intel_rapl.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. /*
  2. * Intel Running Average Power Limit (RAPL) Driver
  3. * Copyright (c) 2013, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.
  16. *
  17. */
  18. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/list.h>
  22. #include <linux/types.h>
  23. #include <linux/device.h>
  24. #include <linux/slab.h>
  25. #include <linux/log2.h>
  26. #include <linux/bitmap.h>
  27. #include <linux/delay.h>
  28. #include <linux/sysfs.h>
  29. #include <linux/cpu.h>
  30. #include <linux/powercap.h>
  31. #include <asm/iosf_mbi.h>
  32. #include <asm/processor.h>
  33. #include <asm/cpu_device_id.h>
  34. /* bitmasks for RAPL MSRs, used by primitive access functions */
  35. #define ENERGY_STATUS_MASK 0xffffffff
  36. #define POWER_LIMIT1_MASK 0x7FFF
  37. #define POWER_LIMIT1_ENABLE BIT(15)
  38. #define POWER_LIMIT1_CLAMP BIT(16)
  39. #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
  40. #define POWER_LIMIT2_ENABLE BIT_ULL(47)
  41. #define POWER_LIMIT2_CLAMP BIT_ULL(48)
  42. #define POWER_PACKAGE_LOCK BIT_ULL(63)
  43. #define POWER_PP_LOCK BIT(31)
  44. #define TIME_WINDOW1_MASK (0x7FULL<<17)
  45. #define TIME_WINDOW2_MASK (0x7FULL<<49)
  46. #define POWER_UNIT_OFFSET 0
  47. #define POWER_UNIT_MASK 0x0F
  48. #define ENERGY_UNIT_OFFSET 0x08
  49. #define ENERGY_UNIT_MASK 0x1F00
  50. #define TIME_UNIT_OFFSET 0x10
  51. #define TIME_UNIT_MASK 0xF0000
  52. #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
  53. #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
  54. #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
  55. #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
  56. #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  57. #define PP_POLICY_MASK 0x1F
  58. /* Non HW constants */
  59. #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
  60. #define RAPL_PRIMITIVE_DUMMY BIT(2)
  61. #define TIME_WINDOW_MAX_MSEC 40000
  62. #define TIME_WINDOW_MIN_MSEC 250
  63. #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
  64. enum unit_type {
  65. ARBITRARY_UNIT, /* no translation */
  66. POWER_UNIT,
  67. ENERGY_UNIT,
  68. TIME_UNIT,
  69. };
  70. enum rapl_domain_type {
  71. RAPL_DOMAIN_PACKAGE, /* entire package/socket */
  72. RAPL_DOMAIN_PP0, /* core power plane */
  73. RAPL_DOMAIN_PP1, /* graphics uncore */
  74. RAPL_DOMAIN_DRAM,/* DRAM control_type */
  75. RAPL_DOMAIN_MAX,
  76. };
  77. enum rapl_domain_msr_id {
  78. RAPL_DOMAIN_MSR_LIMIT,
  79. RAPL_DOMAIN_MSR_STATUS,
  80. RAPL_DOMAIN_MSR_PERF,
  81. RAPL_DOMAIN_MSR_POLICY,
  82. RAPL_DOMAIN_MSR_INFO,
  83. RAPL_DOMAIN_MSR_MAX,
  84. };
  85. /* per domain data, some are optional */
  86. enum rapl_primitives {
  87. ENERGY_COUNTER,
  88. POWER_LIMIT1,
  89. POWER_LIMIT2,
  90. FW_LOCK,
  91. PL1_ENABLE, /* power limit 1, aka long term */
  92. PL1_CLAMP, /* allow frequency to go below OS request */
  93. PL2_ENABLE, /* power limit 2, aka short term, instantaneous */
  94. PL2_CLAMP,
  95. TIME_WINDOW1, /* long term */
  96. TIME_WINDOW2, /* short term */
  97. THERMAL_SPEC_POWER,
  98. MAX_POWER,
  99. MIN_POWER,
  100. MAX_TIME_WINDOW,
  101. THROTTLED_TIME,
  102. PRIORITY_LEVEL,
  103. /* below are not raw primitive data */
  104. AVERAGE_POWER,
  105. NR_RAPL_PRIMITIVES,
  106. };
  107. #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
  108. /* Can be expanded to include events, etc.*/
  109. struct rapl_domain_data {
  110. u64 primitives[NR_RAPL_PRIMITIVES];
  111. unsigned long timestamp;
  112. };
  113. struct msrl_action {
  114. u32 msr_no;
  115. u64 clear_mask;
  116. u64 set_mask;
  117. int err;
  118. };
  119. #define DOMAIN_STATE_INACTIVE BIT(0)
  120. #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
  121. #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
  122. #define NR_POWER_LIMITS (2)
  123. struct rapl_power_limit {
  124. struct powercap_zone_constraint *constraint;
  125. int prim_id; /* primitive ID used to enable */
  126. struct rapl_domain *domain;
  127. const char *name;
  128. };
  129. static const char pl1_name[] = "long_term";
  130. static const char pl2_name[] = "short_term";
  131. struct rapl_package;
  132. struct rapl_domain {
  133. const char *name;
  134. enum rapl_domain_type id;
  135. int msrs[RAPL_DOMAIN_MSR_MAX];
  136. struct powercap_zone power_zone;
  137. struct rapl_domain_data rdd;
  138. struct rapl_power_limit rpl[NR_POWER_LIMITS];
  139. u64 attr_map; /* track capabilities */
  140. unsigned int state;
  141. unsigned int domain_energy_unit;
  142. struct rapl_package *rp;
  143. };
  144. #define power_zone_to_rapl_domain(_zone) \
  145. container_of(_zone, struct rapl_domain, power_zone)
  146. /* Each physical package contains multiple domains, these are the common
  147. * data across RAPL domains within a package.
  148. */
  149. struct rapl_package {
  150. unsigned int id; /* physical package/socket id */
  151. unsigned int nr_domains;
  152. unsigned long domain_map; /* bit map of active domains */
  153. unsigned int power_unit;
  154. unsigned int energy_unit;
  155. unsigned int time_unit;
  156. struct rapl_domain *domains; /* array of domains, sized at runtime */
  157. struct powercap_zone *power_zone; /* keep track of parent zone */
  158. int nr_cpus; /* active cpus on the package, topology info is lost during
  159. * cpu hotplug. so we have to track ourselves.
  160. */
  161. unsigned long power_limit_irq; /* keep track of package power limit
  162. * notify interrupt enable status.
  163. */
  164. struct list_head plist;
  165. int lead_cpu; /* one active cpu per package for access */
  166. };
  167. struct rapl_defaults {
  168. u8 floor_freq_reg_addr;
  169. int (*check_unit)(struct rapl_package *rp, int cpu);
  170. void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
  171. u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
  172. bool to_raw);
  173. unsigned int dram_domain_energy_unit;
  174. };
  175. static struct rapl_defaults *rapl_defaults;
  176. /* Sideband MBI registers */
  177. #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
  178. #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
  179. #define PACKAGE_PLN_INT_SAVED BIT(0)
  180. #define MAX_PRIM_NAME (32)
  181. /* per domain data. used to describe individual knobs such that access function
  182. * can be consolidated into one instead of many inline functions.
  183. */
  184. struct rapl_primitive_info {
  185. const char *name;
  186. u64 mask;
  187. int shift;
  188. enum rapl_domain_msr_id id;
  189. enum unit_type unit;
  190. u32 flag;
  191. };
  192. #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
  193. .name = #p, \
  194. .mask = m, \
  195. .shift = s, \
  196. .id = i, \
  197. .unit = u, \
  198. .flag = f \
  199. }
  200. static void rapl_init_domains(struct rapl_package *rp);
  201. static int rapl_read_data_raw(struct rapl_domain *rd,
  202. enum rapl_primitives prim,
  203. bool xlate, u64 *data);
  204. static int rapl_write_data_raw(struct rapl_domain *rd,
  205. enum rapl_primitives prim,
  206. unsigned long long value);
  207. static u64 rapl_unit_xlate(struct rapl_domain *rd,
  208. enum unit_type type, u64 value,
  209. int to_raw);
  210. static void package_power_limit_irq_save(struct rapl_package *rp);
  211. static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
  212. static const char * const rapl_domain_names[] = {
  213. "package",
  214. "core",
  215. "uncore",
  216. "dram",
  217. };
  218. static struct powercap_control_type *control_type; /* PowerCap Controller */
  219. /* caller to ensure CPU hotplug lock is held */
  220. static struct rapl_package *find_package_by_id(int id)
  221. {
  222. struct rapl_package *rp;
  223. list_for_each_entry(rp, &rapl_packages, plist) {
  224. if (rp->id == id)
  225. return rp;
  226. }
  227. return NULL;
  228. }
  229. /* caller must hold cpu hotplug lock */
  230. static void rapl_cleanup_data(void)
  231. {
  232. struct rapl_package *p, *tmp;
  233. list_for_each_entry_safe(p, tmp, &rapl_packages, plist) {
  234. kfree(p->domains);
  235. list_del(&p->plist);
  236. kfree(p);
  237. }
  238. }
  239. static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
  240. {
  241. struct rapl_domain *rd;
  242. u64 energy_now;
  243. /* prevent CPU hotplug, make sure the RAPL domain does not go
  244. * away while reading the counter.
  245. */
  246. get_online_cpus();
  247. rd = power_zone_to_rapl_domain(power_zone);
  248. if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
  249. *energy_raw = energy_now;
  250. put_online_cpus();
  251. return 0;
  252. }
  253. put_online_cpus();
  254. return -EIO;
  255. }
  256. static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
  257. {
  258. struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
  259. *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
  260. return 0;
  261. }
  262. static int release_zone(struct powercap_zone *power_zone)
  263. {
  264. struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
  265. struct rapl_package *rp = rd->rp;
  266. /* package zone is the last zone of a package, we can free
  267. * memory here since all children has been unregistered.
  268. */
  269. if (rd->id == RAPL_DOMAIN_PACKAGE) {
  270. kfree(rd);
  271. rp->domains = NULL;
  272. }
  273. return 0;
  274. }
  275. static int find_nr_power_limit(struct rapl_domain *rd)
  276. {
  277. int i;
  278. for (i = 0; i < NR_POWER_LIMITS; i++) {
  279. if (rd->rpl[i].name == NULL)
  280. break;
  281. }
  282. return i;
  283. }
  284. static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
  285. {
  286. struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
  287. if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
  288. return -EACCES;
  289. get_online_cpus();
  290. rapl_write_data_raw(rd, PL1_ENABLE, mode);
  291. if (rapl_defaults->set_floor_freq)
  292. rapl_defaults->set_floor_freq(rd, mode);
  293. put_online_cpus();
  294. return 0;
  295. }
  296. static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
  297. {
  298. struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
  299. u64 val;
  300. if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
  301. *mode = false;
  302. return 0;
  303. }
  304. get_online_cpus();
  305. if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
  306. put_online_cpus();
  307. return -EIO;
  308. }
  309. *mode = val;
  310. put_online_cpus();
  311. return 0;
  312. }
  313. /* per RAPL domain ops, in the order of rapl_domain_type */
  314. static const struct powercap_zone_ops zone_ops[] = {
  315. /* RAPL_DOMAIN_PACKAGE */
  316. {
  317. .get_energy_uj = get_energy_counter,
  318. .get_max_energy_range_uj = get_max_energy_counter,
  319. .release = release_zone,
  320. .set_enable = set_domain_enable,
  321. .get_enable = get_domain_enable,
  322. },
  323. /* RAPL_DOMAIN_PP0 */
  324. {
  325. .get_energy_uj = get_energy_counter,
  326. .get_max_energy_range_uj = get_max_energy_counter,
  327. .release = release_zone,
  328. .set_enable = set_domain_enable,
  329. .get_enable = get_domain_enable,
  330. },
  331. /* RAPL_DOMAIN_PP1 */
  332. {
  333. .get_energy_uj = get_energy_counter,
  334. .get_max_energy_range_uj = get_max_energy_counter,
  335. .release = release_zone,
  336. .set_enable = set_domain_enable,
  337. .get_enable = get_domain_enable,
  338. },
  339. /* RAPL_DOMAIN_DRAM */
  340. {
  341. .get_energy_uj = get_energy_counter,
  342. .get_max_energy_range_uj = get_max_energy_counter,
  343. .release = release_zone,
  344. .set_enable = set_domain_enable,
  345. .get_enable = get_domain_enable,
  346. },
  347. };
  348. static int set_power_limit(struct powercap_zone *power_zone, int id,
  349. u64 power_limit)
  350. {
  351. struct rapl_domain *rd;
  352. struct rapl_package *rp;
  353. int ret = 0;
  354. get_online_cpus();
  355. rd = power_zone_to_rapl_domain(power_zone);
  356. rp = rd->rp;
  357. if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
  358. dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
  359. rd->name);
  360. ret = -EACCES;
  361. goto set_exit;
  362. }
  363. switch (rd->rpl[id].prim_id) {
  364. case PL1_ENABLE:
  365. rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
  366. break;
  367. case PL2_ENABLE:
  368. rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
  369. break;
  370. default:
  371. ret = -EINVAL;
  372. }
  373. if (!ret)
  374. package_power_limit_irq_save(rp);
  375. set_exit:
  376. put_online_cpus();
  377. return ret;
  378. }
  379. static int get_current_power_limit(struct powercap_zone *power_zone, int id,
  380. u64 *data)
  381. {
  382. struct rapl_domain *rd;
  383. u64 val;
  384. int prim;
  385. int ret = 0;
  386. get_online_cpus();
  387. rd = power_zone_to_rapl_domain(power_zone);
  388. switch (rd->rpl[id].prim_id) {
  389. case PL1_ENABLE:
  390. prim = POWER_LIMIT1;
  391. break;
  392. case PL2_ENABLE:
  393. prim = POWER_LIMIT2;
  394. break;
  395. default:
  396. put_online_cpus();
  397. return -EINVAL;
  398. }
  399. if (rapl_read_data_raw(rd, prim, true, &val))
  400. ret = -EIO;
  401. else
  402. *data = val;
  403. put_online_cpus();
  404. return ret;
  405. }
  406. static int set_time_window(struct powercap_zone *power_zone, int id,
  407. u64 window)
  408. {
  409. struct rapl_domain *rd;
  410. int ret = 0;
  411. get_online_cpus();
  412. rd = power_zone_to_rapl_domain(power_zone);
  413. switch (rd->rpl[id].prim_id) {
  414. case PL1_ENABLE:
  415. rapl_write_data_raw(rd, TIME_WINDOW1, window);
  416. break;
  417. case PL2_ENABLE:
  418. rapl_write_data_raw(rd, TIME_WINDOW2, window);
  419. break;
  420. default:
  421. ret = -EINVAL;
  422. }
  423. put_online_cpus();
  424. return ret;
  425. }
  426. static int get_time_window(struct powercap_zone *power_zone, int id, u64 *data)
  427. {
  428. struct rapl_domain *rd;
  429. u64 val;
  430. int ret = 0;
  431. get_online_cpus();
  432. rd = power_zone_to_rapl_domain(power_zone);
  433. switch (rd->rpl[id].prim_id) {
  434. case PL1_ENABLE:
  435. ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
  436. break;
  437. case PL2_ENABLE:
  438. ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
  439. break;
  440. default:
  441. put_online_cpus();
  442. return -EINVAL;
  443. }
  444. if (!ret)
  445. *data = val;
  446. put_online_cpus();
  447. return ret;
  448. }
  449. static const char *get_constraint_name(struct powercap_zone *power_zone, int id)
  450. {
  451. struct rapl_power_limit *rpl;
  452. struct rapl_domain *rd;
  453. rd = power_zone_to_rapl_domain(power_zone);
  454. rpl = (struct rapl_power_limit *) &rd->rpl[id];
  455. return rpl->name;
  456. }
  457. static int get_max_power(struct powercap_zone *power_zone, int id,
  458. u64 *data)
  459. {
  460. struct rapl_domain *rd;
  461. u64 val;
  462. int prim;
  463. int ret = 0;
  464. get_online_cpus();
  465. rd = power_zone_to_rapl_domain(power_zone);
  466. switch (rd->rpl[id].prim_id) {
  467. case PL1_ENABLE:
  468. prim = THERMAL_SPEC_POWER;
  469. break;
  470. case PL2_ENABLE:
  471. prim = MAX_POWER;
  472. break;
  473. default:
  474. put_online_cpus();
  475. return -EINVAL;
  476. }
  477. if (rapl_read_data_raw(rd, prim, true, &val))
  478. ret = -EIO;
  479. else
  480. *data = val;
  481. put_online_cpus();
  482. return ret;
  483. }
  484. static const struct powercap_zone_constraint_ops constraint_ops = {
  485. .set_power_limit_uw = set_power_limit,
  486. .get_power_limit_uw = get_current_power_limit,
  487. .set_time_window_us = set_time_window,
  488. .get_time_window_us = get_time_window,
  489. .get_max_power_uw = get_max_power,
  490. .get_name = get_constraint_name,
  491. };
  492. /* called after domain detection and package level data are set */
  493. static void rapl_init_domains(struct rapl_package *rp)
  494. {
  495. int i;
  496. struct rapl_domain *rd = rp->domains;
  497. for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
  498. unsigned int mask = rp->domain_map & (1 << i);
  499. switch (mask) {
  500. case BIT(RAPL_DOMAIN_PACKAGE):
  501. rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
  502. rd->id = RAPL_DOMAIN_PACKAGE;
  503. rd->msrs[0] = MSR_PKG_POWER_LIMIT;
  504. rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
  505. rd->msrs[2] = MSR_PKG_PERF_STATUS;
  506. rd->msrs[3] = 0;
  507. rd->msrs[4] = MSR_PKG_POWER_INFO;
  508. rd->rpl[0].prim_id = PL1_ENABLE;
  509. rd->rpl[0].name = pl1_name;
  510. rd->rpl[1].prim_id = PL2_ENABLE;
  511. rd->rpl[1].name = pl2_name;
  512. break;
  513. case BIT(RAPL_DOMAIN_PP0):
  514. rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
  515. rd->id = RAPL_DOMAIN_PP0;
  516. rd->msrs[0] = MSR_PP0_POWER_LIMIT;
  517. rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
  518. rd->msrs[2] = 0;
  519. rd->msrs[3] = MSR_PP0_POLICY;
  520. rd->msrs[4] = 0;
  521. rd->rpl[0].prim_id = PL1_ENABLE;
  522. rd->rpl[0].name = pl1_name;
  523. break;
  524. case BIT(RAPL_DOMAIN_PP1):
  525. rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
  526. rd->id = RAPL_DOMAIN_PP1;
  527. rd->msrs[0] = MSR_PP1_POWER_LIMIT;
  528. rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
  529. rd->msrs[2] = 0;
  530. rd->msrs[3] = MSR_PP1_POLICY;
  531. rd->msrs[4] = 0;
  532. rd->rpl[0].prim_id = PL1_ENABLE;
  533. rd->rpl[0].name = pl1_name;
  534. break;
  535. case BIT(RAPL_DOMAIN_DRAM):
  536. rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
  537. rd->id = RAPL_DOMAIN_DRAM;
  538. rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
  539. rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
  540. rd->msrs[2] = MSR_DRAM_PERF_STATUS;
  541. rd->msrs[3] = 0;
  542. rd->msrs[4] = MSR_DRAM_POWER_INFO;
  543. rd->rpl[0].prim_id = PL1_ENABLE;
  544. rd->rpl[0].name = pl1_name;
  545. rd->domain_energy_unit =
  546. rapl_defaults->dram_domain_energy_unit;
  547. if (rd->domain_energy_unit)
  548. pr_info("DRAM domain energy unit %dpj\n",
  549. rd->domain_energy_unit);
  550. break;
  551. }
  552. if (mask) {
  553. rd->rp = rp;
  554. rd++;
  555. }
  556. }
  557. }
  558. static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
  559. u64 value, int to_raw)
  560. {
  561. u64 units = 1;
  562. struct rapl_package *rp = rd->rp;
  563. u64 scale = 1;
  564. switch (type) {
  565. case POWER_UNIT:
  566. units = rp->power_unit;
  567. break;
  568. case ENERGY_UNIT:
  569. scale = ENERGY_UNIT_SCALE;
  570. /* per domain unit takes precedence */
  571. if (rd && rd->domain_energy_unit)
  572. units = rd->domain_energy_unit;
  573. else
  574. units = rp->energy_unit;
  575. break;
  576. case TIME_UNIT:
  577. return rapl_defaults->compute_time_window(rp, value, to_raw);
  578. case ARBITRARY_UNIT:
  579. default:
  580. return value;
  581. };
  582. if (to_raw)
  583. return div64_u64(value, units) * scale;
  584. value *= units;
  585. return div64_u64(value, scale);
  586. }
  587. /* in the order of enum rapl_primitives */
  588. static struct rapl_primitive_info rpi[] = {
  589. /* name, mask, shift, msr index, unit divisor */
  590. PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
  591. RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
  592. PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
  593. RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
  594. PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
  595. RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
  596. PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
  597. RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
  598. PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
  599. RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
  600. PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
  601. RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
  602. PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
  603. RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
  604. PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
  605. RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
  606. PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
  607. RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
  608. PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
  609. RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
  610. PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
  611. 0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
  612. PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
  613. RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
  614. PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
  615. RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
  616. PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
  617. RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
  618. PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
  619. RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
  620. PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
  621. RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
  622. /* non-hardware */
  623. PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
  624. RAPL_PRIMITIVE_DERIVED),
  625. {NULL, 0, 0, 0},
  626. };
  627. /* Read primitive data based on its related struct rapl_primitive_info.
  628. * if xlate flag is set, return translated data based on data units, i.e.
  629. * time, energy, and power.
  630. * RAPL MSRs are non-architectual and are laid out not consistently across
  631. * domains. Here we use primitive info to allow writing consolidated access
  632. * functions.
  633. * For a given primitive, it is processed by MSR mask and shift. Unit conversion
  634. * is pre-assigned based on RAPL unit MSRs read at init time.
  635. * 63-------------------------- 31--------------------------- 0
  636. * | xxxxx (mask) |
  637. * | |<- shift ----------------|
  638. * 63-------------------------- 31--------------------------- 0
  639. */
  640. static int rapl_read_data_raw(struct rapl_domain *rd,
  641. enum rapl_primitives prim,
  642. bool xlate, u64 *data)
  643. {
  644. u64 value, final;
  645. u32 msr;
  646. struct rapl_primitive_info *rp = &rpi[prim];
  647. int cpu;
  648. if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
  649. return -EINVAL;
  650. msr = rd->msrs[rp->id];
  651. if (!msr)
  652. return -EINVAL;
  653. cpu = rd->rp->lead_cpu;
  654. /* special-case package domain, which uses a different bit*/
  655. if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
  656. rp->mask = POWER_PACKAGE_LOCK;
  657. rp->shift = 63;
  658. }
  659. /* non-hardware data are collected by the polling thread */
  660. if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
  661. *data = rd->rdd.primitives[prim];
  662. return 0;
  663. }
  664. if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
  665. pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
  666. return -EIO;
  667. }
  668. final = value & rp->mask;
  669. final = final >> rp->shift;
  670. if (xlate)
  671. *data = rapl_unit_xlate(rd, rp->unit, final, 0);
  672. else
  673. *data = final;
  674. return 0;
  675. }
  676. static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
  677. {
  678. int err;
  679. u64 val;
  680. err = rdmsrl_safe(msr_no, &val);
  681. if (err)
  682. goto out;
  683. val &= ~clear_mask;
  684. val |= set_mask;
  685. err = wrmsrl_safe(msr_no, val);
  686. out:
  687. return err;
  688. }
  689. static void msrl_update_func(void *info)
  690. {
  691. struct msrl_action *ma = info;
  692. ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
  693. }
  694. /* Similar use of primitive info in the read counterpart */
  695. static int rapl_write_data_raw(struct rapl_domain *rd,
  696. enum rapl_primitives prim,
  697. unsigned long long value)
  698. {
  699. struct rapl_primitive_info *rp = &rpi[prim];
  700. int cpu;
  701. u64 bits;
  702. struct msrl_action ma;
  703. int ret;
  704. cpu = rd->rp->lead_cpu;
  705. bits = rapl_unit_xlate(rd, rp->unit, value, 1);
  706. bits |= bits << rp->shift;
  707. memset(&ma, 0, sizeof(ma));
  708. ma.msr_no = rd->msrs[rp->id];
  709. ma.clear_mask = rp->mask;
  710. ma.set_mask = bits;
  711. ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
  712. if (ret)
  713. WARN_ON_ONCE(ret);
  714. else
  715. ret = ma.err;
  716. return ret;
  717. }
  718. /*
  719. * Raw RAPL data stored in MSRs are in certain scales. We need to
  720. * convert them into standard units based on the units reported in
  721. * the RAPL unit MSRs. This is specific to CPUs as the method to
  722. * calculate units differ on different CPUs.
  723. * We convert the units to below format based on CPUs.
  724. * i.e.
  725. * energy unit: picoJoules : Represented in picoJoules by default
  726. * power unit : microWatts : Represented in milliWatts by default
  727. * time unit : microseconds: Represented in seconds by default
  728. */
  729. static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
  730. {
  731. u64 msr_val;
  732. u32 value;
  733. if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
  734. pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
  735. MSR_RAPL_POWER_UNIT, cpu);
  736. return -ENODEV;
  737. }
  738. value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
  739. rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
  740. value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
  741. rp->power_unit = 1000000 / (1 << value);
  742. value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
  743. rp->time_unit = 1000000 / (1 << value);
  744. pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
  745. rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
  746. return 0;
  747. }
  748. static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
  749. {
  750. u64 msr_val;
  751. u32 value;
  752. if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
  753. pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
  754. MSR_RAPL_POWER_UNIT, cpu);
  755. return -ENODEV;
  756. }
  757. value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
  758. rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
  759. value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
  760. rp->power_unit = (1 << value) * 1000;
  761. value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
  762. rp->time_unit = 1000000 / (1 << value);
  763. pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
  764. rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
  765. return 0;
  766. }
  767. static void power_limit_irq_save_cpu(void *info)
  768. {
  769. u32 l, h = 0;
  770. struct rapl_package *rp = (struct rapl_package *)info;
  771. /* save the state of PLN irq mask bit before disabling it */
  772. rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
  773. if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
  774. rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
  775. rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
  776. }
  777. l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
  778. wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
  779. }
  780. /* REVISIT:
  781. * When package power limit is set artificially low by RAPL, LVT
  782. * thermal interrupt for package power limit should be ignored
  783. * since we are not really exceeding the real limit. The intention
  784. * is to avoid excessive interrupts while we are trying to save power.
  785. * A useful feature might be routing the package_power_limit interrupt
  786. * to userspace via eventfd. once we have a usecase, this is simple
  787. * to do by adding an atomic notifier.
  788. */
  789. static void package_power_limit_irq_save(struct rapl_package *rp)
  790. {
  791. if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
  792. return;
  793. smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
  794. }
  795. static void power_limit_irq_restore_cpu(void *info)
  796. {
  797. u32 l, h = 0;
  798. struct rapl_package *rp = (struct rapl_package *)info;
  799. rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
  800. if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
  801. l |= PACKAGE_THERM_INT_PLN_ENABLE;
  802. else
  803. l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
  804. wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
  805. }
  806. /* restore per package power limit interrupt enable state */
  807. static void package_power_limit_irq_restore(struct rapl_package *rp)
  808. {
  809. if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
  810. return;
  811. /* irq enable state not saved, nothing to restore */
  812. if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
  813. return;
  814. smp_call_function_single(rp->lead_cpu, power_limit_irq_restore_cpu, rp, 1);
  815. }
  816. static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
  817. {
  818. int nr_powerlimit = find_nr_power_limit(rd);
  819. /* always enable clamp such that p-state can go below OS requested
  820. * range. power capping priority over guranteed frequency.
  821. */
  822. rapl_write_data_raw(rd, PL1_CLAMP, mode);
  823. /* some domains have pl2 */
  824. if (nr_powerlimit > 1) {
  825. rapl_write_data_raw(rd, PL2_ENABLE, mode);
  826. rapl_write_data_raw(rd, PL2_CLAMP, mode);
  827. }
  828. }
  829. static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
  830. {
  831. static u32 power_ctrl_orig_val;
  832. u32 mdata;
  833. if (!rapl_defaults->floor_freq_reg_addr) {
  834. pr_err("Invalid floor frequency config register\n");
  835. return;
  836. }
  837. if (!power_ctrl_orig_val)
  838. iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
  839. rapl_defaults->floor_freq_reg_addr,
  840. &power_ctrl_orig_val);
  841. mdata = power_ctrl_orig_val;
  842. if (enable) {
  843. mdata &= ~(0x7f << 8);
  844. mdata |= 1 << 8;
  845. }
  846. iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
  847. rapl_defaults->floor_freq_reg_addr, mdata);
  848. }
  849. static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
  850. bool to_raw)
  851. {
  852. u64 f, y; /* fraction and exp. used for time unit */
  853. /*
  854. * Special processing based on 2^Y*(1+F/4), refer
  855. * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
  856. */
  857. if (!to_raw) {
  858. f = (value & 0x60) >> 5;
  859. y = value & 0x1f;
  860. value = (1 << y) * (4 + f) * rp->time_unit / 4;
  861. } else {
  862. do_div(value, rp->time_unit);
  863. y = ilog2(value);
  864. f = div64_u64(4 * (value - (1 << y)), 1 << y);
  865. value = (y & 0x1f) | ((f & 0x3) << 5);
  866. }
  867. return value;
  868. }
  869. static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
  870. bool to_raw)
  871. {
  872. /*
  873. * Atom time unit encoding is straight forward val * time_unit,
  874. * where time_unit is default to 1 sec. Never 0.
  875. */
  876. if (!to_raw)
  877. return (value) ? value *= rp->time_unit : rp->time_unit;
  878. else
  879. value = div64_u64(value, rp->time_unit);
  880. return value;
  881. }
  882. static const struct rapl_defaults rapl_defaults_core = {
  883. .floor_freq_reg_addr = 0,
  884. .check_unit = rapl_check_unit_core,
  885. .set_floor_freq = set_floor_freq_default,
  886. .compute_time_window = rapl_compute_time_window_core,
  887. };
  888. static const struct rapl_defaults rapl_defaults_hsw_server = {
  889. .check_unit = rapl_check_unit_core,
  890. .set_floor_freq = set_floor_freq_default,
  891. .compute_time_window = rapl_compute_time_window_core,
  892. .dram_domain_energy_unit = 15300,
  893. };
  894. static const struct rapl_defaults rapl_defaults_byt = {
  895. .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
  896. .check_unit = rapl_check_unit_atom,
  897. .set_floor_freq = set_floor_freq_atom,
  898. .compute_time_window = rapl_compute_time_window_atom,
  899. };
  900. static const struct rapl_defaults rapl_defaults_tng = {
  901. .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
  902. .check_unit = rapl_check_unit_atom,
  903. .set_floor_freq = set_floor_freq_atom,
  904. .compute_time_window = rapl_compute_time_window_atom,
  905. };
  906. static const struct rapl_defaults rapl_defaults_ann = {
  907. .floor_freq_reg_addr = 0,
  908. .check_unit = rapl_check_unit_atom,
  909. .set_floor_freq = NULL,
  910. .compute_time_window = rapl_compute_time_window_atom,
  911. };
  912. static const struct rapl_defaults rapl_defaults_cht = {
  913. .floor_freq_reg_addr = 0,
  914. .check_unit = rapl_check_unit_atom,
  915. .set_floor_freq = NULL,
  916. .compute_time_window = rapl_compute_time_window_atom,
  917. };
  918. #define RAPL_CPU(_model, _ops) { \
  919. .vendor = X86_VENDOR_INTEL, \
  920. .family = 6, \
  921. .model = _model, \
  922. .driver_data = (kernel_ulong_t)&_ops, \
  923. }
  924. static const struct x86_cpu_id rapl_ids[] __initconst = {
  925. RAPL_CPU(0x2a, rapl_defaults_core),/* Sandy Bridge */
  926. RAPL_CPU(0x2d, rapl_defaults_core),/* Sandy Bridge EP */
  927. RAPL_CPU(0x37, rapl_defaults_byt),/* Valleyview */
  928. RAPL_CPU(0x3a, rapl_defaults_core),/* Ivy Bridge */
  929. RAPL_CPU(0x3c, rapl_defaults_core),/* Haswell */
  930. RAPL_CPU(0x3d, rapl_defaults_core),/* Broadwell */
  931. RAPL_CPU(0x3f, rapl_defaults_hsw_server),/* Haswell servers */
  932. RAPL_CPU(0x4f, rapl_defaults_hsw_server),/* Broadwell servers */
  933. RAPL_CPU(0x45, rapl_defaults_core),/* Haswell ULT */
  934. RAPL_CPU(0x47, rapl_defaults_core),/* Broadwell-H */
  935. RAPL_CPU(0x4E, rapl_defaults_core),/* Skylake */
  936. RAPL_CPU(0x4C, rapl_defaults_cht),/* Braswell/Cherryview */
  937. RAPL_CPU(0x4A, rapl_defaults_tng),/* Tangier */
  938. RAPL_CPU(0x56, rapl_defaults_core),/* Future Xeon */
  939. RAPL_CPU(0x5A, rapl_defaults_ann),/* Annidale */
  940. RAPL_CPU(0X5C, rapl_defaults_core),/* Broxton */
  941. RAPL_CPU(0x5E, rapl_defaults_core),/* Skylake-H/S */
  942. RAPL_CPU(0x57, rapl_defaults_hsw_server),/* Knights Landing */
  943. {}
  944. };
  945. MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
  946. /* read once for all raw primitive data for all packages, domains */
  947. static void rapl_update_domain_data(void)
  948. {
  949. int dmn, prim;
  950. u64 val;
  951. struct rapl_package *rp;
  952. list_for_each_entry(rp, &rapl_packages, plist) {
  953. for (dmn = 0; dmn < rp->nr_domains; dmn++) {
  954. pr_debug("update package %d domain %s data\n", rp->id,
  955. rp->domains[dmn].name);
  956. /* exclude non-raw primitives */
  957. for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++)
  958. if (!rapl_read_data_raw(&rp->domains[dmn], prim,
  959. rpi[prim].unit,
  960. &val))
  961. rp->domains[dmn].rdd.primitives[prim] =
  962. val;
  963. }
  964. }
  965. }
  966. static int rapl_unregister_powercap(void)
  967. {
  968. struct rapl_package *rp;
  969. struct rapl_domain *rd, *rd_package = NULL;
  970. /* unregister all active rapl packages from the powercap layer,
  971. * hotplug lock held
  972. */
  973. list_for_each_entry(rp, &rapl_packages, plist) {
  974. package_power_limit_irq_restore(rp);
  975. for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
  976. rd++) {
  977. pr_debug("remove package, undo power limit on %d: %s\n",
  978. rp->id, rd->name);
  979. rapl_write_data_raw(rd, PL1_ENABLE, 0);
  980. rapl_write_data_raw(rd, PL1_CLAMP, 0);
  981. if (find_nr_power_limit(rd) > 1) {
  982. rapl_write_data_raw(rd, PL2_ENABLE, 0);
  983. rapl_write_data_raw(rd, PL2_CLAMP, 0);
  984. }
  985. if (rd->id == RAPL_DOMAIN_PACKAGE) {
  986. rd_package = rd;
  987. continue;
  988. }
  989. powercap_unregister_zone(control_type, &rd->power_zone);
  990. }
  991. /* do the package zone last */
  992. if (rd_package)
  993. powercap_unregister_zone(control_type,
  994. &rd_package->power_zone);
  995. }
  996. powercap_unregister_control_type(control_type);
  997. return 0;
  998. }
  999. static int rapl_package_register_powercap(struct rapl_package *rp)
  1000. {
  1001. struct rapl_domain *rd;
  1002. int ret = 0;
  1003. char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
  1004. struct powercap_zone *power_zone = NULL;
  1005. int nr_pl;
  1006. /* first we register package domain as the parent zone*/
  1007. for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
  1008. if (rd->id == RAPL_DOMAIN_PACKAGE) {
  1009. nr_pl = find_nr_power_limit(rd);
  1010. pr_debug("register socket %d package domain %s\n",
  1011. rp->id, rd->name);
  1012. memset(dev_name, 0, sizeof(dev_name));
  1013. snprintf(dev_name, sizeof(dev_name), "%s-%d",
  1014. rd->name, rp->id);
  1015. power_zone = powercap_register_zone(&rd->power_zone,
  1016. control_type,
  1017. dev_name, NULL,
  1018. &zone_ops[rd->id],
  1019. nr_pl,
  1020. &constraint_ops);
  1021. if (IS_ERR(power_zone)) {
  1022. pr_debug("failed to register package, %d\n",
  1023. rp->id);
  1024. ret = PTR_ERR(power_zone);
  1025. goto exit_package;
  1026. }
  1027. /* track parent zone in per package/socket data */
  1028. rp->power_zone = power_zone;
  1029. /* done, only one package domain per socket */
  1030. break;
  1031. }
  1032. }
  1033. if (!power_zone) {
  1034. pr_err("no package domain found, unknown topology!\n");
  1035. ret = -ENODEV;
  1036. goto exit_package;
  1037. }
  1038. /* now register domains as children of the socket/package*/
  1039. for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
  1040. if (rd->id == RAPL_DOMAIN_PACKAGE)
  1041. continue;
  1042. /* number of power limits per domain varies */
  1043. nr_pl = find_nr_power_limit(rd);
  1044. power_zone = powercap_register_zone(&rd->power_zone,
  1045. control_type, rd->name,
  1046. rp->power_zone,
  1047. &zone_ops[rd->id], nr_pl,
  1048. &constraint_ops);
  1049. if (IS_ERR(power_zone)) {
  1050. pr_debug("failed to register power_zone, %d:%s:%s\n",
  1051. rp->id, rd->name, dev_name);
  1052. ret = PTR_ERR(power_zone);
  1053. goto err_cleanup;
  1054. }
  1055. }
  1056. exit_package:
  1057. return ret;
  1058. err_cleanup:
  1059. /* clean up previously initialized domains within the package if we
  1060. * failed after the first domain setup.
  1061. */
  1062. while (--rd >= rp->domains) {
  1063. pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
  1064. powercap_unregister_zone(control_type, &rd->power_zone);
  1065. }
  1066. return ret;
  1067. }
  1068. static int rapl_register_powercap(void)
  1069. {
  1070. struct rapl_domain *rd;
  1071. struct rapl_package *rp;
  1072. int ret = 0;
  1073. control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
  1074. if (IS_ERR(control_type)) {
  1075. pr_debug("failed to register powercap control_type.\n");
  1076. return PTR_ERR(control_type);
  1077. }
  1078. /* read the initial data */
  1079. rapl_update_domain_data();
  1080. list_for_each_entry(rp, &rapl_packages, plist)
  1081. if (rapl_package_register_powercap(rp))
  1082. goto err_cleanup_package;
  1083. return ret;
  1084. err_cleanup_package:
  1085. /* clean up previously initialized packages */
  1086. list_for_each_entry_continue_reverse(rp, &rapl_packages, plist) {
  1087. for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
  1088. rd++) {
  1089. pr_debug("unregister zone/package %d, %s domain\n",
  1090. rp->id, rd->name);
  1091. powercap_unregister_zone(control_type, &rd->power_zone);
  1092. }
  1093. }
  1094. return ret;
  1095. }
  1096. static int rapl_check_domain(int cpu, int domain)
  1097. {
  1098. unsigned msr;
  1099. u64 val = 0;
  1100. switch (domain) {
  1101. case RAPL_DOMAIN_PACKAGE:
  1102. msr = MSR_PKG_ENERGY_STATUS;
  1103. break;
  1104. case RAPL_DOMAIN_PP0:
  1105. msr = MSR_PP0_ENERGY_STATUS;
  1106. break;
  1107. case RAPL_DOMAIN_PP1:
  1108. msr = MSR_PP1_ENERGY_STATUS;
  1109. break;
  1110. case RAPL_DOMAIN_DRAM:
  1111. msr = MSR_DRAM_ENERGY_STATUS;
  1112. break;
  1113. default:
  1114. pr_err("invalid domain id %d\n", domain);
  1115. return -EINVAL;
  1116. }
  1117. /* make sure domain counters are available and contains non-zero
  1118. * values, otherwise skip it.
  1119. */
  1120. if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
  1121. return -ENODEV;
  1122. return 0;
  1123. }
  1124. /* Detect active and valid domains for the given CPU, caller must
  1125. * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
  1126. */
  1127. static int rapl_detect_domains(struct rapl_package *rp, int cpu)
  1128. {
  1129. int i;
  1130. int ret = 0;
  1131. struct rapl_domain *rd;
  1132. u64 locked;
  1133. for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
  1134. /* use physical package id to read counters */
  1135. if (!rapl_check_domain(cpu, i)) {
  1136. rp->domain_map |= 1 << i;
  1137. pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
  1138. }
  1139. }
  1140. rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
  1141. if (!rp->nr_domains) {
  1142. pr_err("no valid rapl domains found in package %d\n", rp->id);
  1143. ret = -ENODEV;
  1144. goto done;
  1145. }
  1146. pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
  1147. rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
  1148. GFP_KERNEL);
  1149. if (!rp->domains) {
  1150. ret = -ENOMEM;
  1151. goto done;
  1152. }
  1153. rapl_init_domains(rp);
  1154. for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
  1155. /* check if the domain is locked by BIOS */
  1156. ret = rapl_read_data_raw(rd, FW_LOCK, false, &locked);
  1157. if (ret)
  1158. return ret;
  1159. if (locked) {
  1160. pr_info("RAPL package %d domain %s locked by BIOS\n",
  1161. rp->id, rd->name);
  1162. rd->state |= DOMAIN_STATE_BIOS_LOCKED;
  1163. }
  1164. }
  1165. done:
  1166. return ret;
  1167. }
  1168. static bool is_package_new(int package)
  1169. {
  1170. struct rapl_package *rp;
  1171. /* caller prevents cpu hotplug, there will be no new packages added
  1172. * or deleted while traversing the package list, no need for locking.
  1173. */
  1174. list_for_each_entry(rp, &rapl_packages, plist)
  1175. if (package == rp->id)
  1176. return false;
  1177. return true;
  1178. }
  1179. /* RAPL interface can be made of a two-level hierarchy: package level and domain
  1180. * level. We first detect the number of packages then domains of each package.
  1181. * We have to consider the possiblity of CPU online/offline due to hotplug and
  1182. * other scenarios.
  1183. */
  1184. static int rapl_detect_topology(void)
  1185. {
  1186. int i;
  1187. int phy_package_id;
  1188. struct rapl_package *new_package, *rp;
  1189. for_each_online_cpu(i) {
  1190. phy_package_id = topology_physical_package_id(i);
  1191. if (is_package_new(phy_package_id)) {
  1192. new_package = kzalloc(sizeof(*rp), GFP_KERNEL);
  1193. if (!new_package) {
  1194. rapl_cleanup_data();
  1195. return -ENOMEM;
  1196. }
  1197. /* add the new package to the list */
  1198. new_package->id = phy_package_id;
  1199. new_package->nr_cpus = 1;
  1200. /* use the first active cpu of the package to access */
  1201. new_package->lead_cpu = i;
  1202. /* check if the package contains valid domains */
  1203. if (rapl_detect_domains(new_package, i) ||
  1204. rapl_defaults->check_unit(new_package, i)) {
  1205. kfree(new_package->domains);
  1206. kfree(new_package);
  1207. /* free up the packages already initialized */
  1208. rapl_cleanup_data();
  1209. return -ENODEV;
  1210. }
  1211. INIT_LIST_HEAD(&new_package->plist);
  1212. list_add(&new_package->plist, &rapl_packages);
  1213. } else {
  1214. rp = find_package_by_id(phy_package_id);
  1215. if (rp)
  1216. ++rp->nr_cpus;
  1217. }
  1218. }
  1219. return 0;
  1220. }
  1221. /* called from CPU hotplug notifier, hotplug lock held */
  1222. static void rapl_remove_package(struct rapl_package *rp)
  1223. {
  1224. struct rapl_domain *rd, *rd_package = NULL;
  1225. for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
  1226. if (rd->id == RAPL_DOMAIN_PACKAGE) {
  1227. rd_package = rd;
  1228. continue;
  1229. }
  1230. pr_debug("remove package %d, %s domain\n", rp->id, rd->name);
  1231. powercap_unregister_zone(control_type, &rd->power_zone);
  1232. }
  1233. /* do parent zone last */
  1234. powercap_unregister_zone(control_type, &rd_package->power_zone);
  1235. list_del(&rp->plist);
  1236. kfree(rp);
  1237. }
  1238. /* called from CPU hotplug notifier, hotplug lock held */
  1239. static int rapl_add_package(int cpu)
  1240. {
  1241. int ret = 0;
  1242. int phy_package_id;
  1243. struct rapl_package *rp;
  1244. phy_package_id = topology_physical_package_id(cpu);
  1245. rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
  1246. if (!rp)
  1247. return -ENOMEM;
  1248. /* add the new package to the list */
  1249. rp->id = phy_package_id;
  1250. rp->nr_cpus = 1;
  1251. rp->lead_cpu = cpu;
  1252. /* check if the package contains valid domains */
  1253. if (rapl_detect_domains(rp, cpu) ||
  1254. rapl_defaults->check_unit(rp, cpu)) {
  1255. ret = -ENODEV;
  1256. goto err_free_package;
  1257. }
  1258. if (!rapl_package_register_powercap(rp)) {
  1259. INIT_LIST_HEAD(&rp->plist);
  1260. list_add(&rp->plist, &rapl_packages);
  1261. return ret;
  1262. }
  1263. err_free_package:
  1264. kfree(rp->domains);
  1265. kfree(rp);
  1266. return ret;
  1267. }
  1268. /* Handles CPU hotplug on multi-socket systems.
  1269. * If a CPU goes online as the first CPU of the physical package
  1270. * we add the RAPL package to the system. Similarly, when the last
  1271. * CPU of the package is removed, we remove the RAPL package and its
  1272. * associated domains. Cooling devices are handled accordingly at
  1273. * per-domain level.
  1274. */
  1275. static int rapl_cpu_callback(struct notifier_block *nfb,
  1276. unsigned long action, void *hcpu)
  1277. {
  1278. unsigned long cpu = (unsigned long)hcpu;
  1279. int phy_package_id;
  1280. struct rapl_package *rp;
  1281. int lead_cpu;
  1282. phy_package_id = topology_physical_package_id(cpu);
  1283. switch (action) {
  1284. case CPU_ONLINE:
  1285. case CPU_ONLINE_FROZEN:
  1286. case CPU_DOWN_FAILED:
  1287. case CPU_DOWN_FAILED_FROZEN:
  1288. rp = find_package_by_id(phy_package_id);
  1289. if (rp)
  1290. ++rp->nr_cpus;
  1291. else
  1292. rapl_add_package(cpu);
  1293. break;
  1294. case CPU_DOWN_PREPARE:
  1295. case CPU_DOWN_PREPARE_FROZEN:
  1296. rp = find_package_by_id(phy_package_id);
  1297. if (!rp)
  1298. break;
  1299. if (--rp->nr_cpus == 0)
  1300. rapl_remove_package(rp);
  1301. else if (cpu == rp->lead_cpu) {
  1302. /* choose another active cpu in the package */
  1303. lead_cpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
  1304. if (lead_cpu < nr_cpu_ids)
  1305. rp->lead_cpu = lead_cpu;
  1306. else /* should never go here */
  1307. pr_err("no active cpu available for package %d\n",
  1308. phy_package_id);
  1309. }
  1310. }
  1311. return NOTIFY_OK;
  1312. }
  1313. static struct notifier_block rapl_cpu_notifier = {
  1314. .notifier_call = rapl_cpu_callback,
  1315. };
  1316. static int __init rapl_init(void)
  1317. {
  1318. int ret = 0;
  1319. const struct x86_cpu_id *id;
  1320. id = x86_match_cpu(rapl_ids);
  1321. if (!id) {
  1322. pr_err("driver does not support CPU family %d model %d\n",
  1323. boot_cpu_data.x86, boot_cpu_data.x86_model);
  1324. return -ENODEV;
  1325. }
  1326. rapl_defaults = (struct rapl_defaults *)id->driver_data;
  1327. cpu_notifier_register_begin();
  1328. /* prevent CPU hotplug during detection */
  1329. get_online_cpus();
  1330. ret = rapl_detect_topology();
  1331. if (ret)
  1332. goto done;
  1333. if (rapl_register_powercap()) {
  1334. rapl_cleanup_data();
  1335. ret = -ENODEV;
  1336. goto done;
  1337. }
  1338. __register_hotcpu_notifier(&rapl_cpu_notifier);
  1339. done:
  1340. put_online_cpus();
  1341. cpu_notifier_register_done();
  1342. return ret;
  1343. }
  1344. static void __exit rapl_exit(void)
  1345. {
  1346. cpu_notifier_register_begin();
  1347. get_online_cpus();
  1348. __unregister_hotcpu_notifier(&rapl_cpu_notifier);
  1349. rapl_unregister_powercap();
  1350. rapl_cleanup_data();
  1351. put_online_cpus();
  1352. cpu_notifier_register_done();
  1353. }
  1354. module_init(rapl_init);
  1355. module_exit(rapl_exit);
  1356. MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
  1357. MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
  1358. MODULE_LICENSE("GPL v2");