dsa2.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * net/dsa/dsa2.c - Hardware switch handling, binding version 2
  3. * Copyright (c) 2008-2009 Marvell Semiconductor
  4. * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
  5. * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. #include <linux/device.h>
  13. #include <linux/err.h>
  14. #include <linux/list.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/slab.h>
  17. #include <linux/rtnetlink.h>
  18. #include <linux/of.h>
  19. #include <linux/of_net.h>
  20. #include "dsa_priv.h"
  21. static LIST_HEAD(dsa_tree_list);
  22. static DEFINE_MUTEX(dsa2_mutex);
  23. static const struct devlink_ops dsa_devlink_ops = {
  24. };
  25. static struct dsa_switch_tree *dsa_tree_find(int index)
  26. {
  27. struct dsa_switch_tree *dst;
  28. list_for_each_entry(dst, &dsa_tree_list, list)
  29. if (dst->index == index)
  30. return dst;
  31. return NULL;
  32. }
  33. static struct dsa_switch_tree *dsa_tree_alloc(int index)
  34. {
  35. struct dsa_switch_tree *dst;
  36. dst = kzalloc(sizeof(*dst), GFP_KERNEL);
  37. if (!dst)
  38. return NULL;
  39. dst->index = index;
  40. INIT_LIST_HEAD(&dst->list);
  41. list_add_tail(&dsa_tree_list, &dst->list);
  42. kref_init(&dst->refcount);
  43. return dst;
  44. }
  45. static void dsa_tree_free(struct dsa_switch_tree *dst)
  46. {
  47. list_del(&dst->list);
  48. kfree(dst);
  49. }
  50. static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
  51. {
  52. if (dst)
  53. kref_get(&dst->refcount);
  54. return dst;
  55. }
  56. static struct dsa_switch_tree *dsa_tree_touch(int index)
  57. {
  58. struct dsa_switch_tree *dst;
  59. dst = dsa_tree_find(index);
  60. if (dst)
  61. return dsa_tree_get(dst);
  62. else
  63. return dsa_tree_alloc(index);
  64. }
  65. static void dsa_tree_release(struct kref *ref)
  66. {
  67. struct dsa_switch_tree *dst;
  68. dst = container_of(ref, struct dsa_switch_tree, refcount);
  69. dsa_tree_free(dst);
  70. }
  71. static void dsa_tree_put(struct dsa_switch_tree *dst)
  72. {
  73. if (dst)
  74. kref_put(&dst->refcount, dsa_tree_release);
  75. }
  76. static bool dsa_port_is_dsa(struct dsa_port *port)
  77. {
  78. return port->type == DSA_PORT_TYPE_DSA;
  79. }
  80. static bool dsa_port_is_cpu(struct dsa_port *port)
  81. {
  82. return port->type == DSA_PORT_TYPE_CPU;
  83. }
  84. static bool dsa_port_is_user(struct dsa_port *dp)
  85. {
  86. return dp->type == DSA_PORT_TYPE_USER;
  87. }
  88. static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
  89. struct device_node *dn)
  90. {
  91. struct dsa_switch *ds;
  92. struct dsa_port *dp;
  93. int device, port;
  94. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  95. ds = dst->ds[device];
  96. if (!ds)
  97. continue;
  98. for (port = 0; port < ds->num_ports; port++) {
  99. dp = &ds->ports[port];
  100. if (dp->dn == dn)
  101. return dp;
  102. }
  103. }
  104. return NULL;
  105. }
  106. static bool dsa_port_setup_routing_table(struct dsa_port *dp)
  107. {
  108. struct dsa_switch *ds = dp->ds;
  109. struct dsa_switch_tree *dst = ds->dst;
  110. struct device_node *dn = dp->dn;
  111. struct of_phandle_iterator it;
  112. struct dsa_port *link_dp;
  113. int err;
  114. of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
  115. link_dp = dsa_tree_find_port_by_node(dst, it.node);
  116. if (!link_dp) {
  117. of_node_put(it.node);
  118. return false;
  119. }
  120. ds->rtable[link_dp->ds->index] = dp->index;
  121. }
  122. return true;
  123. }
  124. static bool dsa_switch_setup_routing_table(struct dsa_switch *ds)
  125. {
  126. bool complete = true;
  127. struct dsa_port *dp;
  128. int i;
  129. for (i = 0; i < DSA_MAX_SWITCHES; i++)
  130. ds->rtable[i] = DSA_RTABLE_NONE;
  131. for (i = 0; i < ds->num_ports; i++) {
  132. dp = &ds->ports[i];
  133. if (dsa_port_is_dsa(dp)) {
  134. complete = dsa_port_setup_routing_table(dp);
  135. if (!complete)
  136. break;
  137. }
  138. }
  139. return complete;
  140. }
  141. static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
  142. {
  143. struct dsa_switch *ds;
  144. bool complete = true;
  145. int device;
  146. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  147. ds = dst->ds[device];
  148. if (!ds)
  149. continue;
  150. complete = dsa_switch_setup_routing_table(ds);
  151. if (!complete)
  152. break;
  153. }
  154. return complete;
  155. }
  156. static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
  157. {
  158. struct dsa_switch *ds;
  159. struct dsa_port *dp;
  160. int device, port;
  161. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  162. ds = dst->ds[device];
  163. if (!ds)
  164. continue;
  165. for (port = 0; port < ds->num_ports; port++) {
  166. dp = &ds->ports[port];
  167. if (dsa_port_is_cpu(dp))
  168. return dp;
  169. }
  170. }
  171. return NULL;
  172. }
  173. static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
  174. {
  175. struct dsa_switch *ds;
  176. struct dsa_port *dp;
  177. int device, port;
  178. /* DSA currently only supports a single CPU port */
  179. dst->cpu_dp = dsa_tree_find_first_cpu(dst);
  180. if (!dst->cpu_dp) {
  181. pr_warn("Tree has no master device\n");
  182. return -EINVAL;
  183. }
  184. /* Assign the default CPU port to all ports of the fabric */
  185. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  186. ds = dst->ds[device];
  187. if (!ds)
  188. continue;
  189. for (port = 0; port < ds->num_ports; port++) {
  190. dp = &ds->ports[port];
  191. if (dsa_port_is_user(dp))
  192. dp->cpu_dp = dst->cpu_dp;
  193. }
  194. }
  195. return 0;
  196. }
  197. static void dsa_tree_teardown_default_cpu(struct dsa_switch_tree *dst)
  198. {
  199. /* DSA currently only supports a single CPU port */
  200. dst->cpu_dp = NULL;
  201. }
  202. static int dsa_port_setup(struct dsa_port *dp)
  203. {
  204. struct dsa_switch *ds = dp->ds;
  205. int err;
  206. memset(&dp->devlink_port, 0, sizeof(dp->devlink_port));
  207. err = devlink_port_register(ds->devlink, &dp->devlink_port, dp->index);
  208. if (err)
  209. return err;
  210. switch (dp->type) {
  211. case DSA_PORT_TYPE_UNUSED:
  212. break;
  213. case DSA_PORT_TYPE_CPU:
  214. case DSA_PORT_TYPE_DSA:
  215. err = dsa_port_fixed_link_register_of(dp);
  216. if (err) {
  217. dev_err(ds->dev, "failed to register fixed link for port %d.%d\n",
  218. ds->index, dp->index);
  219. return err;
  220. }
  221. break;
  222. case DSA_PORT_TYPE_USER:
  223. err = dsa_slave_create(dp);
  224. if (err)
  225. dev_err(ds->dev, "failed to create slave for port %d.%d\n",
  226. ds->index, dp->index);
  227. else
  228. devlink_port_type_eth_set(&dp->devlink_port, dp->slave);
  229. break;
  230. }
  231. return 0;
  232. }
  233. static void dsa_port_teardown(struct dsa_port *dp)
  234. {
  235. devlink_port_unregister(&dp->devlink_port);
  236. switch (dp->type) {
  237. case DSA_PORT_TYPE_UNUSED:
  238. break;
  239. case DSA_PORT_TYPE_CPU:
  240. case DSA_PORT_TYPE_DSA:
  241. dsa_port_fixed_link_unregister_of(dp);
  242. break;
  243. case DSA_PORT_TYPE_USER:
  244. if (dp->slave) {
  245. dsa_slave_destroy(dp->slave);
  246. dp->slave = NULL;
  247. }
  248. break;
  249. }
  250. }
  251. static int dsa_switch_setup(struct dsa_switch *ds)
  252. {
  253. int err;
  254. /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
  255. * driver and before ops->setup() has run, since the switch drivers and
  256. * the slave MDIO bus driver rely on these values for probing PHY
  257. * devices or not
  258. */
  259. ds->phys_mii_mask |= dsa_user_ports(ds);
  260. /* Add the switch to devlink before calling setup, so that setup can
  261. * add dpipe tables
  262. */
  263. ds->devlink = devlink_alloc(&dsa_devlink_ops, 0);
  264. if (!ds->devlink)
  265. return -ENOMEM;
  266. err = devlink_register(ds->devlink, ds->dev);
  267. if (err)
  268. return err;
  269. err = ds->ops->setup(ds);
  270. if (err < 0)
  271. return err;
  272. err = dsa_switch_register_notifier(ds);
  273. if (err)
  274. return err;
  275. if (!ds->slave_mii_bus && ds->ops->phy_read) {
  276. ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
  277. if (!ds->slave_mii_bus)
  278. return -ENOMEM;
  279. dsa_slave_mii_bus_init(ds);
  280. err = mdiobus_register(ds->slave_mii_bus);
  281. if (err < 0)
  282. return err;
  283. }
  284. return 0;
  285. }
  286. static void dsa_switch_teardown(struct dsa_switch *ds)
  287. {
  288. if (ds->slave_mii_bus && ds->ops->phy_read)
  289. mdiobus_unregister(ds->slave_mii_bus);
  290. dsa_switch_unregister_notifier(ds);
  291. if (ds->devlink) {
  292. devlink_unregister(ds->devlink);
  293. devlink_free(ds->devlink);
  294. ds->devlink = NULL;
  295. }
  296. }
  297. static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
  298. {
  299. struct dsa_switch *ds;
  300. struct dsa_port *dp;
  301. int device, port;
  302. int err;
  303. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  304. ds = dst->ds[device];
  305. if (!ds)
  306. continue;
  307. err = dsa_switch_setup(ds);
  308. if (err)
  309. return err;
  310. for (port = 0; port < ds->num_ports; port++) {
  311. dp = &ds->ports[port];
  312. err = dsa_port_setup(dp);
  313. if (err)
  314. return err;
  315. }
  316. }
  317. return 0;
  318. }
  319. static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
  320. {
  321. struct dsa_switch *ds;
  322. struct dsa_port *dp;
  323. int device, port;
  324. for (device = 0; device < DSA_MAX_SWITCHES; device++) {
  325. ds = dst->ds[device];
  326. if (!ds)
  327. continue;
  328. for (port = 0; port < ds->num_ports; port++) {
  329. dp = &ds->ports[port];
  330. dsa_port_teardown(dp);
  331. }
  332. dsa_switch_teardown(ds);
  333. }
  334. }
  335. static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
  336. {
  337. struct dsa_port *cpu_dp = dst->cpu_dp;
  338. struct net_device *master = cpu_dp->master;
  339. /* DSA currently supports a single pair of CPU port and master device */
  340. return dsa_master_setup(master, cpu_dp);
  341. }
  342. static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
  343. {
  344. struct dsa_port *cpu_dp = dst->cpu_dp;
  345. struct net_device *master = cpu_dp->master;
  346. return dsa_master_teardown(master);
  347. }
  348. static int dsa_tree_setup(struct dsa_switch_tree *dst)
  349. {
  350. bool complete;
  351. int err;
  352. if (dst->setup) {
  353. pr_err("DSA: tree %d already setup! Disjoint trees?\n",
  354. dst->index);
  355. return -EEXIST;
  356. }
  357. complete = dsa_tree_setup_routing_table(dst);
  358. if (!complete)
  359. return 0;
  360. err = dsa_tree_setup_default_cpu(dst);
  361. if (err)
  362. return err;
  363. err = dsa_tree_setup_switches(dst);
  364. if (err)
  365. return err;
  366. err = dsa_tree_setup_master(dst);
  367. if (err)
  368. return err;
  369. dst->setup = true;
  370. pr_info("DSA: tree %d setup\n", dst->index);
  371. return 0;
  372. }
  373. static void dsa_tree_teardown(struct dsa_switch_tree *dst)
  374. {
  375. if (!dst->setup)
  376. return;
  377. dsa_tree_teardown_master(dst);
  378. dsa_tree_teardown_switches(dst);
  379. dsa_tree_teardown_default_cpu(dst);
  380. pr_info("DSA: tree %d torn down\n", dst->index);
  381. dst->setup = false;
  382. }
  383. static void dsa_tree_remove_switch(struct dsa_switch_tree *dst,
  384. unsigned int index)
  385. {
  386. dsa_tree_teardown(dst);
  387. dst->ds[index] = NULL;
  388. dsa_tree_put(dst);
  389. }
  390. static int dsa_tree_add_switch(struct dsa_switch_tree *dst,
  391. struct dsa_switch *ds)
  392. {
  393. unsigned int index = ds->index;
  394. int err;
  395. if (dst->ds[index])
  396. return -EBUSY;
  397. dsa_tree_get(dst);
  398. dst->ds[index] = ds;
  399. err = dsa_tree_setup(dst);
  400. if (err)
  401. dsa_tree_remove_switch(dst, index);
  402. return err;
  403. }
  404. static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
  405. {
  406. if (!name)
  407. name = "eth%d";
  408. dp->type = DSA_PORT_TYPE_USER;
  409. dp->name = name;
  410. return 0;
  411. }
  412. static int dsa_port_parse_dsa(struct dsa_port *dp)
  413. {
  414. dp->type = DSA_PORT_TYPE_DSA;
  415. return 0;
  416. }
  417. static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master)
  418. {
  419. struct dsa_switch *ds = dp->ds;
  420. struct dsa_switch_tree *dst = ds->dst;
  421. const struct dsa_device_ops *tag_ops;
  422. enum dsa_tag_protocol tag_protocol;
  423. tag_protocol = ds->ops->get_tag_protocol(ds, dp->index);
  424. tag_ops = dsa_resolve_tag_protocol(tag_protocol);
  425. if (IS_ERR(tag_ops)) {
  426. dev_warn(ds->dev, "No tagger for this switch\n");
  427. return PTR_ERR(tag_ops);
  428. }
  429. dp->type = DSA_PORT_TYPE_CPU;
  430. dp->rcv = tag_ops->rcv;
  431. dp->tag_ops = tag_ops;
  432. dp->master = master;
  433. dp->dst = dst;
  434. return 0;
  435. }
  436. static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
  437. {
  438. struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
  439. const char *name = of_get_property(dn, "label", NULL);
  440. bool link = of_property_read_bool(dn, "link");
  441. dp->dn = dn;
  442. if (ethernet) {
  443. struct net_device *master;
  444. master = of_find_net_device_by_node(ethernet);
  445. if (!master)
  446. return -EPROBE_DEFER;
  447. return dsa_port_parse_cpu(dp, master);
  448. }
  449. if (link)
  450. return dsa_port_parse_dsa(dp);
  451. return dsa_port_parse_user(dp, name);
  452. }
  453. static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
  454. struct device_node *dn)
  455. {
  456. struct device_node *ports, *port;
  457. struct dsa_port *dp;
  458. u32 reg;
  459. int err;
  460. ports = of_get_child_by_name(dn, "ports");
  461. if (!ports) {
  462. dev_err(ds->dev, "no ports child node found\n");
  463. return -EINVAL;
  464. }
  465. for_each_available_child_of_node(ports, port) {
  466. err = of_property_read_u32(port, "reg", &reg);
  467. if (err)
  468. return err;
  469. if (reg >= ds->num_ports)
  470. return -EINVAL;
  471. dp = &ds->ports[reg];
  472. err = dsa_port_parse_of(dp, port);
  473. if (err)
  474. return err;
  475. }
  476. return 0;
  477. }
  478. static int dsa_switch_parse_member_of(struct dsa_switch *ds,
  479. struct device_node *dn)
  480. {
  481. u32 m[2] = { 0, 0 };
  482. int sz;
  483. /* Don't error out if this optional property isn't found */
  484. sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
  485. if (sz < 0 && sz != -EINVAL)
  486. return sz;
  487. ds->index = m[1];
  488. if (ds->index >= DSA_MAX_SWITCHES)
  489. return -EINVAL;
  490. ds->dst = dsa_tree_touch(m[0]);
  491. if (!ds->dst)
  492. return -ENOMEM;
  493. return 0;
  494. }
  495. static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
  496. {
  497. int err;
  498. err = dsa_switch_parse_member_of(ds, dn);
  499. if (err)
  500. return err;
  501. return dsa_switch_parse_ports_of(ds, dn);
  502. }
  503. static int dsa_port_parse(struct dsa_port *dp, const char *name,
  504. struct device *dev)
  505. {
  506. if (!strcmp(name, "cpu")) {
  507. struct net_device *master;
  508. master = dsa_dev_to_net_device(dev);
  509. if (!master)
  510. return -EPROBE_DEFER;
  511. dev_put(master);
  512. return dsa_port_parse_cpu(dp, master);
  513. }
  514. if (!strcmp(name, "dsa"))
  515. return dsa_port_parse_dsa(dp);
  516. return dsa_port_parse_user(dp, name);
  517. }
  518. static int dsa_switch_parse_ports(struct dsa_switch *ds,
  519. struct dsa_chip_data *cd)
  520. {
  521. bool valid_name_found = false;
  522. struct dsa_port *dp;
  523. struct device *dev;
  524. const char *name;
  525. unsigned int i;
  526. int err;
  527. for (i = 0; i < DSA_MAX_PORTS; i++) {
  528. name = cd->port_names[i];
  529. dev = cd->netdev[i];
  530. dp = &ds->ports[i];
  531. if (!name)
  532. continue;
  533. err = dsa_port_parse(dp, name, dev);
  534. if (err)
  535. return err;
  536. valid_name_found = true;
  537. }
  538. if (!valid_name_found && i == DSA_MAX_PORTS)
  539. return -EINVAL;
  540. return 0;
  541. }
  542. static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
  543. {
  544. ds->cd = cd;
  545. /* We don't support interconnected switches nor multiple trees via
  546. * platform data, so this is the unique switch of the tree.
  547. */
  548. ds->index = 0;
  549. ds->dst = dsa_tree_touch(0);
  550. if (!ds->dst)
  551. return -ENOMEM;
  552. return dsa_switch_parse_ports(ds, cd);
  553. }
  554. static int dsa_switch_add(struct dsa_switch *ds)
  555. {
  556. struct dsa_switch_tree *dst = ds->dst;
  557. return dsa_tree_add_switch(dst, ds);
  558. }
  559. static int dsa_switch_probe(struct dsa_switch *ds)
  560. {
  561. struct dsa_chip_data *pdata = ds->dev->platform_data;
  562. struct device_node *np = ds->dev->of_node;
  563. int err;
  564. if (np)
  565. err = dsa_switch_parse_of(ds, np);
  566. else if (pdata)
  567. err = dsa_switch_parse(ds, pdata);
  568. else
  569. err = -ENODEV;
  570. if (err)
  571. return err;
  572. return dsa_switch_add(ds);
  573. }
  574. struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n)
  575. {
  576. size_t size = sizeof(struct dsa_switch) + n * sizeof(struct dsa_port);
  577. struct dsa_switch *ds;
  578. int i;
  579. ds = devm_kzalloc(dev, size, GFP_KERNEL);
  580. if (!ds)
  581. return NULL;
  582. ds->dev = dev;
  583. ds->num_ports = n;
  584. for (i = 0; i < ds->num_ports; ++i) {
  585. ds->ports[i].index = i;
  586. ds->ports[i].ds = ds;
  587. }
  588. return ds;
  589. }
  590. EXPORT_SYMBOL_GPL(dsa_switch_alloc);
  591. int dsa_register_switch(struct dsa_switch *ds)
  592. {
  593. int err;
  594. mutex_lock(&dsa2_mutex);
  595. err = dsa_switch_probe(ds);
  596. dsa_tree_put(ds->dst);
  597. mutex_unlock(&dsa2_mutex);
  598. return err;
  599. }
  600. EXPORT_SYMBOL_GPL(dsa_register_switch);
  601. static void dsa_switch_remove(struct dsa_switch *ds)
  602. {
  603. struct dsa_switch_tree *dst = ds->dst;
  604. unsigned int index = ds->index;
  605. dsa_tree_remove_switch(dst, index);
  606. }
  607. void dsa_unregister_switch(struct dsa_switch *ds)
  608. {
  609. mutex_lock(&dsa2_mutex);
  610. dsa_switch_remove(ds);
  611. mutex_unlock(&dsa2_mutex);
  612. }
  613. EXPORT_SYMBOL_GPL(dsa_unregister_switch);