remoteproc_core.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490
  1. /*
  2. * Remote Processor Framework
  3. *
  4. * Copyright (C) 2011 Texas Instruments, Inc.
  5. * Copyright (C) 2011 Google, Inc.
  6. *
  7. * Ohad Ben-Cohen <ohad@wizery.com>
  8. * Brian Swetland <swetland@google.com>
  9. * Mark Grosen <mgrosen@ti.com>
  10. * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11. * Suman Anna <s-anna@ti.com>
  12. * Robert Tivy <rtivy@ti.com>
  13. * Armando Uribe De Leon <x0095078@ti.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * version 2 as published by the Free Software Foundation.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. */
  24. #define pr_fmt(fmt) "%s: " fmt, __func__
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/slab.h>
  29. #include <linux/mutex.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/firmware.h>
  32. #include <linux/string.h>
  33. #include <linux/debugfs.h>
  34. #include <linux/remoteproc.h>
  35. #include <linux/iommu.h>
  36. #include <linux/idr.h>
  37. #include <linux/elf.h>
  38. #include <linux/crc32.h>
  39. #include <linux/virtio_ids.h>
  40. #include <linux/virtio_ring.h>
  41. #include <asm/byteorder.h>
  42. #include "remoteproc_internal.h"
  43. static DEFINE_MUTEX(rproc_list_mutex);
  44. static LIST_HEAD(rproc_list);
  45. typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  46. struct resource_table *table, int len);
  47. typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  48. void *, int offset, int avail);
  49. /* Unique indices for remoteproc devices */
  50. static DEFINE_IDA(rproc_dev_index);
  51. static const char * const rproc_crash_names[] = {
  52. [RPROC_MMUFAULT] = "mmufault",
  53. };
  54. /* translate rproc_crash_type to string */
  55. static const char *rproc_crash_to_string(enum rproc_crash_type type)
  56. {
  57. if (type < ARRAY_SIZE(rproc_crash_names))
  58. return rproc_crash_names[type];
  59. return "unknown";
  60. }
  61. /*
  62. * This is the IOMMU fault handler we register with the IOMMU API
  63. * (when relevant; not all remote processors access memory through
  64. * an IOMMU).
  65. *
  66. * IOMMU core will invoke this handler whenever the remote processor
  67. * will try to access an unmapped device address.
  68. */
  69. static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  70. unsigned long iova, int flags, void *token)
  71. {
  72. struct rproc *rproc = token;
  73. dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  74. rproc_report_crash(rproc, RPROC_MMUFAULT);
  75. /*
  76. * Let the iommu core know we're not really handling this fault;
  77. * we just used it as a recovery trigger.
  78. */
  79. return -ENOSYS;
  80. }
  81. static int rproc_enable_iommu(struct rproc *rproc)
  82. {
  83. struct iommu_domain *domain;
  84. struct device *dev = rproc->dev.parent;
  85. int ret;
  86. if (!rproc->has_iommu) {
  87. dev_dbg(dev, "iommu not present\n");
  88. return 0;
  89. }
  90. domain = iommu_domain_alloc(dev->bus);
  91. if (!domain) {
  92. dev_err(dev, "can't alloc iommu domain\n");
  93. return -ENOMEM;
  94. }
  95. iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
  96. ret = iommu_attach_device(domain, dev);
  97. if (ret) {
  98. dev_err(dev, "can't attach iommu device: %d\n", ret);
  99. goto free_domain;
  100. }
  101. rproc->domain = domain;
  102. return 0;
  103. free_domain:
  104. iommu_domain_free(domain);
  105. return ret;
  106. }
  107. static void rproc_disable_iommu(struct rproc *rproc)
  108. {
  109. struct iommu_domain *domain = rproc->domain;
  110. struct device *dev = rproc->dev.parent;
  111. if (!domain)
  112. return;
  113. iommu_detach_device(domain, dev);
  114. iommu_domain_free(domain);
  115. }
  116. /**
  117. * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
  118. * @rproc: handle of a remote processor
  119. * @da: remoteproc device address to translate
  120. * @len: length of the memory region @da is pointing to
  121. *
  122. * Some remote processors will ask us to allocate them physically contiguous
  123. * memory regions (which we call "carveouts"), and map them to specific
  124. * device addresses (which are hardcoded in the firmware). They may also have
  125. * dedicated memory regions internal to the processors, and use them either
  126. * exclusively or alongside carveouts.
  127. *
  128. * They may then ask us to copy objects into specific device addresses (e.g.
  129. * code/data sections) or expose us certain symbols in other device address
  130. * (e.g. their trace buffer).
  131. *
  132. * This function is a helper function with which we can go over the allocated
  133. * carveouts and translate specific device addresses to kernel virtual addresses
  134. * so we can access the referenced memory. This function also allows to perform
  135. * translations on the internal remoteproc memory regions through a platform
  136. * implementation specific da_to_va ops, if present.
  137. *
  138. * The function returns a valid kernel address on success or NULL on failure.
  139. *
  140. * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
  141. * but only on kernel direct mapped RAM memory. Instead, we're just using
  142. * here the output of the DMA API for the carveouts, which should be more
  143. * correct.
  144. */
  145. void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
  146. {
  147. struct rproc_mem_entry *carveout;
  148. void *ptr = NULL;
  149. if (rproc->ops->da_to_va) {
  150. ptr = rproc->ops->da_to_va(rproc, da, len);
  151. if (ptr)
  152. goto out;
  153. }
  154. list_for_each_entry(carveout, &rproc->carveouts, node) {
  155. int offset = da - carveout->da;
  156. /* try next carveout if da is too small */
  157. if (offset < 0)
  158. continue;
  159. /* try next carveout if da is too large */
  160. if (offset + len > carveout->len)
  161. continue;
  162. ptr = carveout->va + offset;
  163. break;
  164. }
  165. out:
  166. return ptr;
  167. }
  168. EXPORT_SYMBOL(rproc_da_to_va);
  169. int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
  170. {
  171. struct rproc *rproc = rvdev->rproc;
  172. struct device *dev = &rproc->dev;
  173. struct rproc_vring *rvring = &rvdev->vring[i];
  174. struct fw_rsc_vdev *rsc;
  175. dma_addr_t dma;
  176. void *va;
  177. int ret, size, notifyid;
  178. /* actual size of vring (in bytes) */
  179. size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
  180. /*
  181. * Allocate non-cacheable memory for the vring. In the future
  182. * this call will also configure the IOMMU for us
  183. */
  184. va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
  185. if (!va) {
  186. dev_err(dev->parent, "dma_alloc_coherent failed\n");
  187. return -EINVAL;
  188. }
  189. /*
  190. * Assign an rproc-wide unique index for this vring
  191. * TODO: assign a notifyid for rvdev updates as well
  192. * TODO: support predefined notifyids (via resource table)
  193. */
  194. ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
  195. if (ret < 0) {
  196. dev_err(dev, "idr_alloc failed: %d\n", ret);
  197. dma_free_coherent(dev->parent, size, va, dma);
  198. return ret;
  199. }
  200. notifyid = ret;
  201. dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
  202. (unsigned long long)dma, size, notifyid);
  203. rvring->va = va;
  204. rvring->dma = dma;
  205. rvring->notifyid = notifyid;
  206. /*
  207. * Let the rproc know the notifyid and da of this vring.
  208. * Not all platforms use dma_alloc_coherent to automatically
  209. * set up the iommu. In this case the device address (da) will
  210. * hold the physical address and not the device address.
  211. */
  212. rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
  213. rsc->vring[i].da = dma;
  214. rsc->vring[i].notifyid = notifyid;
  215. return 0;
  216. }
  217. static int
  218. rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
  219. {
  220. struct rproc *rproc = rvdev->rproc;
  221. struct device *dev = &rproc->dev;
  222. struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
  223. struct rproc_vring *rvring = &rvdev->vring[i];
  224. dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
  225. i, vring->da, vring->num, vring->align);
  226. /* make sure reserved bytes are zeroes */
  227. if (vring->reserved) {
  228. dev_err(dev, "vring rsc has non zero reserved bytes\n");
  229. return -EINVAL;
  230. }
  231. /* verify queue size and vring alignment are sane */
  232. if (!vring->num || !vring->align) {
  233. dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
  234. vring->num, vring->align);
  235. return -EINVAL;
  236. }
  237. rvring->len = vring->num;
  238. rvring->align = vring->align;
  239. rvring->rvdev = rvdev;
  240. return 0;
  241. }
  242. void rproc_free_vring(struct rproc_vring *rvring)
  243. {
  244. int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
  245. struct rproc *rproc = rvring->rvdev->rproc;
  246. int idx = rvring->rvdev->vring - rvring;
  247. struct fw_rsc_vdev *rsc;
  248. dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
  249. idr_remove(&rproc->notifyids, rvring->notifyid);
  250. /* reset resource entry info */
  251. rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
  252. rsc->vring[idx].da = 0;
  253. rsc->vring[idx].notifyid = -1;
  254. }
  255. /**
  256. * rproc_handle_vdev() - handle a vdev fw resource
  257. * @rproc: the remote processor
  258. * @rsc: the vring resource descriptor
  259. * @avail: size of available data (for sanity checking the image)
  260. *
  261. * This resource entry requests the host to statically register a virtio
  262. * device (vdev), and setup everything needed to support it. It contains
  263. * everything needed to make it possible: the virtio device id, virtio
  264. * device features, vrings information, virtio config space, etc...
  265. *
  266. * Before registering the vdev, the vrings are allocated from non-cacheable
  267. * physically contiguous memory. Currently we only support two vrings per
  268. * remote processor (temporary limitation). We might also want to consider
  269. * doing the vring allocation only later when ->find_vqs() is invoked, and
  270. * then release them upon ->del_vqs().
  271. *
  272. * Note: @da is currently not really handled correctly: we dynamically
  273. * allocate it using the DMA API, ignoring requested hard coded addresses,
  274. * and we don't take care of any required IOMMU programming. This is all
  275. * going to be taken care of when the generic iommu-based DMA API will be
  276. * merged. Meanwhile, statically-addressed iommu-based firmware images should
  277. * use RSC_DEVMEM resource entries to map their required @da to the physical
  278. * address of their base CMA region (ouch, hacky!).
  279. *
  280. * Returns 0 on success, or an appropriate error code otherwise
  281. */
  282. static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
  283. int offset, int avail)
  284. {
  285. struct device *dev = &rproc->dev;
  286. struct rproc_vdev *rvdev;
  287. int i, ret;
  288. /* make sure resource isn't truncated */
  289. if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
  290. + rsc->config_len > avail) {
  291. dev_err(dev, "vdev rsc is truncated\n");
  292. return -EINVAL;
  293. }
  294. /* make sure reserved bytes are zeroes */
  295. if (rsc->reserved[0] || rsc->reserved[1]) {
  296. dev_err(dev, "vdev rsc has non zero reserved bytes\n");
  297. return -EINVAL;
  298. }
  299. dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
  300. rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
  301. /* we currently support only two vrings per rvdev */
  302. if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
  303. dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
  304. return -EINVAL;
  305. }
  306. rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
  307. if (!rvdev)
  308. return -ENOMEM;
  309. rvdev->rproc = rproc;
  310. /* parse the vrings */
  311. for (i = 0; i < rsc->num_of_vrings; i++) {
  312. ret = rproc_parse_vring(rvdev, rsc, i);
  313. if (ret)
  314. goto free_rvdev;
  315. }
  316. /* remember the resource offset*/
  317. rvdev->rsc_offset = offset;
  318. list_add_tail(&rvdev->node, &rproc->rvdevs);
  319. /* it is now safe to add the virtio device */
  320. ret = rproc_add_virtio_dev(rvdev, rsc->id);
  321. if (ret)
  322. goto remove_rvdev;
  323. return 0;
  324. remove_rvdev:
  325. list_del(&rvdev->node);
  326. free_rvdev:
  327. kfree(rvdev);
  328. return ret;
  329. }
  330. /**
  331. * rproc_handle_trace() - handle a shared trace buffer resource
  332. * @rproc: the remote processor
  333. * @rsc: the trace resource descriptor
  334. * @avail: size of available data (for sanity checking the image)
  335. *
  336. * In case the remote processor dumps trace logs into memory,
  337. * export it via debugfs.
  338. *
  339. * Currently, the 'da' member of @rsc should contain the device address
  340. * where the remote processor is dumping the traces. Later we could also
  341. * support dynamically allocating this address using the generic
  342. * DMA API (but currently there isn't a use case for that).
  343. *
  344. * Returns 0 on success, or an appropriate error code otherwise
  345. */
  346. static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
  347. int offset, int avail)
  348. {
  349. struct rproc_mem_entry *trace;
  350. struct device *dev = &rproc->dev;
  351. void *ptr;
  352. char name[15];
  353. if (sizeof(*rsc) > avail) {
  354. dev_err(dev, "trace rsc is truncated\n");
  355. return -EINVAL;
  356. }
  357. /* make sure reserved bytes are zeroes */
  358. if (rsc->reserved) {
  359. dev_err(dev, "trace rsc has non zero reserved bytes\n");
  360. return -EINVAL;
  361. }
  362. /* what's the kernel address of this resource ? */
  363. ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
  364. if (!ptr) {
  365. dev_err(dev, "erroneous trace resource entry\n");
  366. return -EINVAL;
  367. }
  368. trace = kzalloc(sizeof(*trace), GFP_KERNEL);
  369. if (!trace)
  370. return -ENOMEM;
  371. /* set the trace buffer dma properties */
  372. trace->len = rsc->len;
  373. trace->va = ptr;
  374. /* make sure snprintf always null terminates, even if truncating */
  375. snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
  376. /* create the debugfs entry */
  377. trace->priv = rproc_create_trace_file(name, rproc, trace);
  378. if (!trace->priv) {
  379. trace->va = NULL;
  380. kfree(trace);
  381. return -EINVAL;
  382. }
  383. list_add_tail(&trace->node, &rproc->traces);
  384. rproc->num_traces++;
  385. dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
  386. rsc->da, rsc->len);
  387. return 0;
  388. }
  389. /**
  390. * rproc_handle_devmem() - handle devmem resource entry
  391. * @rproc: remote processor handle
  392. * @rsc: the devmem resource entry
  393. * @avail: size of available data (for sanity checking the image)
  394. *
  395. * Remote processors commonly need to access certain on-chip peripherals.
  396. *
  397. * Some of these remote processors access memory via an iommu device,
  398. * and might require us to configure their iommu before they can access
  399. * the on-chip peripherals they need.
  400. *
  401. * This resource entry is a request to map such a peripheral device.
  402. *
  403. * These devmem entries will contain the physical address of the device in
  404. * the 'pa' member. If a specific device address is expected, then 'da' will
  405. * contain it (currently this is the only use case supported). 'len' will
  406. * contain the size of the physical region we need to map.
  407. *
  408. * Currently we just "trust" those devmem entries to contain valid physical
  409. * addresses, but this is going to change: we want the implementations to
  410. * tell us ranges of physical addresses the firmware is allowed to request,
  411. * and not allow firmwares to request access to physical addresses that
  412. * are outside those ranges.
  413. */
  414. static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
  415. int offset, int avail)
  416. {
  417. struct rproc_mem_entry *mapping;
  418. struct device *dev = &rproc->dev;
  419. int ret;
  420. /* no point in handling this resource without a valid iommu domain */
  421. if (!rproc->domain)
  422. return -EINVAL;
  423. if (sizeof(*rsc) > avail) {
  424. dev_err(dev, "devmem rsc is truncated\n");
  425. return -EINVAL;
  426. }
  427. /* make sure reserved bytes are zeroes */
  428. if (rsc->reserved) {
  429. dev_err(dev, "devmem rsc has non zero reserved bytes\n");
  430. return -EINVAL;
  431. }
  432. mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
  433. if (!mapping)
  434. return -ENOMEM;
  435. ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
  436. if (ret) {
  437. dev_err(dev, "failed to map devmem: %d\n", ret);
  438. goto out;
  439. }
  440. /*
  441. * We'll need this info later when we'll want to unmap everything
  442. * (e.g. on shutdown).
  443. *
  444. * We can't trust the remote processor not to change the resource
  445. * table, so we must maintain this info independently.
  446. */
  447. mapping->da = rsc->da;
  448. mapping->len = rsc->len;
  449. list_add_tail(&mapping->node, &rproc->mappings);
  450. dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
  451. rsc->pa, rsc->da, rsc->len);
  452. return 0;
  453. out:
  454. kfree(mapping);
  455. return ret;
  456. }
  457. /**
  458. * rproc_handle_carveout() - handle phys contig memory allocation requests
  459. * @rproc: rproc handle
  460. * @rsc: the resource entry
  461. * @avail: size of available data (for image validation)
  462. *
  463. * This function will handle firmware requests for allocation of physically
  464. * contiguous memory regions.
  465. *
  466. * These request entries should come first in the firmware's resource table,
  467. * as other firmware entries might request placing other data objects inside
  468. * these memory regions (e.g. data/code segments, trace resource entries, ...).
  469. *
  470. * Allocating memory this way helps utilizing the reserved physical memory
  471. * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
  472. * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
  473. * pressure is important; it may have a substantial impact on performance.
  474. */
  475. static int rproc_handle_carveout(struct rproc *rproc,
  476. struct fw_rsc_carveout *rsc,
  477. int offset, int avail)
  478. {
  479. struct rproc_mem_entry *carveout, *mapping;
  480. struct device *dev = &rproc->dev;
  481. dma_addr_t dma;
  482. void *va;
  483. int ret;
  484. if (sizeof(*rsc) > avail) {
  485. dev_err(dev, "carveout rsc is truncated\n");
  486. return -EINVAL;
  487. }
  488. /* make sure reserved bytes are zeroes */
  489. if (rsc->reserved) {
  490. dev_err(dev, "carveout rsc has non zero reserved bytes\n");
  491. return -EINVAL;
  492. }
  493. dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
  494. rsc->da, rsc->pa, rsc->len, rsc->flags);
  495. carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
  496. if (!carveout)
  497. return -ENOMEM;
  498. va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
  499. if (!va) {
  500. dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
  501. ret = -ENOMEM;
  502. goto free_carv;
  503. }
  504. dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
  505. (unsigned long long)dma, rsc->len);
  506. /*
  507. * Ok, this is non-standard.
  508. *
  509. * Sometimes we can't rely on the generic iommu-based DMA API
  510. * to dynamically allocate the device address and then set the IOMMU
  511. * tables accordingly, because some remote processors might
  512. * _require_ us to use hard coded device addresses that their
  513. * firmware was compiled with.
  514. *
  515. * In this case, we must use the IOMMU API directly and map
  516. * the memory to the device address as expected by the remote
  517. * processor.
  518. *
  519. * Obviously such remote processor devices should not be configured
  520. * to use the iommu-based DMA API: we expect 'dma' to contain the
  521. * physical address in this case.
  522. */
  523. if (rproc->domain) {
  524. mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
  525. if (!mapping) {
  526. dev_err(dev, "kzalloc mapping failed\n");
  527. ret = -ENOMEM;
  528. goto dma_free;
  529. }
  530. ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
  531. rsc->flags);
  532. if (ret) {
  533. dev_err(dev, "iommu_map failed: %d\n", ret);
  534. goto free_mapping;
  535. }
  536. /*
  537. * We'll need this info later when we'll want to unmap
  538. * everything (e.g. on shutdown).
  539. *
  540. * We can't trust the remote processor not to change the
  541. * resource table, so we must maintain this info independently.
  542. */
  543. mapping->da = rsc->da;
  544. mapping->len = rsc->len;
  545. list_add_tail(&mapping->node, &rproc->mappings);
  546. dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
  547. rsc->da, (unsigned long long)dma);
  548. }
  549. /*
  550. * Some remote processors might need to know the pa
  551. * even though they are behind an IOMMU. E.g., OMAP4's
  552. * remote M3 processor needs this so it can control
  553. * on-chip hardware accelerators that are not behind
  554. * the IOMMU, and therefor must know the pa.
  555. *
  556. * Generally we don't want to expose physical addresses
  557. * if we don't have to (remote processors are generally
  558. * _not_ trusted), so we might want to do this only for
  559. * remote processor that _must_ have this (e.g. OMAP4's
  560. * dual M3 subsystem).
  561. *
  562. * Non-IOMMU processors might also want to have this info.
  563. * In this case, the device address and the physical address
  564. * are the same.
  565. */
  566. rsc->pa = dma;
  567. carveout->va = va;
  568. carveout->len = rsc->len;
  569. carveout->dma = dma;
  570. carveout->da = rsc->da;
  571. list_add_tail(&carveout->node, &rproc->carveouts);
  572. return 0;
  573. free_mapping:
  574. kfree(mapping);
  575. dma_free:
  576. dma_free_coherent(dev->parent, rsc->len, va, dma);
  577. free_carv:
  578. kfree(carveout);
  579. return ret;
  580. }
  581. static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
  582. int offset, int avail)
  583. {
  584. /* Summarize the number of notification IDs */
  585. rproc->max_notifyid += rsc->num_of_vrings;
  586. return 0;
  587. }
  588. /*
  589. * A lookup table for resource handlers. The indices are defined in
  590. * enum fw_resource_type.
  591. */
  592. static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
  593. [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
  594. [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
  595. [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
  596. [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
  597. };
  598. static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
  599. [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
  600. };
  601. static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
  602. [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
  603. };
  604. /* handle firmware resource entries before booting the remote processor */
  605. static int rproc_handle_resources(struct rproc *rproc, int len,
  606. rproc_handle_resource_t handlers[RSC_LAST])
  607. {
  608. struct device *dev = &rproc->dev;
  609. rproc_handle_resource_t handler;
  610. int ret = 0, i;
  611. for (i = 0; i < rproc->table_ptr->num; i++) {
  612. int offset = rproc->table_ptr->offset[i];
  613. struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
  614. int avail = len - offset - sizeof(*hdr);
  615. void *rsc = (void *)hdr + sizeof(*hdr);
  616. /* make sure table isn't truncated */
  617. if (avail < 0) {
  618. dev_err(dev, "rsc table is truncated\n");
  619. return -EINVAL;
  620. }
  621. dev_dbg(dev, "rsc: type %d\n", hdr->type);
  622. if (hdr->type >= RSC_LAST) {
  623. dev_warn(dev, "unsupported resource %d\n", hdr->type);
  624. continue;
  625. }
  626. handler = handlers[hdr->type];
  627. if (!handler)
  628. continue;
  629. ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
  630. if (ret)
  631. break;
  632. }
  633. return ret;
  634. }
  635. /**
  636. * rproc_resource_cleanup() - clean up and free all acquired resources
  637. * @rproc: rproc handle
  638. *
  639. * This function will free all resources acquired for @rproc, and it
  640. * is called whenever @rproc either shuts down or fails to boot.
  641. */
  642. static void rproc_resource_cleanup(struct rproc *rproc)
  643. {
  644. struct rproc_mem_entry *entry, *tmp;
  645. struct device *dev = &rproc->dev;
  646. /* clean up debugfs trace entries */
  647. list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
  648. rproc_remove_trace_file(entry->priv);
  649. rproc->num_traces--;
  650. list_del(&entry->node);
  651. kfree(entry);
  652. }
  653. /* clean up iommu mapping entries */
  654. list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
  655. size_t unmapped;
  656. unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
  657. if (unmapped != entry->len) {
  658. /* nothing much to do besides complaining */
  659. dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
  660. unmapped);
  661. }
  662. list_del(&entry->node);
  663. kfree(entry);
  664. }
  665. /* clean up carveout allocations */
  666. list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
  667. dma_free_coherent(dev->parent, entry->len, entry->va,
  668. entry->dma);
  669. list_del(&entry->node);
  670. kfree(entry);
  671. }
  672. }
  673. /*
  674. * take a firmware and boot a remote processor with it.
  675. */
  676. static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
  677. {
  678. struct device *dev = &rproc->dev;
  679. const char *name = rproc->firmware;
  680. struct resource_table *table, *loaded_table;
  681. int ret, tablesz;
  682. if (!rproc->table_ptr)
  683. return -ENOMEM;
  684. ret = rproc_fw_sanity_check(rproc, fw);
  685. if (ret)
  686. return ret;
  687. dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
  688. /*
  689. * if enabling an IOMMU isn't relevant for this rproc, this is
  690. * just a nop
  691. */
  692. ret = rproc_enable_iommu(rproc);
  693. if (ret) {
  694. dev_err(dev, "can't enable iommu: %d\n", ret);
  695. return ret;
  696. }
  697. rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
  698. ret = -EINVAL;
  699. /* look for the resource table */
  700. table = rproc_find_rsc_table(rproc, fw, &tablesz);
  701. if (!table) {
  702. dev_err(dev, "Failed to find resource table\n");
  703. goto clean_up;
  704. }
  705. /* Verify that resource table in loaded fw is unchanged */
  706. if (rproc->table_csum != crc32(0, table, tablesz)) {
  707. dev_err(dev, "resource checksum failed, fw changed?\n");
  708. goto clean_up;
  709. }
  710. /* handle fw resources which are required to boot rproc */
  711. ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
  712. if (ret) {
  713. dev_err(dev, "Failed to process resources: %d\n", ret);
  714. goto clean_up;
  715. }
  716. /* load the ELF segments to memory */
  717. ret = rproc_load_segments(rproc, fw);
  718. if (ret) {
  719. dev_err(dev, "Failed to load program segments: %d\n", ret);
  720. goto clean_up;
  721. }
  722. /*
  723. * The starting device has been given the rproc->cached_table as the
  724. * resource table. The address of the vring along with the other
  725. * allocated resources (carveouts etc) is stored in cached_table.
  726. * In order to pass this information to the remote device we must
  727. * copy this information to device memory.
  728. */
  729. loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
  730. if (!loaded_table) {
  731. ret = -EINVAL;
  732. goto clean_up;
  733. }
  734. memcpy(loaded_table, rproc->cached_table, tablesz);
  735. /* power up the remote processor */
  736. ret = rproc->ops->start(rproc);
  737. if (ret) {
  738. dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
  739. goto clean_up;
  740. }
  741. /*
  742. * Update table_ptr so that all subsequent vring allocations and
  743. * virtio fields manipulation update the actual loaded resource table
  744. * in device memory.
  745. */
  746. rproc->table_ptr = loaded_table;
  747. rproc->state = RPROC_RUNNING;
  748. dev_info(dev, "remote processor %s is now up\n", rproc->name);
  749. return 0;
  750. clean_up:
  751. rproc_resource_cleanup(rproc);
  752. rproc_disable_iommu(rproc);
  753. return ret;
  754. }
  755. /*
  756. * take a firmware and look for virtio devices to register.
  757. *
  758. * Note: this function is called asynchronously upon registration of the
  759. * remote processor (so we must wait until it completes before we try
  760. * to unregister the device. one other option is just to use kref here,
  761. * that might be cleaner).
  762. */
  763. static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
  764. {
  765. struct rproc *rproc = context;
  766. struct resource_table *table;
  767. int ret, tablesz;
  768. if (rproc_fw_sanity_check(rproc, fw) < 0)
  769. goto out;
  770. /* look for the resource table */
  771. table = rproc_find_rsc_table(rproc, fw, &tablesz);
  772. if (!table)
  773. goto out;
  774. rproc->table_csum = crc32(0, table, tablesz);
  775. /*
  776. * Create a copy of the resource table. When a virtio device starts
  777. * and calls vring_new_virtqueue() the address of the allocated vring
  778. * will be stored in the cached_table. Before the device is started,
  779. * cached_table will be copied into devic memory.
  780. */
  781. rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
  782. if (!rproc->cached_table)
  783. goto out;
  784. rproc->table_ptr = rproc->cached_table;
  785. /* count the number of notify-ids */
  786. rproc->max_notifyid = -1;
  787. ret = rproc_handle_resources(rproc, tablesz,
  788. rproc_count_vrings_handler);
  789. if (ret)
  790. goto out;
  791. /* look for virtio devices and register them */
  792. ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
  793. out:
  794. release_firmware(fw);
  795. /* allow rproc_del() contexts, if any, to proceed */
  796. complete_all(&rproc->firmware_loading_complete);
  797. }
  798. static int rproc_add_virtio_devices(struct rproc *rproc)
  799. {
  800. int ret;
  801. /* rproc_del() calls must wait until async loader completes */
  802. init_completion(&rproc->firmware_loading_complete);
  803. /*
  804. * We must retrieve early virtio configuration info from
  805. * the firmware (e.g. whether to register a virtio device,
  806. * what virtio features does it support, ...).
  807. *
  808. * We're initiating an asynchronous firmware loading, so we can
  809. * be built-in kernel code, without hanging the boot process.
  810. */
  811. ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
  812. rproc->firmware, &rproc->dev, GFP_KERNEL,
  813. rproc, rproc_fw_config_virtio);
  814. if (ret < 0) {
  815. dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
  816. complete_all(&rproc->firmware_loading_complete);
  817. }
  818. return ret;
  819. }
  820. /**
  821. * rproc_trigger_recovery() - recover a remoteproc
  822. * @rproc: the remote processor
  823. *
  824. * The recovery is done by reseting all the virtio devices, that way all the
  825. * rpmsg drivers will be reseted along with the remote processor making the
  826. * remoteproc functional again.
  827. *
  828. * This function can sleep, so it cannot be called from atomic context.
  829. */
  830. int rproc_trigger_recovery(struct rproc *rproc)
  831. {
  832. struct rproc_vdev *rvdev, *rvtmp;
  833. dev_err(&rproc->dev, "recovering %s\n", rproc->name);
  834. init_completion(&rproc->crash_comp);
  835. /* clean up remote vdev entries */
  836. list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
  837. rproc_remove_virtio_dev(rvdev);
  838. /* wait until there is no more rproc users */
  839. wait_for_completion(&rproc->crash_comp);
  840. /* Free the copy of the resource table */
  841. kfree(rproc->cached_table);
  842. return rproc_add_virtio_devices(rproc);
  843. }
  844. /**
  845. * rproc_crash_handler_work() - handle a crash
  846. *
  847. * This function needs to handle everything related to a crash, like cpu
  848. * registers and stack dump, information to help to debug the fatal error, etc.
  849. */
  850. static void rproc_crash_handler_work(struct work_struct *work)
  851. {
  852. struct rproc *rproc = container_of(work, struct rproc, crash_handler);
  853. struct device *dev = &rproc->dev;
  854. dev_dbg(dev, "enter %s\n", __func__);
  855. mutex_lock(&rproc->lock);
  856. if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
  857. /* handle only the first crash detected */
  858. mutex_unlock(&rproc->lock);
  859. return;
  860. }
  861. rproc->state = RPROC_CRASHED;
  862. dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
  863. rproc->name);
  864. mutex_unlock(&rproc->lock);
  865. if (!rproc->recovery_disabled)
  866. rproc_trigger_recovery(rproc);
  867. }
  868. /**
  869. * rproc_boot() - boot a remote processor
  870. * @rproc: handle of a remote processor
  871. *
  872. * Boot a remote processor (i.e. load its firmware, power it on, ...).
  873. *
  874. * If the remote processor is already powered on, this function immediately
  875. * returns (successfully).
  876. *
  877. * Returns 0 on success, and an appropriate error value otherwise.
  878. */
  879. int rproc_boot(struct rproc *rproc)
  880. {
  881. const struct firmware *firmware_p;
  882. struct device *dev;
  883. int ret;
  884. if (!rproc) {
  885. pr_err("invalid rproc handle\n");
  886. return -EINVAL;
  887. }
  888. dev = &rproc->dev;
  889. ret = mutex_lock_interruptible(&rproc->lock);
  890. if (ret) {
  891. dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
  892. return ret;
  893. }
  894. /* loading a firmware is required */
  895. if (!rproc->firmware) {
  896. dev_err(dev, "%s: no firmware to load\n", __func__);
  897. ret = -EINVAL;
  898. goto unlock_mutex;
  899. }
  900. /* prevent underlying implementation from being removed */
  901. if (!try_module_get(dev->parent->driver->owner)) {
  902. dev_err(dev, "%s: can't get owner\n", __func__);
  903. ret = -EINVAL;
  904. goto unlock_mutex;
  905. }
  906. /* skip the boot process if rproc is already powered up */
  907. if (atomic_inc_return(&rproc->power) > 1) {
  908. ret = 0;
  909. goto unlock_mutex;
  910. }
  911. dev_info(dev, "powering up %s\n", rproc->name);
  912. /* load firmware */
  913. ret = request_firmware(&firmware_p, rproc->firmware, dev);
  914. if (ret < 0) {
  915. dev_err(dev, "request_firmware failed: %d\n", ret);
  916. goto downref_rproc;
  917. }
  918. ret = rproc_fw_boot(rproc, firmware_p);
  919. release_firmware(firmware_p);
  920. downref_rproc:
  921. if (ret) {
  922. module_put(dev->parent->driver->owner);
  923. atomic_dec(&rproc->power);
  924. }
  925. unlock_mutex:
  926. mutex_unlock(&rproc->lock);
  927. return ret;
  928. }
  929. EXPORT_SYMBOL(rproc_boot);
  930. /**
  931. * rproc_shutdown() - power off the remote processor
  932. * @rproc: the remote processor
  933. *
  934. * Power off a remote processor (previously booted with rproc_boot()).
  935. *
  936. * In case @rproc is still being used by an additional user(s), then
  937. * this function will just decrement the power refcount and exit,
  938. * without really powering off the device.
  939. *
  940. * Every call to rproc_boot() must (eventually) be accompanied by a call
  941. * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
  942. *
  943. * Notes:
  944. * - we're not decrementing the rproc's refcount, only the power refcount.
  945. * which means that the @rproc handle stays valid even after rproc_shutdown()
  946. * returns, and users can still use it with a subsequent rproc_boot(), if
  947. * needed.
  948. */
  949. void rproc_shutdown(struct rproc *rproc)
  950. {
  951. struct device *dev = &rproc->dev;
  952. int ret;
  953. ret = mutex_lock_interruptible(&rproc->lock);
  954. if (ret) {
  955. dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
  956. return;
  957. }
  958. /* if the remote proc is still needed, bail out */
  959. if (!atomic_dec_and_test(&rproc->power))
  960. goto out;
  961. /* power off the remote processor */
  962. ret = rproc->ops->stop(rproc);
  963. if (ret) {
  964. atomic_inc(&rproc->power);
  965. dev_err(dev, "can't stop rproc: %d\n", ret);
  966. goto out;
  967. }
  968. /* clean up all acquired resources */
  969. rproc_resource_cleanup(rproc);
  970. rproc_disable_iommu(rproc);
  971. /* Give the next start a clean resource table */
  972. rproc->table_ptr = rproc->cached_table;
  973. /* if in crash state, unlock crash handler */
  974. if (rproc->state == RPROC_CRASHED)
  975. complete_all(&rproc->crash_comp);
  976. rproc->state = RPROC_OFFLINE;
  977. dev_info(dev, "stopped remote processor %s\n", rproc->name);
  978. out:
  979. mutex_unlock(&rproc->lock);
  980. if (!ret)
  981. module_put(dev->parent->driver->owner);
  982. }
  983. EXPORT_SYMBOL(rproc_shutdown);
  984. /**
  985. * rproc_get_by_phandle() - find a remote processor by phandle
  986. * @phandle: phandle to the rproc
  987. *
  988. * Finds an rproc handle using the remote processor's phandle, and then
  989. * return a handle to the rproc.
  990. *
  991. * This function increments the remote processor's refcount, so always
  992. * use rproc_put() to decrement it back once rproc isn't needed anymore.
  993. *
  994. * Returns the rproc handle on success, and NULL on failure.
  995. */
  996. #ifdef CONFIG_OF
  997. struct rproc *rproc_get_by_phandle(phandle phandle)
  998. {
  999. struct rproc *rproc = NULL, *r;
  1000. struct device_node *np;
  1001. np = of_find_node_by_phandle(phandle);
  1002. if (!np)
  1003. return NULL;
  1004. mutex_lock(&rproc_list_mutex);
  1005. list_for_each_entry(r, &rproc_list, node) {
  1006. if (r->dev.parent && r->dev.parent->of_node == np) {
  1007. rproc = r;
  1008. get_device(&rproc->dev);
  1009. break;
  1010. }
  1011. }
  1012. mutex_unlock(&rproc_list_mutex);
  1013. of_node_put(np);
  1014. return rproc;
  1015. }
  1016. #else
  1017. struct rproc *rproc_get_by_phandle(phandle phandle)
  1018. {
  1019. return NULL;
  1020. }
  1021. #endif
  1022. EXPORT_SYMBOL(rproc_get_by_phandle);
  1023. /**
  1024. * rproc_add() - register a remote processor
  1025. * @rproc: the remote processor handle to register
  1026. *
  1027. * Registers @rproc with the remoteproc framework, after it has been
  1028. * allocated with rproc_alloc().
  1029. *
  1030. * This is called by the platform-specific rproc implementation, whenever
  1031. * a new remote processor device is probed.
  1032. *
  1033. * Returns 0 on success and an appropriate error code otherwise.
  1034. *
  1035. * Note: this function initiates an asynchronous firmware loading
  1036. * context, which will look for virtio devices supported by the rproc's
  1037. * firmware.
  1038. *
  1039. * If found, those virtio devices will be created and added, so as a result
  1040. * of registering this remote processor, additional virtio drivers might be
  1041. * probed.
  1042. */
  1043. int rproc_add(struct rproc *rproc)
  1044. {
  1045. struct device *dev = &rproc->dev;
  1046. int ret;
  1047. ret = device_add(dev);
  1048. if (ret < 0)
  1049. return ret;
  1050. /* expose to rproc_get_by_phandle users */
  1051. mutex_lock(&rproc_list_mutex);
  1052. list_add(&rproc->node, &rproc_list);
  1053. mutex_unlock(&rproc_list_mutex);
  1054. dev_info(dev, "%s is available\n", rproc->name);
  1055. dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
  1056. dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
  1057. /* create debugfs entries */
  1058. rproc_create_debug_dir(rproc);
  1059. return rproc_add_virtio_devices(rproc);
  1060. }
  1061. EXPORT_SYMBOL(rproc_add);
  1062. /**
  1063. * rproc_type_release() - release a remote processor instance
  1064. * @dev: the rproc's device
  1065. *
  1066. * This function should _never_ be called directly.
  1067. *
  1068. * It will be called by the driver core when no one holds a valid pointer
  1069. * to @dev anymore.
  1070. */
  1071. static void rproc_type_release(struct device *dev)
  1072. {
  1073. struct rproc *rproc = container_of(dev, struct rproc, dev);
  1074. dev_info(&rproc->dev, "releasing %s\n", rproc->name);
  1075. rproc_delete_debug_dir(rproc);
  1076. idr_destroy(&rproc->notifyids);
  1077. if (rproc->index >= 0)
  1078. ida_simple_remove(&rproc_dev_index, rproc->index);
  1079. kfree(rproc);
  1080. }
  1081. static struct device_type rproc_type = {
  1082. .name = "remoteproc",
  1083. .release = rproc_type_release,
  1084. };
  1085. /**
  1086. * rproc_alloc() - allocate a remote processor handle
  1087. * @dev: the underlying device
  1088. * @name: name of this remote processor
  1089. * @ops: platform-specific handlers (mainly start/stop)
  1090. * @firmware: name of firmware file to load, can be NULL
  1091. * @len: length of private data needed by the rproc driver (in bytes)
  1092. *
  1093. * Allocates a new remote processor handle, but does not register
  1094. * it yet. if @firmware is NULL, a default name is used.
  1095. *
  1096. * This function should be used by rproc implementations during initialization
  1097. * of the remote processor.
  1098. *
  1099. * After creating an rproc handle using this function, and when ready,
  1100. * implementations should then call rproc_add() to complete
  1101. * the registration of the remote processor.
  1102. *
  1103. * On success the new rproc is returned, and on failure, NULL.
  1104. *
  1105. * Note: _never_ directly deallocate @rproc, even if it was not registered
  1106. * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
  1107. */
  1108. struct rproc *rproc_alloc(struct device *dev, const char *name,
  1109. const struct rproc_ops *ops,
  1110. const char *firmware, int len)
  1111. {
  1112. struct rproc *rproc;
  1113. char *p, *template = "rproc-%s-fw";
  1114. int name_len = 0;
  1115. if (!dev || !name || !ops)
  1116. return NULL;
  1117. if (!firmware)
  1118. /*
  1119. * Make room for default firmware name (minus %s plus '\0').
  1120. * If the caller didn't pass in a firmware name then
  1121. * construct a default name. We're already glomming 'len'
  1122. * bytes onto the end of the struct rproc allocation, so do
  1123. * a few more for the default firmware name (but only if
  1124. * the caller doesn't pass one).
  1125. */
  1126. name_len = strlen(name) + strlen(template) - 2 + 1;
  1127. rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
  1128. if (!rproc)
  1129. return NULL;
  1130. if (!firmware) {
  1131. p = (char *)rproc + sizeof(struct rproc) + len;
  1132. snprintf(p, name_len, template, name);
  1133. } else {
  1134. p = (char *)firmware;
  1135. }
  1136. rproc->firmware = p;
  1137. rproc->name = name;
  1138. rproc->ops = ops;
  1139. rproc->priv = &rproc[1];
  1140. device_initialize(&rproc->dev);
  1141. rproc->dev.parent = dev;
  1142. rproc->dev.type = &rproc_type;
  1143. /* Assign a unique device index and name */
  1144. rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
  1145. if (rproc->index < 0) {
  1146. dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
  1147. put_device(&rproc->dev);
  1148. return NULL;
  1149. }
  1150. dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
  1151. atomic_set(&rproc->power, 0);
  1152. /* Set ELF as the default fw_ops handler */
  1153. rproc->fw_ops = &rproc_elf_fw_ops;
  1154. mutex_init(&rproc->lock);
  1155. idr_init(&rproc->notifyids);
  1156. INIT_LIST_HEAD(&rproc->carveouts);
  1157. INIT_LIST_HEAD(&rproc->mappings);
  1158. INIT_LIST_HEAD(&rproc->traces);
  1159. INIT_LIST_HEAD(&rproc->rvdevs);
  1160. INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
  1161. init_completion(&rproc->crash_comp);
  1162. rproc->state = RPROC_OFFLINE;
  1163. return rproc;
  1164. }
  1165. EXPORT_SYMBOL(rproc_alloc);
  1166. /**
  1167. * rproc_put() - unroll rproc_alloc()
  1168. * @rproc: the remote processor handle
  1169. *
  1170. * This function decrements the rproc dev refcount.
  1171. *
  1172. * If no one holds any reference to rproc anymore, then its refcount would
  1173. * now drop to zero, and it would be freed.
  1174. */
  1175. void rproc_put(struct rproc *rproc)
  1176. {
  1177. put_device(&rproc->dev);
  1178. }
  1179. EXPORT_SYMBOL(rproc_put);
  1180. /**
  1181. * rproc_del() - unregister a remote processor
  1182. * @rproc: rproc handle to unregister
  1183. *
  1184. * This function should be called when the platform specific rproc
  1185. * implementation decides to remove the rproc device. it should
  1186. * _only_ be called if a previous invocation of rproc_add()
  1187. * has completed successfully.
  1188. *
  1189. * After rproc_del() returns, @rproc isn't freed yet, because
  1190. * of the outstanding reference created by rproc_alloc. To decrement that
  1191. * one last refcount, one still needs to call rproc_put().
  1192. *
  1193. * Returns 0 on success and -EINVAL if @rproc isn't valid.
  1194. */
  1195. int rproc_del(struct rproc *rproc)
  1196. {
  1197. struct rproc_vdev *rvdev, *tmp;
  1198. if (!rproc)
  1199. return -EINVAL;
  1200. /* if rproc is just being registered, wait */
  1201. wait_for_completion(&rproc->firmware_loading_complete);
  1202. /* clean up remote vdev entries */
  1203. list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
  1204. rproc_remove_virtio_dev(rvdev);
  1205. /* Free the copy of the resource table */
  1206. kfree(rproc->cached_table);
  1207. /* the rproc is downref'ed as soon as it's removed from the klist */
  1208. mutex_lock(&rproc_list_mutex);
  1209. list_del(&rproc->node);
  1210. mutex_unlock(&rproc_list_mutex);
  1211. device_del(&rproc->dev);
  1212. return 0;
  1213. }
  1214. EXPORT_SYMBOL(rproc_del);
  1215. /**
  1216. * rproc_report_crash() - rproc crash reporter function
  1217. * @rproc: remote processor
  1218. * @type: crash type
  1219. *
  1220. * This function must be called every time a crash is detected by the low-level
  1221. * drivers implementing a specific remoteproc. This should not be called from a
  1222. * non-remoteproc driver.
  1223. *
  1224. * This function can be called from atomic/interrupt context.
  1225. */
  1226. void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
  1227. {
  1228. if (!rproc) {
  1229. pr_err("NULL rproc pointer\n");
  1230. return;
  1231. }
  1232. dev_err(&rproc->dev, "crash detected in %s: type %s\n",
  1233. rproc->name, rproc_crash_to_string(type));
  1234. /* create a new task to handle the error */
  1235. schedule_work(&rproc->crash_handler);
  1236. }
  1237. EXPORT_SYMBOL(rproc_report_crash);
  1238. static int __init remoteproc_init(void)
  1239. {
  1240. rproc_init_debugfs();
  1241. return 0;
  1242. }
  1243. module_init(remoteproc_init);
  1244. static void __exit remoteproc_exit(void)
  1245. {
  1246. ida_destroy(&rproc_dev_index);
  1247. rproc_exit_debugfs();
  1248. }
  1249. module_exit(remoteproc_exit);
  1250. MODULE_LICENSE("GPL v2");
  1251. MODULE_DESCRIPTION("Generic Remote Processor Framework");