spi-ti-qspi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/spi/spi.h>
  36. struct ti_qspi_regs {
  37. u32 clkctrl;
  38. };
  39. struct ti_qspi {
  40. /* list synchronization */
  41. struct mutex list_lock;
  42. struct spi_master *master;
  43. void __iomem *base;
  44. void __iomem *mmap_base;
  45. struct regmap *ctrl_base;
  46. unsigned int ctrl_reg;
  47. struct clk *fclk;
  48. struct device *dev;
  49. struct ti_qspi_regs ctx_reg;
  50. u32 spi_max_frequency;
  51. u32 cmd;
  52. u32 dc;
  53. bool mmap_enabled;
  54. };
  55. #define QSPI_PID (0x0)
  56. #define QSPI_SYSCONFIG (0x10)
  57. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  58. #define QSPI_SPI_DC_REG (0x44)
  59. #define QSPI_SPI_CMD_REG (0x48)
  60. #define QSPI_SPI_STATUS_REG (0x4c)
  61. #define QSPI_SPI_DATA_REG (0x50)
  62. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  63. #define QSPI_SPI_SWITCH_REG (0x64)
  64. #define QSPI_SPI_DATA_REG_1 (0x68)
  65. #define QSPI_SPI_DATA_REG_2 (0x6c)
  66. #define QSPI_SPI_DATA_REG_3 (0x70)
  67. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  68. #define QSPI_FCLK 192000000
  69. /* Clock Control */
  70. #define QSPI_CLK_EN (1 << 31)
  71. #define QSPI_CLK_DIV_MAX 0xffff
  72. /* Command */
  73. #define QSPI_EN_CS(n) (n << 28)
  74. #define QSPI_WLEN(n) ((n - 1) << 19)
  75. #define QSPI_3_PIN (1 << 18)
  76. #define QSPI_RD_SNGL (1 << 16)
  77. #define QSPI_WR_SNGL (2 << 16)
  78. #define QSPI_RD_DUAL (3 << 16)
  79. #define QSPI_RD_QUAD (7 << 16)
  80. #define QSPI_INVAL (4 << 16)
  81. #define QSPI_FLEN(n) ((n - 1) << 0)
  82. #define QSPI_WLEN_MAX_BITS 128
  83. #define QSPI_WLEN_MAX_BYTES 16
  84. /* STATUS REGISTER */
  85. #define BUSY 0x01
  86. #define WC 0x02
  87. /* Device Control */
  88. #define QSPI_DD(m, n) (m << (3 + n * 8))
  89. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  90. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  91. #define QSPI_CKPOL(n) (1 << (n * 8))
  92. #define QSPI_FRAME 4096
  93. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  94. #define MEM_CS_EN(n) ((n + 1) << 8)
  95. #define MEM_CS_MASK (7 << 8)
  96. #define MM_SWITCH 0x1
  97. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  98. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  99. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  100. #define QSPI_SETUP_ADDR_SHIFT 8
  101. #define QSPI_SETUP_DUMMY_SHIFT 10
  102. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  103. unsigned long reg)
  104. {
  105. return readl(qspi->base + reg);
  106. }
  107. static inline void ti_qspi_write(struct ti_qspi *qspi,
  108. unsigned long val, unsigned long reg)
  109. {
  110. writel(val, qspi->base + reg);
  111. }
  112. static int ti_qspi_setup(struct spi_device *spi)
  113. {
  114. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  115. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  116. int clk_div = 0, ret;
  117. u32 clk_ctrl_reg, clk_rate, clk_mask;
  118. if (spi->master->busy) {
  119. dev_dbg(qspi->dev, "master busy doing other trasnfers\n");
  120. return -EBUSY;
  121. }
  122. if (!qspi->spi_max_frequency) {
  123. dev_err(qspi->dev, "spi max frequency not defined\n");
  124. return -EINVAL;
  125. }
  126. clk_rate = clk_get_rate(qspi->fclk);
  127. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  128. if (clk_div < 0) {
  129. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  130. return -EINVAL;
  131. }
  132. if (clk_div > QSPI_CLK_DIV_MAX) {
  133. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  134. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  135. return -EINVAL;
  136. }
  137. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  138. qspi->spi_max_frequency, clk_div);
  139. ret = pm_runtime_get_sync(qspi->dev);
  140. if (ret < 0) {
  141. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  142. return ret;
  143. }
  144. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  145. clk_ctrl_reg &= ~QSPI_CLK_EN;
  146. /* disable SCLK */
  147. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  148. /* enable SCLK */
  149. clk_mask = QSPI_CLK_EN | clk_div;
  150. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  151. ctx_reg->clkctrl = clk_mask;
  152. pm_runtime_mark_last_busy(qspi->dev);
  153. ret = pm_runtime_put_autosuspend(qspi->dev);
  154. if (ret < 0) {
  155. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  156. return ret;
  157. }
  158. return 0;
  159. }
  160. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  161. {
  162. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  163. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  164. }
  165. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  166. {
  167. u32 stat;
  168. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  169. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  170. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  171. cpu_relax();
  172. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  173. }
  174. WARN(stat & BUSY, "qspi busy\n");
  175. return stat & BUSY;
  176. }
  177. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  178. {
  179. u32 stat;
  180. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  181. do {
  182. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  183. if (stat & WC)
  184. return 0;
  185. cpu_relax();
  186. } while (time_after(timeout, jiffies));
  187. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  188. if (stat & WC)
  189. return 0;
  190. return -ETIMEDOUT;
  191. }
  192. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t)
  193. {
  194. int wlen, count, xfer_len;
  195. unsigned int cmd;
  196. const u8 *txbuf;
  197. u32 data;
  198. txbuf = t->tx_buf;
  199. cmd = qspi->cmd | QSPI_WR_SNGL;
  200. count = t->len;
  201. wlen = t->bits_per_word >> 3; /* in bytes */
  202. xfer_len = wlen;
  203. while (count) {
  204. if (qspi_is_busy(qspi))
  205. return -EBUSY;
  206. switch (wlen) {
  207. case 1:
  208. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  209. cmd, qspi->dc, *txbuf);
  210. if (count >= QSPI_WLEN_MAX_BYTES) {
  211. u32 *txp = (u32 *)txbuf;
  212. data = cpu_to_be32(*txp++);
  213. writel(data, qspi->base +
  214. QSPI_SPI_DATA_REG_3);
  215. data = cpu_to_be32(*txp++);
  216. writel(data, qspi->base +
  217. QSPI_SPI_DATA_REG_2);
  218. data = cpu_to_be32(*txp++);
  219. writel(data, qspi->base +
  220. QSPI_SPI_DATA_REG_1);
  221. data = cpu_to_be32(*txp++);
  222. writel(data, qspi->base +
  223. QSPI_SPI_DATA_REG);
  224. xfer_len = QSPI_WLEN_MAX_BYTES;
  225. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  226. } else {
  227. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  228. cmd = qspi->cmd | QSPI_WR_SNGL;
  229. xfer_len = wlen;
  230. cmd |= QSPI_WLEN(wlen);
  231. }
  232. break;
  233. case 2:
  234. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  235. cmd, qspi->dc, *txbuf);
  236. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  237. break;
  238. case 4:
  239. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  240. cmd, qspi->dc, *txbuf);
  241. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  242. break;
  243. }
  244. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  245. if (ti_qspi_poll_wc(qspi)) {
  246. dev_err(qspi->dev, "write timed out\n");
  247. return -ETIMEDOUT;
  248. }
  249. txbuf += xfer_len;
  250. count -= xfer_len;
  251. }
  252. return 0;
  253. }
  254. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t)
  255. {
  256. int wlen, count;
  257. unsigned int cmd;
  258. u8 *rxbuf;
  259. rxbuf = t->rx_buf;
  260. cmd = qspi->cmd;
  261. switch (t->rx_nbits) {
  262. case SPI_NBITS_DUAL:
  263. cmd |= QSPI_RD_DUAL;
  264. break;
  265. case SPI_NBITS_QUAD:
  266. cmd |= QSPI_RD_QUAD;
  267. break;
  268. default:
  269. cmd |= QSPI_RD_SNGL;
  270. break;
  271. }
  272. count = t->len;
  273. wlen = t->bits_per_word >> 3; /* in bytes */
  274. while (count) {
  275. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  276. if (qspi_is_busy(qspi))
  277. return -EBUSY;
  278. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  279. if (ti_qspi_poll_wc(qspi)) {
  280. dev_err(qspi->dev, "read timed out\n");
  281. return -ETIMEDOUT;
  282. }
  283. switch (wlen) {
  284. case 1:
  285. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  286. break;
  287. case 2:
  288. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  289. break;
  290. case 4:
  291. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  292. break;
  293. }
  294. rxbuf += wlen;
  295. count -= wlen;
  296. }
  297. return 0;
  298. }
  299. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t)
  300. {
  301. int ret;
  302. if (t->tx_buf) {
  303. ret = qspi_write_msg(qspi, t);
  304. if (ret) {
  305. dev_dbg(qspi->dev, "Error while writing\n");
  306. return ret;
  307. }
  308. }
  309. if (t->rx_buf) {
  310. ret = qspi_read_msg(qspi, t);
  311. if (ret) {
  312. dev_dbg(qspi->dev, "Error while reading\n");
  313. return ret;
  314. }
  315. }
  316. return 0;
  317. }
  318. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  319. {
  320. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  321. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  322. if (qspi->ctrl_base) {
  323. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  324. MEM_CS_EN(spi->chip_select),
  325. MEM_CS_MASK);
  326. }
  327. qspi->mmap_enabled = true;
  328. }
  329. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  330. {
  331. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  332. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  333. if (qspi->ctrl_base)
  334. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  335. 0, MEM_CS_MASK);
  336. qspi->mmap_enabled = false;
  337. }
  338. static void ti_qspi_setup_mmap_read(struct spi_device *spi,
  339. struct spi_flash_read_message *msg)
  340. {
  341. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  342. u32 memval = msg->read_opcode;
  343. switch (msg->data_nbits) {
  344. case SPI_NBITS_QUAD:
  345. memval |= QSPI_SETUP_RD_QUAD;
  346. break;
  347. case SPI_NBITS_DUAL:
  348. memval |= QSPI_SETUP_RD_DUAL;
  349. break;
  350. default:
  351. memval |= QSPI_SETUP_RD_NORMAL;
  352. break;
  353. }
  354. memval |= ((msg->addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  355. msg->dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  356. ti_qspi_write(qspi, memval,
  357. QSPI_SPI_SETUP_REG(spi->chip_select));
  358. }
  359. static int ti_qspi_spi_flash_read(struct spi_device *spi,
  360. struct spi_flash_read_message *msg)
  361. {
  362. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  363. int ret = 0;
  364. mutex_lock(&qspi->list_lock);
  365. if (!qspi->mmap_enabled)
  366. ti_qspi_enable_memory_map(spi);
  367. ti_qspi_setup_mmap_read(spi, msg);
  368. memcpy_fromio(msg->buf, qspi->mmap_base + msg->from, msg->len);
  369. msg->retlen = msg->len;
  370. mutex_unlock(&qspi->list_lock);
  371. return ret;
  372. }
  373. static int ti_qspi_start_transfer_one(struct spi_master *master,
  374. struct spi_message *m)
  375. {
  376. struct ti_qspi *qspi = spi_master_get_devdata(master);
  377. struct spi_device *spi = m->spi;
  378. struct spi_transfer *t;
  379. int status = 0, ret;
  380. int frame_length;
  381. /* setup device control reg */
  382. qspi->dc = 0;
  383. if (spi->mode & SPI_CPHA)
  384. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  385. if (spi->mode & SPI_CPOL)
  386. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  387. if (spi->mode & SPI_CS_HIGH)
  388. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  389. frame_length = (m->frame_length << 3) / spi->bits_per_word;
  390. frame_length = clamp(frame_length, 0, QSPI_FRAME);
  391. /* setup command reg */
  392. qspi->cmd = 0;
  393. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  394. qspi->cmd |= QSPI_FLEN(frame_length);
  395. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  396. mutex_lock(&qspi->list_lock);
  397. if (qspi->mmap_enabled)
  398. ti_qspi_disable_memory_map(spi);
  399. list_for_each_entry(t, &m->transfers, transfer_list) {
  400. qspi->cmd |= QSPI_WLEN(t->bits_per_word);
  401. ret = qspi_transfer_msg(qspi, t);
  402. if (ret) {
  403. dev_dbg(qspi->dev, "transfer message failed\n");
  404. mutex_unlock(&qspi->list_lock);
  405. return -EINVAL;
  406. }
  407. m->actual_length += t->len;
  408. }
  409. mutex_unlock(&qspi->list_lock);
  410. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  411. m->status = status;
  412. spi_finalize_current_message(master);
  413. return status;
  414. }
  415. static int ti_qspi_runtime_resume(struct device *dev)
  416. {
  417. struct ti_qspi *qspi;
  418. qspi = dev_get_drvdata(dev);
  419. ti_qspi_restore_ctx(qspi);
  420. return 0;
  421. }
  422. static const struct of_device_id ti_qspi_match[] = {
  423. {.compatible = "ti,dra7xxx-qspi" },
  424. {.compatible = "ti,am4372-qspi" },
  425. {},
  426. };
  427. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  428. static int ti_qspi_probe(struct platform_device *pdev)
  429. {
  430. struct ti_qspi *qspi;
  431. struct spi_master *master;
  432. struct resource *r, *res_mmap;
  433. struct device_node *np = pdev->dev.of_node;
  434. u32 max_freq;
  435. int ret = 0, num_cs, irq;
  436. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  437. if (!master)
  438. return -ENOMEM;
  439. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  440. master->flags = SPI_MASTER_HALF_DUPLEX;
  441. master->setup = ti_qspi_setup;
  442. master->auto_runtime_pm = true;
  443. master->transfer_one_message = ti_qspi_start_transfer_one;
  444. master->dev.of_node = pdev->dev.of_node;
  445. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  446. SPI_BPW_MASK(8);
  447. if (!of_property_read_u32(np, "num-cs", &num_cs))
  448. master->num_chipselect = num_cs;
  449. qspi = spi_master_get_devdata(master);
  450. qspi->master = master;
  451. qspi->dev = &pdev->dev;
  452. platform_set_drvdata(pdev, qspi);
  453. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  454. if (r == NULL) {
  455. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  456. if (r == NULL) {
  457. dev_err(&pdev->dev, "missing platform data\n");
  458. return -ENODEV;
  459. }
  460. }
  461. res_mmap = platform_get_resource_byname(pdev,
  462. IORESOURCE_MEM, "qspi_mmap");
  463. if (res_mmap == NULL) {
  464. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  465. if (res_mmap == NULL) {
  466. dev_err(&pdev->dev,
  467. "memory mapped resource not required\n");
  468. }
  469. }
  470. irq = platform_get_irq(pdev, 0);
  471. if (irq < 0) {
  472. dev_err(&pdev->dev, "no irq resource?\n");
  473. return irq;
  474. }
  475. mutex_init(&qspi->list_lock);
  476. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  477. if (IS_ERR(qspi->base)) {
  478. ret = PTR_ERR(qspi->base);
  479. goto free_master;
  480. }
  481. if (res_mmap) {
  482. qspi->mmap_base = devm_ioremap_resource(&pdev->dev,
  483. res_mmap);
  484. master->spi_flash_read = ti_qspi_spi_flash_read;
  485. if (IS_ERR(qspi->mmap_base)) {
  486. dev_err(&pdev->dev,
  487. "falling back to PIO mode\n");
  488. master->spi_flash_read = NULL;
  489. }
  490. }
  491. qspi->mmap_enabled = false;
  492. if (of_property_read_bool(np, "syscon-chipselects")) {
  493. qspi->ctrl_base =
  494. syscon_regmap_lookup_by_phandle(np,
  495. "syscon-chipselects");
  496. if (IS_ERR(qspi->ctrl_base))
  497. return PTR_ERR(qspi->ctrl_base);
  498. ret = of_property_read_u32_index(np,
  499. "syscon-chipselects",
  500. 1, &qspi->ctrl_reg);
  501. if (ret) {
  502. dev_err(&pdev->dev,
  503. "couldn't get ctrl_mod reg index\n");
  504. return ret;
  505. }
  506. }
  507. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  508. if (IS_ERR(qspi->fclk)) {
  509. ret = PTR_ERR(qspi->fclk);
  510. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  511. }
  512. pm_runtime_use_autosuspend(&pdev->dev);
  513. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  514. pm_runtime_enable(&pdev->dev);
  515. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  516. qspi->spi_max_frequency = max_freq;
  517. ret = devm_spi_register_master(&pdev->dev, master);
  518. if (ret)
  519. goto free_master;
  520. return 0;
  521. free_master:
  522. spi_master_put(master);
  523. return ret;
  524. }
  525. static int ti_qspi_remove(struct platform_device *pdev)
  526. {
  527. pm_runtime_put_sync(&pdev->dev);
  528. pm_runtime_disable(&pdev->dev);
  529. return 0;
  530. }
  531. static const struct dev_pm_ops ti_qspi_pm_ops = {
  532. .runtime_resume = ti_qspi_runtime_resume,
  533. };
  534. static struct platform_driver ti_qspi_driver = {
  535. .probe = ti_qspi_probe,
  536. .remove = ti_qspi_remove,
  537. .driver = {
  538. .name = "ti-qspi",
  539. .pm = &ti_qspi_pm_ops,
  540. .of_match_table = ti_qspi_match,
  541. }
  542. };
  543. module_platform_driver(ti_qspi_driver);
  544. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  545. MODULE_LICENSE("GPL v2");
  546. MODULE_DESCRIPTION("TI QSPI controller driver");
  547. MODULE_ALIAS("platform:ti-qspi");