futex.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <linux/fault-inject.h>
  68. #include <asm/futex.h>
  69. #include "locking/rtmutex_common.h"
  70. /*
  71. * READ this before attempting to hack on futexes!
  72. *
  73. * Basic futex operation and ordering guarantees
  74. * =============================================
  75. *
  76. * The waiter reads the futex value in user space and calls
  77. * futex_wait(). This function computes the hash bucket and acquires
  78. * the hash bucket lock. After that it reads the futex user space value
  79. * again and verifies that the data has not changed. If it has not changed
  80. * it enqueues itself into the hash bucket, releases the hash bucket lock
  81. * and schedules.
  82. *
  83. * The waker side modifies the user space value of the futex and calls
  84. * futex_wake(). This function computes the hash bucket and acquires the
  85. * hash bucket lock. Then it looks for waiters on that futex in the hash
  86. * bucket and wakes them.
  87. *
  88. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  89. * the hb spinlock can be avoided and simply return. In order for this
  90. * optimization to work, ordering guarantees must exist so that the waiter
  91. * being added to the list is acknowledged when the list is concurrently being
  92. * checked by the waker, avoiding scenarios like the following:
  93. *
  94. * CPU 0 CPU 1
  95. * val = *futex;
  96. * sys_futex(WAIT, futex, val);
  97. * futex_wait(futex, val);
  98. * uval = *futex;
  99. * *futex = newval;
  100. * sys_futex(WAKE, futex);
  101. * futex_wake(futex);
  102. * if (queue_empty())
  103. * return;
  104. * if (uval == val)
  105. * lock(hash_bucket(futex));
  106. * queue();
  107. * unlock(hash_bucket(futex));
  108. * schedule();
  109. *
  110. * This would cause the waiter on CPU 0 to wait forever because it
  111. * missed the transition of the user space value from val to newval
  112. * and the waker did not find the waiter in the hash bucket queue.
  113. *
  114. * The correct serialization ensures that a waiter either observes
  115. * the changed user space value before blocking or is woken by a
  116. * concurrent waker:
  117. *
  118. * CPU 0 CPU 1
  119. * val = *futex;
  120. * sys_futex(WAIT, futex, val);
  121. * futex_wait(futex, val);
  122. *
  123. * waiters++; (a)
  124. * smp_mb(); (A) <-- paired with -.
  125. * |
  126. * lock(hash_bucket(futex)); |
  127. * |
  128. * uval = *futex; |
  129. * | *futex = newval;
  130. * | sys_futex(WAKE, futex);
  131. * | futex_wake(futex);
  132. * |
  133. * `--------> smp_mb(); (B)
  134. * if (uval == val)
  135. * queue();
  136. * unlock(hash_bucket(futex));
  137. * schedule(); if (waiters)
  138. * lock(hash_bucket(futex));
  139. * else wake_waiters(futex);
  140. * waiters--; (b) unlock(hash_bucket(futex));
  141. *
  142. * Where (A) orders the waiters increment and the futex value read through
  143. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  144. * to futex and the waiters read -- this is done by the barriers for both
  145. * shared and private futexes in get_futex_key_refs().
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #ifdef CONFIG_MMU
  178. # define FLAGS_SHARED 0x01
  179. #else
  180. /*
  181. * NOMMU does not have per process address space. Let the compiler optimize
  182. * code away.
  183. */
  184. # define FLAGS_SHARED 0x00
  185. #endif
  186. #define FLAGS_CLOCKRT 0x02
  187. #define FLAGS_HAS_TIMEOUT 0x04
  188. /*
  189. * Priority Inheritance state:
  190. */
  191. struct futex_pi_state {
  192. /*
  193. * list of 'owned' pi_state instances - these have to be
  194. * cleaned up in do_exit() if the task exits prematurely:
  195. */
  196. struct list_head list;
  197. /*
  198. * The PI object:
  199. */
  200. struct rt_mutex pi_mutex;
  201. struct task_struct *owner;
  202. atomic_t refcount;
  203. union futex_key key;
  204. };
  205. /**
  206. * struct futex_q - The hashed futex queue entry, one per waiting task
  207. * @list: priority-sorted list of tasks waiting on this futex
  208. * @task: the task waiting on the futex
  209. * @lock_ptr: the hash bucket lock
  210. * @key: the key the futex is hashed on
  211. * @pi_state: optional priority inheritance state
  212. * @rt_waiter: rt_waiter storage for use with requeue_pi
  213. * @requeue_pi_key: the requeue_pi target futex key
  214. * @bitset: bitset for the optional bitmasked wakeup
  215. *
  216. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  217. * we can wake only the relevant ones (hashed queues may be shared).
  218. *
  219. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  220. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  221. * The order of wakeup is always to make the first condition true, then
  222. * the second.
  223. *
  224. * PI futexes are typically woken before they are removed from the hash list via
  225. * the rt_mutex code. See unqueue_me_pi().
  226. */
  227. struct futex_q {
  228. struct plist_node list;
  229. struct task_struct *task;
  230. spinlock_t *lock_ptr;
  231. union futex_key key;
  232. struct futex_pi_state *pi_state;
  233. struct rt_mutex_waiter *rt_waiter;
  234. union futex_key *requeue_pi_key;
  235. u32 bitset;
  236. };
  237. static const struct futex_q futex_q_init = {
  238. /* list gets initialized in queue_me()*/
  239. .key = FUTEX_KEY_INIT,
  240. .bitset = FUTEX_BITSET_MATCH_ANY
  241. };
  242. /*
  243. * Hash buckets are shared by all the futex_keys that hash to the same
  244. * location. Each key may have multiple futex_q structures, one for each task
  245. * waiting on a futex.
  246. */
  247. struct futex_hash_bucket {
  248. atomic_t waiters;
  249. spinlock_t lock;
  250. struct plist_head chain;
  251. } ____cacheline_aligned_in_smp;
  252. /*
  253. * The base of the bucket array and its size are always used together
  254. * (after initialization only in hash_futex()), so ensure that they
  255. * reside in the same cacheline.
  256. */
  257. static struct {
  258. struct futex_hash_bucket *queues;
  259. unsigned long hashsize;
  260. } __futex_data __read_mostly __aligned(2*sizeof(long));
  261. #define futex_queues (__futex_data.queues)
  262. #define futex_hashsize (__futex_data.hashsize)
  263. /*
  264. * Fault injections for futexes.
  265. */
  266. #ifdef CONFIG_FAIL_FUTEX
  267. static struct {
  268. struct fault_attr attr;
  269. bool ignore_private;
  270. } fail_futex = {
  271. .attr = FAULT_ATTR_INITIALIZER,
  272. .ignore_private = false,
  273. };
  274. static int __init setup_fail_futex(char *str)
  275. {
  276. return setup_fault_attr(&fail_futex.attr, str);
  277. }
  278. __setup("fail_futex=", setup_fail_futex);
  279. static bool should_fail_futex(bool fshared)
  280. {
  281. if (fail_futex.ignore_private && !fshared)
  282. return false;
  283. return should_fail(&fail_futex.attr, 1);
  284. }
  285. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  286. static int __init fail_futex_debugfs(void)
  287. {
  288. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  289. struct dentry *dir;
  290. dir = fault_create_debugfs_attr("fail_futex", NULL,
  291. &fail_futex.attr);
  292. if (IS_ERR(dir))
  293. return PTR_ERR(dir);
  294. if (!debugfs_create_bool("ignore-private", mode, dir,
  295. &fail_futex.ignore_private)) {
  296. debugfs_remove_recursive(dir);
  297. return -ENOMEM;
  298. }
  299. return 0;
  300. }
  301. late_initcall(fail_futex_debugfs);
  302. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  303. #else
  304. static inline bool should_fail_futex(bool fshared)
  305. {
  306. return false;
  307. }
  308. #endif /* CONFIG_FAIL_FUTEX */
  309. static inline void futex_get_mm(union futex_key *key)
  310. {
  311. atomic_inc(&key->private.mm->mm_count);
  312. /*
  313. * Ensure futex_get_mm() implies a full barrier such that
  314. * get_futex_key() implies a full barrier. This is relied upon
  315. * as smp_mb(); (B), see the ordering comment above.
  316. */
  317. smp_mb__after_atomic();
  318. }
  319. /*
  320. * Reflects a new waiter being added to the waitqueue.
  321. */
  322. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  323. {
  324. #ifdef CONFIG_SMP
  325. atomic_inc(&hb->waiters);
  326. /*
  327. * Full barrier (A), see the ordering comment above.
  328. */
  329. smp_mb__after_atomic();
  330. #endif
  331. }
  332. /*
  333. * Reflects a waiter being removed from the waitqueue by wakeup
  334. * paths.
  335. */
  336. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  337. {
  338. #ifdef CONFIG_SMP
  339. atomic_dec(&hb->waiters);
  340. #endif
  341. }
  342. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  343. {
  344. #ifdef CONFIG_SMP
  345. return atomic_read(&hb->waiters);
  346. #else
  347. return 1;
  348. #endif
  349. }
  350. /**
  351. * hash_futex - Return the hash bucket in the global hash
  352. * @key: Pointer to the futex key for which the hash is calculated
  353. *
  354. * We hash on the keys returned from get_futex_key (see below) and return the
  355. * corresponding hash bucket in the global hash.
  356. */
  357. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  358. {
  359. u32 hash = jhash2((u32*)&key->both.word,
  360. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  361. key->both.offset);
  362. return &futex_queues[hash & (futex_hashsize - 1)];
  363. }
  364. /**
  365. * match_futex - Check whether two futex keys are equal
  366. * @key1: Pointer to key1
  367. * @key2: Pointer to key2
  368. *
  369. * Return 1 if two futex_keys are equal, 0 otherwise.
  370. */
  371. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  372. {
  373. return (key1 && key2
  374. && key1->both.word == key2->both.word
  375. && key1->both.ptr == key2->both.ptr
  376. && key1->both.offset == key2->both.offset);
  377. }
  378. /*
  379. * Take a reference to the resource addressed by a key.
  380. * Can be called while holding spinlocks.
  381. *
  382. */
  383. static void get_futex_key_refs(union futex_key *key)
  384. {
  385. if (!key->both.ptr)
  386. return;
  387. /*
  388. * On MMU less systems futexes are always "private" as there is no per
  389. * process address space. We need the smp wmb nevertheless - yes,
  390. * arch/blackfin has MMU less SMP ...
  391. */
  392. if (!IS_ENABLED(CONFIG_MMU)) {
  393. smp_mb(); /* explicit smp_mb(); (B) */
  394. return;
  395. }
  396. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  397. case FUT_OFF_INODE:
  398. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  399. break;
  400. case FUT_OFF_MMSHARED:
  401. futex_get_mm(key); /* implies smp_mb(); (B) */
  402. break;
  403. default:
  404. /*
  405. * Private futexes do not hold reference on an inode or
  406. * mm, therefore the only purpose of calling get_futex_key_refs
  407. * is because we need the barrier for the lockless waiter check.
  408. */
  409. smp_mb(); /* explicit smp_mb(); (B) */
  410. }
  411. }
  412. /*
  413. * Drop a reference to the resource addressed by a key.
  414. * The hash bucket spinlock must not be held. This is
  415. * a no-op for private futexes, see comment in the get
  416. * counterpart.
  417. */
  418. static void drop_futex_key_refs(union futex_key *key)
  419. {
  420. if (!key->both.ptr) {
  421. /* If we're here then we tried to put a key we failed to get */
  422. WARN_ON_ONCE(1);
  423. return;
  424. }
  425. if (!IS_ENABLED(CONFIG_MMU))
  426. return;
  427. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  428. case FUT_OFF_INODE:
  429. iput(key->shared.inode);
  430. break;
  431. case FUT_OFF_MMSHARED:
  432. mmdrop(key->private.mm);
  433. break;
  434. }
  435. }
  436. /**
  437. * get_futex_key() - Get parameters which are the keys for a futex
  438. * @uaddr: virtual address of the futex
  439. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  440. * @key: address where result is stored.
  441. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  442. * VERIFY_WRITE)
  443. *
  444. * Return: a negative error code or 0
  445. *
  446. * The key words are stored in *key on success.
  447. *
  448. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  449. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  450. * We can usually work out the index without swapping in the page.
  451. *
  452. * lock_page() might sleep, the caller should not hold a spinlock.
  453. */
  454. static int
  455. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  456. {
  457. unsigned long address = (unsigned long)uaddr;
  458. struct mm_struct *mm = current->mm;
  459. struct page *page, *tail;
  460. struct address_space *mapping;
  461. int err, ro = 0;
  462. /*
  463. * The futex address must be "naturally" aligned.
  464. */
  465. key->both.offset = address % PAGE_SIZE;
  466. if (unlikely((address % sizeof(u32)) != 0))
  467. return -EINVAL;
  468. address -= key->both.offset;
  469. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  470. return -EFAULT;
  471. if (unlikely(should_fail_futex(fshared)))
  472. return -EFAULT;
  473. /*
  474. * PROCESS_PRIVATE futexes are fast.
  475. * As the mm cannot disappear under us and the 'key' only needs
  476. * virtual address, we dont even have to find the underlying vma.
  477. * Note : We do have to check 'uaddr' is a valid user address,
  478. * but access_ok() should be faster than find_vma()
  479. */
  480. if (!fshared) {
  481. key->private.mm = mm;
  482. key->private.address = address;
  483. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  484. return 0;
  485. }
  486. again:
  487. /* Ignore any VERIFY_READ mapping (futex common case) */
  488. if (unlikely(should_fail_futex(fshared)))
  489. return -EFAULT;
  490. err = get_user_pages_fast(address, 1, 1, &page);
  491. /*
  492. * If write access is not required (eg. FUTEX_WAIT), try
  493. * and get read-only access.
  494. */
  495. if (err == -EFAULT && rw == VERIFY_READ) {
  496. err = get_user_pages_fast(address, 1, 0, &page);
  497. ro = 1;
  498. }
  499. if (err < 0)
  500. return err;
  501. else
  502. err = 0;
  503. /*
  504. * The treatment of mapping from this point on is critical. The page
  505. * lock protects many things but in this context the page lock
  506. * stabilizes mapping, prevents inode freeing in the shared
  507. * file-backed region case and guards against movement to swap cache.
  508. *
  509. * Strictly speaking the page lock is not needed in all cases being
  510. * considered here and page lock forces unnecessarily serialization
  511. * From this point on, mapping will be re-verified if necessary and
  512. * page lock will be acquired only if it is unavoidable
  513. *
  514. * Mapping checks require the head page for any compound page so the
  515. * head page and mapping is looked up now. For anonymous pages, it
  516. * does not matter if the page splits in the future as the key is
  517. * based on the address. For filesystem-backed pages, the tail is
  518. * required as the index of the page determines the key. For
  519. * base pages, there is no tail page and tail == page.
  520. */
  521. tail = page;
  522. page = compound_head(page);
  523. mapping = READ_ONCE(page->mapping);
  524. /*
  525. * If page->mapping is NULL, then it cannot be a PageAnon
  526. * page; but it might be the ZERO_PAGE or in the gate area or
  527. * in a special mapping (all cases which we are happy to fail);
  528. * or it may have been a good file page when get_user_pages_fast
  529. * found it, but truncated or holepunched or subjected to
  530. * invalidate_complete_page2 before we got the page lock (also
  531. * cases which we are happy to fail). And we hold a reference,
  532. * so refcount care in invalidate_complete_page's remove_mapping
  533. * prevents drop_caches from setting mapping to NULL beneath us.
  534. *
  535. * The case we do have to guard against is when memory pressure made
  536. * shmem_writepage move it from filecache to swapcache beneath us:
  537. * an unlikely race, but we do need to retry for page->mapping.
  538. */
  539. if (unlikely(!mapping)) {
  540. int shmem_swizzled;
  541. /*
  542. * Page lock is required to identify which special case above
  543. * applies. If this is really a shmem page then the page lock
  544. * will prevent unexpected transitions.
  545. */
  546. lock_page(page);
  547. shmem_swizzled = PageSwapCache(page) || page->mapping;
  548. unlock_page(page);
  549. put_page(page);
  550. if (shmem_swizzled)
  551. goto again;
  552. return -EFAULT;
  553. }
  554. /*
  555. * Private mappings are handled in a simple way.
  556. *
  557. * If the futex key is stored on an anonymous page, then the associated
  558. * object is the mm which is implicitly pinned by the calling process.
  559. *
  560. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  561. * it's a read-only handle, it's expected that futexes attach to
  562. * the object not the particular process.
  563. */
  564. if (PageAnon(page)) {
  565. /*
  566. * A RO anonymous page will never change and thus doesn't make
  567. * sense for futex operations.
  568. */
  569. if (unlikely(should_fail_futex(fshared)) || ro) {
  570. err = -EFAULT;
  571. goto out;
  572. }
  573. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  574. key->private.mm = mm;
  575. key->private.address = address;
  576. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  577. } else {
  578. struct inode *inode;
  579. /*
  580. * The associated futex object in this case is the inode and
  581. * the page->mapping must be traversed. Ordinarily this should
  582. * be stabilised under page lock but it's not strictly
  583. * necessary in this case as we just want to pin the inode, not
  584. * update the radix tree or anything like that.
  585. *
  586. * The RCU read lock is taken as the inode is finally freed
  587. * under RCU. If the mapping still matches expectations then the
  588. * mapping->host can be safely accessed as being a valid inode.
  589. */
  590. rcu_read_lock();
  591. if (READ_ONCE(page->mapping) != mapping) {
  592. rcu_read_unlock();
  593. put_page(page);
  594. goto again;
  595. }
  596. inode = READ_ONCE(mapping->host);
  597. if (!inode) {
  598. rcu_read_unlock();
  599. put_page(page);
  600. goto again;
  601. }
  602. /*
  603. * Take a reference unless it is about to be freed. Previously
  604. * this reference was taken by ihold under the page lock
  605. * pinning the inode in place so i_lock was unnecessary. The
  606. * only way for this check to fail is if the inode was
  607. * truncated in parallel so warn for now if this happens.
  608. *
  609. * We are not calling into get_futex_key_refs() in file-backed
  610. * cases, therefore a successful atomic_inc return below will
  611. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  612. */
  613. if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
  614. rcu_read_unlock();
  615. put_page(page);
  616. goto again;
  617. }
  618. /* Should be impossible but lets be paranoid for now */
  619. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  620. err = -EFAULT;
  621. rcu_read_unlock();
  622. iput(inode);
  623. goto out;
  624. }
  625. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  626. key->shared.inode = inode;
  627. key->shared.pgoff = basepage_index(tail);
  628. rcu_read_unlock();
  629. }
  630. out:
  631. put_page(page);
  632. return err;
  633. }
  634. static inline void put_futex_key(union futex_key *key)
  635. {
  636. drop_futex_key_refs(key);
  637. }
  638. /**
  639. * fault_in_user_writeable() - Fault in user address and verify RW access
  640. * @uaddr: pointer to faulting user space address
  641. *
  642. * Slow path to fixup the fault we just took in the atomic write
  643. * access to @uaddr.
  644. *
  645. * We have no generic implementation of a non-destructive write to the
  646. * user address. We know that we faulted in the atomic pagefault
  647. * disabled section so we can as well avoid the #PF overhead by
  648. * calling get_user_pages() right away.
  649. */
  650. static int fault_in_user_writeable(u32 __user *uaddr)
  651. {
  652. struct mm_struct *mm = current->mm;
  653. int ret;
  654. down_read(&mm->mmap_sem);
  655. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  656. FAULT_FLAG_WRITE, NULL);
  657. up_read(&mm->mmap_sem);
  658. return ret < 0 ? ret : 0;
  659. }
  660. /**
  661. * futex_top_waiter() - Return the highest priority waiter on a futex
  662. * @hb: the hash bucket the futex_q's reside in
  663. * @key: the futex key (to distinguish it from other futex futex_q's)
  664. *
  665. * Must be called with the hb lock held.
  666. */
  667. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  668. union futex_key *key)
  669. {
  670. struct futex_q *this;
  671. plist_for_each_entry(this, &hb->chain, list) {
  672. if (match_futex(&this->key, key))
  673. return this;
  674. }
  675. return NULL;
  676. }
  677. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  678. u32 uval, u32 newval)
  679. {
  680. int ret;
  681. pagefault_disable();
  682. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  683. pagefault_enable();
  684. return ret;
  685. }
  686. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  687. {
  688. int ret;
  689. pagefault_disable();
  690. ret = __get_user(*dest, from);
  691. pagefault_enable();
  692. return ret ? -EFAULT : 0;
  693. }
  694. /*
  695. * PI code:
  696. */
  697. static int refill_pi_state_cache(void)
  698. {
  699. struct futex_pi_state *pi_state;
  700. if (likely(current->pi_state_cache))
  701. return 0;
  702. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  703. if (!pi_state)
  704. return -ENOMEM;
  705. INIT_LIST_HEAD(&pi_state->list);
  706. /* pi_mutex gets initialized later */
  707. pi_state->owner = NULL;
  708. atomic_set(&pi_state->refcount, 1);
  709. pi_state->key = FUTEX_KEY_INIT;
  710. current->pi_state_cache = pi_state;
  711. return 0;
  712. }
  713. static struct futex_pi_state * alloc_pi_state(void)
  714. {
  715. struct futex_pi_state *pi_state = current->pi_state_cache;
  716. WARN_ON(!pi_state);
  717. current->pi_state_cache = NULL;
  718. return pi_state;
  719. }
  720. /*
  721. * Drops a reference to the pi_state object and frees or caches it
  722. * when the last reference is gone.
  723. *
  724. * Must be called with the hb lock held.
  725. */
  726. static void put_pi_state(struct futex_pi_state *pi_state)
  727. {
  728. if (!pi_state)
  729. return;
  730. if (!atomic_dec_and_test(&pi_state->refcount))
  731. return;
  732. /*
  733. * If pi_state->owner is NULL, the owner is most probably dying
  734. * and has cleaned up the pi_state already
  735. */
  736. if (pi_state->owner) {
  737. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  738. list_del_init(&pi_state->list);
  739. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  740. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  741. }
  742. if (current->pi_state_cache)
  743. kfree(pi_state);
  744. else {
  745. /*
  746. * pi_state->list is already empty.
  747. * clear pi_state->owner.
  748. * refcount is at 0 - put it back to 1.
  749. */
  750. pi_state->owner = NULL;
  751. atomic_set(&pi_state->refcount, 1);
  752. current->pi_state_cache = pi_state;
  753. }
  754. }
  755. /*
  756. * Look up the task based on what TID userspace gave us.
  757. * We dont trust it.
  758. */
  759. static struct task_struct * futex_find_get_task(pid_t pid)
  760. {
  761. struct task_struct *p;
  762. rcu_read_lock();
  763. p = find_task_by_vpid(pid);
  764. if (p)
  765. get_task_struct(p);
  766. rcu_read_unlock();
  767. return p;
  768. }
  769. /*
  770. * This task is holding PI mutexes at exit time => bad.
  771. * Kernel cleans up PI-state, but userspace is likely hosed.
  772. * (Robust-futex cleanup is separate and might save the day for userspace.)
  773. */
  774. void exit_pi_state_list(struct task_struct *curr)
  775. {
  776. struct list_head *next, *head = &curr->pi_state_list;
  777. struct futex_pi_state *pi_state;
  778. struct futex_hash_bucket *hb;
  779. union futex_key key = FUTEX_KEY_INIT;
  780. if (!futex_cmpxchg_enabled)
  781. return;
  782. /*
  783. * We are a ZOMBIE and nobody can enqueue itself on
  784. * pi_state_list anymore, but we have to be careful
  785. * versus waiters unqueueing themselves:
  786. */
  787. raw_spin_lock_irq(&curr->pi_lock);
  788. while (!list_empty(head)) {
  789. next = head->next;
  790. pi_state = list_entry(next, struct futex_pi_state, list);
  791. key = pi_state->key;
  792. hb = hash_futex(&key);
  793. raw_spin_unlock_irq(&curr->pi_lock);
  794. spin_lock(&hb->lock);
  795. raw_spin_lock_irq(&curr->pi_lock);
  796. /*
  797. * We dropped the pi-lock, so re-check whether this
  798. * task still owns the PI-state:
  799. */
  800. if (head->next != next) {
  801. spin_unlock(&hb->lock);
  802. continue;
  803. }
  804. WARN_ON(pi_state->owner != curr);
  805. WARN_ON(list_empty(&pi_state->list));
  806. list_del_init(&pi_state->list);
  807. pi_state->owner = NULL;
  808. raw_spin_unlock_irq(&curr->pi_lock);
  809. rt_mutex_unlock(&pi_state->pi_mutex);
  810. spin_unlock(&hb->lock);
  811. raw_spin_lock_irq(&curr->pi_lock);
  812. }
  813. raw_spin_unlock_irq(&curr->pi_lock);
  814. }
  815. /*
  816. * We need to check the following states:
  817. *
  818. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  819. *
  820. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  821. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  822. *
  823. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  824. *
  825. * [4] Found | Found | NULL | 0 | 1 | Valid
  826. * [5] Found | Found | NULL | >0 | 1 | Invalid
  827. *
  828. * [6] Found | Found | task | 0 | 1 | Valid
  829. *
  830. * [7] Found | Found | NULL | Any | 0 | Invalid
  831. *
  832. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  833. * [9] Found | Found | task | 0 | 0 | Invalid
  834. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  835. *
  836. * [1] Indicates that the kernel can acquire the futex atomically. We
  837. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  838. *
  839. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  840. * thread is found then it indicates that the owner TID has died.
  841. *
  842. * [3] Invalid. The waiter is queued on a non PI futex
  843. *
  844. * [4] Valid state after exit_robust_list(), which sets the user space
  845. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  846. *
  847. * [5] The user space value got manipulated between exit_robust_list()
  848. * and exit_pi_state_list()
  849. *
  850. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  851. * the pi_state but cannot access the user space value.
  852. *
  853. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  854. *
  855. * [8] Owner and user space value match
  856. *
  857. * [9] There is no transient state which sets the user space TID to 0
  858. * except exit_robust_list(), but this is indicated by the
  859. * FUTEX_OWNER_DIED bit. See [4]
  860. *
  861. * [10] There is no transient state which leaves owner and user space
  862. * TID out of sync.
  863. */
  864. /*
  865. * Validate that the existing waiter has a pi_state and sanity check
  866. * the pi_state against the user space value. If correct, attach to
  867. * it.
  868. */
  869. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  870. struct futex_pi_state **ps)
  871. {
  872. pid_t pid = uval & FUTEX_TID_MASK;
  873. /*
  874. * Userspace might have messed up non-PI and PI futexes [3]
  875. */
  876. if (unlikely(!pi_state))
  877. return -EINVAL;
  878. WARN_ON(!atomic_read(&pi_state->refcount));
  879. /*
  880. * Handle the owner died case:
  881. */
  882. if (uval & FUTEX_OWNER_DIED) {
  883. /*
  884. * exit_pi_state_list sets owner to NULL and wakes the
  885. * topmost waiter. The task which acquires the
  886. * pi_state->rt_mutex will fixup owner.
  887. */
  888. if (!pi_state->owner) {
  889. /*
  890. * No pi state owner, but the user space TID
  891. * is not 0. Inconsistent state. [5]
  892. */
  893. if (pid)
  894. return -EINVAL;
  895. /*
  896. * Take a ref on the state and return success. [4]
  897. */
  898. goto out_state;
  899. }
  900. /*
  901. * If TID is 0, then either the dying owner has not
  902. * yet executed exit_pi_state_list() or some waiter
  903. * acquired the rtmutex in the pi state, but did not
  904. * yet fixup the TID in user space.
  905. *
  906. * Take a ref on the state and return success. [6]
  907. */
  908. if (!pid)
  909. goto out_state;
  910. } else {
  911. /*
  912. * If the owner died bit is not set, then the pi_state
  913. * must have an owner. [7]
  914. */
  915. if (!pi_state->owner)
  916. return -EINVAL;
  917. }
  918. /*
  919. * Bail out if user space manipulated the futex value. If pi
  920. * state exists then the owner TID must be the same as the
  921. * user space TID. [9/10]
  922. */
  923. if (pid != task_pid_vnr(pi_state->owner))
  924. return -EINVAL;
  925. out_state:
  926. atomic_inc(&pi_state->refcount);
  927. *ps = pi_state;
  928. return 0;
  929. }
  930. /*
  931. * Lookup the task for the TID provided from user space and attach to
  932. * it after doing proper sanity checks.
  933. */
  934. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  935. struct futex_pi_state **ps)
  936. {
  937. pid_t pid = uval & FUTEX_TID_MASK;
  938. struct futex_pi_state *pi_state;
  939. struct task_struct *p;
  940. /*
  941. * We are the first waiter - try to look up the real owner and attach
  942. * the new pi_state to it, but bail out when TID = 0 [1]
  943. */
  944. if (!pid)
  945. return -ESRCH;
  946. p = futex_find_get_task(pid);
  947. if (!p)
  948. return -ESRCH;
  949. if (unlikely(p->flags & PF_KTHREAD)) {
  950. put_task_struct(p);
  951. return -EPERM;
  952. }
  953. /*
  954. * We need to look at the task state flags to figure out,
  955. * whether the task is exiting. To protect against the do_exit
  956. * change of the task flags, we do this protected by
  957. * p->pi_lock:
  958. */
  959. raw_spin_lock_irq(&p->pi_lock);
  960. if (unlikely(p->flags & PF_EXITING)) {
  961. /*
  962. * The task is on the way out. When PF_EXITPIDONE is
  963. * set, we know that the task has finished the
  964. * cleanup:
  965. */
  966. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  967. raw_spin_unlock_irq(&p->pi_lock);
  968. put_task_struct(p);
  969. return ret;
  970. }
  971. /*
  972. * No existing pi state. First waiter. [2]
  973. */
  974. pi_state = alloc_pi_state();
  975. /*
  976. * Initialize the pi_mutex in locked state and make @p
  977. * the owner of it:
  978. */
  979. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  980. /* Store the key for possible exit cleanups: */
  981. pi_state->key = *key;
  982. WARN_ON(!list_empty(&pi_state->list));
  983. list_add(&pi_state->list, &p->pi_state_list);
  984. pi_state->owner = p;
  985. raw_spin_unlock_irq(&p->pi_lock);
  986. put_task_struct(p);
  987. *ps = pi_state;
  988. return 0;
  989. }
  990. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  991. union futex_key *key, struct futex_pi_state **ps)
  992. {
  993. struct futex_q *match = futex_top_waiter(hb, key);
  994. /*
  995. * If there is a waiter on that futex, validate it and
  996. * attach to the pi_state when the validation succeeds.
  997. */
  998. if (match)
  999. return attach_to_pi_state(uval, match->pi_state, ps);
  1000. /*
  1001. * We are the first waiter - try to look up the owner based on
  1002. * @uval and attach to it.
  1003. */
  1004. return attach_to_pi_owner(uval, key, ps);
  1005. }
  1006. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1007. {
  1008. u32 uninitialized_var(curval);
  1009. if (unlikely(should_fail_futex(true)))
  1010. return -EFAULT;
  1011. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1012. return -EFAULT;
  1013. /*If user space value changed, let the caller retry */
  1014. return curval != uval ? -EAGAIN : 0;
  1015. }
  1016. /**
  1017. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1018. * @uaddr: the pi futex user address
  1019. * @hb: the pi futex hash bucket
  1020. * @key: the futex key associated with uaddr and hb
  1021. * @ps: the pi_state pointer where we store the result of the
  1022. * lookup
  1023. * @task: the task to perform the atomic lock work for. This will
  1024. * be "current" except in the case of requeue pi.
  1025. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1026. *
  1027. * Return:
  1028. * 0 - ready to wait;
  1029. * 1 - acquired the lock;
  1030. * <0 - error
  1031. *
  1032. * The hb->lock and futex_key refs shall be held by the caller.
  1033. */
  1034. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1035. union futex_key *key,
  1036. struct futex_pi_state **ps,
  1037. struct task_struct *task, int set_waiters)
  1038. {
  1039. u32 uval, newval, vpid = task_pid_vnr(task);
  1040. struct futex_q *match;
  1041. int ret;
  1042. /*
  1043. * Read the user space value first so we can validate a few
  1044. * things before proceeding further.
  1045. */
  1046. if (get_futex_value_locked(&uval, uaddr))
  1047. return -EFAULT;
  1048. if (unlikely(should_fail_futex(true)))
  1049. return -EFAULT;
  1050. /*
  1051. * Detect deadlocks.
  1052. */
  1053. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1054. return -EDEADLK;
  1055. if ((unlikely(should_fail_futex(true))))
  1056. return -EDEADLK;
  1057. /*
  1058. * Lookup existing state first. If it exists, try to attach to
  1059. * its pi_state.
  1060. */
  1061. match = futex_top_waiter(hb, key);
  1062. if (match)
  1063. return attach_to_pi_state(uval, match->pi_state, ps);
  1064. /*
  1065. * No waiter and user TID is 0. We are here because the
  1066. * waiters or the owner died bit is set or called from
  1067. * requeue_cmp_pi or for whatever reason something took the
  1068. * syscall.
  1069. */
  1070. if (!(uval & FUTEX_TID_MASK)) {
  1071. /*
  1072. * We take over the futex. No other waiters and the user space
  1073. * TID is 0. We preserve the owner died bit.
  1074. */
  1075. newval = uval & FUTEX_OWNER_DIED;
  1076. newval |= vpid;
  1077. /* The futex requeue_pi code can enforce the waiters bit */
  1078. if (set_waiters)
  1079. newval |= FUTEX_WAITERS;
  1080. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1081. /* If the take over worked, return 1 */
  1082. return ret < 0 ? ret : 1;
  1083. }
  1084. /*
  1085. * First waiter. Set the waiters bit before attaching ourself to
  1086. * the owner. If owner tries to unlock, it will be forced into
  1087. * the kernel and blocked on hb->lock.
  1088. */
  1089. newval = uval | FUTEX_WAITERS;
  1090. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1091. if (ret)
  1092. return ret;
  1093. /*
  1094. * If the update of the user space value succeeded, we try to
  1095. * attach to the owner. If that fails, no harm done, we only
  1096. * set the FUTEX_WAITERS bit in the user space variable.
  1097. */
  1098. return attach_to_pi_owner(uval, key, ps);
  1099. }
  1100. /**
  1101. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1102. * @q: The futex_q to unqueue
  1103. *
  1104. * The q->lock_ptr must not be NULL and must be held by the caller.
  1105. */
  1106. static void __unqueue_futex(struct futex_q *q)
  1107. {
  1108. struct futex_hash_bucket *hb;
  1109. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1110. || WARN_ON(plist_node_empty(&q->list)))
  1111. return;
  1112. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1113. plist_del(&q->list, &hb->chain);
  1114. hb_waiters_dec(hb);
  1115. }
  1116. /*
  1117. * The hash bucket lock must be held when this is called.
  1118. * Afterwards, the futex_q must not be accessed. Callers
  1119. * must ensure to later call wake_up_q() for the actual
  1120. * wakeups to occur.
  1121. */
  1122. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1123. {
  1124. struct task_struct *p = q->task;
  1125. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1126. return;
  1127. /*
  1128. * Queue the task for later wakeup for after we've released
  1129. * the hb->lock. wake_q_add() grabs reference to p.
  1130. */
  1131. wake_q_add(wake_q, p);
  1132. __unqueue_futex(q);
  1133. /*
  1134. * The waiting task can free the futex_q as soon as
  1135. * q->lock_ptr = NULL is written, without taking any locks. A
  1136. * memory barrier is required here to prevent the following
  1137. * store to lock_ptr from getting ahead of the plist_del.
  1138. */
  1139. smp_wmb();
  1140. q->lock_ptr = NULL;
  1141. }
  1142. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
  1143. struct futex_hash_bucket *hb)
  1144. {
  1145. struct task_struct *new_owner;
  1146. struct futex_pi_state *pi_state = this->pi_state;
  1147. u32 uninitialized_var(curval), newval;
  1148. WAKE_Q(wake_q);
  1149. bool deboost;
  1150. int ret = 0;
  1151. if (!pi_state)
  1152. return -EINVAL;
  1153. /*
  1154. * If current does not own the pi_state then the futex is
  1155. * inconsistent and user space fiddled with the futex value.
  1156. */
  1157. if (pi_state->owner != current)
  1158. return -EINVAL;
  1159. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  1160. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1161. /*
  1162. * It is possible that the next waiter (the one that brought
  1163. * this owner to the kernel) timed out and is no longer
  1164. * waiting on the lock.
  1165. */
  1166. if (!new_owner)
  1167. new_owner = this->task;
  1168. /*
  1169. * We pass it to the next owner. The WAITERS bit is always
  1170. * kept enabled while there is PI state around. We cleanup the
  1171. * owner died bit, because we are the owner.
  1172. */
  1173. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1174. if (unlikely(should_fail_futex(true)))
  1175. ret = -EFAULT;
  1176. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1177. ret = -EFAULT;
  1178. } else if (curval != uval) {
  1179. /*
  1180. * If a unconditional UNLOCK_PI operation (user space did not
  1181. * try the TID->0 transition) raced with a waiter setting the
  1182. * FUTEX_WAITERS flag between get_user() and locking the hash
  1183. * bucket lock, retry the operation.
  1184. */
  1185. if ((FUTEX_TID_MASK & curval) == uval)
  1186. ret = -EAGAIN;
  1187. else
  1188. ret = -EINVAL;
  1189. }
  1190. if (ret) {
  1191. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1192. return ret;
  1193. }
  1194. raw_spin_lock(&pi_state->owner->pi_lock);
  1195. WARN_ON(list_empty(&pi_state->list));
  1196. list_del_init(&pi_state->list);
  1197. raw_spin_unlock(&pi_state->owner->pi_lock);
  1198. raw_spin_lock(&new_owner->pi_lock);
  1199. WARN_ON(!list_empty(&pi_state->list));
  1200. list_add(&pi_state->list, &new_owner->pi_state_list);
  1201. pi_state->owner = new_owner;
  1202. raw_spin_unlock(&new_owner->pi_lock);
  1203. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1204. deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1205. /*
  1206. * First unlock HB so the waiter does not spin on it once he got woken
  1207. * up. Second wake up the waiter before the priority is adjusted. If we
  1208. * deboost first (and lose our higher priority), then the task might get
  1209. * scheduled away before the wake up can take place.
  1210. */
  1211. spin_unlock(&hb->lock);
  1212. wake_up_q(&wake_q);
  1213. if (deboost)
  1214. rt_mutex_adjust_prio(current);
  1215. return 0;
  1216. }
  1217. /*
  1218. * Express the locking dependencies for lockdep:
  1219. */
  1220. static inline void
  1221. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1222. {
  1223. if (hb1 <= hb2) {
  1224. spin_lock(&hb1->lock);
  1225. if (hb1 < hb2)
  1226. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1227. } else { /* hb1 > hb2 */
  1228. spin_lock(&hb2->lock);
  1229. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1230. }
  1231. }
  1232. static inline void
  1233. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1234. {
  1235. spin_unlock(&hb1->lock);
  1236. if (hb1 != hb2)
  1237. spin_unlock(&hb2->lock);
  1238. }
  1239. /*
  1240. * Wake up waiters matching bitset queued on this futex (uaddr).
  1241. */
  1242. static int
  1243. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1244. {
  1245. struct futex_hash_bucket *hb;
  1246. struct futex_q *this, *next;
  1247. union futex_key key = FUTEX_KEY_INIT;
  1248. int ret;
  1249. WAKE_Q(wake_q);
  1250. if (!bitset)
  1251. return -EINVAL;
  1252. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1253. if (unlikely(ret != 0))
  1254. goto out;
  1255. hb = hash_futex(&key);
  1256. /* Make sure we really have tasks to wakeup */
  1257. if (!hb_waiters_pending(hb))
  1258. goto out_put_key;
  1259. spin_lock(&hb->lock);
  1260. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1261. if (match_futex (&this->key, &key)) {
  1262. if (this->pi_state || this->rt_waiter) {
  1263. ret = -EINVAL;
  1264. break;
  1265. }
  1266. /* Check if one of the bits is set in both bitsets */
  1267. if (!(this->bitset & bitset))
  1268. continue;
  1269. mark_wake_futex(&wake_q, this);
  1270. if (++ret >= nr_wake)
  1271. break;
  1272. }
  1273. }
  1274. spin_unlock(&hb->lock);
  1275. wake_up_q(&wake_q);
  1276. out_put_key:
  1277. put_futex_key(&key);
  1278. out:
  1279. return ret;
  1280. }
  1281. /*
  1282. * Wake up all waiters hashed on the physical page that is mapped
  1283. * to this virtual address:
  1284. */
  1285. static int
  1286. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1287. int nr_wake, int nr_wake2, int op)
  1288. {
  1289. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1290. struct futex_hash_bucket *hb1, *hb2;
  1291. struct futex_q *this, *next;
  1292. int ret, op_ret;
  1293. WAKE_Q(wake_q);
  1294. retry:
  1295. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1296. if (unlikely(ret != 0))
  1297. goto out;
  1298. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1299. if (unlikely(ret != 0))
  1300. goto out_put_key1;
  1301. hb1 = hash_futex(&key1);
  1302. hb2 = hash_futex(&key2);
  1303. retry_private:
  1304. double_lock_hb(hb1, hb2);
  1305. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1306. if (unlikely(op_ret < 0)) {
  1307. double_unlock_hb(hb1, hb2);
  1308. #ifndef CONFIG_MMU
  1309. /*
  1310. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1311. * but we might get them from range checking
  1312. */
  1313. ret = op_ret;
  1314. goto out_put_keys;
  1315. #endif
  1316. if (unlikely(op_ret != -EFAULT)) {
  1317. ret = op_ret;
  1318. goto out_put_keys;
  1319. }
  1320. ret = fault_in_user_writeable(uaddr2);
  1321. if (ret)
  1322. goto out_put_keys;
  1323. if (!(flags & FLAGS_SHARED))
  1324. goto retry_private;
  1325. put_futex_key(&key2);
  1326. put_futex_key(&key1);
  1327. goto retry;
  1328. }
  1329. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1330. if (match_futex (&this->key, &key1)) {
  1331. if (this->pi_state || this->rt_waiter) {
  1332. ret = -EINVAL;
  1333. goto out_unlock;
  1334. }
  1335. mark_wake_futex(&wake_q, this);
  1336. if (++ret >= nr_wake)
  1337. break;
  1338. }
  1339. }
  1340. if (op_ret > 0) {
  1341. op_ret = 0;
  1342. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1343. if (match_futex (&this->key, &key2)) {
  1344. if (this->pi_state || this->rt_waiter) {
  1345. ret = -EINVAL;
  1346. goto out_unlock;
  1347. }
  1348. mark_wake_futex(&wake_q, this);
  1349. if (++op_ret >= nr_wake2)
  1350. break;
  1351. }
  1352. }
  1353. ret += op_ret;
  1354. }
  1355. out_unlock:
  1356. double_unlock_hb(hb1, hb2);
  1357. wake_up_q(&wake_q);
  1358. out_put_keys:
  1359. put_futex_key(&key2);
  1360. out_put_key1:
  1361. put_futex_key(&key1);
  1362. out:
  1363. return ret;
  1364. }
  1365. /**
  1366. * requeue_futex() - Requeue a futex_q from one hb to another
  1367. * @q: the futex_q to requeue
  1368. * @hb1: the source hash_bucket
  1369. * @hb2: the target hash_bucket
  1370. * @key2: the new key for the requeued futex_q
  1371. */
  1372. static inline
  1373. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1374. struct futex_hash_bucket *hb2, union futex_key *key2)
  1375. {
  1376. /*
  1377. * If key1 and key2 hash to the same bucket, no need to
  1378. * requeue.
  1379. */
  1380. if (likely(&hb1->chain != &hb2->chain)) {
  1381. plist_del(&q->list, &hb1->chain);
  1382. hb_waiters_dec(hb1);
  1383. hb_waiters_inc(hb2);
  1384. plist_add(&q->list, &hb2->chain);
  1385. q->lock_ptr = &hb2->lock;
  1386. }
  1387. get_futex_key_refs(key2);
  1388. q->key = *key2;
  1389. }
  1390. /**
  1391. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1392. * @q: the futex_q
  1393. * @key: the key of the requeue target futex
  1394. * @hb: the hash_bucket of the requeue target futex
  1395. *
  1396. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1397. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1398. * to the requeue target futex so the waiter can detect the wakeup on the right
  1399. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1400. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1401. * to protect access to the pi_state to fixup the owner later. Must be called
  1402. * with both q->lock_ptr and hb->lock held.
  1403. */
  1404. static inline
  1405. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1406. struct futex_hash_bucket *hb)
  1407. {
  1408. get_futex_key_refs(key);
  1409. q->key = *key;
  1410. __unqueue_futex(q);
  1411. WARN_ON(!q->rt_waiter);
  1412. q->rt_waiter = NULL;
  1413. q->lock_ptr = &hb->lock;
  1414. wake_up_state(q->task, TASK_NORMAL);
  1415. }
  1416. /**
  1417. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1418. * @pifutex: the user address of the to futex
  1419. * @hb1: the from futex hash bucket, must be locked by the caller
  1420. * @hb2: the to futex hash bucket, must be locked by the caller
  1421. * @key1: the from futex key
  1422. * @key2: the to futex key
  1423. * @ps: address to store the pi_state pointer
  1424. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1425. *
  1426. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1427. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1428. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1429. * hb1 and hb2 must be held by the caller.
  1430. *
  1431. * Return:
  1432. * 0 - failed to acquire the lock atomically;
  1433. * >0 - acquired the lock, return value is vpid of the top_waiter
  1434. * <0 - error
  1435. */
  1436. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1437. struct futex_hash_bucket *hb1,
  1438. struct futex_hash_bucket *hb2,
  1439. union futex_key *key1, union futex_key *key2,
  1440. struct futex_pi_state **ps, int set_waiters)
  1441. {
  1442. struct futex_q *top_waiter = NULL;
  1443. u32 curval;
  1444. int ret, vpid;
  1445. if (get_futex_value_locked(&curval, pifutex))
  1446. return -EFAULT;
  1447. if (unlikely(should_fail_futex(true)))
  1448. return -EFAULT;
  1449. /*
  1450. * Find the top_waiter and determine if there are additional waiters.
  1451. * If the caller intends to requeue more than 1 waiter to pifutex,
  1452. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1453. * as we have means to handle the possible fault. If not, don't set
  1454. * the bit unecessarily as it will force the subsequent unlock to enter
  1455. * the kernel.
  1456. */
  1457. top_waiter = futex_top_waiter(hb1, key1);
  1458. /* There are no waiters, nothing for us to do. */
  1459. if (!top_waiter)
  1460. return 0;
  1461. /* Ensure we requeue to the expected futex. */
  1462. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1463. return -EINVAL;
  1464. /*
  1465. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1466. * the contended case or if set_waiters is 1. The pi_state is returned
  1467. * in ps in contended cases.
  1468. */
  1469. vpid = task_pid_vnr(top_waiter->task);
  1470. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1471. set_waiters);
  1472. if (ret == 1) {
  1473. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1474. return vpid;
  1475. }
  1476. return ret;
  1477. }
  1478. /**
  1479. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1480. * @uaddr1: source futex user address
  1481. * @flags: futex flags (FLAGS_SHARED, etc.)
  1482. * @uaddr2: target futex user address
  1483. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1484. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1485. * @cmpval: @uaddr1 expected value (or %NULL)
  1486. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1487. * pi futex (pi to pi requeue is not supported)
  1488. *
  1489. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1490. * uaddr2 atomically on behalf of the top waiter.
  1491. *
  1492. * Return:
  1493. * >=0 - on success, the number of tasks requeued or woken;
  1494. * <0 - on error
  1495. */
  1496. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1497. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1498. u32 *cmpval, int requeue_pi)
  1499. {
  1500. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1501. int drop_count = 0, task_count = 0, ret;
  1502. struct futex_pi_state *pi_state = NULL;
  1503. struct futex_hash_bucket *hb1, *hb2;
  1504. struct futex_q *this, *next;
  1505. WAKE_Q(wake_q);
  1506. if (requeue_pi) {
  1507. /*
  1508. * Requeue PI only works on two distinct uaddrs. This
  1509. * check is only valid for private futexes. See below.
  1510. */
  1511. if (uaddr1 == uaddr2)
  1512. return -EINVAL;
  1513. /*
  1514. * requeue_pi requires a pi_state, try to allocate it now
  1515. * without any locks in case it fails.
  1516. */
  1517. if (refill_pi_state_cache())
  1518. return -ENOMEM;
  1519. /*
  1520. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1521. * + nr_requeue, since it acquires the rt_mutex prior to
  1522. * returning to userspace, so as to not leave the rt_mutex with
  1523. * waiters and no owner. However, second and third wake-ups
  1524. * cannot be predicted as they involve race conditions with the
  1525. * first wake and a fault while looking up the pi_state. Both
  1526. * pthread_cond_signal() and pthread_cond_broadcast() should
  1527. * use nr_wake=1.
  1528. */
  1529. if (nr_wake != 1)
  1530. return -EINVAL;
  1531. }
  1532. retry:
  1533. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1534. if (unlikely(ret != 0))
  1535. goto out;
  1536. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1537. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1538. if (unlikely(ret != 0))
  1539. goto out_put_key1;
  1540. /*
  1541. * The check above which compares uaddrs is not sufficient for
  1542. * shared futexes. We need to compare the keys:
  1543. */
  1544. if (requeue_pi && match_futex(&key1, &key2)) {
  1545. ret = -EINVAL;
  1546. goto out_put_keys;
  1547. }
  1548. hb1 = hash_futex(&key1);
  1549. hb2 = hash_futex(&key2);
  1550. retry_private:
  1551. hb_waiters_inc(hb2);
  1552. double_lock_hb(hb1, hb2);
  1553. if (likely(cmpval != NULL)) {
  1554. u32 curval;
  1555. ret = get_futex_value_locked(&curval, uaddr1);
  1556. if (unlikely(ret)) {
  1557. double_unlock_hb(hb1, hb2);
  1558. hb_waiters_dec(hb2);
  1559. ret = get_user(curval, uaddr1);
  1560. if (ret)
  1561. goto out_put_keys;
  1562. if (!(flags & FLAGS_SHARED))
  1563. goto retry_private;
  1564. put_futex_key(&key2);
  1565. put_futex_key(&key1);
  1566. goto retry;
  1567. }
  1568. if (curval != *cmpval) {
  1569. ret = -EAGAIN;
  1570. goto out_unlock;
  1571. }
  1572. }
  1573. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1574. /*
  1575. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1576. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1577. * bit. We force this here where we are able to easily handle
  1578. * faults rather in the requeue loop below.
  1579. */
  1580. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1581. &key2, &pi_state, nr_requeue);
  1582. /*
  1583. * At this point the top_waiter has either taken uaddr2 or is
  1584. * waiting on it. If the former, then the pi_state will not
  1585. * exist yet, look it up one more time to ensure we have a
  1586. * reference to it. If the lock was taken, ret contains the
  1587. * vpid of the top waiter task.
  1588. * If the lock was not taken, we have pi_state and an initial
  1589. * refcount on it. In case of an error we have nothing.
  1590. */
  1591. if (ret > 0) {
  1592. WARN_ON(pi_state);
  1593. drop_count++;
  1594. task_count++;
  1595. /*
  1596. * If we acquired the lock, then the user space value
  1597. * of uaddr2 should be vpid. It cannot be changed by
  1598. * the top waiter as it is blocked on hb2 lock if it
  1599. * tries to do so. If something fiddled with it behind
  1600. * our back the pi state lookup might unearth it. So
  1601. * we rather use the known value than rereading and
  1602. * handing potential crap to lookup_pi_state.
  1603. *
  1604. * If that call succeeds then we have pi_state and an
  1605. * initial refcount on it.
  1606. */
  1607. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1608. }
  1609. switch (ret) {
  1610. case 0:
  1611. /* We hold a reference on the pi state. */
  1612. break;
  1613. /* If the above failed, then pi_state is NULL */
  1614. case -EFAULT:
  1615. double_unlock_hb(hb1, hb2);
  1616. hb_waiters_dec(hb2);
  1617. put_futex_key(&key2);
  1618. put_futex_key(&key1);
  1619. ret = fault_in_user_writeable(uaddr2);
  1620. if (!ret)
  1621. goto retry;
  1622. goto out;
  1623. case -EAGAIN:
  1624. /*
  1625. * Two reasons for this:
  1626. * - Owner is exiting and we just wait for the
  1627. * exit to complete.
  1628. * - The user space value changed.
  1629. */
  1630. double_unlock_hb(hb1, hb2);
  1631. hb_waiters_dec(hb2);
  1632. put_futex_key(&key2);
  1633. put_futex_key(&key1);
  1634. cond_resched();
  1635. goto retry;
  1636. default:
  1637. goto out_unlock;
  1638. }
  1639. }
  1640. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1641. if (task_count - nr_wake >= nr_requeue)
  1642. break;
  1643. if (!match_futex(&this->key, &key1))
  1644. continue;
  1645. /*
  1646. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1647. * be paired with each other and no other futex ops.
  1648. *
  1649. * We should never be requeueing a futex_q with a pi_state,
  1650. * which is awaiting a futex_unlock_pi().
  1651. */
  1652. if ((requeue_pi && !this->rt_waiter) ||
  1653. (!requeue_pi && this->rt_waiter) ||
  1654. this->pi_state) {
  1655. ret = -EINVAL;
  1656. break;
  1657. }
  1658. /*
  1659. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1660. * lock, we already woke the top_waiter. If not, it will be
  1661. * woken by futex_unlock_pi().
  1662. */
  1663. if (++task_count <= nr_wake && !requeue_pi) {
  1664. mark_wake_futex(&wake_q, this);
  1665. continue;
  1666. }
  1667. /* Ensure we requeue to the expected futex for requeue_pi. */
  1668. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1669. ret = -EINVAL;
  1670. break;
  1671. }
  1672. /*
  1673. * Requeue nr_requeue waiters and possibly one more in the case
  1674. * of requeue_pi if we couldn't acquire the lock atomically.
  1675. */
  1676. if (requeue_pi) {
  1677. /*
  1678. * Prepare the waiter to take the rt_mutex. Take a
  1679. * refcount on the pi_state and store the pointer in
  1680. * the futex_q object of the waiter.
  1681. */
  1682. atomic_inc(&pi_state->refcount);
  1683. this->pi_state = pi_state;
  1684. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1685. this->rt_waiter,
  1686. this->task);
  1687. if (ret == 1) {
  1688. /*
  1689. * We got the lock. We do neither drop the
  1690. * refcount on pi_state nor clear
  1691. * this->pi_state because the waiter needs the
  1692. * pi_state for cleaning up the user space
  1693. * value. It will drop the refcount after
  1694. * doing so.
  1695. */
  1696. requeue_pi_wake_futex(this, &key2, hb2);
  1697. drop_count++;
  1698. continue;
  1699. } else if (ret) {
  1700. /*
  1701. * rt_mutex_start_proxy_lock() detected a
  1702. * potential deadlock when we tried to queue
  1703. * that waiter. Drop the pi_state reference
  1704. * which we took above and remove the pointer
  1705. * to the state from the waiters futex_q
  1706. * object.
  1707. */
  1708. this->pi_state = NULL;
  1709. put_pi_state(pi_state);
  1710. /*
  1711. * We stop queueing more waiters and let user
  1712. * space deal with the mess.
  1713. */
  1714. break;
  1715. }
  1716. }
  1717. requeue_futex(this, hb1, hb2, &key2);
  1718. drop_count++;
  1719. }
  1720. /*
  1721. * We took an extra initial reference to the pi_state either
  1722. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1723. * need to drop it here again.
  1724. */
  1725. put_pi_state(pi_state);
  1726. out_unlock:
  1727. double_unlock_hb(hb1, hb2);
  1728. wake_up_q(&wake_q);
  1729. hb_waiters_dec(hb2);
  1730. /*
  1731. * drop_futex_key_refs() must be called outside the spinlocks. During
  1732. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1733. * one at key2 and updated their key pointer. We no longer need to
  1734. * hold the references to key1.
  1735. */
  1736. while (--drop_count >= 0)
  1737. drop_futex_key_refs(&key1);
  1738. out_put_keys:
  1739. put_futex_key(&key2);
  1740. out_put_key1:
  1741. put_futex_key(&key1);
  1742. out:
  1743. return ret ? ret : task_count;
  1744. }
  1745. /* The key must be already stored in q->key. */
  1746. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1747. __acquires(&hb->lock)
  1748. {
  1749. struct futex_hash_bucket *hb;
  1750. hb = hash_futex(&q->key);
  1751. /*
  1752. * Increment the counter before taking the lock so that
  1753. * a potential waker won't miss a to-be-slept task that is
  1754. * waiting for the spinlock. This is safe as all queue_lock()
  1755. * users end up calling queue_me(). Similarly, for housekeeping,
  1756. * decrement the counter at queue_unlock() when some error has
  1757. * occurred and we don't end up adding the task to the list.
  1758. */
  1759. hb_waiters_inc(hb);
  1760. q->lock_ptr = &hb->lock;
  1761. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1762. return hb;
  1763. }
  1764. static inline void
  1765. queue_unlock(struct futex_hash_bucket *hb)
  1766. __releases(&hb->lock)
  1767. {
  1768. spin_unlock(&hb->lock);
  1769. hb_waiters_dec(hb);
  1770. }
  1771. /**
  1772. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1773. * @q: The futex_q to enqueue
  1774. * @hb: The destination hash bucket
  1775. *
  1776. * The hb->lock must be held by the caller, and is released here. A call to
  1777. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1778. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1779. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1780. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1781. * an example).
  1782. */
  1783. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1784. __releases(&hb->lock)
  1785. {
  1786. int prio;
  1787. /*
  1788. * The priority used to register this element is
  1789. * - either the real thread-priority for the real-time threads
  1790. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1791. * - or MAX_RT_PRIO for non-RT threads.
  1792. * Thus, all RT-threads are woken first in priority order, and
  1793. * the others are woken last, in FIFO order.
  1794. */
  1795. prio = min(current->normal_prio, MAX_RT_PRIO);
  1796. plist_node_init(&q->list, prio);
  1797. plist_add(&q->list, &hb->chain);
  1798. q->task = current;
  1799. spin_unlock(&hb->lock);
  1800. }
  1801. /**
  1802. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1803. * @q: The futex_q to unqueue
  1804. *
  1805. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1806. * be paired with exactly one earlier call to queue_me().
  1807. *
  1808. * Return:
  1809. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1810. * 0 - if the futex_q was already removed by the waking thread
  1811. */
  1812. static int unqueue_me(struct futex_q *q)
  1813. {
  1814. spinlock_t *lock_ptr;
  1815. int ret = 0;
  1816. /* In the common case we don't take the spinlock, which is nice. */
  1817. retry:
  1818. /*
  1819. * q->lock_ptr can change between this read and the following spin_lock.
  1820. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1821. * optimizing lock_ptr out of the logic below.
  1822. */
  1823. lock_ptr = READ_ONCE(q->lock_ptr);
  1824. if (lock_ptr != NULL) {
  1825. spin_lock(lock_ptr);
  1826. /*
  1827. * q->lock_ptr can change between reading it and
  1828. * spin_lock(), causing us to take the wrong lock. This
  1829. * corrects the race condition.
  1830. *
  1831. * Reasoning goes like this: if we have the wrong lock,
  1832. * q->lock_ptr must have changed (maybe several times)
  1833. * between reading it and the spin_lock(). It can
  1834. * change again after the spin_lock() but only if it was
  1835. * already changed before the spin_lock(). It cannot,
  1836. * however, change back to the original value. Therefore
  1837. * we can detect whether we acquired the correct lock.
  1838. */
  1839. if (unlikely(lock_ptr != q->lock_ptr)) {
  1840. spin_unlock(lock_ptr);
  1841. goto retry;
  1842. }
  1843. __unqueue_futex(q);
  1844. BUG_ON(q->pi_state);
  1845. spin_unlock(lock_ptr);
  1846. ret = 1;
  1847. }
  1848. drop_futex_key_refs(&q->key);
  1849. return ret;
  1850. }
  1851. /*
  1852. * PI futexes can not be requeued and must remove themself from the
  1853. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1854. * and dropped here.
  1855. */
  1856. static void unqueue_me_pi(struct futex_q *q)
  1857. __releases(q->lock_ptr)
  1858. {
  1859. __unqueue_futex(q);
  1860. BUG_ON(!q->pi_state);
  1861. put_pi_state(q->pi_state);
  1862. q->pi_state = NULL;
  1863. spin_unlock(q->lock_ptr);
  1864. }
  1865. /*
  1866. * Fixup the pi_state owner with the new owner.
  1867. *
  1868. * Must be called with hash bucket lock held and mm->sem held for non
  1869. * private futexes.
  1870. */
  1871. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1872. struct task_struct *newowner)
  1873. {
  1874. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1875. struct futex_pi_state *pi_state = q->pi_state;
  1876. struct task_struct *oldowner = pi_state->owner;
  1877. u32 uval, uninitialized_var(curval), newval;
  1878. int ret;
  1879. /* Owner died? */
  1880. if (!pi_state->owner)
  1881. newtid |= FUTEX_OWNER_DIED;
  1882. /*
  1883. * We are here either because we stole the rtmutex from the
  1884. * previous highest priority waiter or we are the highest priority
  1885. * waiter but failed to get the rtmutex the first time.
  1886. * We have to replace the newowner TID in the user space variable.
  1887. * This must be atomic as we have to preserve the owner died bit here.
  1888. *
  1889. * Note: We write the user space value _before_ changing the pi_state
  1890. * because we can fault here. Imagine swapped out pages or a fork
  1891. * that marked all the anonymous memory readonly for cow.
  1892. *
  1893. * Modifying pi_state _before_ the user space value would
  1894. * leave the pi_state in an inconsistent state when we fault
  1895. * here, because we need to drop the hash bucket lock to
  1896. * handle the fault. This might be observed in the PID check
  1897. * in lookup_pi_state.
  1898. */
  1899. retry:
  1900. if (get_futex_value_locked(&uval, uaddr))
  1901. goto handle_fault;
  1902. while (1) {
  1903. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1904. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1905. goto handle_fault;
  1906. if (curval == uval)
  1907. break;
  1908. uval = curval;
  1909. }
  1910. /*
  1911. * We fixed up user space. Now we need to fix the pi_state
  1912. * itself.
  1913. */
  1914. if (pi_state->owner != NULL) {
  1915. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1916. WARN_ON(list_empty(&pi_state->list));
  1917. list_del_init(&pi_state->list);
  1918. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1919. }
  1920. pi_state->owner = newowner;
  1921. raw_spin_lock_irq(&newowner->pi_lock);
  1922. WARN_ON(!list_empty(&pi_state->list));
  1923. list_add(&pi_state->list, &newowner->pi_state_list);
  1924. raw_spin_unlock_irq(&newowner->pi_lock);
  1925. return 0;
  1926. /*
  1927. * To handle the page fault we need to drop the hash bucket
  1928. * lock here. That gives the other task (either the highest priority
  1929. * waiter itself or the task which stole the rtmutex) the
  1930. * chance to try the fixup of the pi_state. So once we are
  1931. * back from handling the fault we need to check the pi_state
  1932. * after reacquiring the hash bucket lock and before trying to
  1933. * do another fixup. When the fixup has been done already we
  1934. * simply return.
  1935. */
  1936. handle_fault:
  1937. spin_unlock(q->lock_ptr);
  1938. ret = fault_in_user_writeable(uaddr);
  1939. spin_lock(q->lock_ptr);
  1940. /*
  1941. * Check if someone else fixed it for us:
  1942. */
  1943. if (pi_state->owner != oldowner)
  1944. return 0;
  1945. if (ret)
  1946. return ret;
  1947. goto retry;
  1948. }
  1949. static long futex_wait_restart(struct restart_block *restart);
  1950. /**
  1951. * fixup_owner() - Post lock pi_state and corner case management
  1952. * @uaddr: user address of the futex
  1953. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1954. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1955. *
  1956. * After attempting to lock an rt_mutex, this function is called to cleanup
  1957. * the pi_state owner as well as handle race conditions that may allow us to
  1958. * acquire the lock. Must be called with the hb lock held.
  1959. *
  1960. * Return:
  1961. * 1 - success, lock taken;
  1962. * 0 - success, lock not taken;
  1963. * <0 - on error (-EFAULT)
  1964. */
  1965. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1966. {
  1967. struct task_struct *owner;
  1968. int ret = 0;
  1969. if (locked) {
  1970. /*
  1971. * Got the lock. We might not be the anticipated owner if we
  1972. * did a lock-steal - fix up the PI-state in that case:
  1973. */
  1974. if (q->pi_state->owner != current)
  1975. ret = fixup_pi_state_owner(uaddr, q, current);
  1976. goto out;
  1977. }
  1978. /*
  1979. * Catch the rare case, where the lock was released when we were on the
  1980. * way back before we locked the hash bucket.
  1981. */
  1982. if (q->pi_state->owner == current) {
  1983. /*
  1984. * Try to get the rt_mutex now. This might fail as some other
  1985. * task acquired the rt_mutex after we removed ourself from the
  1986. * rt_mutex waiters list.
  1987. */
  1988. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1989. locked = 1;
  1990. goto out;
  1991. }
  1992. /*
  1993. * pi_state is incorrect, some other task did a lock steal and
  1994. * we returned due to timeout or signal without taking the
  1995. * rt_mutex. Too late.
  1996. */
  1997. raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
  1998. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1999. if (!owner)
  2000. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  2001. raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
  2002. ret = fixup_pi_state_owner(uaddr, q, owner);
  2003. goto out;
  2004. }
  2005. /*
  2006. * Paranoia check. If we did not take the lock, then we should not be
  2007. * the owner of the rt_mutex.
  2008. */
  2009. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  2010. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2011. "pi-state %p\n", ret,
  2012. q->pi_state->pi_mutex.owner,
  2013. q->pi_state->owner);
  2014. out:
  2015. return ret ? ret : locked;
  2016. }
  2017. /**
  2018. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2019. * @hb: the futex hash bucket, must be locked by the caller
  2020. * @q: the futex_q to queue up on
  2021. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2022. */
  2023. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2024. struct hrtimer_sleeper *timeout)
  2025. {
  2026. /*
  2027. * The task state is guaranteed to be set before another task can
  2028. * wake it. set_current_state() is implemented using smp_store_mb() and
  2029. * queue_me() calls spin_unlock() upon completion, both serializing
  2030. * access to the hash list and forcing another memory barrier.
  2031. */
  2032. set_current_state(TASK_INTERRUPTIBLE);
  2033. queue_me(q, hb);
  2034. /* Arm the timer */
  2035. if (timeout)
  2036. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2037. /*
  2038. * If we have been removed from the hash list, then another task
  2039. * has tried to wake us, and we can skip the call to schedule().
  2040. */
  2041. if (likely(!plist_node_empty(&q->list))) {
  2042. /*
  2043. * If the timer has already expired, current will already be
  2044. * flagged for rescheduling. Only call schedule if there
  2045. * is no timeout, or if it has yet to expire.
  2046. */
  2047. if (!timeout || timeout->task)
  2048. freezable_schedule();
  2049. }
  2050. __set_current_state(TASK_RUNNING);
  2051. }
  2052. /**
  2053. * futex_wait_setup() - Prepare to wait on a futex
  2054. * @uaddr: the futex userspace address
  2055. * @val: the expected value
  2056. * @flags: futex flags (FLAGS_SHARED, etc.)
  2057. * @q: the associated futex_q
  2058. * @hb: storage for hash_bucket pointer to be returned to caller
  2059. *
  2060. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2061. * compare it with the expected value. Handle atomic faults internally.
  2062. * Return with the hb lock held and a q.key reference on success, and unlocked
  2063. * with no q.key reference on failure.
  2064. *
  2065. * Return:
  2066. * 0 - uaddr contains val and hb has been locked;
  2067. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2068. */
  2069. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2070. struct futex_q *q, struct futex_hash_bucket **hb)
  2071. {
  2072. u32 uval;
  2073. int ret;
  2074. /*
  2075. * Access the page AFTER the hash-bucket is locked.
  2076. * Order is important:
  2077. *
  2078. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2079. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2080. *
  2081. * The basic logical guarantee of a futex is that it blocks ONLY
  2082. * if cond(var) is known to be true at the time of blocking, for
  2083. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2084. * would open a race condition where we could block indefinitely with
  2085. * cond(var) false, which would violate the guarantee.
  2086. *
  2087. * On the other hand, we insert q and release the hash-bucket only
  2088. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2089. * absorb a wakeup if *uaddr does not match the desired values
  2090. * while the syscall executes.
  2091. */
  2092. retry:
  2093. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2094. if (unlikely(ret != 0))
  2095. return ret;
  2096. retry_private:
  2097. *hb = queue_lock(q);
  2098. ret = get_futex_value_locked(&uval, uaddr);
  2099. if (ret) {
  2100. queue_unlock(*hb);
  2101. ret = get_user(uval, uaddr);
  2102. if (ret)
  2103. goto out;
  2104. if (!(flags & FLAGS_SHARED))
  2105. goto retry_private;
  2106. put_futex_key(&q->key);
  2107. goto retry;
  2108. }
  2109. if (uval != val) {
  2110. queue_unlock(*hb);
  2111. ret = -EWOULDBLOCK;
  2112. }
  2113. out:
  2114. if (ret)
  2115. put_futex_key(&q->key);
  2116. return ret;
  2117. }
  2118. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2119. ktime_t *abs_time, u32 bitset)
  2120. {
  2121. struct hrtimer_sleeper timeout, *to = NULL;
  2122. struct restart_block *restart;
  2123. struct futex_hash_bucket *hb;
  2124. struct futex_q q = futex_q_init;
  2125. int ret;
  2126. if (!bitset)
  2127. return -EINVAL;
  2128. q.bitset = bitset;
  2129. if (abs_time) {
  2130. to = &timeout;
  2131. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2132. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2133. HRTIMER_MODE_ABS);
  2134. hrtimer_init_sleeper(to, current);
  2135. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2136. current->timer_slack_ns);
  2137. }
  2138. retry:
  2139. /*
  2140. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2141. * q.key refs.
  2142. */
  2143. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2144. if (ret)
  2145. goto out;
  2146. /* queue_me and wait for wakeup, timeout, or a signal. */
  2147. futex_wait_queue_me(hb, &q, to);
  2148. /* If we were woken (and unqueued), we succeeded, whatever. */
  2149. ret = 0;
  2150. /* unqueue_me() drops q.key ref */
  2151. if (!unqueue_me(&q))
  2152. goto out;
  2153. ret = -ETIMEDOUT;
  2154. if (to && !to->task)
  2155. goto out;
  2156. /*
  2157. * We expect signal_pending(current), but we might be the
  2158. * victim of a spurious wakeup as well.
  2159. */
  2160. if (!signal_pending(current))
  2161. goto retry;
  2162. ret = -ERESTARTSYS;
  2163. if (!abs_time)
  2164. goto out;
  2165. restart = &current->restart_block;
  2166. restart->fn = futex_wait_restart;
  2167. restart->futex.uaddr = uaddr;
  2168. restart->futex.val = val;
  2169. restart->futex.time = abs_time->tv64;
  2170. restart->futex.bitset = bitset;
  2171. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2172. ret = -ERESTART_RESTARTBLOCK;
  2173. out:
  2174. if (to) {
  2175. hrtimer_cancel(&to->timer);
  2176. destroy_hrtimer_on_stack(&to->timer);
  2177. }
  2178. return ret;
  2179. }
  2180. static long futex_wait_restart(struct restart_block *restart)
  2181. {
  2182. u32 __user *uaddr = restart->futex.uaddr;
  2183. ktime_t t, *tp = NULL;
  2184. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2185. t.tv64 = restart->futex.time;
  2186. tp = &t;
  2187. }
  2188. restart->fn = do_no_restart_syscall;
  2189. return (long)futex_wait(uaddr, restart->futex.flags,
  2190. restart->futex.val, tp, restart->futex.bitset);
  2191. }
  2192. /*
  2193. * Userspace tried a 0 -> TID atomic transition of the futex value
  2194. * and failed. The kernel side here does the whole locking operation:
  2195. * if there are waiters then it will block as a consequence of relying
  2196. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2197. * a 0 value of the futex too.).
  2198. *
  2199. * Also serves as futex trylock_pi()'ing, and due semantics.
  2200. */
  2201. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2202. ktime_t *time, int trylock)
  2203. {
  2204. struct hrtimer_sleeper timeout, *to = NULL;
  2205. struct futex_hash_bucket *hb;
  2206. struct futex_q q = futex_q_init;
  2207. int res, ret;
  2208. if (refill_pi_state_cache())
  2209. return -ENOMEM;
  2210. if (time) {
  2211. to = &timeout;
  2212. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2213. HRTIMER_MODE_ABS);
  2214. hrtimer_init_sleeper(to, current);
  2215. hrtimer_set_expires(&to->timer, *time);
  2216. }
  2217. retry:
  2218. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2219. if (unlikely(ret != 0))
  2220. goto out;
  2221. retry_private:
  2222. hb = queue_lock(&q);
  2223. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2224. if (unlikely(ret)) {
  2225. /*
  2226. * Atomic work succeeded and we got the lock,
  2227. * or failed. Either way, we do _not_ block.
  2228. */
  2229. switch (ret) {
  2230. case 1:
  2231. /* We got the lock. */
  2232. ret = 0;
  2233. goto out_unlock_put_key;
  2234. case -EFAULT:
  2235. goto uaddr_faulted;
  2236. case -EAGAIN:
  2237. /*
  2238. * Two reasons for this:
  2239. * - Task is exiting and we just wait for the
  2240. * exit to complete.
  2241. * - The user space value changed.
  2242. */
  2243. queue_unlock(hb);
  2244. put_futex_key(&q.key);
  2245. cond_resched();
  2246. goto retry;
  2247. default:
  2248. goto out_unlock_put_key;
  2249. }
  2250. }
  2251. /*
  2252. * Only actually queue now that the atomic ops are done:
  2253. */
  2254. queue_me(&q, hb);
  2255. WARN_ON(!q.pi_state);
  2256. /*
  2257. * Block on the PI mutex:
  2258. */
  2259. if (!trylock) {
  2260. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2261. } else {
  2262. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2263. /* Fixup the trylock return value: */
  2264. ret = ret ? 0 : -EWOULDBLOCK;
  2265. }
  2266. spin_lock(q.lock_ptr);
  2267. /*
  2268. * Fixup the pi_state owner and possibly acquire the lock if we
  2269. * haven't already.
  2270. */
  2271. res = fixup_owner(uaddr, &q, !ret);
  2272. /*
  2273. * If fixup_owner() returned an error, proprogate that. If it acquired
  2274. * the lock, clear our -ETIMEDOUT or -EINTR.
  2275. */
  2276. if (res)
  2277. ret = (res < 0) ? res : 0;
  2278. /*
  2279. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2280. * it and return the fault to userspace.
  2281. */
  2282. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2283. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2284. /* Unqueue and drop the lock */
  2285. unqueue_me_pi(&q);
  2286. goto out_put_key;
  2287. out_unlock_put_key:
  2288. queue_unlock(hb);
  2289. out_put_key:
  2290. put_futex_key(&q.key);
  2291. out:
  2292. if (to)
  2293. destroy_hrtimer_on_stack(&to->timer);
  2294. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2295. uaddr_faulted:
  2296. queue_unlock(hb);
  2297. ret = fault_in_user_writeable(uaddr);
  2298. if (ret)
  2299. goto out_put_key;
  2300. if (!(flags & FLAGS_SHARED))
  2301. goto retry_private;
  2302. put_futex_key(&q.key);
  2303. goto retry;
  2304. }
  2305. /*
  2306. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2307. * This is the in-kernel slowpath: we look up the PI state (if any),
  2308. * and do the rt-mutex unlock.
  2309. */
  2310. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2311. {
  2312. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2313. union futex_key key = FUTEX_KEY_INIT;
  2314. struct futex_hash_bucket *hb;
  2315. struct futex_q *match;
  2316. int ret;
  2317. retry:
  2318. if (get_user(uval, uaddr))
  2319. return -EFAULT;
  2320. /*
  2321. * We release only a lock we actually own:
  2322. */
  2323. if ((uval & FUTEX_TID_MASK) != vpid)
  2324. return -EPERM;
  2325. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2326. if (ret)
  2327. return ret;
  2328. hb = hash_futex(&key);
  2329. spin_lock(&hb->lock);
  2330. /*
  2331. * Check waiters first. We do not trust user space values at
  2332. * all and we at least want to know if user space fiddled
  2333. * with the futex value instead of blindly unlocking.
  2334. */
  2335. match = futex_top_waiter(hb, &key);
  2336. if (match) {
  2337. ret = wake_futex_pi(uaddr, uval, match, hb);
  2338. /*
  2339. * In case of success wake_futex_pi dropped the hash
  2340. * bucket lock.
  2341. */
  2342. if (!ret)
  2343. goto out_putkey;
  2344. /*
  2345. * The atomic access to the futex value generated a
  2346. * pagefault, so retry the user-access and the wakeup:
  2347. */
  2348. if (ret == -EFAULT)
  2349. goto pi_faulted;
  2350. /*
  2351. * A unconditional UNLOCK_PI op raced against a waiter
  2352. * setting the FUTEX_WAITERS bit. Try again.
  2353. */
  2354. if (ret == -EAGAIN) {
  2355. spin_unlock(&hb->lock);
  2356. put_futex_key(&key);
  2357. goto retry;
  2358. }
  2359. /*
  2360. * wake_futex_pi has detected invalid state. Tell user
  2361. * space.
  2362. */
  2363. goto out_unlock;
  2364. }
  2365. /*
  2366. * We have no kernel internal state, i.e. no waiters in the
  2367. * kernel. Waiters which are about to queue themselves are stuck
  2368. * on hb->lock. So we can safely ignore them. We do neither
  2369. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2370. * owner.
  2371. */
  2372. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2373. goto pi_faulted;
  2374. /*
  2375. * If uval has changed, let user space handle it.
  2376. */
  2377. ret = (curval == uval) ? 0 : -EAGAIN;
  2378. out_unlock:
  2379. spin_unlock(&hb->lock);
  2380. out_putkey:
  2381. put_futex_key(&key);
  2382. return ret;
  2383. pi_faulted:
  2384. spin_unlock(&hb->lock);
  2385. put_futex_key(&key);
  2386. ret = fault_in_user_writeable(uaddr);
  2387. if (!ret)
  2388. goto retry;
  2389. return ret;
  2390. }
  2391. /**
  2392. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2393. * @hb: the hash_bucket futex_q was original enqueued on
  2394. * @q: the futex_q woken while waiting to be requeued
  2395. * @key2: the futex_key of the requeue target futex
  2396. * @timeout: the timeout associated with the wait (NULL if none)
  2397. *
  2398. * Detect if the task was woken on the initial futex as opposed to the requeue
  2399. * target futex. If so, determine if it was a timeout or a signal that caused
  2400. * the wakeup and return the appropriate error code to the caller. Must be
  2401. * called with the hb lock held.
  2402. *
  2403. * Return:
  2404. * 0 = no early wakeup detected;
  2405. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2406. */
  2407. static inline
  2408. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2409. struct futex_q *q, union futex_key *key2,
  2410. struct hrtimer_sleeper *timeout)
  2411. {
  2412. int ret = 0;
  2413. /*
  2414. * With the hb lock held, we avoid races while we process the wakeup.
  2415. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2416. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2417. * It can't be requeued from uaddr2 to something else since we don't
  2418. * support a PI aware source futex for requeue.
  2419. */
  2420. if (!match_futex(&q->key, key2)) {
  2421. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2422. /*
  2423. * We were woken prior to requeue by a timeout or a signal.
  2424. * Unqueue the futex_q and determine which it was.
  2425. */
  2426. plist_del(&q->list, &hb->chain);
  2427. hb_waiters_dec(hb);
  2428. /* Handle spurious wakeups gracefully */
  2429. ret = -EWOULDBLOCK;
  2430. if (timeout && !timeout->task)
  2431. ret = -ETIMEDOUT;
  2432. else if (signal_pending(current))
  2433. ret = -ERESTARTNOINTR;
  2434. }
  2435. return ret;
  2436. }
  2437. /**
  2438. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2439. * @uaddr: the futex we initially wait on (non-pi)
  2440. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2441. * the same type, no requeueing from private to shared, etc.
  2442. * @val: the expected value of uaddr
  2443. * @abs_time: absolute timeout
  2444. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2445. * @uaddr2: the pi futex we will take prior to returning to user-space
  2446. *
  2447. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2448. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2449. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2450. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2451. * without one, the pi logic would not know which task to boost/deboost, if
  2452. * there was a need to.
  2453. *
  2454. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2455. * via the following--
  2456. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2457. * 2) wakeup on uaddr2 after a requeue
  2458. * 3) signal
  2459. * 4) timeout
  2460. *
  2461. * If 3, cleanup and return -ERESTARTNOINTR.
  2462. *
  2463. * If 2, we may then block on trying to take the rt_mutex and return via:
  2464. * 5) successful lock
  2465. * 6) signal
  2466. * 7) timeout
  2467. * 8) other lock acquisition failure
  2468. *
  2469. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2470. *
  2471. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2472. *
  2473. * Return:
  2474. * 0 - On success;
  2475. * <0 - On error
  2476. */
  2477. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2478. u32 val, ktime_t *abs_time, u32 bitset,
  2479. u32 __user *uaddr2)
  2480. {
  2481. struct hrtimer_sleeper timeout, *to = NULL;
  2482. struct rt_mutex_waiter rt_waiter;
  2483. struct rt_mutex *pi_mutex = NULL;
  2484. struct futex_hash_bucket *hb;
  2485. union futex_key key2 = FUTEX_KEY_INIT;
  2486. struct futex_q q = futex_q_init;
  2487. int res, ret;
  2488. if (uaddr == uaddr2)
  2489. return -EINVAL;
  2490. if (!bitset)
  2491. return -EINVAL;
  2492. if (abs_time) {
  2493. to = &timeout;
  2494. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2495. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2496. HRTIMER_MODE_ABS);
  2497. hrtimer_init_sleeper(to, current);
  2498. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2499. current->timer_slack_ns);
  2500. }
  2501. /*
  2502. * The waiter is allocated on our stack, manipulated by the requeue
  2503. * code while we sleep on uaddr.
  2504. */
  2505. debug_rt_mutex_init_waiter(&rt_waiter);
  2506. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2507. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2508. rt_waiter.task = NULL;
  2509. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2510. if (unlikely(ret != 0))
  2511. goto out;
  2512. q.bitset = bitset;
  2513. q.rt_waiter = &rt_waiter;
  2514. q.requeue_pi_key = &key2;
  2515. /*
  2516. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2517. * count.
  2518. */
  2519. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2520. if (ret)
  2521. goto out_key2;
  2522. /*
  2523. * The check above which compares uaddrs is not sufficient for
  2524. * shared futexes. We need to compare the keys:
  2525. */
  2526. if (match_futex(&q.key, &key2)) {
  2527. queue_unlock(hb);
  2528. ret = -EINVAL;
  2529. goto out_put_keys;
  2530. }
  2531. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2532. futex_wait_queue_me(hb, &q, to);
  2533. spin_lock(&hb->lock);
  2534. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2535. spin_unlock(&hb->lock);
  2536. if (ret)
  2537. goto out_put_keys;
  2538. /*
  2539. * In order for us to be here, we know our q.key == key2, and since
  2540. * we took the hb->lock above, we also know that futex_requeue() has
  2541. * completed and we no longer have to concern ourselves with a wakeup
  2542. * race with the atomic proxy lock acquisition by the requeue code. The
  2543. * futex_requeue dropped our key1 reference and incremented our key2
  2544. * reference count.
  2545. */
  2546. /* Check if the requeue code acquired the second futex for us. */
  2547. if (!q.rt_waiter) {
  2548. /*
  2549. * Got the lock. We might not be the anticipated owner if we
  2550. * did a lock-steal - fix up the PI-state in that case.
  2551. */
  2552. if (q.pi_state && (q.pi_state->owner != current)) {
  2553. spin_lock(q.lock_ptr);
  2554. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2555. /*
  2556. * Drop the reference to the pi state which
  2557. * the requeue_pi() code acquired for us.
  2558. */
  2559. put_pi_state(q.pi_state);
  2560. spin_unlock(q.lock_ptr);
  2561. }
  2562. } else {
  2563. /*
  2564. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2565. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2566. * the pi_state.
  2567. */
  2568. WARN_ON(!q.pi_state);
  2569. pi_mutex = &q.pi_state->pi_mutex;
  2570. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2571. debug_rt_mutex_free_waiter(&rt_waiter);
  2572. spin_lock(q.lock_ptr);
  2573. /*
  2574. * Fixup the pi_state owner and possibly acquire the lock if we
  2575. * haven't already.
  2576. */
  2577. res = fixup_owner(uaddr2, &q, !ret);
  2578. /*
  2579. * If fixup_owner() returned an error, proprogate that. If it
  2580. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2581. */
  2582. if (res)
  2583. ret = (res < 0) ? res : 0;
  2584. /* Unqueue and drop the lock. */
  2585. unqueue_me_pi(&q);
  2586. }
  2587. /*
  2588. * If fixup_pi_state_owner() faulted and was unable to handle the
  2589. * fault, unlock the rt_mutex and return the fault to userspace.
  2590. */
  2591. if (ret == -EFAULT) {
  2592. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2593. rt_mutex_unlock(pi_mutex);
  2594. } else if (ret == -EINTR) {
  2595. /*
  2596. * We've already been requeued, but cannot restart by calling
  2597. * futex_lock_pi() directly. We could restart this syscall, but
  2598. * it would detect that the user space "val" changed and return
  2599. * -EWOULDBLOCK. Save the overhead of the restart and return
  2600. * -EWOULDBLOCK directly.
  2601. */
  2602. ret = -EWOULDBLOCK;
  2603. }
  2604. out_put_keys:
  2605. put_futex_key(&q.key);
  2606. out_key2:
  2607. put_futex_key(&key2);
  2608. out:
  2609. if (to) {
  2610. hrtimer_cancel(&to->timer);
  2611. destroy_hrtimer_on_stack(&to->timer);
  2612. }
  2613. return ret;
  2614. }
  2615. /*
  2616. * Support for robust futexes: the kernel cleans up held futexes at
  2617. * thread exit time.
  2618. *
  2619. * Implementation: user-space maintains a per-thread list of locks it
  2620. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2621. * and marks all locks that are owned by this thread with the
  2622. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2623. * always manipulated with the lock held, so the list is private and
  2624. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2625. * field, to allow the kernel to clean up if the thread dies after
  2626. * acquiring the lock, but just before it could have added itself to
  2627. * the list. There can only be one such pending lock.
  2628. */
  2629. /**
  2630. * sys_set_robust_list() - Set the robust-futex list head of a task
  2631. * @head: pointer to the list-head
  2632. * @len: length of the list-head, as userspace expects
  2633. */
  2634. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2635. size_t, len)
  2636. {
  2637. if (!futex_cmpxchg_enabled)
  2638. return -ENOSYS;
  2639. /*
  2640. * The kernel knows only one size for now:
  2641. */
  2642. if (unlikely(len != sizeof(*head)))
  2643. return -EINVAL;
  2644. current->robust_list = head;
  2645. return 0;
  2646. }
  2647. /**
  2648. * sys_get_robust_list() - Get the robust-futex list head of a task
  2649. * @pid: pid of the process [zero for current task]
  2650. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2651. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2652. */
  2653. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2654. struct robust_list_head __user * __user *, head_ptr,
  2655. size_t __user *, len_ptr)
  2656. {
  2657. struct robust_list_head __user *head;
  2658. unsigned long ret;
  2659. struct task_struct *p;
  2660. if (!futex_cmpxchg_enabled)
  2661. return -ENOSYS;
  2662. rcu_read_lock();
  2663. ret = -ESRCH;
  2664. if (!pid)
  2665. p = current;
  2666. else {
  2667. p = find_task_by_vpid(pid);
  2668. if (!p)
  2669. goto err_unlock;
  2670. }
  2671. ret = -EPERM;
  2672. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2673. goto err_unlock;
  2674. head = p->robust_list;
  2675. rcu_read_unlock();
  2676. if (put_user(sizeof(*head), len_ptr))
  2677. return -EFAULT;
  2678. return put_user(head, head_ptr);
  2679. err_unlock:
  2680. rcu_read_unlock();
  2681. return ret;
  2682. }
  2683. /*
  2684. * Process a futex-list entry, check whether it's owned by the
  2685. * dying task, and do notification if so:
  2686. */
  2687. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2688. {
  2689. u32 uval, uninitialized_var(nval), mval;
  2690. retry:
  2691. if (get_user(uval, uaddr))
  2692. return -1;
  2693. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2694. /*
  2695. * Ok, this dying thread is truly holding a futex
  2696. * of interest. Set the OWNER_DIED bit atomically
  2697. * via cmpxchg, and if the value had FUTEX_WAITERS
  2698. * set, wake up a waiter (if any). (We have to do a
  2699. * futex_wake() even if OWNER_DIED is already set -
  2700. * to handle the rare but possible case of recursive
  2701. * thread-death.) The rest of the cleanup is done in
  2702. * userspace.
  2703. */
  2704. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2705. /*
  2706. * We are not holding a lock here, but we want to have
  2707. * the pagefault_disable/enable() protection because
  2708. * we want to handle the fault gracefully. If the
  2709. * access fails we try to fault in the futex with R/W
  2710. * verification via get_user_pages. get_user() above
  2711. * does not guarantee R/W access. If that fails we
  2712. * give up and leave the futex locked.
  2713. */
  2714. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2715. if (fault_in_user_writeable(uaddr))
  2716. return -1;
  2717. goto retry;
  2718. }
  2719. if (nval != uval)
  2720. goto retry;
  2721. /*
  2722. * Wake robust non-PI futexes here. The wakeup of
  2723. * PI futexes happens in exit_pi_state():
  2724. */
  2725. if (!pi && (uval & FUTEX_WAITERS))
  2726. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2727. }
  2728. return 0;
  2729. }
  2730. /*
  2731. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2732. */
  2733. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2734. struct robust_list __user * __user *head,
  2735. unsigned int *pi)
  2736. {
  2737. unsigned long uentry;
  2738. if (get_user(uentry, (unsigned long __user *)head))
  2739. return -EFAULT;
  2740. *entry = (void __user *)(uentry & ~1UL);
  2741. *pi = uentry & 1;
  2742. return 0;
  2743. }
  2744. /*
  2745. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2746. * and mark any locks found there dead, and notify any waiters.
  2747. *
  2748. * We silently return on any sign of list-walking problem.
  2749. */
  2750. void exit_robust_list(struct task_struct *curr)
  2751. {
  2752. struct robust_list_head __user *head = curr->robust_list;
  2753. struct robust_list __user *entry, *next_entry, *pending;
  2754. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2755. unsigned int uninitialized_var(next_pi);
  2756. unsigned long futex_offset;
  2757. int rc;
  2758. if (!futex_cmpxchg_enabled)
  2759. return;
  2760. /*
  2761. * Fetch the list head (which was registered earlier, via
  2762. * sys_set_robust_list()):
  2763. */
  2764. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2765. return;
  2766. /*
  2767. * Fetch the relative futex offset:
  2768. */
  2769. if (get_user(futex_offset, &head->futex_offset))
  2770. return;
  2771. /*
  2772. * Fetch any possibly pending lock-add first, and handle it
  2773. * if it exists:
  2774. */
  2775. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2776. return;
  2777. next_entry = NULL; /* avoid warning with gcc */
  2778. while (entry != &head->list) {
  2779. /*
  2780. * Fetch the next entry in the list before calling
  2781. * handle_futex_death:
  2782. */
  2783. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2784. /*
  2785. * A pending lock might already be on the list, so
  2786. * don't process it twice:
  2787. */
  2788. if (entry != pending)
  2789. if (handle_futex_death((void __user *)entry + futex_offset,
  2790. curr, pi))
  2791. return;
  2792. if (rc)
  2793. return;
  2794. entry = next_entry;
  2795. pi = next_pi;
  2796. /*
  2797. * Avoid excessively long or circular lists:
  2798. */
  2799. if (!--limit)
  2800. break;
  2801. cond_resched();
  2802. }
  2803. if (pending)
  2804. handle_futex_death((void __user *)pending + futex_offset,
  2805. curr, pip);
  2806. }
  2807. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2808. u32 __user *uaddr2, u32 val2, u32 val3)
  2809. {
  2810. int cmd = op & FUTEX_CMD_MASK;
  2811. unsigned int flags = 0;
  2812. if (!(op & FUTEX_PRIVATE_FLAG))
  2813. flags |= FLAGS_SHARED;
  2814. if (op & FUTEX_CLOCK_REALTIME) {
  2815. flags |= FLAGS_CLOCKRT;
  2816. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  2817. cmd != FUTEX_WAIT_REQUEUE_PI)
  2818. return -ENOSYS;
  2819. }
  2820. switch (cmd) {
  2821. case FUTEX_LOCK_PI:
  2822. case FUTEX_UNLOCK_PI:
  2823. case FUTEX_TRYLOCK_PI:
  2824. case FUTEX_WAIT_REQUEUE_PI:
  2825. case FUTEX_CMP_REQUEUE_PI:
  2826. if (!futex_cmpxchg_enabled)
  2827. return -ENOSYS;
  2828. }
  2829. switch (cmd) {
  2830. case FUTEX_WAIT:
  2831. val3 = FUTEX_BITSET_MATCH_ANY;
  2832. case FUTEX_WAIT_BITSET:
  2833. return futex_wait(uaddr, flags, val, timeout, val3);
  2834. case FUTEX_WAKE:
  2835. val3 = FUTEX_BITSET_MATCH_ANY;
  2836. case FUTEX_WAKE_BITSET:
  2837. return futex_wake(uaddr, flags, val, val3);
  2838. case FUTEX_REQUEUE:
  2839. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2840. case FUTEX_CMP_REQUEUE:
  2841. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2842. case FUTEX_WAKE_OP:
  2843. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2844. case FUTEX_LOCK_PI:
  2845. return futex_lock_pi(uaddr, flags, timeout, 0);
  2846. case FUTEX_UNLOCK_PI:
  2847. return futex_unlock_pi(uaddr, flags);
  2848. case FUTEX_TRYLOCK_PI:
  2849. return futex_lock_pi(uaddr, flags, NULL, 1);
  2850. case FUTEX_WAIT_REQUEUE_PI:
  2851. val3 = FUTEX_BITSET_MATCH_ANY;
  2852. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2853. uaddr2);
  2854. case FUTEX_CMP_REQUEUE_PI:
  2855. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2856. }
  2857. return -ENOSYS;
  2858. }
  2859. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2860. struct timespec __user *, utime, u32 __user *, uaddr2,
  2861. u32, val3)
  2862. {
  2863. struct timespec ts;
  2864. ktime_t t, *tp = NULL;
  2865. u32 val2 = 0;
  2866. int cmd = op & FUTEX_CMD_MASK;
  2867. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2868. cmd == FUTEX_WAIT_BITSET ||
  2869. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2870. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  2871. return -EFAULT;
  2872. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2873. return -EFAULT;
  2874. if (!timespec_valid(&ts))
  2875. return -EINVAL;
  2876. t = timespec_to_ktime(ts);
  2877. if (cmd == FUTEX_WAIT)
  2878. t = ktime_add_safe(ktime_get(), t);
  2879. tp = &t;
  2880. }
  2881. /*
  2882. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2883. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2884. */
  2885. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2886. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2887. val2 = (u32) (unsigned long) utime;
  2888. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2889. }
  2890. static void __init futex_detect_cmpxchg(void)
  2891. {
  2892. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2893. u32 curval;
  2894. /*
  2895. * This will fail and we want it. Some arch implementations do
  2896. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2897. * functionality. We want to know that before we call in any
  2898. * of the complex code paths. Also we want to prevent
  2899. * registration of robust lists in that case. NULL is
  2900. * guaranteed to fault and we get -EFAULT on functional
  2901. * implementation, the non-functional ones will return
  2902. * -ENOSYS.
  2903. */
  2904. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2905. futex_cmpxchg_enabled = 1;
  2906. #endif
  2907. }
  2908. static int __init futex_init(void)
  2909. {
  2910. unsigned int futex_shift;
  2911. unsigned long i;
  2912. #if CONFIG_BASE_SMALL
  2913. futex_hashsize = 16;
  2914. #else
  2915. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2916. #endif
  2917. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2918. futex_hashsize, 0,
  2919. futex_hashsize < 256 ? HASH_SMALL : 0,
  2920. &futex_shift, NULL,
  2921. futex_hashsize, futex_hashsize);
  2922. futex_hashsize = 1UL << futex_shift;
  2923. futex_detect_cmpxchg();
  2924. for (i = 0; i < futex_hashsize; i++) {
  2925. atomic_set(&futex_queues[i].waiters, 0);
  2926. plist_head_init(&futex_queues[i].chain);
  2927. spin_lock_init(&futex_queues[i].lock);
  2928. }
  2929. return 0;
  2930. }
  2931. __initcall(futex_init);