spi-sh-msiof.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. */
  12. #include <linux/bitmap.h>
  13. #include <linux/clk.h>
  14. #include <linux/completion.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/err.h>
  19. #include <linux/gpio.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/sh_dma.h>
  29. #include <linux/spi/sh_msiof.h>
  30. #include <linux/spi/spi.h>
  31. #include <asm/unaligned.h>
  32. struct sh_msiof_chipdata {
  33. u16 tx_fifo_size;
  34. u16 rx_fifo_size;
  35. u16 master_flags;
  36. };
  37. struct sh_msiof_spi_priv {
  38. struct spi_master *master;
  39. void __iomem *mapbase;
  40. struct clk *clk;
  41. struct platform_device *pdev;
  42. const struct sh_msiof_chipdata *chipdata;
  43. struct sh_msiof_spi_info *info;
  44. struct completion done;
  45. unsigned int tx_fifo_size;
  46. unsigned int rx_fifo_size;
  47. void *tx_dma_page;
  48. void *rx_dma_page;
  49. dma_addr_t tx_dma_addr;
  50. dma_addr_t rx_dma_addr;
  51. };
  52. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  53. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  54. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  55. #define RMDR1 0x10 /* Receive Mode Register 1 */
  56. #define RMDR2 0x14 /* Receive Mode Register 2 */
  57. #define RMDR3 0x18 /* Receive Mode Register 3 */
  58. #define TSCR 0x20 /* Transmit Clock Select Register */
  59. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  60. #define CTR 0x28 /* Control Register */
  61. #define FCTR 0x30 /* FIFO Control Register */
  62. #define STR 0x40 /* Status Register */
  63. #define IER 0x44 /* Interrupt Enable Register */
  64. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  65. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  66. #define TFDR 0x50 /* Transmit FIFO Data Register */
  67. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  68. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  69. #define RFDR 0x60 /* Receive FIFO Data Register */
  70. /* TMDR1 and RMDR1 */
  71. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  72. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  73. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  74. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  75. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  76. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  77. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  78. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  79. #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
  80. #define MDR1_FLD_SHIFT 2
  81. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  82. /* TMDR1 */
  83. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  84. /* TMDR2 and RMDR2 */
  85. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  86. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  87. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  88. /* TSCR and RSCR */
  89. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  90. #define SCR_BRPS(i) (((i) - 1) << 8)
  91. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  92. #define SCR_BRDV_DIV_2 0x0000
  93. #define SCR_BRDV_DIV_4 0x0001
  94. #define SCR_BRDV_DIV_8 0x0002
  95. #define SCR_BRDV_DIV_16 0x0003
  96. #define SCR_BRDV_DIV_32 0x0004
  97. #define SCR_BRDV_DIV_1 0x0007
  98. /* CTR */
  99. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  100. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  101. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  102. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  103. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  104. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  105. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  106. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  107. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  108. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  109. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  110. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  111. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  112. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  113. #define CTR_TXE 0x00000200 /* Transmit Enable */
  114. #define CTR_RXE 0x00000100 /* Receive Enable */
  115. /* FCTR */
  116. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  117. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  118. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  119. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  120. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  121. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  122. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  123. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  124. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  125. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  126. #define FCTR_TFUA_SHIFT 20
  127. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  128. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  129. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  130. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  131. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  132. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  133. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  134. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  135. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  136. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  137. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  138. #define FCTR_RFUA_SHIFT 4
  139. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  140. /* STR */
  141. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  142. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  143. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  144. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  145. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  146. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  147. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  148. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  149. #define STR_REOF 0x00000080 /* Frame Reception End */
  150. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  151. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  152. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  153. /* IER */
  154. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  155. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  156. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  157. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  158. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  159. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  160. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  161. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  162. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  163. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  164. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  165. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  166. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  167. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  168. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  169. {
  170. switch (reg_offs) {
  171. case TSCR:
  172. case RSCR:
  173. return ioread16(p->mapbase + reg_offs);
  174. default:
  175. return ioread32(p->mapbase + reg_offs);
  176. }
  177. }
  178. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  179. u32 value)
  180. {
  181. switch (reg_offs) {
  182. case TSCR:
  183. case RSCR:
  184. iowrite16(value, p->mapbase + reg_offs);
  185. break;
  186. default:
  187. iowrite32(value, p->mapbase + reg_offs);
  188. break;
  189. }
  190. }
  191. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  192. u32 clr, u32 set)
  193. {
  194. u32 mask = clr | set;
  195. u32 data;
  196. int k;
  197. data = sh_msiof_read(p, CTR);
  198. data &= ~clr;
  199. data |= set;
  200. sh_msiof_write(p, CTR, data);
  201. for (k = 100; k > 0; k--) {
  202. if ((sh_msiof_read(p, CTR) & mask) == set)
  203. break;
  204. udelay(10);
  205. }
  206. return k > 0 ? 0 : -ETIMEDOUT;
  207. }
  208. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  209. {
  210. struct sh_msiof_spi_priv *p = data;
  211. /* just disable the interrupt and wake up */
  212. sh_msiof_write(p, IER, 0);
  213. complete(&p->done);
  214. return IRQ_HANDLED;
  215. }
  216. static struct {
  217. unsigned short div;
  218. unsigned short brdv;
  219. } const sh_msiof_spi_div_table[] = {
  220. { 1, SCR_BRDV_DIV_1 },
  221. { 2, SCR_BRDV_DIV_2 },
  222. { 4, SCR_BRDV_DIV_4 },
  223. { 8, SCR_BRDV_DIV_8 },
  224. { 16, SCR_BRDV_DIV_16 },
  225. { 32, SCR_BRDV_DIV_32 },
  226. };
  227. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  228. unsigned long parent_rate, u32 spi_hz)
  229. {
  230. unsigned long div = 1024;
  231. u32 brps, scr;
  232. size_t k;
  233. if (!WARN_ON(!spi_hz || !parent_rate))
  234. div = DIV_ROUND_UP(parent_rate, spi_hz);
  235. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
  236. brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
  237. if (brps <= 32) /* max of brdv is 32 */
  238. break;
  239. }
  240. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
  241. scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
  242. sh_msiof_write(p, TSCR, scr);
  243. if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  244. sh_msiof_write(p, RSCR, scr);
  245. }
  246. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  247. {
  248. /*
  249. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  250. * b'000 : 0
  251. * b'001 : 100
  252. * b'010 : 200
  253. * b'011 (SYNCDL only) : 300
  254. * b'101 : 50
  255. * b'110 : 150
  256. */
  257. if (dtdl_or_syncdl % 100)
  258. return dtdl_or_syncdl / 100 + 5;
  259. else
  260. return dtdl_or_syncdl / 100;
  261. }
  262. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  263. {
  264. u32 val;
  265. if (!p->info)
  266. return 0;
  267. /* check if DTDL and SYNCDL is allowed value */
  268. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  269. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  270. return 0;
  271. }
  272. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  273. if ((p->info->dtdl + p->info->syncdl) % 100) {
  274. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  275. return 0;
  276. }
  277. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  278. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  279. return val;
  280. }
  281. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
  282. u32 cpol, u32 cpha,
  283. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  284. {
  285. u32 tmp;
  286. int edge;
  287. /*
  288. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  289. * 0 0 10 10 1 1
  290. * 0 1 10 10 0 0
  291. * 1 0 11 11 0 0
  292. * 1 1 11 11 1 1
  293. */
  294. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  295. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  296. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  297. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  298. sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
  299. if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
  300. /* These bits are reserved if RX needs TX */
  301. tmp &= ~0x0000ffff;
  302. }
  303. sh_msiof_write(p, RMDR1, tmp);
  304. tmp = 0;
  305. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  306. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  307. edge = cpol ^ !cpha;
  308. tmp |= edge << CTR_TEDG_SHIFT;
  309. tmp |= edge << CTR_REDG_SHIFT;
  310. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  311. sh_msiof_write(p, CTR, tmp);
  312. }
  313. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  314. const void *tx_buf, void *rx_buf,
  315. u32 bits, u32 words)
  316. {
  317. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  318. if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  319. sh_msiof_write(p, TMDR2, dr2);
  320. else
  321. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  322. if (rx_buf)
  323. sh_msiof_write(p, RMDR2, dr2);
  324. }
  325. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  326. {
  327. sh_msiof_write(p, STR, sh_msiof_read(p, STR));
  328. }
  329. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  330. const void *tx_buf, int words, int fs)
  331. {
  332. const u8 *buf_8 = tx_buf;
  333. int k;
  334. for (k = 0; k < words; k++)
  335. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  336. }
  337. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  338. const void *tx_buf, int words, int fs)
  339. {
  340. const u16 *buf_16 = tx_buf;
  341. int k;
  342. for (k = 0; k < words; k++)
  343. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  344. }
  345. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  346. const void *tx_buf, int words, int fs)
  347. {
  348. const u16 *buf_16 = tx_buf;
  349. int k;
  350. for (k = 0; k < words; k++)
  351. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  352. }
  353. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  354. const void *tx_buf, int words, int fs)
  355. {
  356. const u32 *buf_32 = tx_buf;
  357. int k;
  358. for (k = 0; k < words; k++)
  359. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  360. }
  361. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  362. const void *tx_buf, int words, int fs)
  363. {
  364. const u32 *buf_32 = tx_buf;
  365. int k;
  366. for (k = 0; k < words; k++)
  367. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  368. }
  369. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  370. const void *tx_buf, int words, int fs)
  371. {
  372. const u32 *buf_32 = tx_buf;
  373. int k;
  374. for (k = 0; k < words; k++)
  375. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  376. }
  377. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  378. const void *tx_buf, int words, int fs)
  379. {
  380. const u32 *buf_32 = tx_buf;
  381. int k;
  382. for (k = 0; k < words; k++)
  383. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  384. }
  385. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  386. void *rx_buf, int words, int fs)
  387. {
  388. u8 *buf_8 = rx_buf;
  389. int k;
  390. for (k = 0; k < words; k++)
  391. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  392. }
  393. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  394. void *rx_buf, int words, int fs)
  395. {
  396. u16 *buf_16 = rx_buf;
  397. int k;
  398. for (k = 0; k < words; k++)
  399. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  400. }
  401. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  402. void *rx_buf, int words, int fs)
  403. {
  404. u16 *buf_16 = rx_buf;
  405. int k;
  406. for (k = 0; k < words; k++)
  407. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  408. }
  409. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  410. void *rx_buf, int words, int fs)
  411. {
  412. u32 *buf_32 = rx_buf;
  413. int k;
  414. for (k = 0; k < words; k++)
  415. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  416. }
  417. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  418. void *rx_buf, int words, int fs)
  419. {
  420. u32 *buf_32 = rx_buf;
  421. int k;
  422. for (k = 0; k < words; k++)
  423. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  424. }
  425. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  426. void *rx_buf, int words, int fs)
  427. {
  428. u32 *buf_32 = rx_buf;
  429. int k;
  430. for (k = 0; k < words; k++)
  431. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  432. }
  433. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  434. void *rx_buf, int words, int fs)
  435. {
  436. u32 *buf_32 = rx_buf;
  437. int k;
  438. for (k = 0; k < words; k++)
  439. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  440. }
  441. static int sh_msiof_spi_setup(struct spi_device *spi)
  442. {
  443. struct device_node *np = spi->master->dev.of_node;
  444. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  445. pm_runtime_get_sync(&p->pdev->dev);
  446. if (!np) {
  447. /*
  448. * Use spi->controller_data for CS (same strategy as spi_gpio),
  449. * if any. otherwise let HW control CS
  450. */
  451. spi->cs_gpio = (uintptr_t)spi->controller_data;
  452. }
  453. /* Configure pins before deasserting CS */
  454. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  455. !!(spi->mode & SPI_CPHA),
  456. !!(spi->mode & SPI_3WIRE),
  457. !!(spi->mode & SPI_LSB_FIRST),
  458. !!(spi->mode & SPI_CS_HIGH));
  459. if (spi->cs_gpio >= 0)
  460. gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  461. pm_runtime_put(&p->pdev->dev);
  462. return 0;
  463. }
  464. static int sh_msiof_prepare_message(struct spi_master *master,
  465. struct spi_message *msg)
  466. {
  467. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  468. const struct spi_device *spi = msg->spi;
  469. /* Configure pins before asserting CS */
  470. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  471. !!(spi->mode & SPI_CPHA),
  472. !!(spi->mode & SPI_3WIRE),
  473. !!(spi->mode & SPI_LSB_FIRST),
  474. !!(spi->mode & SPI_CS_HIGH));
  475. return 0;
  476. }
  477. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  478. {
  479. int ret;
  480. /* setup clock and rx/tx signals */
  481. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  482. if (rx_buf && !ret)
  483. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  484. if (!ret)
  485. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  486. /* start by setting frame bit */
  487. if (!ret)
  488. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  489. return ret;
  490. }
  491. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  492. {
  493. int ret;
  494. /* shut down frame, rx/tx and clock signals */
  495. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  496. if (!ret)
  497. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  498. if (rx_buf && !ret)
  499. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  500. if (!ret)
  501. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  502. return ret;
  503. }
  504. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  505. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  506. const void *, int, int),
  507. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  508. void *, int, int),
  509. const void *tx_buf, void *rx_buf,
  510. int words, int bits)
  511. {
  512. int fifo_shift;
  513. int ret;
  514. /* limit maximum word transfer to rx/tx fifo size */
  515. if (tx_buf)
  516. words = min_t(int, words, p->tx_fifo_size);
  517. if (rx_buf)
  518. words = min_t(int, words, p->rx_fifo_size);
  519. /* the fifo contents need shifting */
  520. fifo_shift = 32 - bits;
  521. /* default FIFO watermarks for PIO */
  522. sh_msiof_write(p, FCTR, 0);
  523. /* setup msiof transfer mode registers */
  524. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  525. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  526. /* write tx fifo */
  527. if (tx_buf)
  528. tx_fifo(p, tx_buf, words, fifo_shift);
  529. reinit_completion(&p->done);
  530. ret = sh_msiof_spi_start(p, rx_buf);
  531. if (ret) {
  532. dev_err(&p->pdev->dev, "failed to start hardware\n");
  533. goto stop_ier;
  534. }
  535. /* wait for tx fifo to be emptied / rx fifo to be filled */
  536. if (!wait_for_completion_timeout(&p->done, HZ)) {
  537. dev_err(&p->pdev->dev, "PIO timeout\n");
  538. ret = -ETIMEDOUT;
  539. goto stop_reset;
  540. }
  541. /* read rx fifo */
  542. if (rx_buf)
  543. rx_fifo(p, rx_buf, words, fifo_shift);
  544. /* clear status bits */
  545. sh_msiof_reset_str(p);
  546. ret = sh_msiof_spi_stop(p, rx_buf);
  547. if (ret) {
  548. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  549. return ret;
  550. }
  551. return words;
  552. stop_reset:
  553. sh_msiof_reset_str(p);
  554. sh_msiof_spi_stop(p, rx_buf);
  555. stop_ier:
  556. sh_msiof_write(p, IER, 0);
  557. return ret;
  558. }
  559. static void sh_msiof_dma_complete(void *arg)
  560. {
  561. struct sh_msiof_spi_priv *p = arg;
  562. sh_msiof_write(p, IER, 0);
  563. complete(&p->done);
  564. }
  565. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  566. void *rx, unsigned int len)
  567. {
  568. u32 ier_bits = 0;
  569. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  570. dma_cookie_t cookie;
  571. int ret;
  572. /* First prepare and submit the DMA request(s), as this may fail */
  573. if (rx) {
  574. ier_bits |= IER_RDREQE | IER_RDMAE;
  575. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  576. p->rx_dma_addr, len, DMA_FROM_DEVICE,
  577. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  578. if (!desc_rx)
  579. return -EAGAIN;
  580. desc_rx->callback = sh_msiof_dma_complete;
  581. desc_rx->callback_param = p;
  582. cookie = dmaengine_submit(desc_rx);
  583. if (dma_submit_error(cookie))
  584. return cookie;
  585. }
  586. if (tx) {
  587. ier_bits |= IER_TDREQE | IER_TDMAE;
  588. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  589. p->tx_dma_addr, len, DMA_TO_DEVICE);
  590. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  591. p->tx_dma_addr, len, DMA_TO_DEVICE,
  592. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  593. if (!desc_tx) {
  594. ret = -EAGAIN;
  595. goto no_dma_tx;
  596. }
  597. if (rx) {
  598. /* No callback */
  599. desc_tx->callback = NULL;
  600. } else {
  601. desc_tx->callback = sh_msiof_dma_complete;
  602. desc_tx->callback_param = p;
  603. }
  604. cookie = dmaengine_submit(desc_tx);
  605. if (dma_submit_error(cookie)) {
  606. ret = cookie;
  607. goto no_dma_tx;
  608. }
  609. }
  610. /* 1 stage FIFO watermarks for DMA */
  611. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  612. /* setup msiof transfer mode registers (32-bit words) */
  613. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  614. sh_msiof_write(p, IER, ier_bits);
  615. reinit_completion(&p->done);
  616. /* Now start DMA */
  617. if (rx)
  618. dma_async_issue_pending(p->master->dma_rx);
  619. if (tx)
  620. dma_async_issue_pending(p->master->dma_tx);
  621. ret = sh_msiof_spi_start(p, rx);
  622. if (ret) {
  623. dev_err(&p->pdev->dev, "failed to start hardware\n");
  624. goto stop_dma;
  625. }
  626. /* wait for tx fifo to be emptied / rx fifo to be filled */
  627. if (!wait_for_completion_timeout(&p->done, HZ)) {
  628. dev_err(&p->pdev->dev, "DMA timeout\n");
  629. ret = -ETIMEDOUT;
  630. goto stop_reset;
  631. }
  632. /* clear status bits */
  633. sh_msiof_reset_str(p);
  634. ret = sh_msiof_spi_stop(p, rx);
  635. if (ret) {
  636. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  637. return ret;
  638. }
  639. if (rx)
  640. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  641. p->rx_dma_addr, len,
  642. DMA_FROM_DEVICE);
  643. return 0;
  644. stop_reset:
  645. sh_msiof_reset_str(p);
  646. sh_msiof_spi_stop(p, rx);
  647. stop_dma:
  648. if (tx)
  649. dmaengine_terminate_all(p->master->dma_tx);
  650. no_dma_tx:
  651. if (rx)
  652. dmaengine_terminate_all(p->master->dma_rx);
  653. sh_msiof_write(p, IER, 0);
  654. return ret;
  655. }
  656. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  657. {
  658. /* src or dst can be unaligned, but not both */
  659. if ((unsigned long)src & 3) {
  660. while (words--) {
  661. *dst++ = swab32(get_unaligned(src));
  662. src++;
  663. }
  664. } else if ((unsigned long)dst & 3) {
  665. while (words--) {
  666. put_unaligned(swab32(*src++), dst);
  667. dst++;
  668. }
  669. } else {
  670. while (words--)
  671. *dst++ = swab32(*src++);
  672. }
  673. }
  674. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  675. {
  676. /* src or dst can be unaligned, but not both */
  677. if ((unsigned long)src & 3) {
  678. while (words--) {
  679. *dst++ = swahw32(get_unaligned(src));
  680. src++;
  681. }
  682. } else if ((unsigned long)dst & 3) {
  683. while (words--) {
  684. put_unaligned(swahw32(*src++), dst);
  685. dst++;
  686. }
  687. } else {
  688. while (words--)
  689. *dst++ = swahw32(*src++);
  690. }
  691. }
  692. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  693. {
  694. memcpy(dst, src, words * 4);
  695. }
  696. static int sh_msiof_transfer_one(struct spi_master *master,
  697. struct spi_device *spi,
  698. struct spi_transfer *t)
  699. {
  700. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  701. void (*copy32)(u32 *, const u32 *, unsigned int);
  702. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  703. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  704. const void *tx_buf = t->tx_buf;
  705. void *rx_buf = t->rx_buf;
  706. unsigned int len = t->len;
  707. unsigned int bits = t->bits_per_word;
  708. unsigned int bytes_per_word;
  709. unsigned int words;
  710. int n;
  711. bool swab;
  712. int ret;
  713. /* setup clocks (clock already enabled in chipselect()) */
  714. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  715. while (master->dma_tx && len > 15) {
  716. /*
  717. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  718. * words, with byte resp. word swapping.
  719. */
  720. unsigned int l = 0;
  721. if (tx_buf)
  722. l = min(len, p->tx_fifo_size * 4);
  723. if (rx_buf)
  724. l = min(len, p->rx_fifo_size * 4);
  725. if (bits <= 8) {
  726. if (l & 3)
  727. break;
  728. copy32 = copy_bswap32;
  729. } else if (bits <= 16) {
  730. if (l & 1)
  731. break;
  732. copy32 = copy_wswap32;
  733. } else {
  734. copy32 = copy_plain32;
  735. }
  736. if (tx_buf)
  737. copy32(p->tx_dma_page, tx_buf, l / 4);
  738. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  739. if (ret == -EAGAIN) {
  740. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  741. dev_driver_string(&p->pdev->dev),
  742. dev_name(&p->pdev->dev));
  743. break;
  744. }
  745. if (ret)
  746. return ret;
  747. if (rx_buf) {
  748. copy32(rx_buf, p->rx_dma_page, l / 4);
  749. rx_buf += l;
  750. }
  751. if (tx_buf)
  752. tx_buf += l;
  753. len -= l;
  754. if (!len)
  755. return 0;
  756. }
  757. if (bits <= 8 && len > 15 && !(len & 3)) {
  758. bits = 32;
  759. swab = true;
  760. } else {
  761. swab = false;
  762. }
  763. /* setup bytes per word and fifo read/write functions */
  764. if (bits <= 8) {
  765. bytes_per_word = 1;
  766. tx_fifo = sh_msiof_spi_write_fifo_8;
  767. rx_fifo = sh_msiof_spi_read_fifo_8;
  768. } else if (bits <= 16) {
  769. bytes_per_word = 2;
  770. if ((unsigned long)tx_buf & 0x01)
  771. tx_fifo = sh_msiof_spi_write_fifo_16u;
  772. else
  773. tx_fifo = sh_msiof_spi_write_fifo_16;
  774. if ((unsigned long)rx_buf & 0x01)
  775. rx_fifo = sh_msiof_spi_read_fifo_16u;
  776. else
  777. rx_fifo = sh_msiof_spi_read_fifo_16;
  778. } else if (swab) {
  779. bytes_per_word = 4;
  780. if ((unsigned long)tx_buf & 0x03)
  781. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  782. else
  783. tx_fifo = sh_msiof_spi_write_fifo_s32;
  784. if ((unsigned long)rx_buf & 0x03)
  785. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  786. else
  787. rx_fifo = sh_msiof_spi_read_fifo_s32;
  788. } else {
  789. bytes_per_word = 4;
  790. if ((unsigned long)tx_buf & 0x03)
  791. tx_fifo = sh_msiof_spi_write_fifo_32u;
  792. else
  793. tx_fifo = sh_msiof_spi_write_fifo_32;
  794. if ((unsigned long)rx_buf & 0x03)
  795. rx_fifo = sh_msiof_spi_read_fifo_32u;
  796. else
  797. rx_fifo = sh_msiof_spi_read_fifo_32;
  798. }
  799. /* transfer in fifo sized chunks */
  800. words = len / bytes_per_word;
  801. while (words > 0) {
  802. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  803. words, bits);
  804. if (n < 0)
  805. return n;
  806. if (tx_buf)
  807. tx_buf += n * bytes_per_word;
  808. if (rx_buf)
  809. rx_buf += n * bytes_per_word;
  810. words -= n;
  811. }
  812. return 0;
  813. }
  814. static const struct sh_msiof_chipdata sh_data = {
  815. .tx_fifo_size = 64,
  816. .rx_fifo_size = 64,
  817. .master_flags = 0,
  818. };
  819. static const struct sh_msiof_chipdata r8a779x_data = {
  820. .tx_fifo_size = 64,
  821. .rx_fifo_size = 64,
  822. .master_flags = SPI_MASTER_MUST_TX,
  823. };
  824. static const struct of_device_id sh_msiof_match[] = {
  825. { .compatible = "renesas,sh-msiof", .data = &sh_data },
  826. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  827. { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
  828. { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
  829. { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
  830. { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
  831. { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
  832. {},
  833. };
  834. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  835. #ifdef CONFIG_OF
  836. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  837. {
  838. struct sh_msiof_spi_info *info;
  839. struct device_node *np = dev->of_node;
  840. u32 num_cs = 1;
  841. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  842. if (!info)
  843. return NULL;
  844. /* Parse the MSIOF properties */
  845. of_property_read_u32(np, "num-cs", &num_cs);
  846. of_property_read_u32(np, "renesas,tx-fifo-size",
  847. &info->tx_fifo_override);
  848. of_property_read_u32(np, "renesas,rx-fifo-size",
  849. &info->rx_fifo_override);
  850. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  851. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  852. info->num_chipselect = num_cs;
  853. return info;
  854. }
  855. #else
  856. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  857. {
  858. return NULL;
  859. }
  860. #endif
  861. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  862. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  863. {
  864. dma_cap_mask_t mask;
  865. struct dma_chan *chan;
  866. struct dma_slave_config cfg;
  867. int ret;
  868. dma_cap_zero(mask);
  869. dma_cap_set(DMA_SLAVE, mask);
  870. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  871. (void *)(unsigned long)id, dev,
  872. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  873. if (!chan) {
  874. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  875. return NULL;
  876. }
  877. memset(&cfg, 0, sizeof(cfg));
  878. cfg.direction = dir;
  879. if (dir == DMA_MEM_TO_DEV) {
  880. cfg.dst_addr = port_addr;
  881. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  882. } else {
  883. cfg.src_addr = port_addr;
  884. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  885. }
  886. ret = dmaengine_slave_config(chan, &cfg);
  887. if (ret) {
  888. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  889. dma_release_channel(chan);
  890. return NULL;
  891. }
  892. return chan;
  893. }
  894. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  895. {
  896. struct platform_device *pdev = p->pdev;
  897. struct device *dev = &pdev->dev;
  898. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  899. unsigned int dma_tx_id, dma_rx_id;
  900. const struct resource *res;
  901. struct spi_master *master;
  902. struct device *tx_dev, *rx_dev;
  903. if (dev->of_node) {
  904. /* In the OF case we will get the slave IDs from the DT */
  905. dma_tx_id = 0;
  906. dma_rx_id = 0;
  907. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  908. dma_tx_id = info->dma_tx_id;
  909. dma_rx_id = info->dma_rx_id;
  910. } else {
  911. /* The driver assumes no error */
  912. return 0;
  913. }
  914. /* The DMA engine uses the second register set, if present */
  915. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  916. if (!res)
  917. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  918. master = p->master;
  919. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  920. dma_tx_id,
  921. res->start + TFDR);
  922. if (!master->dma_tx)
  923. return -ENODEV;
  924. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  925. dma_rx_id,
  926. res->start + RFDR);
  927. if (!master->dma_rx)
  928. goto free_tx_chan;
  929. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  930. if (!p->tx_dma_page)
  931. goto free_rx_chan;
  932. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  933. if (!p->rx_dma_page)
  934. goto free_tx_page;
  935. tx_dev = master->dma_tx->device->dev;
  936. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  937. DMA_TO_DEVICE);
  938. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  939. goto free_rx_page;
  940. rx_dev = master->dma_rx->device->dev;
  941. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  942. DMA_FROM_DEVICE);
  943. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  944. goto unmap_tx_page;
  945. dev_info(dev, "DMA available");
  946. return 0;
  947. unmap_tx_page:
  948. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  949. free_rx_page:
  950. free_page((unsigned long)p->rx_dma_page);
  951. free_tx_page:
  952. free_page((unsigned long)p->tx_dma_page);
  953. free_rx_chan:
  954. dma_release_channel(master->dma_rx);
  955. free_tx_chan:
  956. dma_release_channel(master->dma_tx);
  957. master->dma_tx = NULL;
  958. return -ENODEV;
  959. }
  960. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  961. {
  962. struct spi_master *master = p->master;
  963. struct device *dev;
  964. if (!master->dma_tx)
  965. return;
  966. dev = &p->pdev->dev;
  967. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  968. PAGE_SIZE, DMA_FROM_DEVICE);
  969. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  970. PAGE_SIZE, DMA_TO_DEVICE);
  971. free_page((unsigned long)p->rx_dma_page);
  972. free_page((unsigned long)p->tx_dma_page);
  973. dma_release_channel(master->dma_rx);
  974. dma_release_channel(master->dma_tx);
  975. }
  976. static int sh_msiof_spi_probe(struct platform_device *pdev)
  977. {
  978. struct resource *r;
  979. struct spi_master *master;
  980. const struct of_device_id *of_id;
  981. struct sh_msiof_spi_priv *p;
  982. int i;
  983. int ret;
  984. master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
  985. if (master == NULL) {
  986. dev_err(&pdev->dev, "failed to allocate spi master\n");
  987. return -ENOMEM;
  988. }
  989. p = spi_master_get_devdata(master);
  990. platform_set_drvdata(pdev, p);
  991. p->master = master;
  992. of_id = of_match_device(sh_msiof_match, &pdev->dev);
  993. if (of_id) {
  994. p->chipdata = of_id->data;
  995. p->info = sh_msiof_spi_parse_dt(&pdev->dev);
  996. } else {
  997. p->chipdata = (const void *)pdev->id_entry->driver_data;
  998. p->info = dev_get_platdata(&pdev->dev);
  999. }
  1000. if (!p->info) {
  1001. dev_err(&pdev->dev, "failed to obtain device info\n");
  1002. ret = -ENXIO;
  1003. goto err1;
  1004. }
  1005. init_completion(&p->done);
  1006. p->clk = devm_clk_get(&pdev->dev, NULL);
  1007. if (IS_ERR(p->clk)) {
  1008. dev_err(&pdev->dev, "cannot get clock\n");
  1009. ret = PTR_ERR(p->clk);
  1010. goto err1;
  1011. }
  1012. i = platform_get_irq(pdev, 0);
  1013. if (i < 0) {
  1014. dev_err(&pdev->dev, "cannot get platform IRQ\n");
  1015. ret = -ENOENT;
  1016. goto err1;
  1017. }
  1018. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1019. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1020. if (IS_ERR(p->mapbase)) {
  1021. ret = PTR_ERR(p->mapbase);
  1022. goto err1;
  1023. }
  1024. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1025. dev_name(&pdev->dev), p);
  1026. if (ret) {
  1027. dev_err(&pdev->dev, "unable to request irq\n");
  1028. goto err1;
  1029. }
  1030. p->pdev = pdev;
  1031. pm_runtime_enable(&pdev->dev);
  1032. /* Platform data may override FIFO sizes */
  1033. p->tx_fifo_size = p->chipdata->tx_fifo_size;
  1034. p->rx_fifo_size = p->chipdata->rx_fifo_size;
  1035. if (p->info->tx_fifo_override)
  1036. p->tx_fifo_size = p->info->tx_fifo_override;
  1037. if (p->info->rx_fifo_override)
  1038. p->rx_fifo_size = p->info->rx_fifo_override;
  1039. /* init master code */
  1040. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1041. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1042. master->flags = p->chipdata->master_flags;
  1043. master->bus_num = pdev->id;
  1044. master->dev.of_node = pdev->dev.of_node;
  1045. master->num_chipselect = p->info->num_chipselect;
  1046. master->setup = sh_msiof_spi_setup;
  1047. master->prepare_message = sh_msiof_prepare_message;
  1048. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1049. master->auto_runtime_pm = true;
  1050. master->transfer_one = sh_msiof_transfer_one;
  1051. ret = sh_msiof_request_dma(p);
  1052. if (ret < 0)
  1053. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1054. ret = devm_spi_register_master(&pdev->dev, master);
  1055. if (ret < 0) {
  1056. dev_err(&pdev->dev, "spi_register_master error.\n");
  1057. goto err2;
  1058. }
  1059. return 0;
  1060. err2:
  1061. sh_msiof_release_dma(p);
  1062. pm_runtime_disable(&pdev->dev);
  1063. err1:
  1064. spi_master_put(master);
  1065. return ret;
  1066. }
  1067. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1068. {
  1069. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1070. sh_msiof_release_dma(p);
  1071. pm_runtime_disable(&pdev->dev);
  1072. return 0;
  1073. }
  1074. static const struct platform_device_id spi_driver_ids[] = {
  1075. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1076. {},
  1077. };
  1078. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1079. static struct platform_driver sh_msiof_spi_drv = {
  1080. .probe = sh_msiof_spi_probe,
  1081. .remove = sh_msiof_spi_remove,
  1082. .id_table = spi_driver_ids,
  1083. .driver = {
  1084. .name = "spi_sh_msiof",
  1085. .of_match_table = of_match_ptr(sh_msiof_match),
  1086. },
  1087. };
  1088. module_platform_driver(sh_msiof_spi_drv);
  1089. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1090. MODULE_AUTHOR("Magnus Damm");
  1091. MODULE_LICENSE("GPL v2");
  1092. MODULE_ALIAS("platform:spi_sh_msiof");