fork.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
  140. #ifdef CONFIG_VMAP_STACK
  141. /*
  142. * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
  143. * flush. Try to minimize the number of calls by caching stacks.
  144. */
  145. #define NR_CACHED_STACKS 2
  146. static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
  147. #endif
  148. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
  149. {
  150. #ifdef CONFIG_VMAP_STACK
  151. void *stack;
  152. int i;
  153. local_irq_disable();
  154. for (i = 0; i < NR_CACHED_STACKS; i++) {
  155. struct vm_struct *s = this_cpu_read(cached_stacks[i]);
  156. if (!s)
  157. continue;
  158. this_cpu_write(cached_stacks[i], NULL);
  159. tsk->stack_vm_area = s;
  160. local_irq_enable();
  161. return s->addr;
  162. }
  163. local_irq_enable();
  164. stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
  165. VMALLOC_START, VMALLOC_END,
  166. THREADINFO_GFP | __GFP_HIGHMEM,
  167. PAGE_KERNEL,
  168. 0, node, __builtin_return_address(0));
  169. /*
  170. * We can't call find_vm_area() in interrupt context, and
  171. * free_thread_stack() can be called in interrupt context,
  172. * so cache the vm_struct.
  173. */
  174. if (stack)
  175. tsk->stack_vm_area = find_vm_area(stack);
  176. return stack;
  177. #else
  178. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  179. THREAD_SIZE_ORDER);
  180. return page ? page_address(page) : NULL;
  181. #endif
  182. }
  183. static inline void free_thread_stack(struct task_struct *tsk)
  184. {
  185. #ifdef CONFIG_VMAP_STACK
  186. if (task_stack_vm_area(tsk)) {
  187. unsigned long flags;
  188. int i;
  189. local_irq_save(flags);
  190. for (i = 0; i < NR_CACHED_STACKS; i++) {
  191. if (this_cpu_read(cached_stacks[i]))
  192. continue;
  193. this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
  194. local_irq_restore(flags);
  195. return;
  196. }
  197. local_irq_restore(flags);
  198. vfree(tsk->stack);
  199. return;
  200. }
  201. #endif
  202. __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
  203. }
  204. # else
  205. static struct kmem_cache *thread_stack_cache;
  206. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  207. int node)
  208. {
  209. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  210. }
  211. static void free_thread_stack(struct task_struct *tsk)
  212. {
  213. kmem_cache_free(thread_stack_cache, tsk->stack);
  214. }
  215. void thread_stack_cache_init(void)
  216. {
  217. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  218. THREAD_SIZE, 0, NULL);
  219. BUG_ON(thread_stack_cache == NULL);
  220. }
  221. # endif
  222. #endif
  223. /* SLAB cache for signal_struct structures (tsk->signal) */
  224. static struct kmem_cache *signal_cachep;
  225. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  226. struct kmem_cache *sighand_cachep;
  227. /* SLAB cache for files_struct structures (tsk->files) */
  228. struct kmem_cache *files_cachep;
  229. /* SLAB cache for fs_struct structures (tsk->fs) */
  230. struct kmem_cache *fs_cachep;
  231. /* SLAB cache for vm_area_struct structures */
  232. struct kmem_cache *vm_area_cachep;
  233. /* SLAB cache for mm_struct structures (tsk->mm) */
  234. static struct kmem_cache *mm_cachep;
  235. static void account_kernel_stack(struct task_struct *tsk, int account)
  236. {
  237. void *stack = task_stack_page(tsk);
  238. struct vm_struct *vm = task_stack_vm_area(tsk);
  239. BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
  240. if (vm) {
  241. int i;
  242. BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
  243. for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
  244. mod_zone_page_state(page_zone(vm->pages[i]),
  245. NR_KERNEL_STACK_KB,
  246. PAGE_SIZE / 1024 * account);
  247. }
  248. /* All stack pages belong to the same memcg. */
  249. memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
  250. account * (THREAD_SIZE / 1024));
  251. } else {
  252. /*
  253. * All stack pages are in the same zone and belong to the
  254. * same memcg.
  255. */
  256. struct page *first_page = virt_to_page(stack);
  257. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  258. THREAD_SIZE / 1024 * account);
  259. memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
  260. account * (THREAD_SIZE / 1024));
  261. }
  262. }
  263. static void release_task_stack(struct task_struct *tsk)
  264. {
  265. account_kernel_stack(tsk, -1);
  266. arch_release_thread_stack(tsk->stack);
  267. free_thread_stack(tsk);
  268. tsk->stack = NULL;
  269. #ifdef CONFIG_VMAP_STACK
  270. tsk->stack_vm_area = NULL;
  271. #endif
  272. }
  273. #ifdef CONFIG_THREAD_INFO_IN_TASK
  274. void put_task_stack(struct task_struct *tsk)
  275. {
  276. if (atomic_dec_and_test(&tsk->stack_refcount))
  277. release_task_stack(tsk);
  278. }
  279. #endif
  280. void free_task(struct task_struct *tsk)
  281. {
  282. #ifndef CONFIG_THREAD_INFO_IN_TASK
  283. /*
  284. * The task is finally done with both the stack and thread_info,
  285. * so free both.
  286. */
  287. release_task_stack(tsk);
  288. #else
  289. /*
  290. * If the task had a separate stack allocation, it should be gone
  291. * by now.
  292. */
  293. WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
  294. #endif
  295. rt_mutex_debug_task_free(tsk);
  296. ftrace_graph_exit_task(tsk);
  297. put_seccomp_filter(tsk);
  298. arch_release_task_struct(tsk);
  299. free_task_struct(tsk);
  300. }
  301. EXPORT_SYMBOL(free_task);
  302. static inline void free_signal_struct(struct signal_struct *sig)
  303. {
  304. taskstats_tgid_free(sig);
  305. sched_autogroup_exit(sig);
  306. /*
  307. * __mmdrop is not safe to call from softirq context on x86 due to
  308. * pgd_dtor so postpone it to the async context
  309. */
  310. if (sig->oom_mm)
  311. mmdrop_async(sig->oom_mm);
  312. kmem_cache_free(signal_cachep, sig);
  313. }
  314. static inline void put_signal_struct(struct signal_struct *sig)
  315. {
  316. if (atomic_dec_and_test(&sig->sigcnt))
  317. free_signal_struct(sig);
  318. }
  319. void __put_task_struct(struct task_struct *tsk)
  320. {
  321. WARN_ON(!tsk->exit_state);
  322. WARN_ON(atomic_read(&tsk->usage));
  323. WARN_ON(tsk == current);
  324. cgroup_free(tsk);
  325. task_numa_free(tsk);
  326. security_task_free(tsk);
  327. exit_creds(tsk);
  328. delayacct_tsk_free(tsk);
  329. put_signal_struct(tsk->signal);
  330. if (!profile_handoff_task(tsk))
  331. free_task(tsk);
  332. }
  333. EXPORT_SYMBOL_GPL(__put_task_struct);
  334. void __init __weak arch_task_cache_init(void) { }
  335. /*
  336. * set_max_threads
  337. */
  338. static void set_max_threads(unsigned int max_threads_suggested)
  339. {
  340. u64 threads;
  341. /*
  342. * The number of threads shall be limited such that the thread
  343. * structures may only consume a small part of the available memory.
  344. */
  345. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  346. threads = MAX_THREADS;
  347. else
  348. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  349. (u64) THREAD_SIZE * 8UL);
  350. if (threads > max_threads_suggested)
  351. threads = max_threads_suggested;
  352. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  353. }
  354. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  355. /* Initialized by the architecture: */
  356. int arch_task_struct_size __read_mostly;
  357. #endif
  358. void __init fork_init(void)
  359. {
  360. int i;
  361. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  362. #ifndef ARCH_MIN_TASKALIGN
  363. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  364. #endif
  365. /* create a slab on which task_structs can be allocated */
  366. task_struct_cachep = kmem_cache_create("task_struct",
  367. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  368. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  369. #endif
  370. /* do the arch specific task caches init */
  371. arch_task_cache_init();
  372. set_max_threads(MAX_THREADS);
  373. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  374. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  375. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  376. init_task.signal->rlim[RLIMIT_NPROC];
  377. for (i = 0; i < UCOUNT_COUNTS; i++) {
  378. init_user_ns.ucount_max[i] = max_threads/2;
  379. }
  380. }
  381. int __weak arch_dup_task_struct(struct task_struct *dst,
  382. struct task_struct *src)
  383. {
  384. *dst = *src;
  385. return 0;
  386. }
  387. void set_task_stack_end_magic(struct task_struct *tsk)
  388. {
  389. unsigned long *stackend;
  390. stackend = end_of_stack(tsk);
  391. *stackend = STACK_END_MAGIC; /* for overflow detection */
  392. }
  393. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  394. {
  395. struct task_struct *tsk;
  396. unsigned long *stack;
  397. struct vm_struct *stack_vm_area;
  398. int err;
  399. if (node == NUMA_NO_NODE)
  400. node = tsk_fork_get_node(orig);
  401. tsk = alloc_task_struct_node(node);
  402. if (!tsk)
  403. return NULL;
  404. stack = alloc_thread_stack_node(tsk, node);
  405. if (!stack)
  406. goto free_tsk;
  407. stack_vm_area = task_stack_vm_area(tsk);
  408. err = arch_dup_task_struct(tsk, orig);
  409. /*
  410. * arch_dup_task_struct() clobbers the stack-related fields. Make
  411. * sure they're properly initialized before using any stack-related
  412. * functions again.
  413. */
  414. tsk->stack = stack;
  415. #ifdef CONFIG_VMAP_STACK
  416. tsk->stack_vm_area = stack_vm_area;
  417. #endif
  418. #ifdef CONFIG_THREAD_INFO_IN_TASK
  419. atomic_set(&tsk->stack_refcount, 1);
  420. #endif
  421. if (err)
  422. goto free_stack;
  423. #ifdef CONFIG_SECCOMP
  424. /*
  425. * We must handle setting up seccomp filters once we're under
  426. * the sighand lock in case orig has changed between now and
  427. * then. Until then, filter must be NULL to avoid messing up
  428. * the usage counts on the error path calling free_task.
  429. */
  430. tsk->seccomp.filter = NULL;
  431. #endif
  432. setup_thread_stack(tsk, orig);
  433. clear_user_return_notifier(tsk);
  434. clear_tsk_need_resched(tsk);
  435. set_task_stack_end_magic(tsk);
  436. #ifdef CONFIG_CC_STACKPROTECTOR
  437. tsk->stack_canary = get_random_int();
  438. #endif
  439. /*
  440. * One for us, one for whoever does the "release_task()" (usually
  441. * parent)
  442. */
  443. atomic_set(&tsk->usage, 2);
  444. #ifdef CONFIG_BLK_DEV_IO_TRACE
  445. tsk->btrace_seq = 0;
  446. #endif
  447. tsk->splice_pipe = NULL;
  448. tsk->task_frag.page = NULL;
  449. tsk->wake_q.next = NULL;
  450. account_kernel_stack(tsk, 1);
  451. kcov_task_init(tsk);
  452. return tsk;
  453. free_stack:
  454. free_thread_stack(tsk);
  455. free_tsk:
  456. free_task_struct(tsk);
  457. return NULL;
  458. }
  459. #ifdef CONFIG_MMU
  460. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  461. {
  462. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  463. struct rb_node **rb_link, *rb_parent;
  464. int retval;
  465. unsigned long charge;
  466. uprobe_start_dup_mmap();
  467. if (down_write_killable(&oldmm->mmap_sem)) {
  468. retval = -EINTR;
  469. goto fail_uprobe_end;
  470. }
  471. flush_cache_dup_mm(oldmm);
  472. uprobe_dup_mmap(oldmm, mm);
  473. /*
  474. * Not linked in yet - no deadlock potential:
  475. */
  476. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  477. /* No ordering required: file already has been exposed. */
  478. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  479. mm->total_vm = oldmm->total_vm;
  480. mm->data_vm = oldmm->data_vm;
  481. mm->exec_vm = oldmm->exec_vm;
  482. mm->stack_vm = oldmm->stack_vm;
  483. rb_link = &mm->mm_rb.rb_node;
  484. rb_parent = NULL;
  485. pprev = &mm->mmap;
  486. retval = ksm_fork(mm, oldmm);
  487. if (retval)
  488. goto out;
  489. retval = khugepaged_fork(mm, oldmm);
  490. if (retval)
  491. goto out;
  492. prev = NULL;
  493. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  494. struct file *file;
  495. if (mpnt->vm_flags & VM_DONTCOPY) {
  496. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  497. continue;
  498. }
  499. charge = 0;
  500. if (mpnt->vm_flags & VM_ACCOUNT) {
  501. unsigned long len = vma_pages(mpnt);
  502. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  503. goto fail_nomem;
  504. charge = len;
  505. }
  506. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  507. if (!tmp)
  508. goto fail_nomem;
  509. *tmp = *mpnt;
  510. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  511. retval = vma_dup_policy(mpnt, tmp);
  512. if (retval)
  513. goto fail_nomem_policy;
  514. tmp->vm_mm = mm;
  515. if (anon_vma_fork(tmp, mpnt))
  516. goto fail_nomem_anon_vma_fork;
  517. tmp->vm_flags &=
  518. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  519. tmp->vm_next = tmp->vm_prev = NULL;
  520. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  521. file = tmp->vm_file;
  522. if (file) {
  523. struct inode *inode = file_inode(file);
  524. struct address_space *mapping = file->f_mapping;
  525. get_file(file);
  526. if (tmp->vm_flags & VM_DENYWRITE)
  527. atomic_dec(&inode->i_writecount);
  528. i_mmap_lock_write(mapping);
  529. if (tmp->vm_flags & VM_SHARED)
  530. atomic_inc(&mapping->i_mmap_writable);
  531. flush_dcache_mmap_lock(mapping);
  532. /* insert tmp into the share list, just after mpnt */
  533. vma_interval_tree_insert_after(tmp, mpnt,
  534. &mapping->i_mmap);
  535. flush_dcache_mmap_unlock(mapping);
  536. i_mmap_unlock_write(mapping);
  537. }
  538. /*
  539. * Clear hugetlb-related page reserves for children. This only
  540. * affects MAP_PRIVATE mappings. Faults generated by the child
  541. * are not guaranteed to succeed, even if read-only
  542. */
  543. if (is_vm_hugetlb_page(tmp))
  544. reset_vma_resv_huge_pages(tmp);
  545. /*
  546. * Link in the new vma and copy the page table entries.
  547. */
  548. *pprev = tmp;
  549. pprev = &tmp->vm_next;
  550. tmp->vm_prev = prev;
  551. prev = tmp;
  552. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  553. rb_link = &tmp->vm_rb.rb_right;
  554. rb_parent = &tmp->vm_rb;
  555. mm->map_count++;
  556. retval = copy_page_range(mm, oldmm, mpnt);
  557. if (tmp->vm_ops && tmp->vm_ops->open)
  558. tmp->vm_ops->open(tmp);
  559. if (retval)
  560. goto out;
  561. }
  562. /* a new mm has just been created */
  563. arch_dup_mmap(oldmm, mm);
  564. retval = 0;
  565. out:
  566. up_write(&mm->mmap_sem);
  567. flush_tlb_mm(oldmm);
  568. up_write(&oldmm->mmap_sem);
  569. fail_uprobe_end:
  570. uprobe_end_dup_mmap();
  571. return retval;
  572. fail_nomem_anon_vma_fork:
  573. mpol_put(vma_policy(tmp));
  574. fail_nomem_policy:
  575. kmem_cache_free(vm_area_cachep, tmp);
  576. fail_nomem:
  577. retval = -ENOMEM;
  578. vm_unacct_memory(charge);
  579. goto out;
  580. }
  581. static inline int mm_alloc_pgd(struct mm_struct *mm)
  582. {
  583. mm->pgd = pgd_alloc(mm);
  584. if (unlikely(!mm->pgd))
  585. return -ENOMEM;
  586. return 0;
  587. }
  588. static inline void mm_free_pgd(struct mm_struct *mm)
  589. {
  590. pgd_free(mm, mm->pgd);
  591. }
  592. #else
  593. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  594. {
  595. down_write(&oldmm->mmap_sem);
  596. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  597. up_write(&oldmm->mmap_sem);
  598. return 0;
  599. }
  600. #define mm_alloc_pgd(mm) (0)
  601. #define mm_free_pgd(mm)
  602. #endif /* CONFIG_MMU */
  603. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  604. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  605. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  606. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  607. static int __init coredump_filter_setup(char *s)
  608. {
  609. default_dump_filter =
  610. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  611. MMF_DUMP_FILTER_MASK;
  612. return 1;
  613. }
  614. __setup("coredump_filter=", coredump_filter_setup);
  615. #include <linux/init_task.h>
  616. static void mm_init_aio(struct mm_struct *mm)
  617. {
  618. #ifdef CONFIG_AIO
  619. spin_lock_init(&mm->ioctx_lock);
  620. mm->ioctx_table = NULL;
  621. #endif
  622. }
  623. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  624. {
  625. #ifdef CONFIG_MEMCG
  626. mm->owner = p;
  627. #endif
  628. }
  629. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  630. {
  631. mm->mmap = NULL;
  632. mm->mm_rb = RB_ROOT;
  633. mm->vmacache_seqnum = 0;
  634. atomic_set(&mm->mm_users, 1);
  635. atomic_set(&mm->mm_count, 1);
  636. init_rwsem(&mm->mmap_sem);
  637. INIT_LIST_HEAD(&mm->mmlist);
  638. mm->core_state = NULL;
  639. atomic_long_set(&mm->nr_ptes, 0);
  640. mm_nr_pmds_init(mm);
  641. mm->map_count = 0;
  642. mm->locked_vm = 0;
  643. mm->pinned_vm = 0;
  644. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  645. spin_lock_init(&mm->page_table_lock);
  646. mm_init_cpumask(mm);
  647. mm_init_aio(mm);
  648. mm_init_owner(mm, p);
  649. mmu_notifier_mm_init(mm);
  650. clear_tlb_flush_pending(mm);
  651. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  652. mm->pmd_huge_pte = NULL;
  653. #endif
  654. if (current->mm) {
  655. mm->flags = current->mm->flags & MMF_INIT_MASK;
  656. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  657. } else {
  658. mm->flags = default_dump_filter;
  659. mm->def_flags = 0;
  660. }
  661. if (mm_alloc_pgd(mm))
  662. goto fail_nopgd;
  663. if (init_new_context(p, mm))
  664. goto fail_nocontext;
  665. return mm;
  666. fail_nocontext:
  667. mm_free_pgd(mm);
  668. fail_nopgd:
  669. free_mm(mm);
  670. return NULL;
  671. }
  672. static void check_mm(struct mm_struct *mm)
  673. {
  674. int i;
  675. for (i = 0; i < NR_MM_COUNTERS; i++) {
  676. long x = atomic_long_read(&mm->rss_stat.count[i]);
  677. if (unlikely(x))
  678. printk(KERN_ALERT "BUG: Bad rss-counter state "
  679. "mm:%p idx:%d val:%ld\n", mm, i, x);
  680. }
  681. if (atomic_long_read(&mm->nr_ptes))
  682. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  683. atomic_long_read(&mm->nr_ptes));
  684. if (mm_nr_pmds(mm))
  685. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  686. mm_nr_pmds(mm));
  687. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  688. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  689. #endif
  690. }
  691. /*
  692. * Allocate and initialize an mm_struct.
  693. */
  694. struct mm_struct *mm_alloc(void)
  695. {
  696. struct mm_struct *mm;
  697. mm = allocate_mm();
  698. if (!mm)
  699. return NULL;
  700. memset(mm, 0, sizeof(*mm));
  701. return mm_init(mm, current);
  702. }
  703. /*
  704. * Called when the last reference to the mm
  705. * is dropped: either by a lazy thread or by
  706. * mmput. Free the page directory and the mm.
  707. */
  708. void __mmdrop(struct mm_struct *mm)
  709. {
  710. BUG_ON(mm == &init_mm);
  711. mm_free_pgd(mm);
  712. destroy_context(mm);
  713. mmu_notifier_mm_destroy(mm);
  714. check_mm(mm);
  715. free_mm(mm);
  716. }
  717. EXPORT_SYMBOL_GPL(__mmdrop);
  718. static inline void __mmput(struct mm_struct *mm)
  719. {
  720. VM_BUG_ON(atomic_read(&mm->mm_users));
  721. uprobe_clear_state(mm);
  722. exit_aio(mm);
  723. ksm_exit(mm);
  724. khugepaged_exit(mm); /* must run before exit_mmap */
  725. exit_mmap(mm);
  726. mm_put_huge_zero_page(mm);
  727. set_mm_exe_file(mm, NULL);
  728. if (!list_empty(&mm->mmlist)) {
  729. spin_lock(&mmlist_lock);
  730. list_del(&mm->mmlist);
  731. spin_unlock(&mmlist_lock);
  732. }
  733. if (mm->binfmt)
  734. module_put(mm->binfmt->module);
  735. set_bit(MMF_OOM_SKIP, &mm->flags);
  736. mmdrop(mm);
  737. }
  738. /*
  739. * Decrement the use count and release all resources for an mm.
  740. */
  741. void mmput(struct mm_struct *mm)
  742. {
  743. might_sleep();
  744. if (atomic_dec_and_test(&mm->mm_users))
  745. __mmput(mm);
  746. }
  747. EXPORT_SYMBOL_GPL(mmput);
  748. #ifdef CONFIG_MMU
  749. static void mmput_async_fn(struct work_struct *work)
  750. {
  751. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  752. __mmput(mm);
  753. }
  754. void mmput_async(struct mm_struct *mm)
  755. {
  756. if (atomic_dec_and_test(&mm->mm_users)) {
  757. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  758. schedule_work(&mm->async_put_work);
  759. }
  760. }
  761. #endif
  762. /**
  763. * set_mm_exe_file - change a reference to the mm's executable file
  764. *
  765. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  766. *
  767. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  768. * invocations: in mmput() nobody alive left, in execve task is single
  769. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  770. * mm->exe_file, but does so without using set_mm_exe_file() in order
  771. * to do avoid the need for any locks.
  772. */
  773. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  774. {
  775. struct file *old_exe_file;
  776. /*
  777. * It is safe to dereference the exe_file without RCU as
  778. * this function is only called if nobody else can access
  779. * this mm -- see comment above for justification.
  780. */
  781. old_exe_file = rcu_dereference_raw(mm->exe_file);
  782. if (new_exe_file)
  783. get_file(new_exe_file);
  784. rcu_assign_pointer(mm->exe_file, new_exe_file);
  785. if (old_exe_file)
  786. fput(old_exe_file);
  787. }
  788. /**
  789. * get_mm_exe_file - acquire a reference to the mm's executable file
  790. *
  791. * Returns %NULL if mm has no associated executable file.
  792. * User must release file via fput().
  793. */
  794. struct file *get_mm_exe_file(struct mm_struct *mm)
  795. {
  796. struct file *exe_file;
  797. rcu_read_lock();
  798. exe_file = rcu_dereference(mm->exe_file);
  799. if (exe_file && !get_file_rcu(exe_file))
  800. exe_file = NULL;
  801. rcu_read_unlock();
  802. return exe_file;
  803. }
  804. EXPORT_SYMBOL(get_mm_exe_file);
  805. /**
  806. * get_task_exe_file - acquire a reference to the task's executable file
  807. *
  808. * Returns %NULL if task's mm (if any) has no associated executable file or
  809. * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
  810. * User must release file via fput().
  811. */
  812. struct file *get_task_exe_file(struct task_struct *task)
  813. {
  814. struct file *exe_file = NULL;
  815. struct mm_struct *mm;
  816. task_lock(task);
  817. mm = task->mm;
  818. if (mm) {
  819. if (!(task->flags & PF_KTHREAD))
  820. exe_file = get_mm_exe_file(mm);
  821. }
  822. task_unlock(task);
  823. return exe_file;
  824. }
  825. EXPORT_SYMBOL(get_task_exe_file);
  826. /**
  827. * get_task_mm - acquire a reference to the task's mm
  828. *
  829. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  830. * this kernel workthread has transiently adopted a user mm with use_mm,
  831. * to do its AIO) is not set and if so returns a reference to it, after
  832. * bumping up the use count. User must release the mm via mmput()
  833. * after use. Typically used by /proc and ptrace.
  834. */
  835. struct mm_struct *get_task_mm(struct task_struct *task)
  836. {
  837. struct mm_struct *mm;
  838. task_lock(task);
  839. mm = task->mm;
  840. if (mm) {
  841. if (task->flags & PF_KTHREAD)
  842. mm = NULL;
  843. else
  844. atomic_inc(&mm->mm_users);
  845. }
  846. task_unlock(task);
  847. return mm;
  848. }
  849. EXPORT_SYMBOL_GPL(get_task_mm);
  850. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  851. {
  852. struct mm_struct *mm;
  853. int err;
  854. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  855. if (err)
  856. return ERR_PTR(err);
  857. mm = get_task_mm(task);
  858. if (mm && mm != current->mm &&
  859. !ptrace_may_access(task, mode)) {
  860. mmput(mm);
  861. mm = ERR_PTR(-EACCES);
  862. }
  863. mutex_unlock(&task->signal->cred_guard_mutex);
  864. return mm;
  865. }
  866. static void complete_vfork_done(struct task_struct *tsk)
  867. {
  868. struct completion *vfork;
  869. task_lock(tsk);
  870. vfork = tsk->vfork_done;
  871. if (likely(vfork)) {
  872. tsk->vfork_done = NULL;
  873. complete(vfork);
  874. }
  875. task_unlock(tsk);
  876. }
  877. static int wait_for_vfork_done(struct task_struct *child,
  878. struct completion *vfork)
  879. {
  880. int killed;
  881. freezer_do_not_count();
  882. killed = wait_for_completion_killable(vfork);
  883. freezer_count();
  884. if (killed) {
  885. task_lock(child);
  886. child->vfork_done = NULL;
  887. task_unlock(child);
  888. }
  889. put_task_struct(child);
  890. return killed;
  891. }
  892. /* Please note the differences between mmput and mm_release.
  893. * mmput is called whenever we stop holding onto a mm_struct,
  894. * error success whatever.
  895. *
  896. * mm_release is called after a mm_struct has been removed
  897. * from the current process.
  898. *
  899. * This difference is important for error handling, when we
  900. * only half set up a mm_struct for a new process and need to restore
  901. * the old one. Because we mmput the new mm_struct before
  902. * restoring the old one. . .
  903. * Eric Biederman 10 January 1998
  904. */
  905. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  906. {
  907. /* Get rid of any futexes when releasing the mm */
  908. #ifdef CONFIG_FUTEX
  909. if (unlikely(tsk->robust_list)) {
  910. exit_robust_list(tsk);
  911. tsk->robust_list = NULL;
  912. }
  913. #ifdef CONFIG_COMPAT
  914. if (unlikely(tsk->compat_robust_list)) {
  915. compat_exit_robust_list(tsk);
  916. tsk->compat_robust_list = NULL;
  917. }
  918. #endif
  919. if (unlikely(!list_empty(&tsk->pi_state_list)))
  920. exit_pi_state_list(tsk);
  921. #endif
  922. uprobe_free_utask(tsk);
  923. /* Get rid of any cached register state */
  924. deactivate_mm(tsk, mm);
  925. /*
  926. * Signal userspace if we're not exiting with a core dump
  927. * because we want to leave the value intact for debugging
  928. * purposes.
  929. */
  930. if (tsk->clear_child_tid) {
  931. if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
  932. atomic_read(&mm->mm_users) > 1) {
  933. /*
  934. * We don't check the error code - if userspace has
  935. * not set up a proper pointer then tough luck.
  936. */
  937. put_user(0, tsk->clear_child_tid);
  938. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  939. 1, NULL, NULL, 0);
  940. }
  941. tsk->clear_child_tid = NULL;
  942. }
  943. /*
  944. * All done, finally we can wake up parent and return this mm to him.
  945. * Also kthread_stop() uses this completion for synchronization.
  946. */
  947. if (tsk->vfork_done)
  948. complete_vfork_done(tsk);
  949. }
  950. /*
  951. * Allocate a new mm structure and copy contents from the
  952. * mm structure of the passed in task structure.
  953. */
  954. static struct mm_struct *dup_mm(struct task_struct *tsk)
  955. {
  956. struct mm_struct *mm, *oldmm = current->mm;
  957. int err;
  958. mm = allocate_mm();
  959. if (!mm)
  960. goto fail_nomem;
  961. memcpy(mm, oldmm, sizeof(*mm));
  962. if (!mm_init(mm, tsk))
  963. goto fail_nomem;
  964. err = dup_mmap(mm, oldmm);
  965. if (err)
  966. goto free_pt;
  967. mm->hiwater_rss = get_mm_rss(mm);
  968. mm->hiwater_vm = mm->total_vm;
  969. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  970. goto free_pt;
  971. return mm;
  972. free_pt:
  973. /* don't put binfmt in mmput, we haven't got module yet */
  974. mm->binfmt = NULL;
  975. mmput(mm);
  976. fail_nomem:
  977. return NULL;
  978. }
  979. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  980. {
  981. struct mm_struct *mm, *oldmm;
  982. int retval;
  983. tsk->min_flt = tsk->maj_flt = 0;
  984. tsk->nvcsw = tsk->nivcsw = 0;
  985. #ifdef CONFIG_DETECT_HUNG_TASK
  986. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  987. #endif
  988. tsk->mm = NULL;
  989. tsk->active_mm = NULL;
  990. /*
  991. * Are we cloning a kernel thread?
  992. *
  993. * We need to steal a active VM for that..
  994. */
  995. oldmm = current->mm;
  996. if (!oldmm)
  997. return 0;
  998. /* initialize the new vmacache entries */
  999. vmacache_flush(tsk);
  1000. if (clone_flags & CLONE_VM) {
  1001. atomic_inc(&oldmm->mm_users);
  1002. mm = oldmm;
  1003. goto good_mm;
  1004. }
  1005. retval = -ENOMEM;
  1006. mm = dup_mm(tsk);
  1007. if (!mm)
  1008. goto fail_nomem;
  1009. good_mm:
  1010. tsk->mm = mm;
  1011. tsk->active_mm = mm;
  1012. return 0;
  1013. fail_nomem:
  1014. return retval;
  1015. }
  1016. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  1017. {
  1018. struct fs_struct *fs = current->fs;
  1019. if (clone_flags & CLONE_FS) {
  1020. /* tsk->fs is already what we want */
  1021. spin_lock(&fs->lock);
  1022. if (fs->in_exec) {
  1023. spin_unlock(&fs->lock);
  1024. return -EAGAIN;
  1025. }
  1026. fs->users++;
  1027. spin_unlock(&fs->lock);
  1028. return 0;
  1029. }
  1030. tsk->fs = copy_fs_struct(fs);
  1031. if (!tsk->fs)
  1032. return -ENOMEM;
  1033. return 0;
  1034. }
  1035. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  1036. {
  1037. struct files_struct *oldf, *newf;
  1038. int error = 0;
  1039. /*
  1040. * A background process may not have any files ...
  1041. */
  1042. oldf = current->files;
  1043. if (!oldf)
  1044. goto out;
  1045. if (clone_flags & CLONE_FILES) {
  1046. atomic_inc(&oldf->count);
  1047. goto out;
  1048. }
  1049. newf = dup_fd(oldf, &error);
  1050. if (!newf)
  1051. goto out;
  1052. tsk->files = newf;
  1053. error = 0;
  1054. out:
  1055. return error;
  1056. }
  1057. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  1058. {
  1059. #ifdef CONFIG_BLOCK
  1060. struct io_context *ioc = current->io_context;
  1061. struct io_context *new_ioc;
  1062. if (!ioc)
  1063. return 0;
  1064. /*
  1065. * Share io context with parent, if CLONE_IO is set
  1066. */
  1067. if (clone_flags & CLONE_IO) {
  1068. ioc_task_link(ioc);
  1069. tsk->io_context = ioc;
  1070. } else if (ioprio_valid(ioc->ioprio)) {
  1071. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  1072. if (unlikely(!new_ioc))
  1073. return -ENOMEM;
  1074. new_ioc->ioprio = ioc->ioprio;
  1075. put_io_context(new_ioc);
  1076. }
  1077. #endif
  1078. return 0;
  1079. }
  1080. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  1081. {
  1082. struct sighand_struct *sig;
  1083. if (clone_flags & CLONE_SIGHAND) {
  1084. atomic_inc(&current->sighand->count);
  1085. return 0;
  1086. }
  1087. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  1088. rcu_assign_pointer(tsk->sighand, sig);
  1089. if (!sig)
  1090. return -ENOMEM;
  1091. atomic_set(&sig->count, 1);
  1092. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  1093. return 0;
  1094. }
  1095. void __cleanup_sighand(struct sighand_struct *sighand)
  1096. {
  1097. if (atomic_dec_and_test(&sighand->count)) {
  1098. signalfd_cleanup(sighand);
  1099. /*
  1100. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  1101. * without an RCU grace period, see __lock_task_sighand().
  1102. */
  1103. kmem_cache_free(sighand_cachep, sighand);
  1104. }
  1105. }
  1106. /*
  1107. * Initialize POSIX timer handling for a thread group.
  1108. */
  1109. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  1110. {
  1111. unsigned long cpu_limit;
  1112. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  1113. if (cpu_limit != RLIM_INFINITY) {
  1114. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  1115. sig->cputimer.running = true;
  1116. }
  1117. /* The timer lists. */
  1118. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  1119. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  1120. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  1121. }
  1122. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1123. {
  1124. struct signal_struct *sig;
  1125. if (clone_flags & CLONE_THREAD)
  1126. return 0;
  1127. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1128. tsk->signal = sig;
  1129. if (!sig)
  1130. return -ENOMEM;
  1131. sig->nr_threads = 1;
  1132. atomic_set(&sig->live, 1);
  1133. atomic_set(&sig->sigcnt, 1);
  1134. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1135. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1136. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1137. init_waitqueue_head(&sig->wait_chldexit);
  1138. sig->curr_target = tsk;
  1139. init_sigpending(&sig->shared_pending);
  1140. INIT_LIST_HEAD(&sig->posix_timers);
  1141. seqlock_init(&sig->stats_lock);
  1142. prev_cputime_init(&sig->prev_cputime);
  1143. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1144. sig->real_timer.function = it_real_fn;
  1145. task_lock(current->group_leader);
  1146. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1147. task_unlock(current->group_leader);
  1148. posix_cpu_timers_init_group(sig);
  1149. tty_audit_fork(sig);
  1150. sched_autogroup_fork(sig);
  1151. sig->oom_score_adj = current->signal->oom_score_adj;
  1152. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1153. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1154. current->signal->is_child_subreaper;
  1155. mutex_init(&sig->cred_guard_mutex);
  1156. return 0;
  1157. }
  1158. static void copy_seccomp(struct task_struct *p)
  1159. {
  1160. #ifdef CONFIG_SECCOMP
  1161. /*
  1162. * Must be called with sighand->lock held, which is common to
  1163. * all threads in the group. Holding cred_guard_mutex is not
  1164. * needed because this new task is not yet running and cannot
  1165. * be racing exec.
  1166. */
  1167. assert_spin_locked(&current->sighand->siglock);
  1168. /* Ref-count the new filter user, and assign it. */
  1169. get_seccomp_filter(current);
  1170. p->seccomp = current->seccomp;
  1171. /*
  1172. * Explicitly enable no_new_privs here in case it got set
  1173. * between the task_struct being duplicated and holding the
  1174. * sighand lock. The seccomp state and nnp must be in sync.
  1175. */
  1176. if (task_no_new_privs(current))
  1177. task_set_no_new_privs(p);
  1178. /*
  1179. * If the parent gained a seccomp mode after copying thread
  1180. * flags and between before we held the sighand lock, we have
  1181. * to manually enable the seccomp thread flag here.
  1182. */
  1183. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1184. set_tsk_thread_flag(p, TIF_SECCOMP);
  1185. #endif
  1186. }
  1187. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1188. {
  1189. current->clear_child_tid = tidptr;
  1190. return task_pid_vnr(current);
  1191. }
  1192. static void rt_mutex_init_task(struct task_struct *p)
  1193. {
  1194. raw_spin_lock_init(&p->pi_lock);
  1195. #ifdef CONFIG_RT_MUTEXES
  1196. p->pi_waiters = RB_ROOT;
  1197. p->pi_waiters_leftmost = NULL;
  1198. p->pi_blocked_on = NULL;
  1199. #endif
  1200. }
  1201. /*
  1202. * Initialize POSIX timer handling for a single task.
  1203. */
  1204. static void posix_cpu_timers_init(struct task_struct *tsk)
  1205. {
  1206. tsk->cputime_expires.prof_exp = 0;
  1207. tsk->cputime_expires.virt_exp = 0;
  1208. tsk->cputime_expires.sched_exp = 0;
  1209. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1210. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1211. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1212. }
  1213. static inline void
  1214. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1215. {
  1216. task->pids[type].pid = pid;
  1217. }
  1218. /*
  1219. * This creates a new process as a copy of the old one,
  1220. * but does not actually start it yet.
  1221. *
  1222. * It copies the registers, and all the appropriate
  1223. * parts of the process environment (as per the clone
  1224. * flags). The actual kick-off is left to the caller.
  1225. */
  1226. static struct task_struct *copy_process(unsigned long clone_flags,
  1227. unsigned long stack_start,
  1228. unsigned long stack_size,
  1229. int __user *child_tidptr,
  1230. struct pid *pid,
  1231. int trace,
  1232. unsigned long tls,
  1233. int node)
  1234. {
  1235. int retval;
  1236. struct task_struct *p;
  1237. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1238. return ERR_PTR(-EINVAL);
  1239. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1240. return ERR_PTR(-EINVAL);
  1241. /*
  1242. * Thread groups must share signals as well, and detached threads
  1243. * can only be started up within the thread group.
  1244. */
  1245. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1246. return ERR_PTR(-EINVAL);
  1247. /*
  1248. * Shared signal handlers imply shared VM. By way of the above,
  1249. * thread groups also imply shared VM. Blocking this case allows
  1250. * for various simplifications in other code.
  1251. */
  1252. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1253. return ERR_PTR(-EINVAL);
  1254. /*
  1255. * Siblings of global init remain as zombies on exit since they are
  1256. * not reaped by their parent (swapper). To solve this and to avoid
  1257. * multi-rooted process trees, prevent global and container-inits
  1258. * from creating siblings.
  1259. */
  1260. if ((clone_flags & CLONE_PARENT) &&
  1261. current->signal->flags & SIGNAL_UNKILLABLE)
  1262. return ERR_PTR(-EINVAL);
  1263. /*
  1264. * If the new process will be in a different pid or user namespace
  1265. * do not allow it to share a thread group with the forking task.
  1266. */
  1267. if (clone_flags & CLONE_THREAD) {
  1268. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1269. (task_active_pid_ns(current) !=
  1270. current->nsproxy->pid_ns_for_children))
  1271. return ERR_PTR(-EINVAL);
  1272. }
  1273. retval = security_task_create(clone_flags);
  1274. if (retval)
  1275. goto fork_out;
  1276. retval = -ENOMEM;
  1277. p = dup_task_struct(current, node);
  1278. if (!p)
  1279. goto fork_out;
  1280. ftrace_graph_init_task(p);
  1281. rt_mutex_init_task(p);
  1282. #ifdef CONFIG_PROVE_LOCKING
  1283. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1284. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1285. #endif
  1286. retval = -EAGAIN;
  1287. if (atomic_read(&p->real_cred->user->processes) >=
  1288. task_rlimit(p, RLIMIT_NPROC)) {
  1289. if (p->real_cred->user != INIT_USER &&
  1290. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1291. goto bad_fork_free;
  1292. }
  1293. current->flags &= ~PF_NPROC_EXCEEDED;
  1294. retval = copy_creds(p, clone_flags);
  1295. if (retval < 0)
  1296. goto bad_fork_free;
  1297. /*
  1298. * If multiple threads are within copy_process(), then this check
  1299. * triggers too late. This doesn't hurt, the check is only there
  1300. * to stop root fork bombs.
  1301. */
  1302. retval = -EAGAIN;
  1303. if (nr_threads >= max_threads)
  1304. goto bad_fork_cleanup_count;
  1305. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1306. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1307. p->flags |= PF_FORKNOEXEC;
  1308. INIT_LIST_HEAD(&p->children);
  1309. INIT_LIST_HEAD(&p->sibling);
  1310. rcu_copy_process(p);
  1311. p->vfork_done = NULL;
  1312. spin_lock_init(&p->alloc_lock);
  1313. init_sigpending(&p->pending);
  1314. p->utime = p->stime = p->gtime = 0;
  1315. p->utimescaled = p->stimescaled = 0;
  1316. prev_cputime_init(&p->prev_cputime);
  1317. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1318. seqcount_init(&p->vtime_seqcount);
  1319. p->vtime_snap = 0;
  1320. p->vtime_snap_whence = VTIME_INACTIVE;
  1321. #endif
  1322. #if defined(SPLIT_RSS_COUNTING)
  1323. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1324. #endif
  1325. p->default_timer_slack_ns = current->timer_slack_ns;
  1326. task_io_accounting_init(&p->ioac);
  1327. acct_clear_integrals(p);
  1328. posix_cpu_timers_init(p);
  1329. p->start_time = ktime_get_ns();
  1330. p->real_start_time = ktime_get_boot_ns();
  1331. p->io_context = NULL;
  1332. p->audit_context = NULL;
  1333. cgroup_fork(p);
  1334. #ifdef CONFIG_NUMA
  1335. p->mempolicy = mpol_dup(p->mempolicy);
  1336. if (IS_ERR(p->mempolicy)) {
  1337. retval = PTR_ERR(p->mempolicy);
  1338. p->mempolicy = NULL;
  1339. goto bad_fork_cleanup_threadgroup_lock;
  1340. }
  1341. #endif
  1342. #ifdef CONFIG_CPUSETS
  1343. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1344. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1345. seqcount_init(&p->mems_allowed_seq);
  1346. #endif
  1347. #ifdef CONFIG_TRACE_IRQFLAGS
  1348. p->irq_events = 0;
  1349. p->hardirqs_enabled = 0;
  1350. p->hardirq_enable_ip = 0;
  1351. p->hardirq_enable_event = 0;
  1352. p->hardirq_disable_ip = _THIS_IP_;
  1353. p->hardirq_disable_event = 0;
  1354. p->softirqs_enabled = 1;
  1355. p->softirq_enable_ip = _THIS_IP_;
  1356. p->softirq_enable_event = 0;
  1357. p->softirq_disable_ip = 0;
  1358. p->softirq_disable_event = 0;
  1359. p->hardirq_context = 0;
  1360. p->softirq_context = 0;
  1361. #endif
  1362. p->pagefault_disabled = 0;
  1363. #ifdef CONFIG_LOCKDEP
  1364. p->lockdep_depth = 0; /* no locks held yet */
  1365. p->curr_chain_key = 0;
  1366. p->lockdep_recursion = 0;
  1367. #endif
  1368. #ifdef CONFIG_DEBUG_MUTEXES
  1369. p->blocked_on = NULL; /* not blocked yet */
  1370. #endif
  1371. #ifdef CONFIG_BCACHE
  1372. p->sequential_io = 0;
  1373. p->sequential_io_avg = 0;
  1374. #endif
  1375. /* Perform scheduler related setup. Assign this task to a CPU. */
  1376. retval = sched_fork(clone_flags, p);
  1377. if (retval)
  1378. goto bad_fork_cleanup_policy;
  1379. retval = perf_event_init_task(p);
  1380. if (retval)
  1381. goto bad_fork_cleanup_policy;
  1382. retval = audit_alloc(p);
  1383. if (retval)
  1384. goto bad_fork_cleanup_perf;
  1385. /* copy all the process information */
  1386. shm_init_task(p);
  1387. retval = copy_semundo(clone_flags, p);
  1388. if (retval)
  1389. goto bad_fork_cleanup_audit;
  1390. retval = copy_files(clone_flags, p);
  1391. if (retval)
  1392. goto bad_fork_cleanup_semundo;
  1393. retval = copy_fs(clone_flags, p);
  1394. if (retval)
  1395. goto bad_fork_cleanup_files;
  1396. retval = copy_sighand(clone_flags, p);
  1397. if (retval)
  1398. goto bad_fork_cleanup_fs;
  1399. retval = copy_signal(clone_flags, p);
  1400. if (retval)
  1401. goto bad_fork_cleanup_sighand;
  1402. retval = copy_mm(clone_flags, p);
  1403. if (retval)
  1404. goto bad_fork_cleanup_signal;
  1405. retval = copy_namespaces(clone_flags, p);
  1406. if (retval)
  1407. goto bad_fork_cleanup_mm;
  1408. retval = copy_io(clone_flags, p);
  1409. if (retval)
  1410. goto bad_fork_cleanup_namespaces;
  1411. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1412. if (retval)
  1413. goto bad_fork_cleanup_io;
  1414. if (pid != &init_struct_pid) {
  1415. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1416. if (IS_ERR(pid)) {
  1417. retval = PTR_ERR(pid);
  1418. goto bad_fork_cleanup_thread;
  1419. }
  1420. }
  1421. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1422. /*
  1423. * Clear TID on mm_release()?
  1424. */
  1425. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1426. #ifdef CONFIG_BLOCK
  1427. p->plug = NULL;
  1428. #endif
  1429. #ifdef CONFIG_FUTEX
  1430. p->robust_list = NULL;
  1431. #ifdef CONFIG_COMPAT
  1432. p->compat_robust_list = NULL;
  1433. #endif
  1434. INIT_LIST_HEAD(&p->pi_state_list);
  1435. p->pi_state_cache = NULL;
  1436. #endif
  1437. /*
  1438. * sigaltstack should be cleared when sharing the same VM
  1439. */
  1440. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1441. sas_ss_reset(p);
  1442. /*
  1443. * Syscall tracing and stepping should be turned off in the
  1444. * child regardless of CLONE_PTRACE.
  1445. */
  1446. user_disable_single_step(p);
  1447. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1448. #ifdef TIF_SYSCALL_EMU
  1449. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1450. #endif
  1451. clear_all_latency_tracing(p);
  1452. /* ok, now we should be set up.. */
  1453. p->pid = pid_nr(pid);
  1454. if (clone_flags & CLONE_THREAD) {
  1455. p->exit_signal = -1;
  1456. p->group_leader = current->group_leader;
  1457. p->tgid = current->tgid;
  1458. } else {
  1459. if (clone_flags & CLONE_PARENT)
  1460. p->exit_signal = current->group_leader->exit_signal;
  1461. else
  1462. p->exit_signal = (clone_flags & CSIGNAL);
  1463. p->group_leader = p;
  1464. p->tgid = p->pid;
  1465. }
  1466. p->nr_dirtied = 0;
  1467. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1468. p->dirty_paused_when = 0;
  1469. p->pdeath_signal = 0;
  1470. INIT_LIST_HEAD(&p->thread_group);
  1471. p->task_works = NULL;
  1472. threadgroup_change_begin(current);
  1473. /*
  1474. * Ensure that the cgroup subsystem policies allow the new process to be
  1475. * forked. It should be noted the the new process's css_set can be changed
  1476. * between here and cgroup_post_fork() if an organisation operation is in
  1477. * progress.
  1478. */
  1479. retval = cgroup_can_fork(p);
  1480. if (retval)
  1481. goto bad_fork_free_pid;
  1482. /*
  1483. * Make it visible to the rest of the system, but dont wake it up yet.
  1484. * Need tasklist lock for parent etc handling!
  1485. */
  1486. write_lock_irq(&tasklist_lock);
  1487. /* CLONE_PARENT re-uses the old parent */
  1488. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1489. p->real_parent = current->real_parent;
  1490. p->parent_exec_id = current->parent_exec_id;
  1491. } else {
  1492. p->real_parent = current;
  1493. p->parent_exec_id = current->self_exec_id;
  1494. }
  1495. spin_lock(&current->sighand->siglock);
  1496. /*
  1497. * Copy seccomp details explicitly here, in case they were changed
  1498. * before holding sighand lock.
  1499. */
  1500. copy_seccomp(p);
  1501. /*
  1502. * Process group and session signals need to be delivered to just the
  1503. * parent before the fork or both the parent and the child after the
  1504. * fork. Restart if a signal comes in before we add the new process to
  1505. * it's process group.
  1506. * A fatal signal pending means that current will exit, so the new
  1507. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1508. */
  1509. recalc_sigpending();
  1510. if (signal_pending(current)) {
  1511. spin_unlock(&current->sighand->siglock);
  1512. write_unlock_irq(&tasklist_lock);
  1513. retval = -ERESTARTNOINTR;
  1514. goto bad_fork_cancel_cgroup;
  1515. }
  1516. if (likely(p->pid)) {
  1517. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1518. init_task_pid(p, PIDTYPE_PID, pid);
  1519. if (thread_group_leader(p)) {
  1520. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1521. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1522. if (is_child_reaper(pid)) {
  1523. ns_of_pid(pid)->child_reaper = p;
  1524. p->signal->flags |= SIGNAL_UNKILLABLE;
  1525. }
  1526. p->signal->leader_pid = pid;
  1527. p->signal->tty = tty_kref_get(current->signal->tty);
  1528. list_add_tail(&p->sibling, &p->real_parent->children);
  1529. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1530. attach_pid(p, PIDTYPE_PGID);
  1531. attach_pid(p, PIDTYPE_SID);
  1532. __this_cpu_inc(process_counts);
  1533. } else {
  1534. current->signal->nr_threads++;
  1535. atomic_inc(&current->signal->live);
  1536. atomic_inc(&current->signal->sigcnt);
  1537. list_add_tail_rcu(&p->thread_group,
  1538. &p->group_leader->thread_group);
  1539. list_add_tail_rcu(&p->thread_node,
  1540. &p->signal->thread_head);
  1541. }
  1542. attach_pid(p, PIDTYPE_PID);
  1543. nr_threads++;
  1544. }
  1545. total_forks++;
  1546. spin_unlock(&current->sighand->siglock);
  1547. syscall_tracepoint_update(p);
  1548. write_unlock_irq(&tasklist_lock);
  1549. proc_fork_connector(p);
  1550. cgroup_post_fork(p);
  1551. threadgroup_change_end(current);
  1552. perf_event_fork(p);
  1553. trace_task_newtask(p, clone_flags);
  1554. uprobe_copy_process(p, clone_flags);
  1555. return p;
  1556. bad_fork_cancel_cgroup:
  1557. cgroup_cancel_fork(p);
  1558. bad_fork_free_pid:
  1559. threadgroup_change_end(current);
  1560. if (pid != &init_struct_pid)
  1561. free_pid(pid);
  1562. bad_fork_cleanup_thread:
  1563. exit_thread(p);
  1564. bad_fork_cleanup_io:
  1565. if (p->io_context)
  1566. exit_io_context(p);
  1567. bad_fork_cleanup_namespaces:
  1568. exit_task_namespaces(p);
  1569. bad_fork_cleanup_mm:
  1570. if (p->mm)
  1571. mmput(p->mm);
  1572. bad_fork_cleanup_signal:
  1573. if (!(clone_flags & CLONE_THREAD))
  1574. free_signal_struct(p->signal);
  1575. bad_fork_cleanup_sighand:
  1576. __cleanup_sighand(p->sighand);
  1577. bad_fork_cleanup_fs:
  1578. exit_fs(p); /* blocking */
  1579. bad_fork_cleanup_files:
  1580. exit_files(p); /* blocking */
  1581. bad_fork_cleanup_semundo:
  1582. exit_sem(p);
  1583. bad_fork_cleanup_audit:
  1584. audit_free(p);
  1585. bad_fork_cleanup_perf:
  1586. perf_event_free_task(p);
  1587. bad_fork_cleanup_policy:
  1588. #ifdef CONFIG_NUMA
  1589. mpol_put(p->mempolicy);
  1590. bad_fork_cleanup_threadgroup_lock:
  1591. #endif
  1592. delayacct_tsk_free(p);
  1593. bad_fork_cleanup_count:
  1594. atomic_dec(&p->cred->user->processes);
  1595. exit_creds(p);
  1596. bad_fork_free:
  1597. put_task_stack(p);
  1598. free_task(p);
  1599. fork_out:
  1600. return ERR_PTR(retval);
  1601. }
  1602. static inline void init_idle_pids(struct pid_link *links)
  1603. {
  1604. enum pid_type type;
  1605. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1606. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1607. links[type].pid = &init_struct_pid;
  1608. }
  1609. }
  1610. struct task_struct *fork_idle(int cpu)
  1611. {
  1612. struct task_struct *task;
  1613. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1614. cpu_to_node(cpu));
  1615. if (!IS_ERR(task)) {
  1616. init_idle_pids(task->pids);
  1617. init_idle(task, cpu);
  1618. }
  1619. return task;
  1620. }
  1621. /*
  1622. * Ok, this is the main fork-routine.
  1623. *
  1624. * It copies the process, and if successful kick-starts
  1625. * it and waits for it to finish using the VM if required.
  1626. */
  1627. long _do_fork(unsigned long clone_flags,
  1628. unsigned long stack_start,
  1629. unsigned long stack_size,
  1630. int __user *parent_tidptr,
  1631. int __user *child_tidptr,
  1632. unsigned long tls)
  1633. {
  1634. struct task_struct *p;
  1635. int trace = 0;
  1636. long nr;
  1637. /*
  1638. * Determine whether and which event to report to ptracer. When
  1639. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1640. * requested, no event is reported; otherwise, report if the event
  1641. * for the type of forking is enabled.
  1642. */
  1643. if (!(clone_flags & CLONE_UNTRACED)) {
  1644. if (clone_flags & CLONE_VFORK)
  1645. trace = PTRACE_EVENT_VFORK;
  1646. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1647. trace = PTRACE_EVENT_CLONE;
  1648. else
  1649. trace = PTRACE_EVENT_FORK;
  1650. if (likely(!ptrace_event_enabled(current, trace)))
  1651. trace = 0;
  1652. }
  1653. p = copy_process(clone_flags, stack_start, stack_size,
  1654. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1655. /*
  1656. * Do this prior waking up the new thread - the thread pointer
  1657. * might get invalid after that point, if the thread exits quickly.
  1658. */
  1659. if (!IS_ERR(p)) {
  1660. struct completion vfork;
  1661. struct pid *pid;
  1662. trace_sched_process_fork(current, p);
  1663. pid = get_task_pid(p, PIDTYPE_PID);
  1664. nr = pid_vnr(pid);
  1665. if (clone_flags & CLONE_PARENT_SETTID)
  1666. put_user(nr, parent_tidptr);
  1667. if (clone_flags & CLONE_VFORK) {
  1668. p->vfork_done = &vfork;
  1669. init_completion(&vfork);
  1670. get_task_struct(p);
  1671. }
  1672. wake_up_new_task(p);
  1673. /* forking complete and child started to run, tell ptracer */
  1674. if (unlikely(trace))
  1675. ptrace_event_pid(trace, pid);
  1676. if (clone_flags & CLONE_VFORK) {
  1677. if (!wait_for_vfork_done(p, &vfork))
  1678. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1679. }
  1680. put_pid(pid);
  1681. } else {
  1682. nr = PTR_ERR(p);
  1683. }
  1684. return nr;
  1685. }
  1686. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1687. /* For compatibility with architectures that call do_fork directly rather than
  1688. * using the syscall entry points below. */
  1689. long do_fork(unsigned long clone_flags,
  1690. unsigned long stack_start,
  1691. unsigned long stack_size,
  1692. int __user *parent_tidptr,
  1693. int __user *child_tidptr)
  1694. {
  1695. return _do_fork(clone_flags, stack_start, stack_size,
  1696. parent_tidptr, child_tidptr, 0);
  1697. }
  1698. #endif
  1699. /*
  1700. * Create a kernel thread.
  1701. */
  1702. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1703. {
  1704. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1705. (unsigned long)arg, NULL, NULL, 0);
  1706. }
  1707. #ifdef __ARCH_WANT_SYS_FORK
  1708. SYSCALL_DEFINE0(fork)
  1709. {
  1710. #ifdef CONFIG_MMU
  1711. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1712. #else
  1713. /* can not support in nommu mode */
  1714. return -EINVAL;
  1715. #endif
  1716. }
  1717. #endif
  1718. #ifdef __ARCH_WANT_SYS_VFORK
  1719. SYSCALL_DEFINE0(vfork)
  1720. {
  1721. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1722. 0, NULL, NULL, 0);
  1723. }
  1724. #endif
  1725. #ifdef __ARCH_WANT_SYS_CLONE
  1726. #ifdef CONFIG_CLONE_BACKWARDS
  1727. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1728. int __user *, parent_tidptr,
  1729. unsigned long, tls,
  1730. int __user *, child_tidptr)
  1731. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1732. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1733. int __user *, parent_tidptr,
  1734. int __user *, child_tidptr,
  1735. unsigned long, tls)
  1736. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1737. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1738. int, stack_size,
  1739. int __user *, parent_tidptr,
  1740. int __user *, child_tidptr,
  1741. unsigned long, tls)
  1742. #else
  1743. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1744. int __user *, parent_tidptr,
  1745. int __user *, child_tidptr,
  1746. unsigned long, tls)
  1747. #endif
  1748. {
  1749. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1750. }
  1751. #endif
  1752. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1753. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1754. #endif
  1755. static void sighand_ctor(void *data)
  1756. {
  1757. struct sighand_struct *sighand = data;
  1758. spin_lock_init(&sighand->siglock);
  1759. init_waitqueue_head(&sighand->signalfd_wqh);
  1760. }
  1761. void __init proc_caches_init(void)
  1762. {
  1763. sighand_cachep = kmem_cache_create("sighand_cache",
  1764. sizeof(struct sighand_struct), 0,
  1765. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1766. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1767. signal_cachep = kmem_cache_create("signal_cache",
  1768. sizeof(struct signal_struct), 0,
  1769. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1770. NULL);
  1771. files_cachep = kmem_cache_create("files_cache",
  1772. sizeof(struct files_struct), 0,
  1773. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1774. NULL);
  1775. fs_cachep = kmem_cache_create("fs_cache",
  1776. sizeof(struct fs_struct), 0,
  1777. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1778. NULL);
  1779. /*
  1780. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1781. * whole struct cpumask for the OFFSTACK case. We could change
  1782. * this to *only* allocate as much of it as required by the
  1783. * maximum number of CPU's we can ever have. The cpumask_allocation
  1784. * is at the end of the structure, exactly for that reason.
  1785. */
  1786. mm_cachep = kmem_cache_create("mm_struct",
  1787. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1788. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1789. NULL);
  1790. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1791. mmap_init();
  1792. nsproxy_cache_init();
  1793. }
  1794. /*
  1795. * Check constraints on flags passed to the unshare system call.
  1796. */
  1797. static int check_unshare_flags(unsigned long unshare_flags)
  1798. {
  1799. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1800. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1801. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1802. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1803. return -EINVAL;
  1804. /*
  1805. * Not implemented, but pretend it works if there is nothing
  1806. * to unshare. Note that unsharing the address space or the
  1807. * signal handlers also need to unshare the signal queues (aka
  1808. * CLONE_THREAD).
  1809. */
  1810. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1811. if (!thread_group_empty(current))
  1812. return -EINVAL;
  1813. }
  1814. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1815. if (atomic_read(&current->sighand->count) > 1)
  1816. return -EINVAL;
  1817. }
  1818. if (unshare_flags & CLONE_VM) {
  1819. if (!current_is_single_threaded())
  1820. return -EINVAL;
  1821. }
  1822. return 0;
  1823. }
  1824. /*
  1825. * Unshare the filesystem structure if it is being shared
  1826. */
  1827. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1828. {
  1829. struct fs_struct *fs = current->fs;
  1830. if (!(unshare_flags & CLONE_FS) || !fs)
  1831. return 0;
  1832. /* don't need lock here; in the worst case we'll do useless copy */
  1833. if (fs->users == 1)
  1834. return 0;
  1835. *new_fsp = copy_fs_struct(fs);
  1836. if (!*new_fsp)
  1837. return -ENOMEM;
  1838. return 0;
  1839. }
  1840. /*
  1841. * Unshare file descriptor table if it is being shared
  1842. */
  1843. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1844. {
  1845. struct files_struct *fd = current->files;
  1846. int error = 0;
  1847. if ((unshare_flags & CLONE_FILES) &&
  1848. (fd && atomic_read(&fd->count) > 1)) {
  1849. *new_fdp = dup_fd(fd, &error);
  1850. if (!*new_fdp)
  1851. return error;
  1852. }
  1853. return 0;
  1854. }
  1855. /*
  1856. * unshare allows a process to 'unshare' part of the process
  1857. * context which was originally shared using clone. copy_*
  1858. * functions used by do_fork() cannot be used here directly
  1859. * because they modify an inactive task_struct that is being
  1860. * constructed. Here we are modifying the current, active,
  1861. * task_struct.
  1862. */
  1863. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1864. {
  1865. struct fs_struct *fs, *new_fs = NULL;
  1866. struct files_struct *fd, *new_fd = NULL;
  1867. struct cred *new_cred = NULL;
  1868. struct nsproxy *new_nsproxy = NULL;
  1869. int do_sysvsem = 0;
  1870. int err;
  1871. /*
  1872. * If unsharing a user namespace must also unshare the thread group
  1873. * and unshare the filesystem root and working directories.
  1874. */
  1875. if (unshare_flags & CLONE_NEWUSER)
  1876. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1877. /*
  1878. * If unsharing vm, must also unshare signal handlers.
  1879. */
  1880. if (unshare_flags & CLONE_VM)
  1881. unshare_flags |= CLONE_SIGHAND;
  1882. /*
  1883. * If unsharing a signal handlers, must also unshare the signal queues.
  1884. */
  1885. if (unshare_flags & CLONE_SIGHAND)
  1886. unshare_flags |= CLONE_THREAD;
  1887. /*
  1888. * If unsharing namespace, must also unshare filesystem information.
  1889. */
  1890. if (unshare_flags & CLONE_NEWNS)
  1891. unshare_flags |= CLONE_FS;
  1892. err = check_unshare_flags(unshare_flags);
  1893. if (err)
  1894. goto bad_unshare_out;
  1895. /*
  1896. * CLONE_NEWIPC must also detach from the undolist: after switching
  1897. * to a new ipc namespace, the semaphore arrays from the old
  1898. * namespace are unreachable.
  1899. */
  1900. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1901. do_sysvsem = 1;
  1902. err = unshare_fs(unshare_flags, &new_fs);
  1903. if (err)
  1904. goto bad_unshare_out;
  1905. err = unshare_fd(unshare_flags, &new_fd);
  1906. if (err)
  1907. goto bad_unshare_cleanup_fs;
  1908. err = unshare_userns(unshare_flags, &new_cred);
  1909. if (err)
  1910. goto bad_unshare_cleanup_fd;
  1911. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1912. new_cred, new_fs);
  1913. if (err)
  1914. goto bad_unshare_cleanup_cred;
  1915. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1916. if (do_sysvsem) {
  1917. /*
  1918. * CLONE_SYSVSEM is equivalent to sys_exit().
  1919. */
  1920. exit_sem(current);
  1921. }
  1922. if (unshare_flags & CLONE_NEWIPC) {
  1923. /* Orphan segments in old ns (see sem above). */
  1924. exit_shm(current);
  1925. shm_init_task(current);
  1926. }
  1927. if (new_nsproxy)
  1928. switch_task_namespaces(current, new_nsproxy);
  1929. task_lock(current);
  1930. if (new_fs) {
  1931. fs = current->fs;
  1932. spin_lock(&fs->lock);
  1933. current->fs = new_fs;
  1934. if (--fs->users)
  1935. new_fs = NULL;
  1936. else
  1937. new_fs = fs;
  1938. spin_unlock(&fs->lock);
  1939. }
  1940. if (new_fd) {
  1941. fd = current->files;
  1942. current->files = new_fd;
  1943. new_fd = fd;
  1944. }
  1945. task_unlock(current);
  1946. if (new_cred) {
  1947. /* Install the new user namespace */
  1948. commit_creds(new_cred);
  1949. new_cred = NULL;
  1950. }
  1951. }
  1952. bad_unshare_cleanup_cred:
  1953. if (new_cred)
  1954. put_cred(new_cred);
  1955. bad_unshare_cleanup_fd:
  1956. if (new_fd)
  1957. put_files_struct(new_fd);
  1958. bad_unshare_cleanup_fs:
  1959. if (new_fs)
  1960. free_fs_struct(new_fs);
  1961. bad_unshare_out:
  1962. return err;
  1963. }
  1964. /*
  1965. * Helper to unshare the files of the current task.
  1966. * We don't want to expose copy_files internals to
  1967. * the exec layer of the kernel.
  1968. */
  1969. int unshare_files(struct files_struct **displaced)
  1970. {
  1971. struct task_struct *task = current;
  1972. struct files_struct *copy = NULL;
  1973. int error;
  1974. error = unshare_fd(CLONE_FILES, &copy);
  1975. if (error || !copy) {
  1976. *displaced = NULL;
  1977. return error;
  1978. }
  1979. *displaced = task->files;
  1980. task_lock(task);
  1981. task->files = copy;
  1982. task_unlock(task);
  1983. return 0;
  1984. }
  1985. int sysctl_max_threads(struct ctl_table *table, int write,
  1986. void __user *buffer, size_t *lenp, loff_t *ppos)
  1987. {
  1988. struct ctl_table t;
  1989. int ret;
  1990. int threads = max_threads;
  1991. int min = MIN_THREADS;
  1992. int max = MAX_THREADS;
  1993. t = *table;
  1994. t.data = &threads;
  1995. t.extra1 = &min;
  1996. t.extra2 = &max;
  1997. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1998. if (ret || !write)
  1999. return ret;
  2000. set_max_threads(threads);
  2001. return 0;
  2002. }