  1794. * will handle subsequent offline CPUs.
  1795. */
  1796. rcu_for_each_leaf_node(rsp, rnp) {
  1797. rcu_gp_slow(rsp, gp_preinit_delay);
  1798. raw_spin_lock_irq_rcu_node(rnp);
  1799. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1800. !rnp->wait_blkd_tasks) {
  1801. /* Nothing to do on this leaf rcu_node structure. */
  1802. raw_spin_unlock_irq_rcu_node(rnp);
  1803. continue;
  1804. }
  1805. /* Record old state, apply changes to ->qsmaskinit field. */
  1806. oldmask = rnp->qsmaskinit;
  1807. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1808. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1809. if (!oldmask != !rnp->qsmaskinit) {
  1810. if (!oldmask) /* First online CPU for this rcu_node. */
  1811. rcu_init_new_rnp(rnp);
  1812. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1813. rnp->wait_blkd_tasks = true;
  1814. else /* Last offline CPU and can propagate. */
  1815. rcu_cleanup_dead_rnp(rnp);
  1816. }
  1817. /*
  1818. * If all waited-on tasks from prior grace period are
  1819. * done, and if all this rcu_node structure's CPUs are
  1820. * still offline, propagate up the rcu_node tree and
  1821. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1822. * rcu_node structure's CPUs has since come back online,
  1823. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1824. * checks for this, so just call it unconditionally).
  1825. */
  1826. if (rnp->wait_blkd_tasks &&
  1827. (!rcu_preempt_has_tasks(rnp) ||
  1828. rnp->qsmaskinit)) {
  1829. rnp->wait_blkd_tasks = false;
  1830. rcu_cleanup_dead_rnp(rnp);
  1831. }
  1832. raw_spin_unlock_irq_rcu_node(rnp);
  1833. }
  1834. /*
  1835. * Set the quiescent-state-needed bits in all the rcu_node
  1836. * structures for all currently online CPUs in breadth-first order,
  1837. * starting from the root rcu_node structure, relying on the layout
  1838. * of the tree within the rsp->node[] array. Note that other CPUs
  1839. * will access only the leaves of the hierarchy, thus seeing that no
  1840. * grace period is in progress, at least until the corresponding
  1841. * leaf node has been initialized.
  1842. *
  1843. * The grace period cannot complete until the initialization
  1844. * process finishes, because this kthread handles both.
  1845. */
  1846. rcu_for_each_node_breadth_first(rsp, rnp) {
  1847. rcu_gp_slow(rsp, gp_init_delay);
  1848. raw_spin_lock_irq_rcu_node(rnp);
  1849. rdp = this_cpu_ptr(rsp->rda);
  1850. rcu_preempt_check_blocked_tasks(rnp);
  1851. rnp->qsmask = rnp->qsmaskinit;
  1852. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1853. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1854. WRITE_ONCE(rnp->completed, rsp->completed);
  1855. if (rnp == rdp->mynode)
  1856. (void)__note_gp_changes(rsp, rnp, rdp);
  1857. rcu_preempt_boost_start_gp(rnp);
  1858. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1859. rnp->level, rnp->grplo,
  1860. rnp->grphi, rnp->qsmask);
  1861. raw_spin_unlock_irq_rcu_node(rnp);
  1862. cond_resched_rcu_qs();
  1863. WRITE_ONCE(rsp->gp_activity, jiffies);
  1864. }
  1865. return true;
  1866. }
  1867. /*
  1868. * Helper function for swait_event_idle() wakeup at force-quiescent-state
  1869. * time.
  1870. */
  1871. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1872. {
  1873. struct rcu_node *rnp = rcu_get_root(rsp);
  1874. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1875. *gfp = READ_ONCE(rsp->gp_flags);
  1876. if (*gfp & RCU_GP_FLAG_FQS)
  1877. return true;
  1878. /* The current grace period has completed. */
  1879. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1880. return true;
  1881. return false;
  1882. }
  1883. /*
  1884. * Do one round of quiescent-state forcing.
  1885. */
  1886. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1887. {
  1888. struct rcu_node *rnp = rcu_get_root(rsp);
  1889. WRITE_ONCE(rsp->gp_activity, jiffies);
  1890. rsp->n_force_qs++;
  1891. if (first_time) {
  1892. /* Collect dyntick-idle snapshots. */
  1893. force_qs_rnp(rsp, dyntick_save_progress_counter);
  1894. } else {
  1895. /* Handle dyntick-idle and offline CPUs. */
  1896. force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
  1897. }
  1898. /* Clear flag to prevent immediate re-entry. */
  1899. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1900. raw_spin_lock_irq_rcu_node(rnp);
  1901. WRITE_ONCE(rsp->gp_flags,
  1902. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1903. raw_spin_unlock_irq_rcu_node(rnp);
  1904. }
  1905. }
  1906. /*
  1907. * Clean up after the old grace period.
  1908. */
  1909. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1910. {
  1911. unsigned long gp_duration;
  1912. bool needgp = false;
  1913. int nocb = 0;
  1914. struct rcu_data *rdp;
  1915. struct rcu_node *rnp = rcu_get_root(rsp);
  1916. struct swait_queue_head *sq;
  1917. WRITE_ONCE(rsp->gp_activity, jiffies);
  1918. raw_spin_lock_irq_rcu_node(rnp);
  1919. gp_duration = jiffies - rsp->gp_start;
  1920. if (gp_duration > rsp->gp_max)
  1921. rsp->gp_max = gp_duration;
  1922. /*
  1923. * We know the grace period is complete, but to everyone else
  1924. * it appears to still be ongoing. But it is also the case
  1925. * that to everyone else it looks like there is nothing that
  1926. * they can do to advance the grace period. It is therefore
  1927. * safe for us to drop the lock in order to mark the grace
  1928. * period as completed in all of the rcu_node structures.
  1929. */
  1930. raw_spin_unlock_irq_rcu_node(rnp);
  1931. /*
  1932. * Propagate new ->completed value to rcu_node structures so
  1933. * that other CPUs don't have to wait until the start of the next
  1934. * grace period to process their callbacks. This also avoids
  1935. * some nasty RCU grace-period initialization races by forcing
  1936. * the end of the current grace period to be completely recorded in
  1937. * all of the rcu_node structures before the beginning of the next
  1938. * grace period is recorded in any of the rcu_node structures.
  1939. */
  1940. rcu_for_each_node_breadth_first(rsp, rnp) {
  1941. raw_spin_lock_irq_rcu_node(rnp);
  1942. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1943. WARN_ON_ONCE(rnp->qsmask);
  1944. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1945. rdp = this_cpu_ptr(rsp->rda);
  1946. if (rnp == rdp->mynode)
  1947. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1948. /* smp_mb() provided by prior unlock-lock pair. */
  1949. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1950. sq = rcu_nocb_gp_get(rnp);
  1951. raw_spin_unlock_irq_rcu_node(rnp);
  1952. rcu_nocb_gp_cleanup(sq);
  1953. cond_resched_rcu_qs();
  1954. WRITE_ONCE(rsp->gp_activity, jiffies);
  1955. rcu_gp_slow(rsp, gp_cleanup_delay);
  1956. }
  1957. rnp = rcu_get_root(rsp);
  1958. raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
  1959. rcu_nocb_gp_set(rnp, nocb);
  1960. /* Declare grace period done. */
  1961. WRITE_ONCE(rsp->completed, rsp->gpnum);
  1962. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1963. rsp->gp_state = RCU_GP_IDLE;
  1964. rdp = this_cpu_ptr(rsp->rda);
  1965. /* Advance CBs to reduce false positives below. */
  1966. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1967. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1968. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1969. trace_rcu_grace_period(rsp->name,
  1970. READ_ONCE(rsp->gpnum),
  1971. TPS("newreq"));
  1972. }
  1973. raw_spin_unlock_irq_rcu_node(rnp);
  1974. }
  1975. /*
  1976. * Body of kthread that handles grace periods.
  1977. */
  1978. static int __noreturn rcu_gp_kthread(void *arg)
  1979. {
  1980. bool first_gp_fqs;
  1981. int gf;
  1982. unsigned long j;
  1983. int ret;
  1984. struct rcu_state *rsp = arg;
  1985. struct rcu_node *rnp = rcu_get_root(rsp);
  1986. rcu_bind_gp_kthread();
  1987. for (;;) {
  1988. /* Handle grace-period start. */
  1989. for (;;) {
  1990. trace_rcu_grace_period(rsp->name,
  1991. READ_ONCE(rsp->gpnum),
  1992. TPS("reqwait"));
  1993. rsp->gp_state = RCU_GP_WAIT_GPS;
  1994. swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
  1995. RCU_GP_FLAG_INIT);
  1996. rsp->gp_state = RCU_GP_DONE_GPS;
  1997. /* Locking provides needed memory barrier. */
  1998. if (rcu_gp_init(rsp))
  1999. break;
  2000. cond_resched_rcu_qs();
  2001. WRITE_ONCE(rsp->gp_activity, jiffies);
  2002. WARN_ON(signal_pending(current));
  2003. trace_rcu_grace_period(rsp->name,
  2004. READ_ONCE(rsp->gpnum),
  2005. TPS("reqwaitsig"));
  2006. }
  2007. /* Handle quiescent-state forcing. */
  2008. first_gp_fqs = true;
  2009. j = jiffies_till_first_fqs;
  2010. if (j > HZ) {
  2011. j = HZ;
  2012. jiffies_till_first_fqs = HZ;
  2013. }
  2014. ret = 0;
  2015. for (;;) {
  2016. if (!ret) {
  2017. rsp->jiffies_force_qs = jiffies + j;
  2018. WRITE_ONCE(rsp->jiffies_kick_kthreads,
  2019. jiffies + 3 * j);
  2020. }
  2021. trace_rcu_grace_period(rsp->name,
  2022. READ_ONCE(rsp->gpnum),
  2023. TPS("fqswait"));
  2024. rsp->gp_state = RCU_GP_WAIT_FQS;
  2025. ret = swait_event_idle_timeout(rsp->gp_wq,
  2026. rcu_gp_fqs_check_wake(rsp, &gf), j);
  2027. rsp->gp_state = RCU_GP_DOING_FQS;
  2028. /* Locking provides needed memory barriers. */
  2029. /* If grace period done, leave loop. */
  2030. if (!READ_ONCE(rnp->qsmask) &&
  2031. !rcu_preempt_blocked_readers_cgp(rnp))
  2032. break;
  2033. /* If time for quiescent-state forcing, do it. */
  2034. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  2035. (gf & RCU_GP_FLAG_FQS)) {
  2036. trace_rcu_grace_period(rsp->name,
  2037. READ_ONCE(rsp->gpnum),
  2038. TPS("fqsstart"));
  2039. rcu_gp_fqs(rsp, first_gp_fqs);
  2040. first_gp_fqs = false;
  2041. trace_rcu_grace_period(rsp->name,
  2042. READ_ONCE(rsp->gpnum),
  2043. TPS("fqsend"));
  2044. cond_resched_rcu_qs();
  2045. WRITE_ONCE(rsp->gp_activity, jiffies);
  2046. ret = 0; /* Force full wait till next FQS. */
  2047. j = jiffies_till_next_fqs;
  2048. if (j > HZ) {
  2049. j = HZ;
  2050. jiffies_till_next_fqs = HZ;
  2051. } else if (j < 1) {
  2052. j = 1;
  2053. jiffies_till_next_fqs = 1;
  2054. }
  2055. } else {
  2056. /* Deal with stray signal. */
  2057. cond_resched_rcu_qs();
  2058. WRITE_ONCE(rsp->gp_activity, jiffies);
  2059. WARN_ON(signal_pending(current));
  2060. trace_rcu_grace_period(rsp->name,
  2061. READ_ONCE(rsp->gpnum),
  2062. TPS("fqswaitsig"));
  2063. ret = 1; /* Keep old FQS timing. */
  2064. j = jiffies;
  2065. if (time_after(jiffies, rsp->jiffies_force_qs))
  2066. j = 1;
  2067. else
  2068. j = rsp->jiffies_force_qs - j;
  2069. }
  2070. }
  2071. /* Handle grace-period end. */
  2072. rsp->gp_state = RCU_GP_CLEANUP;
  2073. rcu_gp_cleanup(rsp);
  2074. rsp->gp_state = RCU_GP_CLEANED;
  2075. }
  2076. }
  2077. /*
  2078. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  2079. * in preparation for detecting the next grace period. The caller must hold
  2080. * the root node's ->lock and hard irqs must be disabled.
  2081. *
  2082. * Note that it is legal for a dying CPU (which is marked as offline) to
  2083. * invoke this function. This can happen when the dying CPU reports its
  2084. * quiescent state.
  2085. *
  2086. * Returns true if the grace-period kthread must be awakened.
  2087. */
  2088. static bool
  2089. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  2090. struct rcu_data *rdp)
  2091. {
  2092. lockdep_assert_held(&rnp->lock);
  2093. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  2094. /*
  2095. * Either we have not yet spawned the grace-period
  2096. * task, this CPU does not need another grace period,
  2097. * or a grace period is already in progress.
  2098. * Either way, don't start a new grace period.
  2099. */
  2100. return false;
  2101. }
  2102. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  2103. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  2104. TPS("newreq"));
  2105. /*
  2106. * We can't do wakeups while holding the rnp->lock, as that
  2107. * could cause possible deadlocks with the rq->lock. Defer
  2108. * the wakeup to our caller.
  2109. */
  2110. return true;
  2111. }
  2112. /*
  2113. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  2114. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  2115. * is invoked indirectly from rcu_advance_cbs(), which would result in
  2116. * endless recursion -- or would do so if it wasn't for the self-deadlock
  2117. * that is encountered beforehand.
  2118. *
  2119. * Returns true if the grace-period kthread needs to be awakened.
  2120. */
  2121. static bool rcu_start_gp(struct rcu_state *rsp)
  2122. {
  2123. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2124. struct rcu_node *rnp = rcu_get_root(rsp);
  2125. bool ret = false;
  2126. /*
  2127. * If there is no grace period in progress right now, any
  2128. * callbacks we have up to this point will be satisfied by the
  2129. * next grace period. Also, advancing the callbacks reduces the
  2130. * probability of false positives from cpu_needs_another_gp()
  2131. * resulting in pointless grace periods. So, advance callbacks
  2132. * then start the grace period!
  2133. */
  2134. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2135. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2136. return ret;
  2137. }
  2138. /*
  2139. * Report a full set of quiescent states to the specified rcu_state data
  2140. * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
  2141. * kthread if another grace period is required. Whether we wake
  2142. * the grace-period kthread or it awakens itself for the next round
  2143. * of quiescent-state forcing, that kthread will clean up after the
  2144. * just-completed grace period. Note that the caller must hold rnp->lock,
  2145. * which is released before return.
  2146. */
  2147. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2148. __releases(rcu_get_root(rsp)->lock)
  2149. {
  2150. lockdep_assert_held(&rcu_get_root(rsp)->lock);
  2151. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2152. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2153. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2154. rcu_gp_kthread_wake(rsp);
  2155. }
  2156. /*
  2157. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2158. * Allows quiescent states for a group of CPUs to be reported at one go
  2159. * to the specified rcu_node structure, though all the CPUs in the group
  2160. * must be represented by the same rcu_node structure (which need not be a
  2161. * leaf rcu_node structure, though it often will be). The gps parameter
  2162. * is the grace-period snapshot, which means that the quiescent states
  2163. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2164. * must be held upon entry, and it is released before return.
  2165. */
  2166. static void
  2167. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2168. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2169. __releases(rnp->lock)
  2170. {
  2171. unsigned long oldmask = 0;
  2172. struct rcu_node *rnp_c;
  2173. lockdep_assert_held(&rnp->lock);
  2174. /* Walk up the rcu_node hierarchy. */
  2175. for (;;) {
  2176. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2177. /*
  2178. * Our bit has already been cleared, or the
  2179. * relevant grace period is already over, so done.
  2180. */
  2181. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2182. return;
  2183. }
  2184. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2185. WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
  2186. rcu_preempt_blocked_readers_cgp(rnp));
  2187. rnp->qsmask &= ~mask;
  2188. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2189. mask, rnp->qsmask, rnp->level,
  2190. rnp->grplo, rnp->grphi,
  2191. !!rnp->gp_tasks);
  2192. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2193. /* Other bits still set at this level, so done. */
  2194. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2195. return;
  2196. }
  2197. mask = rnp->grpmask;
  2198. if (rnp->parent == NULL) {
  2199. /* No more levels. Exit loop holding root lock. */
  2200. break;
  2201. }
  2202. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2203. rnp_c = rnp;
  2204. rnp = rnp->parent;
  2205. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2206. oldmask = rnp_c->qsmask;
  2207. }
  2208. /*
  2209. * Get here if we are the last CPU to pass through a quiescent
  2210. * state for this grace period. Invoke rcu_report_qs_rsp()
  2211. * to clean up and start the next grace period if one is needed.
  2212. */
  2213. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2214. }
  2215. /*
  2216. * Record a quiescent state for all tasks that were previously queued
  2217. * on the specified rcu_node structure and that were blocking the current
  2218. * RCU grace period. The caller must hold the specified rnp->lock with
  2219. * irqs disabled, and this lock is released upon return, but irqs remain
  2220. * disabled.
  2221. */
  2222. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2223. struct rcu_node *rnp, unsigned long flags)
  2224. __releases(rnp->lock)
  2225. {
  2226. unsigned long gps;
  2227. unsigned long mask;
  2228. struct rcu_node *rnp_p;
  2229. lockdep_assert_held(&rnp->lock);
  2230. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2231. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2232. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2233. return; /* Still need more quiescent states! */
  2234. }
  2235. rnp_p = rnp->parent;
  2236. if (rnp_p == NULL) {
  2237. /*
  2238. * Only one rcu_node structure in the tree, so don't
  2239. * try to report up to its nonexistent parent!
  2240. */
  2241. rcu_report_qs_rsp(rsp, flags);
  2242. return;
  2243. }
  2244. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2245. gps = rnp->gpnum;
  2246. mask = rnp->grpmask;
  2247. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2248. raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
  2249. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2250. }
  2251. /*
  2252. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2253. * structure. This must be called from the specified CPU.
  2254. */
  2255. static void
  2256. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2257. {
  2258. unsigned long flags;
  2259. unsigned long mask;
  2260. bool needwake;
  2261. struct rcu_node *rnp;
  2262. rnp = rdp->mynode;
  2263. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2264. if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
  2265. rnp->completed == rnp->gpnum || rdp->gpwrap) {
  2266. /*
  2267. * The grace period in which this quiescent state was
  2268. * recorded has ended, so don't report it upwards.
  2269. * We will instead need a new quiescent state that lies
  2270. * within the current grace period.
  2271. */
  2272. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2273. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  2274. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2275. return;
  2276. }
  2277. mask = rdp->grpmask;
  2278. if ((rnp->qsmask & mask) == 0) {
  2279. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2280. } else {
  2281. rdp->core_needs_qs = false;
  2282. /*
  2283. * This GP can't end until cpu checks in, so all of our
  2284. * callbacks can be processed during the next GP.
  2285. */
  2286. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2287. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2288. /* ^^^ Released rnp->lock */
  2289. if (needwake)
  2290. rcu_gp_kthread_wake(rsp);
  2291. }
  2292. }
  2293. /*
  2294. * Check to see if there is a new grace period of which this CPU
  2295. * is not yet aware, and if so, set up local rcu_data state for it.
  2296. * Otherwise, see if this CPU has just passed through its first
  2297. * quiescent state for this grace period, and record that fact if so.
  2298. */
  2299. static void
  2300. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2301. {
  2302. /* Check for grace-period ends and beginnings. */
  2303. note_gp_changes(rsp, rdp);
  2304. /*
  2305. * Does this CPU still need to do its part for current grace period?
  2306. * If no, return and let the other CPUs do their part as well.
  2307. */
  2308. if (!rdp->core_needs_qs)
  2309. return;
  2310. /*
  2311. * Was there a quiescent state since the beginning of the grace
  2312. * period? If no, then exit and wait for the next call.
  2313. */
  2314. if (rdp->cpu_no_qs.b.norm)
  2315. return;
  2316. /*
  2317. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2318. * judge of that).
  2319. */
  2320. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2321. }
  2322. /*
  2323. * Trace the fact that this CPU is going offline.
  2324. */
  2325. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2326. {
  2327. RCU_TRACE(unsigned long mask;)
  2328. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
  2329. RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
  2330. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2331. return;
  2332. RCU_TRACE(mask = rdp->grpmask;)
  2333. trace_rcu_grace_period(rsp->name,
  2334. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2335. TPS("cpuofl"));
  2336. }
  2337. /*
  2338. * All CPUs for the specified rcu_node structure have gone offline,
  2339. * and all tasks that were preempted within an RCU read-side critical
  2340. * section while running on one of those CPUs have since exited their RCU
  2341. * read-side critical section. Some other CPU is reporting this fact with
  2342. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2343. * This function therefore goes up the tree of rcu_node structures,
  2344. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2345. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2346. * updated
  2347. *
  2348. * This function does check that the specified rcu_node structure has
  2349. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2350. * prematurely. That said, invoking it after the fact will cost you
  2351. * a needless lock acquisition. So once it has done its work, don't
  2352. * invoke it again.
  2353. */
  2354. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2355. {
  2356. long mask;
  2357. struct rcu_node *rnp = rnp_leaf;
  2358. lockdep_assert_held(&rnp->lock);
  2359. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2360. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2361. return;
  2362. for (;;) {
  2363. mask = rnp->grpmask;
  2364. rnp = rnp->parent;
  2365. if (!rnp)
  2366. break;
  2367. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  2368. rnp->qsmaskinit &= ~mask;
  2369. rnp->qsmask &= ~mask;
  2370. if (rnp->qsmaskinit) {
  2371. raw_spin_unlock_rcu_node(rnp);
  2372. /* irqs remain disabled. */
  2373. return;
  2374. }
  2375. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2376. }
  2377. }
  2378. /*
  2379. * The CPU has been completely removed, and some other CPU is reporting
  2380. * this fact from process context. Do the remainder of the cleanup.
  2381. * There can only be one CPU hotplug operation at a time, so no need for
  2382. * explicit locking.
  2383. */
  2384. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2385. {
  2386. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2387. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2388. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2389. return;
  2390. /* Adjust any no-longer-needed kthreads. */
  2391. rcu_boost_kthread_setaffinity(rnp, -1);
  2392. }
  2393. /*
  2394. * Invoke any RCU callbacks that have made it to the end of their grace
  2395. * period. Thottle as specified by rdp->blimit.
  2396. */
  2397. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2398. {
  2399. unsigned long flags;
  2400. struct rcu_head *rhp;
  2401. struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
  2402. long bl, count;
  2403. /* If no callbacks are ready, just return. */
  2404. if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
  2405. trace_rcu_batch_start(rsp->name,
  2406. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2407. rcu_segcblist_n_cbs(&rdp->cblist), 0);
  2408. trace_rcu_batch_end(rsp->name, 0,
  2409. !rcu_segcblist_empty(&rdp->cblist),
  2410. need_resched(), is_idle_task(current),
  2411. rcu_is_callbacks_kthread());
  2412. return;
  2413. }
  2414. /*
  2415. * Extract the list of ready callbacks, disabling to prevent
  2416. * races with call_rcu() from interrupt handlers. Leave the
  2417. * callback counts, as rcu_barrier() needs to be conservative.
  2418. */
  2419. local_irq_save(flags);
  2420. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2421. bl = rdp->blimit;
  2422. trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2423. rcu_segcblist_n_cbs(&rdp->cblist), bl);
  2424. rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
  2425. local_irq_restore(flags);
  2426. /* Invoke callbacks. */
  2427. rhp = rcu_cblist_dequeue(&rcl);
  2428. for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
  2429. debug_rcu_head_unqueue(rhp);
  2430. if (__rcu_reclaim(rsp->name, rhp))
  2431. rcu_cblist_dequeued_lazy(&rcl);
  2432. /*
  2433. * Stop only if limit reached and CPU has something to do.
  2434. * Note: The rcl structure counts down from zero.
  2435. */
  2436. if (-rcl.len >= bl &&
  2437. (need_resched() ||
  2438. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2439. break;
  2440. }
  2441. local_irq_save(flags);
  2442. count = -rcl.len;
  2443. trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
  2444. is_idle_task(current), rcu_is_callbacks_kthread());
  2445. /* Update counts and requeue any remaining callbacks. */
  2446. rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
  2447. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2448. rdp->n_cbs_invoked += count;
  2449. rcu_segcblist_insert_count(&rdp->cblist, &rcl);
  2450. /* Reinstate batch limit if we have worked down the excess. */
  2451. count = rcu_segcblist_n_cbs(&rdp->cblist);
  2452. if (rdp->blimit == LONG_MAX && count <= qlowmark)
  2453. rdp->blimit = blimit;
  2454. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2455. if (count == 0 && rdp->qlen_last_fqs_check != 0) {
  2456. rdp->qlen_last_fqs_check = 0;
  2457. rdp->n_force_qs_snap = rsp->n_force_qs;
  2458. } else if (count < rdp->qlen_last_fqs_check - qhimark)
  2459. rdp->qlen_last_fqs_check = count;
  2460. WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
  2461. local_irq_restore(flags);
  2462. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2463. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2464. invoke_rcu_core();
  2465. }
  2466. /*
  2467. * Check to see if this CPU is in a non-context-switch quiescent state
  2468. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2469. * Also schedule RCU core processing.
  2470. *
  2471. * This function must be called from hardirq context. It is normally
  2472. * invoked from the scheduling-clock interrupt.
  2473. */
  2474. void rcu_check_callbacks(int user)
  2475. {
  2476. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2477. increment_cpu_stall_ticks();
  2478. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2479. /*
  2480. * Get here if this CPU took its interrupt from user
  2481. * mode or from the idle loop, and if this is not a
  2482. * nested interrupt. In this case, the CPU is in
  2483. * a quiescent state, so note it.
  2484. *
  2485. * No memory barrier is required here because both
  2486. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2487. * variables that other CPUs neither access nor modify,
  2488. * at least not while the corresponding CPU is online.
  2489. */
  2490. rcu_sched_qs();
  2491. rcu_bh_qs();
  2492. } else if (!in_softirq()) {
  2493. /*
  2494. * Get here if this CPU did not take its interrupt from
  2495. * softirq, in other words, if it is not interrupting
  2496. * a rcu_bh read-side critical section. This is an _bh
  2497. * critical section, so note it.
  2498. */
  2499. rcu_bh_qs();
  2500. }
  2501. rcu_preempt_check_callbacks();
  2502. if (rcu_pending())
  2503. invoke_rcu_core();
  2504. if (user)
  2505. rcu_note_voluntary_context_switch(current);
  2506. trace_rcu_utilization(TPS("End scheduler-tick"));
  2507. }
  2508. /*
  2509. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2510. * have not yet encountered a quiescent state, using the function specified.
  2511. * Also initiate boosting for any threads blocked on the root rcu_node.
  2512. *
  2513. * The caller must have suppressed start of new grace periods.
  2514. */
  2515. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
  2516. {
  2517. int cpu;
  2518. unsigned long flags;
  2519. unsigned long mask;
  2520. struct rcu_node *rnp;
  2521. rcu_for_each_leaf_node(rsp, rnp) {
  2522. cond_resched_rcu_qs();
  2523. mask = 0;
  2524. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2525. if (rnp->qsmask == 0) {
  2526. if (rcu_state_p == &rcu_sched_state ||
  2527. rsp != rcu_state_p ||
  2528. rcu_preempt_blocked_readers_cgp(rnp)) {
  2529. /*
  2530. * No point in scanning bits because they
  2531. * are all zero. But we might need to
  2532. * priority-boost blocked readers.
  2533. */
  2534. rcu_initiate_boost(rnp, flags);
  2535. /* rcu_initiate_boost() releases rnp->lock */
  2536. continue;
  2537. }
  2538. if (rnp->parent &&
  2539. (rnp->parent->qsmask & rnp->grpmask)) {
  2540. /*
  2541. * Race between grace-period
  2542. * initialization and task exiting RCU
  2543. * read-side critical section: Report.
  2544. */
  2545. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2546. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2547. continue;
  2548. }
  2549. }
  2550. for_each_leaf_node_possible_cpu(rnp, cpu) {
  2551. unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
  2552. if ((rnp->qsmask & bit) != 0) {
  2553. if (f(per_cpu_ptr(rsp->rda, cpu)))
  2554. mask |= bit;
  2555. }
  2556. }
  2557. if (mask != 0) {
  2558. /* Idle/offline CPUs, report (releases rnp->lock. */
  2559. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2560. } else {
  2561. /* Nothing to do here, so just drop the lock. */
  2562. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2563. }
  2564. }
  2565. }
  2566. /*
  2567. * Force quiescent states on reluctant CPUs, and also detect which
  2568. * CPUs are in dyntick-idle mode.
  2569. */
  2570. static void force_quiescent_state(struct rcu_state *rsp)
  2571. {
  2572. unsigned long flags;
  2573. bool ret;
  2574. struct rcu_node *rnp;
  2575. struct rcu_node *rnp_old = NULL;
  2576. /* Funnel through hierarchy to reduce memory contention. */
  2577. rnp = __this_cpu_read(rsp->rda->mynode);
  2578. for (; rnp != NULL; rnp = rnp->parent) {
  2579. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2580. !raw_spin_trylock(&rnp->fqslock);
  2581. if (rnp_old != NULL)
  2582. raw_spin_unlock(&rnp_old->fqslock);
  2583. if (ret) {
  2584. rsp->n_force_qs_lh++;
  2585. return;
  2586. }
  2587. rnp_old = rnp;
  2588. }
  2589. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2590. /* Reached the root of the rcu_node tree, acquire lock. */
  2591. raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
  2592. raw_spin_unlock(&rnp_old->fqslock);
  2593. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2594. rsp->n_force_qs_lh++;
  2595. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2596. return; /* Someone beat us to it. */
  2597. }
  2598. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2599. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2600. rcu_gp_kthread_wake(rsp);
  2601. }
  2602. /*
  2603. * This does the RCU core processing work for the specified rcu_state
  2604. * and rcu_data structures. This may be called only from the CPU to
  2605. * whom the rdp belongs.
  2606. */
  2607. static void
  2608. __rcu_process_callbacks(struct rcu_state *rsp)
  2609. {
  2610. unsigned long flags;
  2611. bool needwake;
  2612. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2613. WARN_ON_ONCE(!rdp->beenonline);
  2614. /* Update RCU state based on any recent quiescent states. */
  2615. rcu_check_quiescent_state(rsp, rdp);
  2616. /* Does this CPU require a not-yet-started grace period? */
  2617. local_irq_save(flags);
  2618. if (cpu_needs_another_gp(rsp, rdp)) {
  2619. raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
  2620. needwake = rcu_start_gp(rsp);
  2621. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2622. if (needwake)
  2623. rcu_gp_kthread_wake(rsp);
  2624. } else {
  2625. local_irq_restore(flags);
  2626. }
  2627. /* If there are callbacks ready, invoke them. */
  2628. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2629. invoke_rcu_callbacks(rsp, rdp);
  2630. /* Do any needed deferred wakeups of rcuo kthreads. */
  2631. do_nocb_deferred_wakeup(rdp);
  2632. }
  2633. /*
  2634. * Do RCU core processing for the current CPU.
  2635. */
  2636. static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
  2637. {
  2638. struct rcu_state *rsp;
  2639. if (cpu_is_offline(smp_processor_id()))
  2640. return;
  2641. trace_rcu_utilization(TPS("Start RCU core"));
  2642. for_each_rcu_flavor(rsp)
  2643. __rcu_process_callbacks(rsp);
  2644. trace_rcu_utilization(TPS("End RCU core"));
  2645. }
  2646. /*
  2647. * Schedule RCU callback invocation. If the specified type of RCU
  2648. * does not support RCU priority boosting, just do a direct call,
  2649. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2650. * are running on the current CPU with softirqs disabled, the
  2651. * rcu_cpu_kthread_task cannot disappear out from under us.
  2652. */
  2653. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2654. {
  2655. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2656. return;
  2657. if (likely(!rsp->boost)) {
  2658. rcu_do_batch(rsp, rdp);
  2659. return;
  2660. }
  2661. invoke_rcu_callbacks_kthread();
  2662. }
  2663. static void invoke_rcu_core(void)
  2664. {
  2665. if (cpu_online(smp_processor_id()))
  2666. raise_softirq(RCU_SOFTIRQ);
  2667. }
  2668. /*
  2669. * Handle any core-RCU processing required by a call_rcu() invocation.
  2670. */
  2671. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2672. struct rcu_head *head, unsigned long flags)
  2673. {
  2674. bool needwake;
  2675. /*
  2676. * If called from an extended quiescent state, invoke the RCU
  2677. * core in order to force a re-evaluation of RCU's idleness.
  2678. */
  2679. if (!rcu_is_watching())
  2680. invoke_rcu_core();
  2681. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2682. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2683. return;
  2684. /*
  2685. * Force the grace period if too many callbacks or too long waiting.
  2686. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2687. * if some other CPU has recently done so. Also, don't bother
  2688. * invoking force_quiescent_state() if the newly enqueued callback
  2689. * is the only one waiting for a grace period to complete.
  2690. */
  2691. if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
  2692. rdp->qlen_last_fqs_check + qhimark)) {
  2693. /* Are we ignoring a completed grace period? */
  2694. note_gp_changes(rsp, rdp);
  2695. /* Start a new grace period if one not already started. */
  2696. if (!rcu_gp_in_progress(rsp)) {
  2697. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2698. raw_spin_lock_rcu_node(rnp_root);
  2699. needwake = rcu_start_gp(rsp);
  2700. raw_spin_unlock_rcu_node(rnp_root);
  2701. if (needwake)
  2702. rcu_gp_kthread_wake(rsp);
  2703. } else {
  2704. /* Give the grace period a kick. */
  2705. rdp->blimit = LONG_MAX;
  2706. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2707. rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
  2708. force_quiescent_state(rsp);
  2709. rdp->n_force_qs_snap = rsp->n_force_qs;
  2710. rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
  2711. }
  2712. }
  2713. }
  2714. /*
  2715. * RCU callback function to leak a callback.
  2716. */
  2717. static void rcu_leak_callback(struct rcu_head *rhp)
  2718. {
  2719. }
  2720. /*
  2721. * Helper function for call_rcu() and friends. The cpu argument will
  2722. * normally be -1, indicating "currently running CPU". It may specify
  2723. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2724. * is expected to specify a CPU.
  2725. */
  2726. static void
  2727. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2728. struct rcu_state *rsp, int cpu, bool lazy)
  2729. {
  2730. unsigned long flags;
  2731. struct rcu_data *rdp;
  2732. /* Misaligned rcu_head! */
  2733. WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
  2734. if (debug_rcu_head_queue(head)) {
  2735. /*
  2736. * Probable double call_rcu(), so leak the callback.
  2737. * Use rcu:rcu_callback trace event to find the previous
  2738. * time callback was passed to __call_rcu().
  2739. */
  2740. WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
  2741. head, head->func);
  2742. WRITE_ONCE(head->func, rcu_leak_callback);
  2743. return;
  2744. }
  2745. head->func = func;
  2746. head->next = NULL;
  2747. local_irq_save(flags);
  2748. rdp = this_cpu_ptr(rsp->rda);
  2749. /* Add the callback to our list. */
  2750. if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
  2751. int offline;
  2752. if (cpu != -1)
  2753. rdp = per_cpu_ptr(rsp->rda, cpu);
  2754. if (likely(rdp->mynode)) {
  2755. /* Post-boot, so this should be for a no-CBs CPU. */
  2756. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2757. WARN_ON_ONCE(offline);
  2758. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2759. local_irq_restore(flags);
  2760. return;
  2761. }
  2762. /*
  2763. * Very early boot, before rcu_init(). Initialize if needed
  2764. * and then drop through to queue the callback.
  2765. */
  2766. BUG_ON(cpu != -1);
  2767. WARN_ON_ONCE(!rcu_is_watching());
  2768. if (rcu_segcblist_empty(&rdp->cblist))
  2769. rcu_segcblist_init(&rdp->cblist);
  2770. }
  2771. rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
  2772. if (!lazy)
  2773. rcu_idle_count_callbacks_posted();
  2774. if (__is_kfree_rcu_offset((unsigned long)func))
  2775. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2776. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2777. rcu_segcblist_n_cbs(&rdp->cblist));
  2778. else
  2779. trace_rcu_callback(rsp->name, head,
  2780. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2781. rcu_segcblist_n_cbs(&rdp->cblist));
  2782. /* Go handle any RCU core processing required. */
  2783. __call_rcu_core(rsp, rdp, head, flags);
  2784. local_irq_restore(flags);
  2785. }
  2786. /**
  2787. * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
  2788. * @head: structure to be used for queueing the RCU updates.
  2789. * @func: actual callback function to be invoked after the grace period
  2790. *
  2791. * The callback function will be invoked some time after a full grace
  2792. * period elapses, in other words after all currently executing RCU
  2793. * read-side critical sections have completed. call_rcu_sched() assumes
  2794. * that the read-side critical sections end on enabling of preemption
  2795. * or on voluntary preemption.
  2796. * RCU read-side critical sections are delimited by :
  2797. * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
  2798. * - anything that disables preemption.
  2799. *
  2800. * These may be nested.
  2801. *
  2802. * See the description of call_rcu() for more detailed information on
  2803. * memory ordering guarantees.
  2804. */
  2805. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2806. {
  2807. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2808. }
  2809. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2810. /**
  2811. * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
  2812. * @head: structure to be used for queueing the RCU updates.
  2813. * @func: actual callback function to be invoked after the grace period
  2814. *
  2815. * The callback function will be invoked some time after a full grace
  2816. * period elapses, in other words after all currently executing RCU
  2817. * read-side critical sections have completed. call_rcu_bh() assumes
  2818. * that the read-side critical sections end on completion of a softirq
  2819. * handler. This means that read-side critical sections in process
  2820. * context must not be interrupted by softirqs. This interface is to be
  2821. * used when most of the read-side critical sections are in softirq context.
  2822. * RCU read-side critical sections are delimited by :
  2823. * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
  2824. * OR
  2825. * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
  2826. * These may be nested.
  2827. *
  2828. * See the description of call_rcu() for more detailed information on
  2829. * memory ordering guarantees.
  2830. */
  2831. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2832. {
  2833. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2834. }
  2835. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2836. /*
  2837. * Queue an RCU callback for lazy invocation after a grace period.
  2838. * This will likely be later named something like "call_rcu_lazy()",
  2839. * but this change will require some way of tagging the lazy RCU
  2840. * callbacks in the list of pending callbacks. Until then, this
  2841. * function may only be called from __kfree_rcu().
  2842. */
  2843. void kfree_call_rcu(struct rcu_head *head,
  2844. rcu_callback_t func)
  2845. {
  2846. __call_rcu(head, func, rcu_state_p, -1, 1);
  2847. }
  2848. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2849. /*
  2850. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2851. * any blocking grace-period wait automatically implies a grace period
  2852. * if there is only one CPU online at any point time during execution
  2853. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2854. * occasionally incorrectly indicate that there are multiple CPUs online
  2855. * when there was in fact only one the whole time, as this just adds
  2856. * some overhead: RCU still operates correctly.
  2857. */
  2858. static inline int rcu_blocking_is_gp(void)
  2859. {
  2860. int ret;
  2861. might_sleep(); /* Check for RCU read-side critical section. */
  2862. preempt_disable();
  2863. ret = num_online_cpus() <= 1;
  2864. preempt_enable();
  2865. return ret;
  2866. }
  2867. /**
  2868. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2869. *
  2870. * Control will return to the caller some time after a full rcu-sched
  2871. * grace period has elapsed, in other words after all currently executing
  2872. * rcu-sched read-side critical sections have completed. These read-side
  2873. * critical sections are delimited by rcu_read_lock_sched() and
  2874. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2875. * local_irq_disable(), and so on may be used in place of
  2876. * rcu_read_lock_sched().
  2877. *
  2878. * This means that all preempt_disable code sequences, including NMI and
  2879. * non-threaded hardware-interrupt handlers, in progress on entry will
  2880. * have completed before this primitive returns. However, this does not
  2881. * guarantee that softirq handlers will have completed, since in some
  2882. * kernels, these handlers can run in process context, and can block.
  2883. *
  2884. * Note that this guarantee implies further memory-ordering guarantees.
  2885. * On systems with more than one CPU, when synchronize_sched() returns,
  2886. * each CPU is guaranteed to have executed a full memory barrier since the
  2887. * end of its last RCU-sched read-side critical section whose beginning
  2888. * preceded the call to synchronize_sched(). In addition, each CPU having
  2889. * an RCU read-side critical section that extends beyond the return from
  2890. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2891. * after the beginning of synchronize_sched() and before the beginning of
  2892. * that RCU read-side critical section. Note that these guarantees include
  2893. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2894. * that are executing in the kernel.
  2895. *
  2896. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2897. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2898. * to have executed a full memory barrier during the execution of
  2899. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2900. * again only if the system has more than one CPU).
  2901. */
  2902. void synchronize_sched(void)
  2903. {
  2904. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2905. lock_is_held(&rcu_lock_map) ||
  2906. lock_is_held(&rcu_sched_lock_map),
  2907. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2908. if (rcu_blocking_is_gp())
  2909. return;
  2910. if (rcu_gp_is_expedited())
  2911. synchronize_sched_expedited();
  2912. else
  2913. wait_rcu_gp(call_rcu_sched);
  2914. }
  2915. EXPORT_SYMBOL_GPL(synchronize_sched);
  2916. /**
  2917. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2918. *
  2919. * Control will return to the caller some time after a full rcu_bh grace
  2920. * period has elapsed, in other words after all currently executing rcu_bh
  2921. * read-side critical sections have completed. RCU read-side critical
  2922. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2923. * and may be nested.
  2924. *
  2925. * See the description of synchronize_sched() for more detailed information
  2926. * on memory ordering guarantees.
  2927. */
  2928. void synchronize_rcu_bh(void)
  2929. {
  2930. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2931. lock_is_held(&rcu_lock_map) ||
  2932. lock_is_held(&rcu_sched_lock_map),
  2933. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2934. if (rcu_blocking_is_gp())
  2935. return;
  2936. if (rcu_gp_is_expedited())
  2937. synchronize_rcu_bh_expedited();
  2938. else
  2939. wait_rcu_gp(call_rcu_bh);
  2940. }
  2941. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2942. /**
  2943. * get_state_synchronize_rcu - Snapshot current RCU state
  2944. *
  2945. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2946. * to determine whether or not a full grace period has elapsed in the
  2947. * meantime.
  2948. */
  2949. unsigned long get_state_synchronize_rcu(void)
  2950. {
  2951. /*
  2952. * Any prior manipulation of RCU-protected data must happen
  2953. * before the load from ->gpnum.
  2954. */
  2955. smp_mb(); /* ^^^ */
  2956. /*
  2957. * Make sure this load happens before the purportedly
  2958. * time-consuming work between get_state_synchronize_rcu()
  2959. * and cond_synchronize_rcu().
  2960. */
  2961. return smp_load_acquire(&rcu_state_p->gpnum);
  2962. }
  2963. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2964. /**
  2965. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2966. *
  2967. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2968. *
  2969. * If a full RCU grace period has elapsed since the earlier call to
  2970. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2971. * synchronize_rcu() to wait for a full grace period.
  2972. *
  2973. * Yes, this function does not take counter wrap into account. But
  2974. * counter wrap is harmless. If the counter wraps, we have waited for
  2975. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2976. * so waiting for one additional grace period should be just fine.
  2977. */
  2978. void cond_synchronize_rcu(unsigned long oldstate)
  2979. {
  2980. unsigned long newstate;
  2981. /*
  2982. * Ensure that this load happens before any RCU-destructive
  2983. * actions the caller might carry out after we return.
  2984. */
  2985. newstate = smp_load_acquire(&rcu_state_p->completed);
  2986. if (ULONG_CMP_GE(oldstate, newstate))
  2987. synchronize_rcu();
  2988. }
  2989. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2990. /**
  2991. * get_state_synchronize_sched - Snapshot current RCU-sched state
  2992. *
  2993. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  2994. * to determine whether or not a full grace period has elapsed in the
  2995. * meantime.
  2996. */
  2997. unsigned long get_state_synchronize_sched(void)
  2998. {
  2999. /*
  3000. * Any prior manipulation of RCU-protected data must happen
  3001. * before the load from ->gpnum.
  3002. */
  3003. smp_mb(); /* ^^^ */
  3004. /*
  3005. * Make sure this load happens before the purportedly
  3006. * time-consuming work between get_state_synchronize_sched()
  3007. * and cond_synchronize_sched().
  3008. */
  3009. return smp_load_acquire(&rcu_sched_state.gpnum);
  3010. }
  3011. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  3012. /**
  3013. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  3014. *
  3015. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3016. *
  3017. * If a full RCU-sched grace period has elapsed since the earlier call to
  3018. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3019. * synchronize_sched() to wait for a full grace period.
  3020. *
  3021. * Yes, this function does not take counter wrap into account. But
  3022. * counter wrap is harmless. If the counter wraps, we have waited for
  3023. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3024. * so waiting for one additional grace period should be just fine.
  3025. */
  3026. void cond_synchronize_sched(unsigned long oldstate)
  3027. {
  3028. unsigned long newstate;
  3029. /*
  3030. * Ensure that this load happens before any RCU-destructive
  3031. * actions the caller might carry out after we return.
  3032. */
  3033. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3034. if (ULONG_CMP_GE(oldstate, newstate))
  3035. synchronize_sched();
  3036. }
  3037. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3038. /*
  3039. * Check to see if there is any immediate RCU-related work to be done
  3040. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3041. * The checks are in order of increasing expense: checks that can be
  3042. * carried out against CPU-local state are performed first. However,
  3043. * we must check for CPU stalls first, else we might not get a chance.
  3044. */
  3045. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3046. {
  3047. struct rcu_node *rnp = rdp->mynode;
  3048. rdp->n_rcu_pending++;
  3049. /* Check for CPU stalls, if enabled. */
  3050. check_cpu_stall(rsp, rdp);
  3051. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3052. if (rcu_nohz_full_cpu(rsp))
  3053. return 0;
  3054. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3055. if (rcu_scheduler_fully_active &&
  3056. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3057. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
  3058. rdp->n_rp_core_needs_qs++;
  3059. } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
  3060. rdp->n_rp_report_qs++;
  3061. return 1;
  3062. }
  3063. /* Does this CPU have callbacks ready to invoke? */
  3064. if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
  3065. rdp->n_rp_cb_ready++;
  3066. return 1;
  3067. }
  3068. /* Has RCU gone idle with this CPU needing another grace period? */
  3069. if (cpu_needs_another_gp(rsp, rdp)) {
  3070. rdp->n_rp_cpu_needs_gp++;
  3071. return 1;
  3072. }
  3073. /* Has another RCU grace period completed? */
  3074. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3075. rdp->n_rp_gp_completed++;
  3076. return 1;
  3077. }
  3078. /* Has a new RCU grace period started? */
  3079. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3080. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3081. rdp->n_rp_gp_started++;
  3082. return 1;
  3083. }
  3084. /* Does this CPU need a deferred NOCB wakeup? */
  3085. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3086. rdp->n_rp_nocb_defer_wakeup++;
  3087. return 1;
  3088. }
  3089. /* nothing to do */
  3090. rdp->n_rp_need_nothing++;
  3091. return 0;
  3092. }
  3093. /*
  3094. * Check to see if there is any immediate RCU-related work to be done
  3095. * by the current CPU, returning 1 if so. This function is part of the
  3096. * RCU implementation; it is -not- an exported member of the RCU API.
  3097. */
  3098. static int rcu_pending(void)
  3099. {
  3100. struct rcu_state *rsp;
  3101. for_each_rcu_flavor(rsp)
  3102. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3103. return 1;
  3104. return 0;
  3105. }
  3106. /*
  3107. * Return true if the specified CPU has any callback. If all_lazy is
  3108. * non-NULL, store an indication of whether all callbacks are lazy.
  3109. * (If there are no callbacks, all of them are deemed to be lazy.)
  3110. */
  3111. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3112. {
  3113. bool al = true;
  3114. bool hc = false;
  3115. struct rcu_data *rdp;
  3116. struct rcu_state *rsp;
  3117. for_each_rcu_flavor(rsp) {
  3118. rdp = this_cpu_ptr(rsp->rda);
  3119. if (rcu_segcblist_empty(&rdp->cblist))
  3120. continue;
  3121. hc = true;
  3122. if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
  3123. al = false;
  3124. break;
  3125. }
  3126. }
  3127. if (all_lazy)
  3128. *all_lazy = al;
  3129. return hc;
  3130. }
  3131. /*
  3132. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3133. * the compiler is expected to optimize this away.
  3134. */
  3135. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3136. int cpu, unsigned long done)
  3137. {
  3138. trace_rcu_barrier(rsp->name, s, cpu,
  3139. atomic_read(&rsp->barrier_cpu_count), done);
  3140. }
  3141. /*
  3142. * RCU callback function for _rcu_barrier(). If we are last, wake
  3143. * up the task executing _rcu_barrier().
  3144. */
  3145. static void rcu_barrier_callback(struct rcu_head *rhp)
  3146. {
  3147. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3148. struct rcu_state *rsp = rdp->rsp;
  3149. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3150. _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
  3151. rsp->barrier_sequence);
  3152. complete(&rsp->barrier_completion);
  3153. } else {
  3154. _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
  3155. }
  3156. }
  3157. /*
  3158. * Called with preemption disabled, and from cross-cpu IRQ context.
  3159. */
  3160. static void rcu_barrier_func(void *type)
  3161. {
  3162. struct rcu_state *rsp = type;
  3163. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3164. _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
  3165. rdp->barrier_head.func = rcu_barrier_callback;
  3166. debug_rcu_head_queue(&rdp->barrier_head);
  3167. if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
  3168. atomic_inc(&rsp->barrier_cpu_count);
  3169. } else {
  3170. debug_rcu_head_unqueue(&rdp->barrier_head);
  3171. _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
  3172. rsp->barrier_sequence);
  3173. }
  3174. }
  3175. /*
  3176. * Orchestrate the specified type of RCU barrier, waiting for all
  3177. * RCU callbacks of the specified type to complete.
  3178. */
  3179. static void _rcu_barrier(struct rcu_state *rsp)
  3180. {
  3181. int cpu;
  3182. struct rcu_data *rdp;
  3183. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3184. _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
  3185. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3186. mutex_lock(&rsp->barrier_mutex);
  3187. /* Did someone else do our work for us? */
  3188. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3189. _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
  3190. rsp->barrier_sequence);
  3191. smp_mb(); /* caller's subsequent code after above check. */
  3192. mutex_unlock(&rsp->barrier_mutex);
  3193. return;
  3194. }
  3195. /* Mark the start of the barrier operation. */
  3196. rcu_seq_start(&rsp->barrier_sequence);
  3197. _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
  3198. /*
  3199. * Initialize the count to one rather than to zero in order to
  3200. * avoid a too-soon return to zero in case of a short grace period
  3201. * (or preemption of this task). Exclude CPU-hotplug operations
  3202. * to ensure that no offline CPU has callbacks queued.
  3203. */
  3204. init_completion(&rsp->barrier_completion);
  3205. atomic_set(&rsp->barrier_cpu_count, 1);
  3206. get_online_cpus();
  3207. /*
  3208. * Force each CPU with callbacks to register a new callback.
  3209. * When that callback is invoked, we will know that all of the
  3210. * corresponding CPU's preceding callbacks have been invoked.
  3211. */
  3212. for_each_possible_cpu(cpu) {
  3213. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3214. continue;
  3215. rdp = per_cpu_ptr(rsp->rda, cpu);
  3216. if (rcu_is_nocb_cpu(cpu)) {
  3217. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3218. _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
  3219. rsp->barrier_sequence);
  3220. } else {
  3221. _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
  3222. rsp->barrier_sequence);
  3223. smp_mb__before_atomic();
  3224. atomic_inc(&rsp->barrier_cpu_count);
  3225. __call_rcu(&rdp->barrier_head,
  3226. rcu_barrier_callback, rsp, cpu, 0);
  3227. }
  3228. } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
  3229. _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
  3230. rsp->barrier_sequence);
  3231. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3232. } else {
  3233. _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
  3234. rsp->barrier_sequence);
  3235. }
  3236. }
  3237. put_online_cpus();
  3238. /*
  3239. * Now that we have an rcu_barrier_callback() callback on each
  3240. * CPU, and thus each counted, remove the initial count.
  3241. */
  3242. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3243. complete(&rsp->barrier_completion);
  3244. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3245. wait_for_completion(&rsp->barrier_completion);
  3246. /* Mark the end of the barrier operation. */
  3247. _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
  3248. rcu_seq_end(&rsp->barrier_sequence);
  3249. /* Other rcu_barrier() invocations can now safely proceed. */
  3250. mutex_unlock(&rsp->barrier_mutex);
  3251. }
  3252. /**
  3253. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3254. */
  3255. void rcu_barrier_bh(void)
  3256. {
  3257. _rcu_barrier(&rcu_bh_state);
  3258. }
  3259. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3260. /**
  3261. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3262. */
  3263. void rcu_barrier_sched(void)
  3264. {
  3265. _rcu_barrier(&rcu_sched_state);
  3266. }
  3267. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3268. /*
  3269. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3270. * first CPU in a given leaf rcu_node structure coming online. The caller
  3271. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3272. * disabled.
  3273. */
  3274. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3275. {
  3276. long mask;
  3277. struct rcu_node *rnp = rnp_leaf;
  3278. lockdep_assert_held(&rnp->lock);
  3279. for (;;) {
  3280. mask = rnp->grpmask;
  3281. rnp = rnp->parent;
  3282. if (rnp == NULL)
  3283. return;
  3284. raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
  3285. rnp->qsmaskinit |= mask;
  3286. raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
  3287. }
  3288. }
  3289. /*
  3290. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3291. */
  3292. static void __init
  3293. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3294. {
  3295. unsigned long flags;
  3296. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3297. struct rcu_node *rnp = rcu_get_root(rsp);
  3298. /* Set up local state, ensuring consistent view of global state. */
  3299. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3300. rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
  3301. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3302. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3303. WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
  3304. rdp->cpu = cpu;
  3305. rdp->rsp = rsp;
  3306. rcu_boot_init_nocb_percpu_data(rdp);
  3307. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3308. }
  3309. /*
  3310. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3311. * offline event can be happening at a given time. Note also that we
  3312. * can accept some slop in the rsp->completed access due to the fact
  3313. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3314. */
  3315. static void
  3316. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3317. {
  3318. unsigned long flags;
  3319. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3320. struct rcu_node *rnp = rcu_get_root(rsp);
  3321. /* Set up local state, ensuring consistent view of global state. */
  3322. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3323. rdp->qlen_last_fqs_check = 0;
  3324. rdp->n_force_qs_snap = rsp->n_force_qs;
  3325. rdp->blimit = blimit;
  3326. if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
  3327. !init_nocb_callback_list(rdp))
  3328. rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
  3329. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3330. rcu_dynticks_eqs_online();
  3331. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  3332. /*
  3333. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3334. * propagation up the rcu_node tree will happen at the beginning
  3335. * of the next grace period.
  3336. */
  3337. rnp = rdp->mynode;
  3338. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  3339. rdp->beenonline = true; /* We have now been online. */
  3340. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3341. rdp->completed = rnp->completed;
  3342. rdp->cpu_no_qs.b.norm = true;
  3343. rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
  3344. rdp->core_needs_qs = false;
  3345. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3346. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3347. }
  3348. /*
  3349. * Invoked early in the CPU-online process, when pretty much all
  3350. * services are available. The incoming CPU is not present.
  3351. */
  3352. int rcutree_prepare_cpu(unsigned int cpu)
  3353. {
  3354. struct rcu_state *rsp;
  3355. for_each_rcu_flavor(rsp)
  3356. rcu_init_percpu_data(cpu, rsp);
  3357. rcu_prepare_kthreads(cpu);
  3358. rcu_spawn_all_nocb_kthreads(cpu);
  3359. return 0;
  3360. }
  3361. /*
  3362. * Update RCU priority boot kthread affinity for CPU-hotplug changes.
  3363. */
  3364. static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
  3365. {
  3366. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3367. rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
  3368. }
  3369. /*
  3370. * Near the end of the CPU-online process. Pretty much all services
  3371. * enabled, and the CPU is now very much alive.
  3372. */
  3373. int rcutree_online_cpu(unsigned int cpu)
  3374. {
  3375. sync_sched_exp_online_cleanup(cpu);
  3376. rcutree_affinity_setting(cpu, -1);
  3377. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3378. srcu_online_cpu(cpu);
  3379. return 0;
  3380. }
  3381. /*
  3382. * Near the beginning of the process. The CPU is still very much alive
  3383. * with pretty much all services enabled.
  3384. */
  3385. int rcutree_offline_cpu(unsigned int cpu)
  3386. {
  3387. rcutree_affinity_setting(cpu, cpu);
  3388. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3389. srcu_offline_cpu(cpu);
  3390. return 0;
  3391. }
  3392. /*
  3393. * Near the end of the offline process. We do only tracing here.
  3394. */
  3395. int rcutree_dying_cpu(unsigned int cpu)
  3396. {
  3397. struct rcu_state *rsp;
  3398. for_each_rcu_flavor(rsp)
  3399. rcu_cleanup_dying_cpu(rsp);
  3400. return 0;
  3401. }
  3402. /*
  3403. * The outgoing CPU is gone and we are running elsewhere.
  3404. */
  3405. int rcutree_dead_cpu(unsigned int cpu)
  3406. {
  3407. struct rcu_state *rsp;
  3408. for_each_rcu_flavor(rsp) {
  3409. rcu_cleanup_dead_cpu(cpu, rsp);
  3410. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3411. }
  3412. return 0;
  3413. }
  3414. /*
  3415. * Mark the specified CPU as being online so that subsequent grace periods
  3416. * (both expedited and normal) will wait on it. Note that this means that
  3417. * incoming CPUs are not allowed to use RCU read-side critical sections
  3418. * until this function is called. Failing to observe this restriction
  3419. * will result in lockdep splats.
  3420. *
  3421. * Note that this function is special in that it is invoked directly
  3422. * from the incoming CPU rather than from the cpuhp_step mechanism.
  3423. * This is because this function must be invoked at a precise location.
  3424. */
  3425. void rcu_cpu_starting(unsigned int cpu)
  3426. {
  3427. unsigned long flags;
  3428. unsigned long mask;
  3429. int nbits;
  3430. unsigned long oldmask;
  3431. struct rcu_data *rdp;
  3432. struct rcu_node *rnp;
  3433. struct rcu_state *rsp;
  3434. for_each_rcu_flavor(rsp) {
  3435. rdp = per_cpu_ptr(rsp->rda, cpu);
  3436. rnp = rdp->mynode;
  3437. mask = rdp->grpmask;
  3438. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3439. rnp->qsmaskinitnext |= mask;
  3440. oldmask = rnp->expmaskinitnext;
  3441. rnp->expmaskinitnext |= mask;
  3442. oldmask ^= rnp->expmaskinitnext;
  3443. nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
  3444. /* Allow lockless access for expedited grace periods. */
  3445. smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
  3446. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3447. }
  3448. smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
  3449. }
  3450. #ifdef CONFIG_HOTPLUG_CPU
  3451. /*
  3452. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  3453. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  3454. * bit masks.
  3455. */
  3456. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  3457. {
  3458. unsigned long flags;
  3459. unsigned long mask;
  3460. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3461. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  3462. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  3463. mask = rdp->grpmask;
  3464. raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
  3465. rnp->qsmaskinitnext &= ~mask;
  3466. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3467. }
  3468. /*
  3469. * The outgoing function has no further need of RCU, so remove it from
  3470. * the list of CPUs that RCU must track.
  3471. *
  3472. * Note that this function is special in that it is invoked directly
  3473. * from the outgoing CPU rather than from the cpuhp_step mechanism.
  3474. * This is because this function must be invoked at a precise location.
  3475. */
  3476. void rcu_report_dead(unsigned int cpu)
  3477. {
  3478. struct rcu_state *rsp;
  3479. /* QS for any half-done expedited RCU-sched GP. */
  3480. preempt_disable();
  3481. rcu_report_exp_rdp(&rcu_sched_state,
  3482. this_cpu_ptr(rcu_sched_state.rda), true);
  3483. preempt_enable();
  3484. for_each_rcu_flavor(rsp)
  3485. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3486. }
  3487. /* Migrate the dead CPU's callbacks to the current CPU. */
  3488. static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
  3489. {
  3490. unsigned long flags;
  3491. struct rcu_data *my_rdp;
  3492. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3493. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  3494. if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
  3495. return; /* No callbacks to migrate. */
  3496. local_irq_save(flags);
  3497. my_rdp = this_cpu_ptr(rsp->rda);
  3498. if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
  3499. local_irq_restore(flags);
  3500. return;
  3501. }
  3502. raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
  3503. rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
  3504. rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
  3505. rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
  3506. WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
  3507. !rcu_segcblist_n_cbs(&my_rdp->cblist));
  3508. raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
  3509. WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
  3510. !rcu_segcblist_empty(&rdp->cblist),
  3511. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
  3512. cpu, rcu_segcblist_n_cbs(&rdp->cblist),
  3513. rcu_segcblist_first_cb(&rdp->cblist));
  3514. }
  3515. /*
  3516. * The outgoing CPU has just passed through the dying-idle state,
  3517. * and we are being invoked from the CPU that was IPIed to continue the
  3518. * offline operation. We need to migrate the outgoing CPU's callbacks.
  3519. */
  3520. void rcutree_migrate_callbacks(int cpu)
  3521. {
  3522. struct rcu_state *rsp;
  3523. for_each_rcu_flavor(rsp)
  3524. rcu_migrate_callbacks(cpu, rsp);
  3525. }
  3526. #endif
  3527. /*
  3528. * On non-huge systems, use expedited RCU grace periods to make suspend
  3529. * and hibernation run faster.
  3530. */
  3531. static int rcu_pm_notify(struct notifier_block *self,
  3532. unsigned long action, void *hcpu)
  3533. {
  3534. switch (action) {
  3535. case PM_HIBERNATION_PREPARE:
  3536. case PM_SUSPEND_PREPARE:
  3537. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3538. rcu_expedite_gp();
  3539. break;
  3540. case PM_POST_HIBERNATION:
  3541. case PM_POST_SUSPEND:
  3542. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3543. rcu_unexpedite_gp();
  3544. break;
  3545. default:
  3546. break;
  3547. }
  3548. return NOTIFY_OK;
  3549. }
  3550. /*
  3551. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3552. */
  3553. static int __init rcu_spawn_gp_kthread(void)
  3554. {
  3555. unsigned long flags;
  3556. int kthread_prio_in = kthread_prio;
  3557. struct rcu_node *rnp;
  3558. struct rcu_state *rsp;
  3559. struct sched_param sp;
  3560. struct task_struct *t;
  3561. /* Force priority into range. */
  3562. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3563. kthread_prio = 1;
  3564. else if (kthread_prio < 0)
  3565. kthread_prio = 0;
  3566. else if (kthread_prio > 99)
  3567. kthread_prio = 99;
  3568. if (kthread_prio != kthread_prio_in)
  3569. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3570. kthread_prio, kthread_prio_in);
  3571. rcu_scheduler_fully_active = 1;
  3572. for_each_rcu_flavor(rsp) {
  3573. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3574. BUG_ON(IS_ERR(t));
  3575. rnp = rcu_get_root(rsp);
  3576. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3577. rsp->gp_kthread = t;
  3578. if (kthread_prio) {
  3579. sp.sched_priority = kthread_prio;
  3580. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3581. }
  3582. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3583. wake_up_process(t);
  3584. }
  3585. rcu_spawn_nocb_kthreads();
  3586. rcu_spawn_boost_kthreads();
  3587. return 0;
  3588. }
  3589. early_initcall(rcu_spawn_gp_kthread);
  3590. /*
  3591. * This function is invoked towards the end of the scheduler's
  3592. * initialization process. Before this is called, the idle task might
  3593. * contain synchronous grace-period primitives (during which time, this idle
  3594. * task is booting the system, and such primitives are no-ops). After this
  3595. * function is called, any synchronous grace-period primitives are run as
  3596. * expedited, with the requesting task driving the grace period forward.
  3597. * A later core_initcall() rcu_set_runtime_mode() will switch to full
  3598. * runtime RCU functionality.
  3599. */
  3600. void rcu_scheduler_starting(void)
  3601. {
  3602. WARN_ON(num_online_cpus() != 1);
  3603. WARN_ON(nr_context_switches() > 0);
  3604. rcu_test_sync_prims();
  3605. rcu_scheduler_active = RCU_SCHEDULER_INIT;
  3606. rcu_test_sync_prims();
  3607. }
  3608. /*
  3609. * Helper function for rcu_init() that initializes one rcu_state structure.
  3610. */
  3611. static void __init rcu_init_one(struct rcu_state *rsp)
  3612. {
  3613. static const char * const buf[] = RCU_NODE_NAME_INIT;
  3614. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  3615. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  3616. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  3617. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  3618. int cpustride = 1;
  3619. int i;
  3620. int j;
  3621. struct rcu_node *rnp;
  3622. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3623. /* Silence gcc 4.8 false positive about array index out of range. */
  3624. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  3625. panic("rcu_init_one: rcu_num_lvls out of range");
  3626. /* Initialize the level-tracking arrays. */
  3627. for (i = 1; i < rcu_num_lvls; i++)
  3628. rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
  3629. rcu_init_levelspread(levelspread, num_rcu_lvl);
  3630. /* Initialize the elements themselves, starting from the leaves. */
  3631. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3632. cpustride *= levelspread[i];
  3633. rnp = rsp->level[i];
  3634. for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
  3635. raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
  3636. lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
  3637. &rcu_node_class[i], buf[i]);
  3638. raw_spin_lock_init(&rnp->fqslock);
  3639. lockdep_set_class_and_name(&rnp->fqslock,
  3640. &rcu_fqs_class[i], fqs[i]);
  3641. rnp->gpnum = rsp->gpnum;
  3642. rnp->completed = rsp->completed;
  3643. rnp->qsmask = 0;
  3644. rnp->qsmaskinit = 0;
  3645. rnp->grplo = j * cpustride;
  3646. rnp->grphi = (j + 1) * cpustride - 1;
  3647. if (rnp->grphi >= nr_cpu_ids)
  3648. rnp->grphi = nr_cpu_ids - 1;
  3649. if (i == 0) {
  3650. rnp->grpnum = 0;
  3651. rnp->grpmask = 0;
  3652. rnp->parent = NULL;
  3653. } else {
  3654. rnp->grpnum = j % levelspread[i - 1];
  3655. rnp->grpmask = 1UL << rnp->grpnum;
  3656. rnp->parent = rsp->level[i - 1] +
  3657. j / levelspread[i - 1];
  3658. }
  3659. rnp->level = i;
  3660. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3661. rcu_init_one_nocb(rnp);
  3662. init_waitqueue_head(&rnp->exp_wq[0]);
  3663. init_waitqueue_head(&rnp->exp_wq[1]);
  3664. init_waitqueue_head(&rnp->exp_wq[2]);
  3665. init_waitqueue_head(&rnp->exp_wq[3]);
  3666. spin_lock_init(&rnp->exp_lock);
  3667. }
  3668. }
  3669. init_swait_queue_head(&rsp->gp_wq);
  3670. init_swait_queue_head(&rsp->expedited_wq);
  3671. rnp = rsp->level[rcu_num_lvls - 1];
  3672. for_each_possible_cpu(i) {
  3673. while (i > rnp->grphi)
  3674. rnp++;
  3675. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3676. rcu_boot_init_percpu_data(i, rsp);
  3677. }
  3678. list_add(&rsp->flavors, &rcu_struct_flavors);
  3679. }
  3680. /*
  3681. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3682. * replace the definitions in tree.h because those are needed to size
  3683. * the ->node array in the rcu_state structure.
  3684. */
  3685. static void __init rcu_init_geometry(void)
  3686. {
  3687. ulong d;
  3688. int i;
  3689. int rcu_capacity[RCU_NUM_LVLS];
  3690. /*
  3691. * Initialize any unspecified boot parameters.
  3692. * The default values of jiffies_till_first_fqs and
  3693. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3694. * value, which is a function of HZ, then adding one for each
  3695. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3696. */
  3697. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3698. if (jiffies_till_first_fqs == ULONG_MAX)
  3699. jiffies_till_first_fqs = d;
  3700. if (jiffies_till_next_fqs == ULONG_MAX)
  3701. jiffies_till_next_fqs = d;
  3702. /* If the compile-time values are accurate, just leave. */
  3703. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  3704. nr_cpu_ids == NR_CPUS)
  3705. return;
  3706. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
  3707. rcu_fanout_leaf, nr_cpu_ids);
  3708. /*
  3709. * The boot-time rcu_fanout_leaf parameter must be at least two
  3710. * and cannot exceed the number of bits in the rcu_node masks.
  3711. * Complain and fall back to the compile-time values if this
  3712. * limit is exceeded.
  3713. */
  3714. if (rcu_fanout_leaf < 2 ||
  3715. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  3716. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3717. WARN_ON(1);
  3718. return;
  3719. }
  3720. /*
  3721. * Compute number of nodes that can be handled an rcu_node tree
  3722. * with the given number of levels.
  3723. */
  3724. rcu_capacity[0] = rcu_fanout_leaf;
  3725. for (i = 1; i < RCU_NUM_LVLS; i++)
  3726. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  3727. /*
  3728. * The tree must be able to accommodate the configured number of CPUs.
  3729. * If this limit is exceeded, fall back to the compile-time values.
  3730. */
  3731. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  3732. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3733. WARN_ON(1);
  3734. return;
  3735. }
  3736. /* Calculate the number of levels in the tree. */
  3737. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  3738. }
  3739. rcu_num_lvls = i + 1;
  3740. /* Calculate the number of rcu_nodes at each level of the tree. */
  3741. for (i = 0; i < rcu_num_lvls; i++) {
  3742. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  3743. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  3744. }
  3745. /* Calculate the total number of rcu_node structures. */
  3746. rcu_num_nodes = 0;
  3747. for (i = 0; i < rcu_num_lvls; i++)
  3748. rcu_num_nodes += num_rcu_lvl[i];
  3749. }
  3750. /*
  3751. * Dump out the structure of the rcu_node combining tree associated
  3752. * with the rcu_state structure referenced by rsp.
  3753. */
  3754. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  3755. {
  3756. int level = 0;
  3757. struct rcu_node *rnp;
  3758. pr_info("rcu_node tree layout dump\n");
  3759. pr_info(" ");
  3760. rcu_for_each_node_breadth_first(rsp, rnp) {
  3761. if (rnp->level != level) {
  3762. pr_cont("\n");
  3763. pr_info(" ");
  3764. level = rnp->level;
  3765. }
  3766. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  3767. }
  3768. pr_cont("\n");
  3769. }
  3770. void __init rcu_init(void)
  3771. {
  3772. int cpu;
  3773. rcu_early_boot_tests();
  3774. rcu_bootup_announce();
  3775. rcu_init_geometry();
  3776. rcu_init_one(&rcu_bh_state);
  3777. rcu_init_one(&rcu_sched_state);
  3778. if (dump_tree)
  3779. rcu_dump_rcu_node_tree(&rcu_sched_state);
  3780. __rcu_init_preempt();
  3781. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3782. /*
  3783. * We don't need protection against CPU-hotplug here because
  3784. * this is called early in boot, before either interrupts
  3785. * or the scheduler are operational.
  3786. */
  3787. pm_notifier(rcu_pm_notify, 0);
  3788. for_each_online_cpu(cpu) {
  3789. rcutree_prepare_cpu(cpu);
  3790. rcu_cpu_starting(cpu);
  3791. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3792. srcu_online_cpu(cpu);
  3793. }
  3794. }
  3795. #include "tree_exp.h"
  3796. #include "tree_plugin.h"