phy.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../ps.h"
  32. #include "../core.h"
  33. #include "reg.h"
  34. #include "def.h"
  35. #include "phy.h"
  36. #include "rf.h"
  37. #include "dm.h"
  38. #include "table.h"
  39. #include "sw.h"
  40. #include "hw.h"
  41. #define MAX_RF_IMR_INDEX 12
  42. #define MAX_RF_IMR_INDEX_NORMAL 13
  43. #define RF_REG_NUM_FOR_C_CUT_5G 6
  44. #define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7
  45. #define RF_REG_NUM_FOR_C_CUT_2G 5
  46. #define RF_CHNL_NUM_5G 19
  47. #define RF_CHNL_NUM_5G_40M 17
  48. #define TARGET_CHNL_NUM_5G 221
  49. #define TARGET_CHNL_NUM_2G 14
  50. #define CV_CURVE_CNT 64
  51. static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
  52. 0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
  53. };
  54. static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
  55. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
  56. };
  57. static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  58. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
  59. };
  60. static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  61. 0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
  62. };
  63. static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  64. BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
  65. BIT(10) | BIT(9),
  66. BIT(18) | BIT(17) | BIT(16) | BIT(1),
  67. BIT(2) | BIT(1),
  68. BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
  69. };
  70. static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
  71. 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
  72. 112, 116, 120, 124, 128, 132, 136, 140
  73. };
  74. static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
  75. 38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
  76. 118, 122, 126, 130, 134, 138
  77. };
  78. static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
  79. {0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
  80. {0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
  81. {0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
  82. {0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
  83. {0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
  84. };
  85. static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
  86. {0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
  87. {0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
  88. {0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
  89. };
  90. static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;
  91. static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  92. {0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
  93. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
  94. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
  95. };
  96. /* [mode][patha+b][reg] */
  97. static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
  98. {
  99. /* channel 1-14. */
  100. {
  101. 0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
  102. 0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
  103. },
  104. /* path 36-64 */
  105. {
  106. 0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
  107. 0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
  108. 0x32c9a
  109. },
  110. /* 100 -165 */
  111. {
  112. 0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
  113. 0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
  114. }
  115. }
  116. };
  117. static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};
  118. static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};
  119. static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
  120. 25141, 25116, 25091, 25066, 25041,
  121. 25016, 24991, 24966, 24941, 24917,
  122. 24892, 24867, 24843, 24818, 24794,
  123. 24770, 24765, 24721, 24697, 24672,
  124. 24648, 24624, 24600, 24576, 24552,
  125. 24528, 24504, 24480, 24457, 24433,
  126. 24409, 24385, 24362, 24338, 24315,
  127. 24291, 24268, 24245, 24221, 24198,
  128. 24175, 24151, 24128, 24105, 24082,
  129. 24059, 24036, 24013, 23990, 23967,
  130. 23945, 23922, 23899, 23876, 23854,
  131. 23831, 23809, 23786, 23764, 23741,
  132. 23719, 23697, 23674, 23652, 23630,
  133. 23608, 23586, 23564, 23541, 23519,
  134. 23498, 23476, 23454, 23432, 23410,
  135. 23388, 23367, 23345, 23323, 23302,
  136. 23280, 23259, 23237, 23216, 23194,
  137. 23173, 23152, 23130, 23109, 23088,
  138. 23067, 23046, 23025, 23003, 22982,
  139. 22962, 22941, 22920, 22899, 22878,
  140. 22857, 22837, 22816, 22795, 22775,
  141. 22754, 22733, 22713, 22692, 22672,
  142. 22652, 22631, 22611, 22591, 22570,
  143. 22550, 22530, 22510, 22490, 22469,
  144. 22449, 22429, 22409, 22390, 22370,
  145. 22350, 22336, 22310, 22290, 22271,
  146. 22251, 22231, 22212, 22192, 22173,
  147. 22153, 22134, 22114, 22095, 22075,
  148. 22056, 22037, 22017, 21998, 21979,
  149. 21960, 21941, 21921, 21902, 21883,
  150. 21864, 21845, 21826, 21807, 21789,
  151. 21770, 21751, 21732, 21713, 21695,
  152. 21676, 21657, 21639, 21620, 21602,
  153. 21583, 21565, 21546, 21528, 21509,
  154. 21491, 21473, 21454, 21436, 21418,
  155. 21400, 21381, 21363, 21345, 21327,
  156. 21309, 21291, 21273, 21255, 21237,
  157. 21219, 21201, 21183, 21166, 21148,
  158. 21130, 21112, 21095, 21077, 21059,
  159. 21042, 21024, 21007, 20989, 20972,
  160. 25679, 25653, 25627, 25601, 25575,
  161. 25549, 25523, 25497, 25471, 25446,
  162. 25420, 25394, 25369, 25343, 25318,
  163. 25292, 25267, 25242, 25216, 25191,
  164. 25166
  165. };
  166. /* channel 1~14 */
  167. static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
  168. 26084, 26030, 25976, 25923, 25869, 25816, 25764,
  169. 25711, 25658, 25606, 25554, 25502, 25451, 25328
  170. };
  171. static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
  172. {
  173. u32 i;
  174. for (i = 0; i <= 31; i++) {
  175. if (((bitmask >> i) & 0x1) == 1)
  176. break;
  177. }
  178. return i;
  179. }
  180. u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  181. {
  182. struct rtl_priv *rtlpriv = rtl_priv(hw);
  183. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  184. u32 returnvalue, originalvalue, bitshift;
  185. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
  186. regaddr, bitmask);
  187. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
  188. u8 dbi_direct = 0;
  189. /* mac1 use phy0 read radio_b. */
  190. /* mac0 use phy1 read radio_b. */
  191. if (rtlhal->during_mac1init_radioa)
  192. dbi_direct = BIT(3);
  193. else if (rtlhal->during_mac0init_radiob)
  194. dbi_direct = BIT(3) | BIT(2);
  195. originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
  196. dbi_direct);
  197. } else {
  198. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  199. }
  200. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  201. returnvalue = (originalvalue & bitmask) >> bitshift;
  202. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  203. "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
  204. bitmask, regaddr, originalvalue);
  205. return returnvalue;
  206. }
  207. void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
  208. u32 regaddr, u32 bitmask, u32 data)
  209. {
  210. struct rtl_priv *rtlpriv = rtl_priv(hw);
  211. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  212. u8 dbi_direct = 0;
  213. u32 originalvalue, bitshift;
  214. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  215. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  216. regaddr, bitmask, data);
  217. if (rtlhal->during_mac1init_radioa)
  218. dbi_direct = BIT(3);
  219. else if (rtlhal->during_mac0init_radiob)
  220. /* mac0 use phy1 write radio_b. */
  221. dbi_direct = BIT(3) | BIT(2);
  222. if (bitmask != MASKDWORD) {
  223. if (rtlhal->during_mac1init_radioa ||
  224. rtlhal->during_mac0init_radiob)
  225. originalvalue = rtl92de_read_dword_dbi(hw,
  226. (u16) regaddr,
  227. dbi_direct);
  228. else
  229. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  230. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  231. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  232. }
  233. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
  234. rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
  235. else
  236. rtl_write_dword(rtlpriv, regaddr, data);
  237. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  238. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  239. regaddr, bitmask, data);
  240. }
  241. static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
  242. enum radio_path rfpath, u32 offset)
  243. {
  244. struct rtl_priv *rtlpriv = rtl_priv(hw);
  245. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  246. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  247. u32 newoffset;
  248. u32 tmplong, tmplong2;
  249. u8 rfpi_enable = 0;
  250. u32 retvalue;
  251. newoffset = offset;
  252. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
  253. if (rfpath == RF90_PATH_A)
  254. tmplong2 = tmplong;
  255. else
  256. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
  257. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  258. (newoffset << 23) | BLSSIREADEDGE;
  259. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  260. tmplong & (~BLSSIREADEDGE));
  261. udelay(10);
  262. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
  263. udelay(50);
  264. udelay(50);
  265. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  266. tmplong | BLSSIREADEDGE);
  267. udelay(10);
  268. if (rfpath == RF90_PATH_A)
  269. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  270. BIT(8));
  271. else if (rfpath == RF90_PATH_B)
  272. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  273. BIT(8));
  274. if (rfpi_enable)
  275. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
  276. BLSSIREADBACKDATA);
  277. else
  278. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
  279. BLSSIREADBACKDATA);
  280. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
  281. rfpath, pphyreg->rf_rb, retvalue);
  282. return retvalue;
  283. }
  284. static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
  285. enum radio_path rfpath,
  286. u32 offset, u32 data)
  287. {
  288. u32 data_and_addr;
  289. u32 newoffset;
  290. struct rtl_priv *rtlpriv = rtl_priv(hw);
  291. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  292. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  293. newoffset = offset;
  294. /* T65 RF */
  295. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  296. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
  297. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
  298. rfpath, pphyreg->rf3wire_offset, data_and_addr);
  299. }
  300. u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
  301. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  302. {
  303. struct rtl_priv *rtlpriv = rtl_priv(hw);
  304. u32 original_value, readback_value, bitshift;
  305. unsigned long flags;
  306. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  307. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  308. regaddr, rfpath, bitmask);
  309. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  310. original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
  311. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  312. readback_value = (original_value & bitmask) >> bitshift;
  313. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  314. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  315. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  316. regaddr, rfpath, bitmask, original_value);
  317. return readback_value;
  318. }
  319. void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  320. u32 regaddr, u32 bitmask, u32 data)
  321. {
  322. struct rtl_priv *rtlpriv = rtl_priv(hw);
  323. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  324. u32 original_value, bitshift;
  325. unsigned long flags;
  326. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  327. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  328. regaddr, bitmask, data, rfpath);
  329. if (bitmask == 0)
  330. return;
  331. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  332. if (rtlphy->rf_mode != RF_OP_BY_FW) {
  333. if (bitmask != RFREG_OFFSET_MASK) {
  334. original_value = _rtl92d_phy_rf_serial_read(hw,
  335. rfpath, regaddr);
  336. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  337. data = ((original_value & (~bitmask)) |
  338. (data << bitshift));
  339. }
  340. _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
  341. }
  342. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  343. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  344. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  345. regaddr, bitmask, data, rfpath);
  346. }
  347. bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
  348. {
  349. struct rtl_priv *rtlpriv = rtl_priv(hw);
  350. u32 i;
  351. u32 arraylength;
  352. u32 *ptrarray;
  353. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
  354. arraylength = MAC_2T_ARRAYLENGTH;
  355. ptrarray = rtl8192de_mac_2tarray;
  356. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
  357. for (i = 0; i < arraylength; i = i + 2)
  358. rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
  359. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
  360. /* improve 2-stream TX EVM */
  361. /* rtl_write_byte(rtlpriv, 0x14,0x71); */
  362. /* AMPDU aggregation number 9 */
  363. /* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
  364. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
  365. } else {
  366. /* 92D need to test to decide the num. */
  367. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
  368. }
  369. return true;
  370. }
  371. static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  372. {
  373. struct rtl_priv *rtlpriv = rtl_priv(hw);
  374. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  375. /* RF Interface Sowrtware Control */
  376. /* 16 LSBs if read 32-bit from 0x870 */
  377. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  378. /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
  379. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  380. /* 16 LSBs if read 32-bit from 0x874 */
  381. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  382. /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
  383. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  384. /* RF Interface Readback Value */
  385. /* 16 LSBs if read 32-bit from 0x8E0 */
  386. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  387. /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
  388. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  389. /* 16 LSBs if read 32-bit from 0x8E4 */
  390. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  391. /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
  392. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  393. /* RF Interface Output (and Enable) */
  394. /* 16 LSBs if read 32-bit from 0x860 */
  395. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  396. /* 16 LSBs if read 32-bit from 0x864 */
  397. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  398. /* RF Interface (Output and) Enable */
  399. /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
  400. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  401. /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
  402. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  403. /* Addr of LSSI. Wirte RF register by driver */
  404. /* LSSI Parameter */
  405. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  406. RFPGA0_XA_LSSIPARAMETER;
  407. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  408. RFPGA0_XB_LSSIPARAMETER;
  409. /* RF parameter */
  410. /* BB Band Select */
  411. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  412. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  413. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  414. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  415. /* Tx AGC Gain Stage (same for all path. Should we remove this?) */
  416. /* Tx gain stage */
  417. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  418. /* Tx gain stage */
  419. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  420. /* Tx gain stage */
  421. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  422. /* Tx gain stage */
  423. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  424. /* Tranceiver A~D HSSI Parameter-1 */
  425. /* wire control parameter1 */
  426. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  427. /* wire control parameter1 */
  428. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  429. /* Tranceiver A~D HSSI Parameter-2 */
  430. /* wire control parameter2 */
  431. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  432. /* wire control parameter2 */
  433. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  434. /* RF switch Control */
  435. /* TR/Ant switch control */
  436. rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  437. rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  438. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  439. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  440. /* AGC control 1 */
  441. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  442. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  443. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  444. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  445. /* AGC control 2 */
  446. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  447. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  448. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  449. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  450. /* RX AFE control 1 */
  451. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
  452. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
  453. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE;
  454. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
  455. /*RX AFE control 1 */
  456. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  457. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  458. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  459. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  460. /* Tx AFE control 1 */
  461. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE;
  462. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE;
  463. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE;
  464. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE;
  465. /* Tx AFE control 2 */
  466. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
  467. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
  468. rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
  469. rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;
  470. /* Tranceiver LSSI Readback SI mode */
  471. rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
  472. rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
  473. rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK;
  474. rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK;
  475. /* Tranceiver LSSI Readback PI mode */
  476. rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK;
  477. rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK;
  478. }
  479. static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  480. u8 configtype)
  481. {
  482. int i;
  483. u32 *phy_regarray_table;
  484. u32 *agctab_array_table = NULL;
  485. u32 *agctab_5garray_table;
  486. u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
  487. struct rtl_priv *rtlpriv = rtl_priv(hw);
  488. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  489. /* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
  490. if (rtlhal->interfaceindex == 0) {
  491. agctab_arraylen = AGCTAB_ARRAYLENGTH;
  492. agctab_array_table = rtl8192de_agctab_array;
  493. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  494. " ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
  495. } else {
  496. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  497. agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
  498. agctab_array_table = rtl8192de_agctab_2garray;
  499. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  500. " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
  501. } else {
  502. agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
  503. agctab_5garray_table = rtl8192de_agctab_5garray;
  504. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  505. " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
  506. }
  507. }
  508. phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
  509. phy_regarray_table = rtl8192de_phy_reg_2tarray;
  510. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  511. " ===> phy:Rtl819XPHY_REG_Array_PG\n");
  512. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  513. for (i = 0; i < phy_reg_arraylen; i = i + 2) {
  514. rtl_addr_delay(phy_regarray_table[i]);
  515. rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
  516. phy_regarray_table[i + 1]);
  517. udelay(1);
  518. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  519. "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
  520. phy_regarray_table[i],
  521. phy_regarray_table[i + 1]);
  522. }
  523. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  524. if (rtlhal->interfaceindex == 0) {
  525. for (i = 0; i < agctab_arraylen; i = i + 2) {
  526. rtl_set_bbreg(hw, agctab_array_table[i],
  527. MASKDWORD,
  528. agctab_array_table[i + 1]);
  529. /* Add 1us delay between BB/RF register
  530. * setting. */
  531. udelay(1);
  532. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  533. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  534. agctab_array_table[i],
  535. agctab_array_table[i + 1]);
  536. }
  537. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  538. "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
  539. } else {
  540. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  541. for (i = 0; i < agctab_arraylen; i = i + 2) {
  542. rtl_set_bbreg(hw, agctab_array_table[i],
  543. MASKDWORD,
  544. agctab_array_table[i + 1]);
  545. /* Add 1us delay between BB/RF register
  546. * setting. */
  547. udelay(1);
  548. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  549. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  550. agctab_array_table[i],
  551. agctab_array_table[i + 1]);
  552. }
  553. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  554. "Load Rtl819XAGCTAB_2GArray\n");
  555. } else {
  556. for (i = 0; i < agctab_5garraylen; i = i + 2) {
  557. rtl_set_bbreg(hw,
  558. agctab_5garray_table[i],
  559. MASKDWORD,
  560. agctab_5garray_table[i + 1]);
  561. /* Add 1us delay between BB/RF registeri
  562. * setting. */
  563. udelay(1);
  564. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  565. "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  566. agctab_5garray_table[i],
  567. agctab_5garray_table[i + 1]);
  568. }
  569. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  570. "Load Rtl819XAGCTAB_5GArray\n");
  571. }
  572. }
  573. }
  574. return true;
  575. }
  576. static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
  577. u32 regaddr, u32 bitmask,
  578. u32 data)
  579. {
  580. struct rtl_priv *rtlpriv = rtl_priv(hw);
  581. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  582. int index;
  583. if (regaddr == RTXAGC_A_RATE18_06)
  584. index = 0;
  585. else if (regaddr == RTXAGC_A_RATE54_24)
  586. index = 1;
  587. else if (regaddr == RTXAGC_A_CCK1_MCS32)
  588. index = 6;
  589. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00)
  590. index = 7;
  591. else if (regaddr == RTXAGC_A_MCS03_MCS00)
  592. index = 2;
  593. else if (regaddr == RTXAGC_A_MCS07_MCS04)
  594. index = 3;
  595. else if (regaddr == RTXAGC_A_MCS11_MCS08)
  596. index = 4;
  597. else if (regaddr == RTXAGC_A_MCS15_MCS12)
  598. index = 5;
  599. else if (regaddr == RTXAGC_B_RATE18_06)
  600. index = 8;
  601. else if (regaddr == RTXAGC_B_RATE54_24)
  602. index = 9;
  603. else if (regaddr == RTXAGC_B_CCK1_55_MCS32)
  604. index = 14;
  605. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff)
  606. index = 15;
  607. else if (regaddr == RTXAGC_B_MCS03_MCS00)
  608. index = 10;
  609. else if (regaddr == RTXAGC_B_MCS07_MCS04)
  610. index = 11;
  611. else if (regaddr == RTXAGC_B_MCS11_MCS08)
  612. index = 12;
  613. else if (regaddr == RTXAGC_B_MCS15_MCS12)
  614. index = 13;
  615. else
  616. return;
  617. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data;
  618. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  619. "MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n",
  620. rtlphy->pwrgroup_cnt, index,
  621. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]);
  622. if (index == 13)
  623. rtlphy->pwrgroup_cnt++;
  624. }
  625. static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
  626. u8 configtype)
  627. {
  628. struct rtl_priv *rtlpriv = rtl_priv(hw);
  629. int i;
  630. u32 *phy_regarray_table_pg;
  631. u16 phy_regarray_pg_len;
  632. phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
  633. phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
  634. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  635. for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
  636. rtl_addr_delay(phy_regarray_table_pg[i]);
  637. _rtl92d_store_pwrindex_diffrate_offset(hw,
  638. phy_regarray_table_pg[i],
  639. phy_regarray_table_pg[i + 1],
  640. phy_regarray_table_pg[i + 2]);
  641. }
  642. } else {
  643. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  644. "configtype != BaseBand_Config_PHY_REG\n");
  645. }
  646. return true;
  647. }
  648. static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  649. {
  650. struct rtl_priv *rtlpriv = rtl_priv(hw);
  651. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  652. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  653. bool rtstatus = true;
  654. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
  655. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  656. BASEBAND_CONFIG_PHY_REG);
  657. if (!rtstatus) {
  658. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
  659. return false;
  660. }
  661. /* if (rtlphy->rf_type == RF_1T2R) {
  662. * _rtl92c_phy_bb_config_1t(hw);
  663. * RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
  664. *} */
  665. if (rtlefuse->autoload_failflag == false) {
  666. rtlphy->pwrgroup_cnt = 0;
  667. rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
  668. BASEBAND_CONFIG_PHY_REG);
  669. }
  670. if (!rtstatus) {
  671. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
  672. return false;
  673. }
  674. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  675. BASEBAND_CONFIG_AGC_TAB);
  676. if (!rtstatus) {
  677. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  678. return false;
  679. }
  680. rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
  681. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  682. return true;
  683. }
  684. bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  685. {
  686. struct rtl_priv *rtlpriv = rtl_priv(hw);
  687. u16 regval;
  688. u32 regvaldw;
  689. u8 value;
  690. _rtl92d_phy_init_bb_rf_register_definition(hw);
  691. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  692. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  693. regval | BIT(13) | BIT(0) | BIT(1));
  694. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
  695. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
  696. /* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
  697. value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
  698. rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
  699. RF_SDMRSTB);
  700. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
  701. FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
  702. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
  703. if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
  704. regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
  705. rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
  706. }
  707. return _rtl92d_phy_bb_config(hw);
  708. }
  709. bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
  710. {
  711. return rtl92d_phy_rf6052_config(hw);
  712. }
  713. bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  714. enum rf_content content,
  715. enum radio_path rfpath)
  716. {
  717. int i;
  718. u32 *radioa_array_table;
  719. u32 *radiob_array_table;
  720. u16 radioa_arraylen, radiob_arraylen;
  721. struct rtl_priv *rtlpriv = rtl_priv(hw);
  722. radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
  723. radioa_array_table = rtl8192de_radioa_2tarray;
  724. radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
  725. radiob_array_table = rtl8192de_radiob_2tarray;
  726. if (rtlpriv->efuse.internal_pa_5g[0]) {
  727. radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
  728. radioa_array_table = rtl8192de_radioa_2t_int_paarray;
  729. }
  730. if (rtlpriv->efuse.internal_pa_5g[1]) {
  731. radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
  732. radiob_array_table = rtl8192de_radiob_2t_int_paarray;
  733. }
  734. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  735. "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
  736. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  737. "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
  738. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
  739. /* this only happens when DMDP, mac0 start on 2.4G,
  740. * mac1 start on 5G, mac 0 has to set phy0&phy1
  741. * pathA or mac1 has to set phy0&phy1 pathA */
  742. if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
  743. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  744. " ===> althougth Path A, we load radiob.txt\n");
  745. radioa_arraylen = radiob_arraylen;
  746. radioa_array_table = radiob_array_table;
  747. }
  748. switch (rfpath) {
  749. case RF90_PATH_A:
  750. for (i = 0; i < radioa_arraylen; i = i + 2) {
  751. rtl_rfreg_delay(hw, rfpath, radioa_array_table[i],
  752. RFREG_OFFSET_MASK,
  753. radioa_array_table[i + 1]);
  754. }
  755. break;
  756. case RF90_PATH_B:
  757. for (i = 0; i < radiob_arraylen; i = i + 2) {
  758. rtl_rfreg_delay(hw, rfpath, radiob_array_table[i],
  759. RFREG_OFFSET_MASK,
  760. radiob_array_table[i + 1]);
  761. }
  762. break;
  763. case RF90_PATH_C:
  764. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  765. "switch case not processed\n");
  766. break;
  767. case RF90_PATH_D:
  768. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  769. "switch case not processed\n");
  770. break;
  771. }
  772. return true;
  773. }
  774. void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  775. {
  776. struct rtl_priv *rtlpriv = rtl_priv(hw);
  777. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  778. rtlphy->default_initialgain[0] =
  779. (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
  780. rtlphy->default_initialgain[1] =
  781. (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
  782. rtlphy->default_initialgain[2] =
  783. (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
  784. rtlphy->default_initialgain[3] =
  785. (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
  786. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  787. "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
  788. rtlphy->default_initialgain[0],
  789. rtlphy->default_initialgain[1],
  790. rtlphy->default_initialgain[2],
  791. rtlphy->default_initialgain[3]);
  792. rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  793. MASKBYTE0);
  794. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  795. MASKDWORD);
  796. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  797. "Default framesync (0x%x) = 0x%x\n",
  798. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  799. }
  800. static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  801. u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  802. {
  803. struct rtl_priv *rtlpriv = rtl_priv(hw);
  804. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  805. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  806. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  807. u8 index = (channel - 1);
  808. /* 1. CCK */
  809. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  810. /* RF-A */
  811. cckpowerlevel[RF90_PATH_A] =
  812. rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
  813. /* RF-B */
  814. cckpowerlevel[RF90_PATH_B] =
  815. rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
  816. } else {
  817. cckpowerlevel[RF90_PATH_A] = 0;
  818. cckpowerlevel[RF90_PATH_B] = 0;
  819. }
  820. /* 2. OFDM for 1S or 2S */
  821. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
  822. /* Read HT 40 OFDM TX power */
  823. ofdmpowerlevel[RF90_PATH_A] =
  824. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
  825. ofdmpowerlevel[RF90_PATH_B] =
  826. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
  827. } else if (rtlphy->rf_type == RF_2T2R) {
  828. /* Read HT 40 OFDM TX power */
  829. ofdmpowerlevel[RF90_PATH_A] =
  830. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
  831. ofdmpowerlevel[RF90_PATH_B] =
  832. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
  833. }
  834. }
  835. static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
  836. u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  837. {
  838. struct rtl_priv *rtlpriv = rtl_priv(hw);
  839. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  840. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  841. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  842. }
  843. static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
  844. {
  845. u8 place = chnl;
  846. if (chnl > 14) {
  847. for (place = 14; place < sizeof(channel5g); place++) {
  848. if (channel5g[place] == chnl) {
  849. place++;
  850. break;
  851. }
  852. }
  853. }
  854. return place;
  855. }
  856. void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  857. {
  858. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  859. struct rtl_priv *rtlpriv = rtl_priv(hw);
  860. u8 cckpowerlevel[2], ofdmpowerlevel[2];
  861. if (!rtlefuse->txpwr_fromeprom)
  862. return;
  863. channel = _rtl92c_phy_get_rightchnlplace(channel);
  864. _rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
  865. &ofdmpowerlevel[0]);
  866. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  867. _rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
  868. &ofdmpowerlevel[0]);
  869. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  870. rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
  871. rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
  872. }
  873. void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
  874. enum nl80211_channel_type ch_type)
  875. {
  876. struct rtl_priv *rtlpriv = rtl_priv(hw);
  877. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  878. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  879. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  880. unsigned long flag = 0;
  881. u8 reg_prsr_rsc;
  882. u8 reg_bw_opmode;
  883. if (rtlphy->set_bwmode_inprogress)
  884. return;
  885. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  886. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  887. "FALSE driver sleep or unload\n");
  888. return;
  889. }
  890. rtlphy->set_bwmode_inprogress = true;
  891. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
  892. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  893. "20MHz" : "40MHz");
  894. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  895. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  896. switch (rtlphy->current_chan_bw) {
  897. case HT_CHANNEL_WIDTH_20:
  898. reg_bw_opmode |= BW_OPMODE_20MHZ;
  899. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  900. break;
  901. case HT_CHANNEL_WIDTH_20_40:
  902. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  903. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  904. reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
  905. (mac->cur_40_prime_sc << 5);
  906. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  907. break;
  908. default:
  909. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  910. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  911. break;
  912. }
  913. switch (rtlphy->current_chan_bw) {
  914. case HT_CHANNEL_WIDTH_20:
  915. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  916. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  917. /* SET BIT10 BIT11 for receive cck */
  918. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  919. BIT(11), 3);
  920. break;
  921. case HT_CHANNEL_WIDTH_20_40:
  922. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  923. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  924. /* Set Control channel to upper or lower.
  925. * These settings are required only for 40MHz */
  926. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  927. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  928. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
  929. (mac->cur_40_prime_sc >> 1));
  930. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  931. }
  932. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  933. /* SET BIT10 BIT11 for receive cck */
  934. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  935. BIT(11), 0);
  936. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  937. (mac->cur_40_prime_sc ==
  938. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  939. break;
  940. default:
  941. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  942. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  943. break;
  944. }
  945. rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  946. rtlphy->set_bwmode_inprogress = false;
  947. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  948. }
  949. static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
  950. {
  951. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
  952. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
  953. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x00);
  954. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
  955. }
  956. static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
  957. {
  958. struct rtl_priv *rtlpriv = rtl_priv(hw);
  959. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  960. u8 value8;
  961. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  962. rtlhal->bandset = band;
  963. rtlhal->current_bandtype = band;
  964. if (IS_92D_SINGLEPHY(rtlhal->version))
  965. rtlhal->bandset = BAND_ON_BOTH;
  966. /* stop RX/Tx */
  967. _rtl92d_phy_stop_trx_before_changeband(hw);
  968. /* reconfig BB/RF according to wireless mode */
  969. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  970. /* BB & RF Config */
  971. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
  972. if (rtlhal->interfaceindex == 1)
  973. _rtl92d_phy_config_bb_with_headerfile(hw,
  974. BASEBAND_CONFIG_AGC_TAB);
  975. } else {
  976. /* 5G band */
  977. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
  978. if (rtlhal->interfaceindex == 1)
  979. _rtl92d_phy_config_bb_with_headerfile(hw,
  980. BASEBAND_CONFIG_AGC_TAB);
  981. }
  982. rtl92d_update_bbrf_configuration(hw);
  983. if (rtlhal->current_bandtype == BAND_ON_2_4G)
  984. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  985. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  986. /* 20M BW. */
  987. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
  988. rtlhal->reloadtxpowerindex = true;
  989. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  990. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  991. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  992. 0 ? REG_MAC0 : REG_MAC1));
  993. value8 |= BIT(1);
  994. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  995. 0 ? REG_MAC0 : REG_MAC1), value8);
  996. } else {
  997. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  998. 0 ? REG_MAC0 : REG_MAC1));
  999. value8 &= (~BIT(1));
  1000. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1001. 0 ? REG_MAC0 : REG_MAC1), value8);
  1002. }
  1003. mdelay(1);
  1004. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
  1005. }
  1006. static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
  1007. u8 channel, u8 rfpath)
  1008. {
  1009. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1010. u32 imr_num = MAX_RF_IMR_INDEX;
  1011. u32 rfmask = RFREG_OFFSET_MASK;
  1012. u8 group, i;
  1013. unsigned long flag = 0;
  1014. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
  1015. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
  1016. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1017. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1018. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
  1019. /* fc area 0xd2c */
  1020. if (channel > 99)
  1021. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1022. BIT(14), 2);
  1023. else
  1024. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1025. BIT(14), 1);
  1026. /* leave 0 for channel1-14. */
  1027. group = channel <= 64 ? 1 : 2;
  1028. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1029. for (i = 0; i < imr_num; i++)
  1030. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1031. rf_reg_for_5g_swchnl_normal[i], rfmask,
  1032. rf_imr_param_normal[0][group][i]);
  1033. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
  1034. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
  1035. } else {
  1036. /* G band. */
  1037. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1038. "Load RF IMR parameters for G band. IMR already setting %d\n",
  1039. rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
  1040. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1041. if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
  1042. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1043. "Load RF IMR parameters for G band. %d\n",
  1044. rfpath);
  1045. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  1046. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1047. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1048. 0x00f00000, 0xf);
  1049. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1050. for (i = 0; i < imr_num; i++) {
  1051. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1052. rf_reg_for_5g_swchnl_normal[i],
  1053. RFREG_OFFSET_MASK,
  1054. rf_imr_param_normal[0][0][i]);
  1055. }
  1056. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1057. 0x00f00000, 0);
  1058. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
  1059. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  1060. }
  1061. }
  1062. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1063. }
  1064. static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
  1065. u8 rfpath, u32 *pu4_regval)
  1066. {
  1067. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1068. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1069. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1070. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
  1071. /*----Store original RFENV control type----*/
  1072. switch (rfpath) {
  1073. case RF90_PATH_A:
  1074. case RF90_PATH_C:
  1075. *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
  1076. break;
  1077. case RF90_PATH_B:
  1078. case RF90_PATH_D:
  1079. *pu4_regval =
  1080. rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
  1081. break;
  1082. }
  1083. /*----Set RF_ENV enable----*/
  1084. rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
  1085. udelay(1);
  1086. /*----Set RF_ENV output high----*/
  1087. rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
  1088. udelay(1);
  1089. /* Set bit number of Address and Data for RF register */
  1090. /* Set 1 to 4 bits for 8255 */
  1091. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
  1092. udelay(1);
  1093. /*Set 0 to 12 bits for 8255 */
  1094. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
  1095. udelay(1);
  1096. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
  1097. }
  1098. static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
  1099. u32 *pu4_regval)
  1100. {
  1101. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1102. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1103. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1104. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
  1105. /*----Restore RFENV control type----*/
  1106. switch (rfpath) {
  1107. case RF90_PATH_A:
  1108. case RF90_PATH_C:
  1109. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
  1110. break;
  1111. case RF90_PATH_B:
  1112. case RF90_PATH_D:
  1113. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
  1114. *pu4_regval);
  1115. break;
  1116. }
  1117. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
  1118. }
  1119. static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
  1120. {
  1121. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1122. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1123. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1124. u8 path = rtlhal->current_bandtype ==
  1125. BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
  1126. u8 index = 0, i = 0, rfpath = RF90_PATH_A;
  1127. bool need_pwr_down = false, internal_pa = false;
  1128. u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;
  1129. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
  1130. /* config path A for 5G */
  1131. if (rtlhal->current_bandtype == BAND_ON_5G) {
  1132. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1133. u4tmp = curveindex_5g[channel - 1];
  1134. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1135. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  1136. for (i = 0; i < RF_CHNL_NUM_5G; i++) {
  1137. if (channel == rf_chnl_5g[i] && channel <= 140)
  1138. index = 0;
  1139. }
  1140. for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
  1141. if (channel == rf_chnl_5g_40m[i] && channel <= 140)
  1142. index = 1;
  1143. }
  1144. if (channel == 149 || channel == 155 || channel == 161)
  1145. index = 2;
  1146. else if (channel == 151 || channel == 153 || channel == 163
  1147. || channel == 165)
  1148. index = 3;
  1149. else if (channel == 157 || channel == 159)
  1150. index = 4;
  1151. if (rtlhal->macphymode == DUALMAC_DUALPHY
  1152. && rtlhal->interfaceindex == 1) {
  1153. need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
  1154. rtlhal->during_mac1init_radioa = true;
  1155. /* asume no this case */
  1156. if (need_pwr_down)
  1157. _rtl92d_phy_enable_rf_env(hw, path,
  1158. &u4regvalue);
  1159. }
  1160. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
  1161. if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
  1162. rtl_set_rfreg(hw, (enum radio_path)path,
  1163. rf_reg_for_c_cut_5g[i],
  1164. RFREG_OFFSET_MASK, 0xE439D);
  1165. } else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
  1166. u4tmp2 = (rf_reg_pram_c_5g[index][i] &
  1167. 0x7FF) | (u4tmp << 11);
  1168. if (channel == 36)
  1169. u4tmp2 &= ~(BIT(7) | BIT(6));
  1170. rtl_set_rfreg(hw, (enum radio_path)path,
  1171. rf_reg_for_c_cut_5g[i],
  1172. RFREG_OFFSET_MASK, u4tmp2);
  1173. } else {
  1174. rtl_set_rfreg(hw, (enum radio_path)path,
  1175. rf_reg_for_c_cut_5g[i],
  1176. RFREG_OFFSET_MASK,
  1177. rf_reg_pram_c_5g[index][i]);
  1178. }
  1179. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1180. "offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
  1181. rf_reg_for_c_cut_5g[i],
  1182. rf_reg_pram_c_5g[index][i],
  1183. path, index,
  1184. rtl_get_rfreg(hw, (enum radio_path)path,
  1185. rf_reg_for_c_cut_5g[i],
  1186. RFREG_OFFSET_MASK));
  1187. }
  1188. if (need_pwr_down)
  1189. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1190. if (rtlhal->during_mac1init_radioa)
  1191. rtl92d_phy_powerdown_anotherphy(hw, false);
  1192. if (channel < 149)
  1193. value = 0x07;
  1194. else if (channel >= 149)
  1195. value = 0x02;
  1196. if (channel >= 36 && channel <= 64)
  1197. index = 0;
  1198. else if (channel >= 100 && channel <= 140)
  1199. index = 1;
  1200. else
  1201. index = 2;
  1202. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  1203. rfpath++) {
  1204. if (rtlhal->macphymode == DUALMAC_DUALPHY &&
  1205. rtlhal->interfaceindex == 1) /* MAC 1 5G */
  1206. internal_pa = rtlpriv->efuse.internal_pa_5g[1];
  1207. else
  1208. internal_pa =
  1209. rtlpriv->efuse.internal_pa_5g[rfpath];
  1210. if (internal_pa) {
  1211. for (i = 0;
  1212. i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
  1213. i++) {
  1214. rtl_set_rfreg(hw, rfpath,
  1215. rf_for_c_cut_5g_internal_pa[i],
  1216. RFREG_OFFSET_MASK,
  1217. rf_pram_c_5g_int_pa[index][i]);
  1218. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
  1219. "offset 0x%x value 0x%x path %d index %d\n",
  1220. rf_for_c_cut_5g_internal_pa[i],
  1221. rf_pram_c_5g_int_pa[index][i],
  1222. rfpath, index);
  1223. }
  1224. } else {
  1225. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  1226. mask, value);
  1227. }
  1228. }
  1229. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1230. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1231. u4tmp = curveindex_2g[channel - 1];
  1232. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1233. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  1234. if (channel == 1 || channel == 2 || channel == 4 || channel == 9
  1235. || channel == 10 || channel == 11 || channel == 12)
  1236. index = 0;
  1237. else if (channel == 3 || channel == 13 || channel == 14)
  1238. index = 1;
  1239. else if (channel >= 5 && channel <= 8)
  1240. index = 2;
  1241. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  1242. path = RF90_PATH_A;
  1243. if (rtlhal->interfaceindex == 0) {
  1244. need_pwr_down =
  1245. rtl92d_phy_enable_anotherphy(hw, true);
  1246. rtlhal->during_mac0init_radiob = true;
  1247. if (need_pwr_down)
  1248. _rtl92d_phy_enable_rf_env(hw, path,
  1249. &u4regvalue);
  1250. }
  1251. }
  1252. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
  1253. if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
  1254. rtl_set_rfreg(hw, (enum radio_path)path,
  1255. rf_reg_for_c_cut_2g[i],
  1256. RFREG_OFFSET_MASK,
  1257. (rf_reg_param_for_c_cut_2g[index][i] |
  1258. BIT(17)));
  1259. else
  1260. rtl_set_rfreg(hw, (enum radio_path)path,
  1261. rf_reg_for_c_cut_2g[i],
  1262. RFREG_OFFSET_MASK,
  1263. rf_reg_param_for_c_cut_2g
  1264. [index][i]);
  1265. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1266. "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
  1267. rf_reg_for_c_cut_2g[i],
  1268. rf_reg_param_for_c_cut_2g[index][i],
  1269. rf_reg_mask_for_c_cut_2g[i], path, index,
  1270. rtl_get_rfreg(hw, (enum radio_path)path,
  1271. rf_reg_for_c_cut_2g[i],
  1272. RFREG_OFFSET_MASK));
  1273. }
  1274. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1275. "cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  1276. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1277. rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
  1278. RFREG_OFFSET_MASK,
  1279. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1280. if (need_pwr_down)
  1281. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1282. if (rtlhal->during_mac0init_radiob)
  1283. rtl92d_phy_powerdown_anotherphy(hw, true);
  1284. }
  1285. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1286. }
  1287. u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
  1288. {
  1289. u8 channel_all[59] = {
  1290. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  1291. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  1292. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  1293. 114, 116, 118, 120, 122, 124, 126, 128, 130,
  1294. 132, 134, 136, 138, 140, 149, 151, 153, 155,
  1295. 157, 159, 161, 163, 165
  1296. };
  1297. u8 place = chnl;
  1298. if (chnl > 14) {
  1299. for (place = 14; place < sizeof(channel_all); place++) {
  1300. if (channel_all[place] == chnl)
  1301. return place - 13;
  1302. }
  1303. }
  1304. return 0;
  1305. }
  1306. #define MAX_TOLERANCE 5
  1307. #define IQK_DELAY_TIME 1 /* ms */
  1308. #define MAX_TOLERANCE_92D 3
  1309. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1310. static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
  1311. {
  1312. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1313. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1314. u32 regeac, rege94, rege9c, regea4;
  1315. u8 result = 0;
  1316. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1317. /* path-A IQK setting */
  1318. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1319. if (rtlhal->interfaceindex == 0) {
  1320. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1f);
  1321. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c1f);
  1322. } else {
  1323. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c22);
  1324. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c22);
  1325. }
  1326. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140102);
  1327. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160206);
  1328. /* path-B IQK setting */
  1329. if (configpathb) {
  1330. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x10008c22);
  1331. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x10008c22);
  1332. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140102);
  1333. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x28160206);
  1334. }
  1335. /* LO calibration setting */
  1336. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1337. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1338. /* One shot, path A LOK & IQK */
  1339. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1340. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1341. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1342. /* delay x ms */
  1343. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1344. "Delay %d ms for One shot, path A LOK & IQK\n",
  1345. IQK_DELAY_TIME);
  1346. mdelay(IQK_DELAY_TIME);
  1347. /* Check failed */
  1348. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1349. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1350. rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1351. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1352. rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1353. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1354. regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
  1355. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1356. if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
  1357. (((rege9c & 0x03FF0000) >> 16) != 0x42))
  1358. result |= 0x01;
  1359. else /* if Tx not OK, ignore Rx */
  1360. return result;
  1361. /* if Tx is OK, check whether Rx is OK */
  1362. if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
  1363. (((regeac & 0x03FF0000) >> 16) != 0x36))
  1364. result |= 0x02;
  1365. else
  1366. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n");
  1367. return result;
  1368. }
  1369. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1370. static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
  1371. bool configpathb)
  1372. {
  1373. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1374. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1375. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1376. u32 regeac, rege94, rege9c, regea4;
  1377. u8 result = 0;
  1378. u8 i;
  1379. u8 retrycount = 2;
  1380. u32 TxOKBit = BIT(28), RxOKBit = BIT(27);
  1381. if (rtlhal->interfaceindex == 1) { /* PHY1 */
  1382. TxOKBit = BIT(31);
  1383. RxOKBit = BIT(30);
  1384. }
  1385. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1386. /* path-A IQK setting */
  1387. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1388. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
  1389. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
  1390. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140307);
  1391. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68160960);
  1392. /* path-B IQK setting */
  1393. if (configpathb) {
  1394. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
  1395. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
  1396. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82110000);
  1397. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68110000);
  1398. }
  1399. /* LO calibration setting */
  1400. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1401. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1402. /* path-A PA on */
  1403. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x07000f60);
  1404. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD, 0x66e60e30);
  1405. for (i = 0; i < retrycount; i++) {
  1406. /* One shot, path A LOK & IQK */
  1407. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1408. "One shot, path A LOK & IQK!\n");
  1409. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1410. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1411. /* delay x ms */
  1412. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1413. "Delay %d ms for One shot, path A LOK & IQK.\n",
  1414. IQK_DELAY_TIME);
  1415. mdelay(IQK_DELAY_TIME * 10);
  1416. /* Check failed */
  1417. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1418. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1419. rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1420. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1421. rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1422. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1423. regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD);
  1424. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1425. if (!(regeac & TxOKBit) &&
  1426. (((rege94 & 0x03FF0000) >> 16) != 0x142)) {
  1427. result |= 0x01;
  1428. } else { /* if Tx not OK, ignore Rx */
  1429. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1430. "Path A Tx IQK fail!!\n");
  1431. continue;
  1432. }
  1433. /* if Tx is OK, check whether Rx is OK */
  1434. if (!(regeac & RxOKBit) &&
  1435. (((regea4 & 0x03FF0000) >> 16) != 0x132)) {
  1436. result |= 0x02;
  1437. break;
  1438. } else {
  1439. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1440. "Path A Rx IQK fail!!\n");
  1441. }
  1442. }
  1443. /* path A PA off */
  1444. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
  1445. rtlphy->iqk_bb_backup[0]);
  1446. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD,
  1447. rtlphy->iqk_bb_backup[1]);
  1448. return result;
  1449. }
  1450. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1451. static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
  1452. {
  1453. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1454. u32 regeac, regeb4, regebc, regec4, regecc;
  1455. u8 result = 0;
  1456. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1457. /* One shot, path B LOK & IQK */
  1458. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1459. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
  1460. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
  1461. /* delay x ms */
  1462. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1463. "Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
  1464. mdelay(IQK_DELAY_TIME);
  1465. /* Check failed */
  1466. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1467. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1468. regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1469. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1470. regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1471. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1472. regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1473. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1474. regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1475. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1476. if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
  1477. (((regebc & 0x03FF0000) >> 16) != 0x42))
  1478. result |= 0x01;
  1479. else
  1480. return result;
  1481. if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
  1482. (((regecc & 0x03FF0000) >> 16) != 0x36))
  1483. result |= 0x02;
  1484. else
  1485. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n");
  1486. return result;
  1487. }
  1488. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1489. static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
  1490. {
  1491. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1492. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1493. u32 regeac, regeb4, regebc, regec4, regecc;
  1494. u8 result = 0;
  1495. u8 i;
  1496. u8 retrycount = 2;
  1497. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1498. /* path-A IQK setting */
  1499. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1500. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f);
  1501. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f);
  1502. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82110000);
  1503. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68110000);
  1504. /* path-B IQK setting */
  1505. rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f);
  1506. rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f);
  1507. rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140307);
  1508. rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68160960);
  1509. /* LO calibration setting */
  1510. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1511. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1512. /* path-B PA on */
  1513. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x0f600700);
  1514. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD, 0x061f0d30);
  1515. for (i = 0; i < retrycount; i++) {
  1516. /* One shot, path B LOK & IQK */
  1517. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1518. "One shot, path A LOK & IQK!\n");
  1519. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xfa000000);
  1520. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1521. /* delay x ms */
  1522. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1523. "Delay %d ms for One shot, path B LOK & IQK.\n", 10);
  1524. mdelay(IQK_DELAY_TIME * 10);
  1525. /* Check failed */
  1526. regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1527. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1528. regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1529. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1530. regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1531. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1532. regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1533. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1534. regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1535. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1536. if (!(regeac & BIT(31)) &&
  1537. (((regeb4 & 0x03FF0000) >> 16) != 0x142))
  1538. result |= 0x01;
  1539. else
  1540. continue;
  1541. if (!(regeac & BIT(30)) &&
  1542. (((regec4 & 0x03FF0000) >> 16) != 0x132)) {
  1543. result |= 0x02;
  1544. break;
  1545. } else {
  1546. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1547. "Path B Rx IQK fail!!\n");
  1548. }
  1549. }
  1550. /* path B PA off */
  1551. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD,
  1552. rtlphy->iqk_bb_backup[0]);
  1553. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD,
  1554. rtlphy->iqk_bb_backup[2]);
  1555. return result;
  1556. }
  1557. static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
  1558. u32 *adda_reg, u32 *adda_backup,
  1559. u32 regnum)
  1560. {
  1561. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1562. u32 i;
  1563. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n");
  1564. for (i = 0; i < regnum; i++)
  1565. adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], MASKDWORD);
  1566. }
  1567. static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
  1568. u32 *macreg, u32 *macbackup)
  1569. {
  1570. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1571. u32 i;
  1572. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n");
  1573. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1574. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1575. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1576. }
  1577. static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
  1578. u32 *adda_reg, u32 *adda_backup,
  1579. u32 regnum)
  1580. {
  1581. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1582. u32 i;
  1583. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1584. "Reload ADDA power saving parameters !\n");
  1585. for (i = 0; i < regnum; i++)
  1586. rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, adda_backup[i]);
  1587. }
  1588. static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
  1589. u32 *macreg, u32 *macbackup)
  1590. {
  1591. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1592. u32 i;
  1593. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n");
  1594. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1595. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1596. rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
  1597. }
  1598. static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
  1599. u32 *adda_reg, bool patha_on, bool is2t)
  1600. {
  1601. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1602. u32 pathon;
  1603. u32 i;
  1604. RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n");
  1605. pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1606. if (patha_on)
  1607. pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
  1608. 0x04db25a4 : 0x0b1b25a4;
  1609. for (i = 0; i < IQK_ADDA_REG_NUM; i++)
  1610. rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, pathon);
  1611. }
  1612. static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1613. u32 *macreg, u32 *macbackup)
  1614. {
  1615. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1616. u32 i;
  1617. RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n");
  1618. rtl_write_byte(rtlpriv, macreg[0], 0x3F);
  1619. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1620. rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
  1621. (~BIT(3))));
  1622. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1623. }
  1624. static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
  1625. {
  1626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1627. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n");
  1628. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
  1629. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD, 0x00010000);
  1630. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1631. }
  1632. static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1633. {
  1634. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1635. u32 mode;
  1636. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1637. "BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
  1638. mode = pi_mode ? 0x01000100 : 0x01000000;
  1639. rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
  1640. rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
  1641. }
  1642. static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
  1643. u8 t, bool is2t)
  1644. {
  1645. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1646. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1647. u32 i;
  1648. u8 patha_ok, pathb_ok;
  1649. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1650. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1651. 0xe78, 0xe7c, 0xe80, 0xe84,
  1652. 0xe88, 0xe8c, 0xed0, 0xed4,
  1653. 0xed8, 0xedc, 0xee0, 0xeec
  1654. };
  1655. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1656. 0x522, 0x550, 0x551, 0x040
  1657. };
  1658. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1659. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1660. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1661. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1662. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1663. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1664. };
  1665. const u32 retrycount = 2;
  1666. u32 bbvalue;
  1667. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n");
  1668. if (t == 0) {
  1669. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
  1670. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1671. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1672. is2t ? "2T2R" : "1T1R");
  1673. /* Save ADDA parameters, turn Path A ADDA on */
  1674. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1675. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1676. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1677. rtlphy->iqk_mac_backup);
  1678. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1679. rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
  1680. }
  1681. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1682. if (t == 0)
  1683. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1684. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1685. /* Switch BB to PI mode to do IQ Calibration. */
  1686. if (!rtlphy->rfpi_enable)
  1687. _rtl92d_phy_pimode_switch(hw, true);
  1688. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1689. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
  1690. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
  1691. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22204000);
  1692. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1693. if (is2t) {
  1694. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD,
  1695. 0x00010000);
  1696. rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, MASKDWORD,
  1697. 0x00010000);
  1698. }
  1699. /* MAC settings */
  1700. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1701. rtlphy->iqk_mac_backup);
  1702. /* Page B init */
  1703. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1704. if (is2t)
  1705. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1706. /* IQ calibration setting */
  1707. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1708. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1709. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
  1710. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
  1711. for (i = 0; i < retrycount; i++) {
  1712. patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
  1713. if (patha_ok == 0x03) {
  1714. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1715. "Path A IQK Success!!\n");
  1716. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1717. 0x3FF0000) >> 16;
  1718. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1719. 0x3FF0000) >> 16;
  1720. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1721. 0x3FF0000) >> 16;
  1722. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1723. 0x3FF0000) >> 16;
  1724. break;
  1725. } else if (i == (retrycount - 1) && patha_ok == 0x01) {
  1726. /* Tx IQK OK */
  1727. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1728. "Path A IQK Only Tx Success!!\n");
  1729. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1730. 0x3FF0000) >> 16;
  1731. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1732. 0x3FF0000) >> 16;
  1733. }
  1734. }
  1735. if (0x00 == patha_ok)
  1736. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n");
  1737. if (is2t) {
  1738. _rtl92d_phy_patha_standby(hw);
  1739. /* Turn Path B ADDA on */
  1740. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1741. for (i = 0; i < retrycount; i++) {
  1742. pathb_ok = _rtl92d_phy_pathb_iqk(hw);
  1743. if (pathb_ok == 0x03) {
  1744. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1745. "Path B IQK Success!!\n");
  1746. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1747. MASKDWORD) & 0x3FF0000) >> 16;
  1748. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1749. MASKDWORD) & 0x3FF0000) >> 16;
  1750. result[t][6] = (rtl_get_bbreg(hw, 0xec4,
  1751. MASKDWORD) & 0x3FF0000) >> 16;
  1752. result[t][7] = (rtl_get_bbreg(hw, 0xecc,
  1753. MASKDWORD) & 0x3FF0000) >> 16;
  1754. break;
  1755. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1756. /* Tx IQK OK */
  1757. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1758. "Path B Only Tx IQK Success!!\n");
  1759. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1760. MASKDWORD) & 0x3FF0000) >> 16;
  1761. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1762. MASKDWORD) & 0x3FF0000) >> 16;
  1763. }
  1764. }
  1765. if (0x00 == pathb_ok)
  1766. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1767. "Path B IQK failed!!\n");
  1768. }
  1769. /* Back to BB mode, load original value */
  1770. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1771. "IQK:Back to BB mode, load original value!\n");
  1772. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1773. if (t != 0) {
  1774. /* Switch back BB to SI mode after finish IQ Calibration. */
  1775. if (!rtlphy->rfpi_enable)
  1776. _rtl92d_phy_pimode_switch(hw, false);
  1777. /* Reload ADDA power saving parameters */
  1778. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1779. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1780. /* Reload MAC parameters */
  1781. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1782. rtlphy->iqk_mac_backup);
  1783. if (is2t)
  1784. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1785. rtlphy->iqk_bb_backup,
  1786. IQK_BB_REG_NUM);
  1787. else
  1788. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1789. rtlphy->iqk_bb_backup,
  1790. IQK_BB_REG_NUM - 1);
  1791. /* load 0xe30 IQC default value */
  1792. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
  1793. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
  1794. }
  1795. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1796. }
  1797. static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
  1798. long result[][8], u8 t)
  1799. {
  1800. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1801. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1802. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1803. u8 patha_ok, pathb_ok;
  1804. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1805. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1806. 0xe78, 0xe7c, 0xe80, 0xe84,
  1807. 0xe88, 0xe8c, 0xed0, 0xed4,
  1808. 0xed8, 0xedc, 0xee0, 0xeec
  1809. };
  1810. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1811. 0x522, 0x550, 0x551, 0x040
  1812. };
  1813. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1814. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1815. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1816. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1817. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1818. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1819. };
  1820. u32 bbvalue;
  1821. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1822. /* Note: IQ calibration must be performed after loading
  1823. * PHY_REG.txt , and radio_a, radio_b.txt */
  1824. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n");
  1825. mdelay(IQK_DELAY_TIME * 20);
  1826. if (t == 0) {
  1827. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD);
  1828. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1829. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1830. is2t ? "2T2R" : "1T1R");
  1831. /* Save ADDA parameters, turn Path A ADDA on */
  1832. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1833. rtlphy->adda_backup,
  1834. IQK_ADDA_REG_NUM);
  1835. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1836. rtlphy->iqk_mac_backup);
  1837. if (is2t)
  1838. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1839. rtlphy->iqk_bb_backup,
  1840. IQK_BB_REG_NUM);
  1841. else
  1842. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1843. rtlphy->iqk_bb_backup,
  1844. IQK_BB_REG_NUM - 1);
  1845. }
  1846. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1847. /* MAC settings */
  1848. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1849. rtlphy->iqk_mac_backup);
  1850. if (t == 0)
  1851. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1852. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1853. /* Switch BB to PI mode to do IQ Calibration. */
  1854. if (!rtlphy->rfpi_enable)
  1855. _rtl92d_phy_pimode_switch(hw, true);
  1856. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1857. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600);
  1858. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4);
  1859. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22208000);
  1860. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1861. /* Page B init */
  1862. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1863. if (is2t)
  1864. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1865. /* IQ calibration setting */
  1866. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1867. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1868. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x10007c00);
  1869. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800);
  1870. patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
  1871. if (patha_ok == 0x03) {
  1872. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n");
  1873. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1874. 0x3FF0000) >> 16;
  1875. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1876. 0x3FF0000) >> 16;
  1877. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1878. 0x3FF0000) >> 16;
  1879. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1880. 0x3FF0000) >> 16;
  1881. } else if (patha_ok == 0x01) { /* Tx IQK OK */
  1882. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1883. "Path A IQK Only Tx Success!!\n");
  1884. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1885. 0x3FF0000) >> 16;
  1886. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1887. 0x3FF0000) >> 16;
  1888. } else {
  1889. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n");
  1890. }
  1891. if (is2t) {
  1892. /* _rtl92d_phy_patha_standby(hw); */
  1893. /* Turn Path B ADDA on */
  1894. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1895. pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
  1896. if (pathb_ok == 0x03) {
  1897. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1898. "Path B IQK Success!!\n");
  1899. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
  1900. 0x3FF0000) >> 16;
  1901. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1902. 0x3FF0000) >> 16;
  1903. result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
  1904. 0x3FF0000) >> 16;
  1905. result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
  1906. 0x3FF0000) >> 16;
  1907. } else if (pathb_ok == 0x01) { /* Tx IQK OK */
  1908. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1909. "Path B Only Tx IQK Success!!\n");
  1910. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) &
  1911. 0x3FF0000) >> 16;
  1912. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1913. 0x3FF0000) >> 16;
  1914. } else {
  1915. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1916. "Path B IQK failed!!\n");
  1917. }
  1918. }
  1919. /* Back to BB mode, load original value */
  1920. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1921. "IQK:Back to BB mode, load original value!\n");
  1922. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1923. if (t != 0) {
  1924. if (is2t)
  1925. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1926. rtlphy->iqk_bb_backup,
  1927. IQK_BB_REG_NUM);
  1928. else
  1929. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1930. rtlphy->iqk_bb_backup,
  1931. IQK_BB_REG_NUM - 1);
  1932. /* Reload MAC parameters */
  1933. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1934. rtlphy->iqk_mac_backup);
  1935. /* Switch back BB to SI mode after finish IQ Calibration. */
  1936. if (!rtlphy->rfpi_enable)
  1937. _rtl92d_phy_pimode_switch(hw, false);
  1938. /* Reload ADDA power saving parameters */
  1939. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1940. rtlphy->adda_backup,
  1941. IQK_ADDA_REG_NUM);
  1942. }
  1943. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1944. }
  1945. static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
  1946. long result[][8], u8 c1, u8 c2)
  1947. {
  1948. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1949. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1950. u32 i, j, diff, sim_bitmap, bound;
  1951. u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
  1952. bool bresult = true;
  1953. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1954. if (is2t)
  1955. bound = 8;
  1956. else
  1957. bound = 4;
  1958. sim_bitmap = 0;
  1959. for (i = 0; i < bound; i++) {
  1960. diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
  1961. result[c2][i]) : (result[c2][i] - result[c1][i]);
  1962. if (diff > MAX_TOLERANCE_92D) {
  1963. if ((i == 2 || i == 6) && !sim_bitmap) {
  1964. if (result[c1][i] + result[c1][i + 1] == 0)
  1965. final_candidate[(i / 4)] = c2;
  1966. else if (result[c2][i] + result[c2][i + 1] == 0)
  1967. final_candidate[(i / 4)] = c1;
  1968. else
  1969. sim_bitmap = sim_bitmap | (1 << i);
  1970. } else {
  1971. sim_bitmap = sim_bitmap | (1 << i);
  1972. }
  1973. }
  1974. }
  1975. if (sim_bitmap == 0) {
  1976. for (i = 0; i < (bound / 4); i++) {
  1977. if (final_candidate[i] != 0xFF) {
  1978. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  1979. result[3][j] =
  1980. result[final_candidate[i]][j];
  1981. bresult = false;
  1982. }
  1983. }
  1984. return bresult;
  1985. }
  1986. if (!(sim_bitmap & 0x0F)) { /* path A OK */
  1987. for (i = 0; i < 4; i++)
  1988. result[3][i] = result[c1][i];
  1989. } else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
  1990. for (i = 0; i < 2; i++)
  1991. result[3][i] = result[c1][i];
  1992. }
  1993. if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
  1994. for (i = 4; i < 8; i++)
  1995. result[3][i] = result[c1][i];
  1996. } else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
  1997. for (i = 4; i < 6; i++)
  1998. result[3][i] = result[c1][i];
  1999. }
  2000. return false;
  2001. }
  2002. static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
  2003. bool iqk_ok, long result[][8],
  2004. u8 final_candidate, bool txonly)
  2005. {
  2006. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2007. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2008. u32 oldval_0, val_x, tx0_a, reg;
  2009. long val_y, tx0_c;
  2010. bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
  2011. rtlhal->macphymode == DUALMAC_DUALPHY;
  2012. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2013. "Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
  2014. if (final_candidate == 0xFF) {
  2015. return;
  2016. } else if (iqk_ok) {
  2017. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2018. MASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */
  2019. val_x = result[final_candidate][0];
  2020. if ((val_x & 0x00000200) != 0)
  2021. val_x = val_x | 0xFFFFFC00;
  2022. tx0_a = (val_x * oldval_0) >> 8;
  2023. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2024. "X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
  2025. val_x, tx0_a, oldval_0);
  2026. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
  2027. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
  2028. ((val_x * oldval_0 >> 7) & 0x1));
  2029. val_y = result[final_candidate][1];
  2030. if ((val_y & 0x00000200) != 0)
  2031. val_y = val_y | 0xFFFFFC00;
  2032. /* path B IQK result + 3 */
  2033. if (rtlhal->interfaceindex == 1 &&
  2034. rtlhal->current_bandtype == BAND_ON_5G)
  2035. val_y += 3;
  2036. tx0_c = (val_y * oldval_0) >> 8;
  2037. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2038. "Y = 0x%lx, tx0_c = 0x%lx\n",
  2039. val_y, tx0_c);
  2040. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
  2041. ((tx0_c & 0x3C0) >> 6));
  2042. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
  2043. (tx0_c & 0x3F));
  2044. if (is2t)
  2045. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
  2046. ((val_y * oldval_0 >> 7) & 0x1));
  2047. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
  2048. rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2049. MASKDWORD));
  2050. if (txonly) {
  2051. RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n");
  2052. return;
  2053. }
  2054. reg = result[final_candidate][2];
  2055. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
  2056. reg = result[final_candidate][3] & 0x3F;
  2057. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
  2058. reg = (result[final_candidate][3] >> 6) & 0xF;
  2059. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  2060. }
  2061. }
  2062. static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
  2063. bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
  2064. {
  2065. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2066. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2067. u32 oldval_1, val_x, tx1_a, reg;
  2068. long val_y, tx1_c;
  2069. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
  2070. iqk_ok ? "Success" : "Failed");
  2071. if (final_candidate == 0xFF) {
  2072. return;
  2073. } else if (iqk_ok) {
  2074. oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
  2075. MASKDWORD) >> 22) & 0x3FF;
  2076. val_x = result[final_candidate][4];
  2077. if ((val_x & 0x00000200) != 0)
  2078. val_x = val_x | 0xFFFFFC00;
  2079. tx1_a = (val_x * oldval_1) >> 8;
  2080. RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
  2081. val_x, tx1_a);
  2082. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
  2083. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
  2084. ((val_x * oldval_1 >> 7) & 0x1));
  2085. val_y = result[final_candidate][5];
  2086. if ((val_y & 0x00000200) != 0)
  2087. val_y = val_y | 0xFFFFFC00;
  2088. if (rtlhal->current_bandtype == BAND_ON_5G)
  2089. val_y += 3;
  2090. tx1_c = (val_y * oldval_1) >> 8;
  2091. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
  2092. val_y, tx1_c);
  2093. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
  2094. ((tx1_c & 0x3C0) >> 6));
  2095. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
  2096. (tx1_c & 0x3F));
  2097. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
  2098. ((val_y * oldval_1 >> 7) & 0x1));
  2099. if (txonly)
  2100. return;
  2101. reg = result[final_candidate][6];
  2102. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
  2103. reg = result[final_candidate][7] & 0x3F;
  2104. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
  2105. reg = (result[final_candidate][7] >> 6) & 0xF;
  2106. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
  2107. }
  2108. }
  2109. void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
  2110. {
  2111. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2112. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2113. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2114. long result[4][8];
  2115. u8 i, final_candidate, indexforchannel;
  2116. bool patha_ok, pathb_ok;
  2117. long rege94, rege9c, regea4, regeac, regeb4;
  2118. long regebc, regec4, regecc, regtmp = 0;
  2119. bool is12simular, is13simular, is23simular;
  2120. unsigned long flag = 0;
  2121. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2122. "IQK:Start!!!channel %d\n", rtlphy->current_channel);
  2123. for (i = 0; i < 8; i++) {
  2124. result[0][i] = 0;
  2125. result[1][i] = 0;
  2126. result[2][i] = 0;
  2127. result[3][i] = 0;
  2128. }
  2129. final_candidate = 0xff;
  2130. patha_ok = false;
  2131. pathb_ok = false;
  2132. is12simular = false;
  2133. is23simular = false;
  2134. is13simular = false;
  2135. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2136. "IQK !!!currentband %d\n", rtlhal->current_bandtype);
  2137. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  2138. for (i = 0; i < 3; i++) {
  2139. if (rtlhal->current_bandtype == BAND_ON_5G) {
  2140. _rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
  2141. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  2142. if (IS_92D_SINGLEPHY(rtlhal->version))
  2143. _rtl92d_phy_iq_calibrate(hw, result, i, true);
  2144. else
  2145. _rtl92d_phy_iq_calibrate(hw, result, i, false);
  2146. }
  2147. if (i == 1) {
  2148. is12simular = _rtl92d_phy_simularity_compare(hw, result,
  2149. 0, 1);
  2150. if (is12simular) {
  2151. final_candidate = 0;
  2152. break;
  2153. }
  2154. }
  2155. if (i == 2) {
  2156. is13simular = _rtl92d_phy_simularity_compare(hw, result,
  2157. 0, 2);
  2158. if (is13simular) {
  2159. final_candidate = 0;
  2160. break;
  2161. }
  2162. is23simular = _rtl92d_phy_simularity_compare(hw, result,
  2163. 1, 2);
  2164. if (is23simular) {
  2165. final_candidate = 1;
  2166. } else {
  2167. for (i = 0; i < 8; i++)
  2168. regtmp += result[3][i];
  2169. if (regtmp != 0)
  2170. final_candidate = 3;
  2171. else
  2172. final_candidate = 0xFF;
  2173. }
  2174. }
  2175. }
  2176. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  2177. for (i = 0; i < 4; i++) {
  2178. rege94 = result[i][0];
  2179. rege9c = result[i][1];
  2180. regea4 = result[i][2];
  2181. regeac = result[i][3];
  2182. regeb4 = result[i][4];
  2183. regebc = result[i][5];
  2184. regec4 = result[i][6];
  2185. regecc = result[i][7];
  2186. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2187. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2188. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2189. regecc);
  2190. }
  2191. if (final_candidate != 0xff) {
  2192. rtlphy->reg_e94 = rege94 = result[final_candidate][0];
  2193. rtlphy->reg_e9c = rege9c = result[final_candidate][1];
  2194. regea4 = result[final_candidate][2];
  2195. regeac = result[final_candidate][3];
  2196. rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
  2197. rtlphy->reg_ebc = regebc = result[final_candidate][5];
  2198. regec4 = result[final_candidate][6];
  2199. regecc = result[final_candidate][7];
  2200. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2201. "IQK: final_candidate is %x\n", final_candidate);
  2202. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2203. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2204. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2205. regecc);
  2206. patha_ok = pathb_ok = true;
  2207. } else {
  2208. rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
  2209. rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */
  2210. }
  2211. if ((rege94 != 0) /*&&(regea4 != 0) */)
  2212. _rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
  2213. final_candidate, (regea4 == 0));
  2214. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2215. if ((regeb4 != 0) /*&&(regec4 != 0) */)
  2216. _rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
  2217. final_candidate, (regec4 == 0));
  2218. }
  2219. if (final_candidate != 0xFF) {
  2220. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
  2221. rtlphy->current_channel);
  2222. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  2223. rtlphy->iqk_matrix[indexforchannel].
  2224. value[0][i] = result[final_candidate][i];
  2225. rtlphy->iqk_matrix[indexforchannel].iqk_done =
  2226. true;
  2227. RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
  2228. "IQK OK indexforchannel %d\n", indexforchannel);
  2229. }
  2230. }
  2231. void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
  2232. {
  2233. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2234. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2235. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2236. u8 indexforchannel;
  2237. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
  2238. /*------Do IQK for normal chip and test chip 5G band------- */
  2239. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
  2240. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
  2241. indexforchannel,
  2242. rtlphy->iqk_matrix[indexforchannel].iqk_done);
  2243. if (0 && !rtlphy->iqk_matrix[indexforchannel].iqk_done &&
  2244. rtlphy->need_iqk) {
  2245. /* Re Do IQK. */
  2246. RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
  2247. "Do IQK Matrix reg for channel:%d....\n", channel);
  2248. rtl92d_phy_iq_calibrate(hw);
  2249. } else {
  2250. /* Just load the value. */
  2251. /* 2G band just load once. */
  2252. if (((!rtlhal->load_imrandiqk_setting_for2g) &&
  2253. indexforchannel == 0) || indexforchannel > 0) {
  2254. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  2255. "Just Read IQK Matrix reg for channel:%d....\n",
  2256. channel);
  2257. if ((rtlphy->iqk_matrix[indexforchannel].
  2258. value[0] != NULL)
  2259. /*&&(regea4 != 0) */)
  2260. _rtl92d_phy_patha_fill_iqk_matrix(hw, true,
  2261. rtlphy->iqk_matrix[
  2262. indexforchannel].value, 0,
  2263. (rtlphy->iqk_matrix[
  2264. indexforchannel].value[0][2] == 0));
  2265. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2266. if ((rtlphy->iqk_matrix[
  2267. indexforchannel].value[0][4] != 0)
  2268. /*&&(regec4 != 0) */)
  2269. _rtl92d_phy_pathb_fill_iqk_matrix(hw,
  2270. true,
  2271. rtlphy->iqk_matrix[
  2272. indexforchannel].value, 0,
  2273. (rtlphy->iqk_matrix[
  2274. indexforchannel].value[0][6]
  2275. == 0));
  2276. }
  2277. }
  2278. }
  2279. rtlphy->need_iqk = false;
  2280. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2281. }
  2282. static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
  2283. {
  2284. u32 ret;
  2285. if (val1 >= val2)
  2286. ret = val1 - val2;
  2287. else
  2288. ret = val2 - val1;
  2289. return ret;
  2290. }
  2291. static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
  2292. {
  2293. int i;
  2294. for (i = 0; i < sizeof(channel5g); i++)
  2295. if (channel == channel5g[i])
  2296. return true;
  2297. return false;
  2298. }
  2299. static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
  2300. u32 *targetchnl, u32 * curvecount_val,
  2301. bool is5g, u32 *curveindex)
  2302. {
  2303. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2304. u32 smallest_abs_val = 0xffffffff, u4tmp;
  2305. u8 i, j;
  2306. u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;
  2307. for (i = 0; i < chnl_num; i++) {
  2308. if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
  2309. continue;
  2310. curveindex[i] = 0;
  2311. for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
  2312. u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
  2313. curvecount_val[j]);
  2314. if (u4tmp < smallest_abs_val) {
  2315. curveindex[i] = j;
  2316. smallest_abs_val = u4tmp;
  2317. }
  2318. }
  2319. smallest_abs_val = 0xffffffff;
  2320. RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
  2321. i, curveindex[i]);
  2322. }
  2323. }
  2324. static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
  2325. u8 channel)
  2326. {
  2327. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2328. u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
  2329. BAND_ON_5G ? RF90_PATH_A :
  2330. IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
  2331. RF90_PATH_B : RF90_PATH_A;
  2332. u32 u4tmp = 0, u4regvalue = 0;
  2333. bool bneed_powerdown_radio = false;
  2334. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
  2335. RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
  2336. rtlpriv->rtlhal.current_bandtype);
  2337. RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel);
  2338. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
  2339. u4tmp = curveindex_5g[channel-1];
  2340. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2341. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  2342. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2343. rtlpriv->rtlhal.interfaceindex == 1) {
  2344. bneed_powerdown_radio =
  2345. rtl92d_phy_enable_anotherphy(hw, false);
  2346. rtlpriv->rtlhal.during_mac1init_radioa = true;
  2347. /* asume no this case */
  2348. if (bneed_powerdown_radio)
  2349. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2350. &u4regvalue);
  2351. }
  2352. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2353. if (bneed_powerdown_radio)
  2354. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2355. if (rtlpriv->rtlhal.during_mac1init_radioa)
  2356. rtl92d_phy_powerdown_anotherphy(hw, false);
  2357. } else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
  2358. u4tmp = curveindex_2g[channel-1];
  2359. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2360. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  2361. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2362. rtlpriv->rtlhal.interfaceindex == 0) {
  2363. bneed_powerdown_radio =
  2364. rtl92d_phy_enable_anotherphy(hw, true);
  2365. rtlpriv->rtlhal.during_mac0init_radiob = true;
  2366. if (bneed_powerdown_radio)
  2367. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2368. &u4regvalue);
  2369. }
  2370. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2371. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2372. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  2373. rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800));
  2374. if (bneed_powerdown_radio)
  2375. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2376. if (rtlpriv->rtlhal.during_mac0init_radiob)
  2377. rtl92d_phy_powerdown_anotherphy(hw, true);
  2378. }
  2379. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2380. }
  2381. static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
  2382. {
  2383. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2384. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2385. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2386. u8 tmpreg, index, rf_mode[2];
  2387. u8 path = is2t ? 2 : 1;
  2388. u8 i;
  2389. u32 u4tmp, offset;
  2390. u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
  2391. u16 timeout = 800, timecount = 0;
  2392. /* Check continuous TX and Packet TX */
  2393. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  2394. /* if Deal with contisuous TX case, disable all continuous TX */
  2395. /* if Deal with Packet TX case, block all queues */
  2396. if ((tmpreg & 0x70) != 0)
  2397. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  2398. else
  2399. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2400. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
  2401. for (index = 0; index < path; index++) {
  2402. /* 1. Read original RF mode */
  2403. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2404. rf_mode[index] = rtl_read_byte(rtlpriv, offset);
  2405. /* 2. Set RF mode = standby mode */
  2406. rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
  2407. RFREG_OFFSET_MASK, 0x010000);
  2408. if (rtlpci->init_ready) {
  2409. /* switch CV-curve control by LC-calibration */
  2410. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2411. BIT(17), 0x0);
  2412. /* 4. Set LC calibration begin */
  2413. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2414. 0x08000, 0x01);
  2415. }
  2416. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
  2417. RFREG_OFFSET_MASK);
  2418. while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
  2419. mdelay(50);
  2420. timecount += 50;
  2421. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
  2422. RF_SYN_G6, RFREG_OFFSET_MASK);
  2423. }
  2424. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2425. "PHY_LCK finish delay for %d ms=2\n", timecount);
  2426. u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, RFREG_OFFSET_MASK);
  2427. if (index == 0 && rtlhal->interfaceindex == 0) {
  2428. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2429. "path-A / 5G LCK\n");
  2430. } else {
  2431. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2432. "path-B / 2.4G LCK\n");
  2433. }
  2434. memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
  2435. /* Set LC calibration off */
  2436. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2437. 0x08000, 0x0);
  2438. RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n");
  2439. /* save Curve-counting number */
  2440. for (i = 0; i < CV_CURVE_CNT; i++) {
  2441. u32 readval = 0, readval2 = 0;
  2442. rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
  2443. 0x7f, i);
  2444. rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
  2445. RFREG_OFFSET_MASK, 0x0);
  2446. readval = rtl_get_rfreg(hw, (enum radio_path)index,
  2447. 0x4F, RFREG_OFFSET_MASK);
  2448. curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
  2449. /* reg 0x4f [4:0] */
  2450. /* reg 0x50 [19:10] */
  2451. readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
  2452. 0x50, 0xffc00);
  2453. curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
  2454. readval2);
  2455. }
  2456. if (index == 0 && rtlhal->interfaceindex == 0)
  2457. _rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
  2458. curvecount_val,
  2459. true, curveindex_5g);
  2460. else
  2461. _rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
  2462. curvecount_val,
  2463. false, curveindex_2g);
  2464. /* switch CV-curve control mode */
  2465. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2466. BIT(17), 0x1);
  2467. }
  2468. /* Restore original situation */
  2469. for (index = 0; index < path; index++) {
  2470. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2471. rtl_write_byte(rtlpriv, offset, 0x50);
  2472. rtl_write_byte(rtlpriv, offset, rf_mode[index]);
  2473. }
  2474. if ((tmpreg & 0x70) != 0)
  2475. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  2476. else /*Deal with Packet TX case */
  2477. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2478. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
  2479. _rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
  2480. }
  2481. static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  2482. {
  2483. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2484. RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n");
  2485. _rtl92d_phy_lc_calibrate_sw(hw, is2t);
  2486. }
  2487. void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
  2488. {
  2489. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2490. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2491. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2492. u32 timeout = 2000, timecount = 0;
  2493. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  2494. udelay(50);
  2495. timecount += 50;
  2496. }
  2497. rtlphy->lck_inprogress = true;
  2498. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2499. "LCK:Start!!! currentband %x delay %d ms\n",
  2500. rtlhal->current_bandtype, timecount);
  2501. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2502. _rtl92d_phy_lc_calibrate(hw, true);
  2503. } else {
  2504. /* For 1T1R */
  2505. _rtl92d_phy_lc_calibrate(hw, false);
  2506. }
  2507. rtlphy->lck_inprogress = false;
  2508. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n");
  2509. }
  2510. void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, char delta)
  2511. {
  2512. return;
  2513. }
  2514. static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  2515. u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
  2516. u32 para1, u32 para2, u32 msdelay)
  2517. {
  2518. struct swchnlcmd *pcmd;
  2519. if (cmdtable == NULL) {
  2520. RT_ASSERT(false, "cmdtable cannot be NULL\n");
  2521. return false;
  2522. }
  2523. if (cmdtableidx >= cmdtablesz)
  2524. return false;
  2525. pcmd = cmdtable + cmdtableidx;
  2526. pcmd->cmdid = cmdid;
  2527. pcmd->para1 = para1;
  2528. pcmd->para2 = para2;
  2529. pcmd->msdelay = msdelay;
  2530. return true;
  2531. }
  2532. void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
  2533. {
  2534. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2535. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2536. u8 i;
  2537. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2538. "settings regs %d default regs %d\n",
  2539. (int)(sizeof(rtlphy->iqk_matrix) /
  2540. sizeof(struct iqk_matrix_regs)),
  2541. IQK_MATRIX_REG_NUM);
  2542. /* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
  2543. for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
  2544. rtlphy->iqk_matrix[i].value[0][0] = 0x100;
  2545. rtlphy->iqk_matrix[i].value[0][2] = 0x100;
  2546. rtlphy->iqk_matrix[i].value[0][4] = 0x100;
  2547. rtlphy->iqk_matrix[i].value[0][6] = 0x100;
  2548. rtlphy->iqk_matrix[i].value[0][1] = 0x0;
  2549. rtlphy->iqk_matrix[i].value[0][3] = 0x0;
  2550. rtlphy->iqk_matrix[i].value[0][5] = 0x0;
  2551. rtlphy->iqk_matrix[i].value[0][7] = 0x0;
  2552. rtlphy->iqk_matrix[i].iqk_done = false;
  2553. }
  2554. }
  2555. static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  2556. u8 channel, u8 *stage, u8 *step,
  2557. u32 *delay)
  2558. {
  2559. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2560. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2561. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  2562. u32 precommoncmdcnt;
  2563. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  2564. u32 postcommoncmdcnt;
  2565. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  2566. u32 rfdependcmdcnt;
  2567. struct swchnlcmd *currentcmd = NULL;
  2568. u8 rfpath;
  2569. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  2570. precommoncmdcnt = 0;
  2571. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2572. MAX_PRECMD_CNT,
  2573. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  2574. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2575. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  2576. postcommoncmdcnt = 0;
  2577. _rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  2578. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  2579. rfdependcmdcnt = 0;
  2580. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2581. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  2582. RF_CHNLBW, channel, 0);
  2583. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2584. MAX_RFDEPENDCMD_CNT, CMDID_END,
  2585. 0, 0, 0);
  2586. do {
  2587. switch (*stage) {
  2588. case 0:
  2589. currentcmd = &precommoncmd[*step];
  2590. break;
  2591. case 1:
  2592. currentcmd = &rfdependcmd[*step];
  2593. break;
  2594. case 2:
  2595. currentcmd = &postcommoncmd[*step];
  2596. break;
  2597. }
  2598. if (currentcmd->cmdid == CMDID_END) {
  2599. if ((*stage) == 2) {
  2600. return true;
  2601. } else {
  2602. (*stage)++;
  2603. (*step) = 0;
  2604. continue;
  2605. }
  2606. }
  2607. switch (currentcmd->cmdid) {
  2608. case CMDID_SET_TXPOWEROWER_LEVEL:
  2609. rtl92d_phy_set_txpower_level(hw, channel);
  2610. break;
  2611. case CMDID_WRITEPORT_ULONG:
  2612. rtl_write_dword(rtlpriv, currentcmd->para1,
  2613. currentcmd->para2);
  2614. break;
  2615. case CMDID_WRITEPORT_USHORT:
  2616. rtl_write_word(rtlpriv, currentcmd->para1,
  2617. (u16)currentcmd->para2);
  2618. break;
  2619. case CMDID_WRITEPORT_UCHAR:
  2620. rtl_write_byte(rtlpriv, currentcmd->para1,
  2621. (u8)currentcmd->para2);
  2622. break;
  2623. case CMDID_RF_WRITEREG:
  2624. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  2625. rtlphy->rfreg_chnlval[rfpath] =
  2626. ((rtlphy->rfreg_chnlval[rfpath] &
  2627. 0xffffff00) | currentcmd->para2);
  2628. if (rtlpriv->rtlhal.current_bandtype ==
  2629. BAND_ON_5G) {
  2630. if (currentcmd->para2 > 99)
  2631. rtlphy->rfreg_chnlval[rfpath] =
  2632. rtlphy->rfreg_chnlval
  2633. [rfpath] | (BIT(18));
  2634. else
  2635. rtlphy->rfreg_chnlval[rfpath] =
  2636. rtlphy->rfreg_chnlval
  2637. [rfpath] & (~BIT(18));
  2638. rtlphy->rfreg_chnlval[rfpath] |=
  2639. (BIT(16) | BIT(8));
  2640. } else {
  2641. rtlphy->rfreg_chnlval[rfpath] &=
  2642. ~(BIT(8) | BIT(16) | BIT(18));
  2643. }
  2644. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  2645. currentcmd->para1,
  2646. RFREG_OFFSET_MASK,
  2647. rtlphy->rfreg_chnlval[rfpath]);
  2648. _rtl92d_phy_reload_imr_setting(hw, channel,
  2649. rfpath);
  2650. }
  2651. _rtl92d_phy_switch_rf_setting(hw, channel);
  2652. /* do IQK when all parameters are ready */
  2653. rtl92d_phy_reload_iqk_setting(hw, channel);
  2654. break;
  2655. default:
  2656. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2657. "switch case not processed\n");
  2658. break;
  2659. }
  2660. break;
  2661. } while (true);
  2662. (*delay) = currentcmd->msdelay;
  2663. (*step)++;
  2664. return false;
  2665. }
  2666. u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
  2667. {
  2668. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2669. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2670. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2671. u32 delay;
  2672. u32 timeout = 1000, timecount = 0;
  2673. u8 channel = rtlphy->current_channel;
  2674. u32 ret_value;
  2675. if (rtlphy->sw_chnl_inprogress)
  2676. return 0;
  2677. if (rtlphy->set_bwmode_inprogress)
  2678. return 0;
  2679. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  2680. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  2681. "sw_chnl_inprogress false driver sleep or unload\n");
  2682. return 0;
  2683. }
  2684. while (rtlphy->lck_inprogress && timecount < timeout) {
  2685. mdelay(50);
  2686. timecount += 50;
  2687. }
  2688. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
  2689. rtlhal->bandset == BAND_ON_BOTH) {
  2690. ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  2691. MASKDWORD);
  2692. if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
  2693. rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
  2694. else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
  2695. rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
  2696. }
  2697. switch (rtlhal->current_bandtype) {
  2698. case BAND_ON_5G:
  2699. /* Get first channel error when change between
  2700. * 5G and 2.4G band. */
  2701. if (channel <= 14)
  2702. return 0;
  2703. RT_ASSERT((channel > 14), "5G but channel<=14\n");
  2704. break;
  2705. case BAND_ON_2_4G:
  2706. /* Get first channel error when change between
  2707. * 5G and 2.4G band. */
  2708. if (channel > 14)
  2709. return 0;
  2710. RT_ASSERT((channel <= 14), "2G but channel>14\n");
  2711. break;
  2712. default:
  2713. RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
  2714. rtlpriv->mac80211.mode);
  2715. break;
  2716. }
  2717. rtlphy->sw_chnl_inprogress = true;
  2718. if (channel == 0)
  2719. channel = 1;
  2720. rtlphy->sw_chnl_stage = 0;
  2721. rtlphy->sw_chnl_step = 0;
  2722. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  2723. "switch to channel%d\n", rtlphy->current_channel);
  2724. do {
  2725. if (!rtlphy->sw_chnl_inprogress)
  2726. break;
  2727. if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
  2728. rtlphy->current_channel,
  2729. &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
  2730. if (delay > 0)
  2731. mdelay(delay);
  2732. else
  2733. continue;
  2734. } else {
  2735. rtlphy->sw_chnl_inprogress = false;
  2736. }
  2737. break;
  2738. } while (true);
  2739. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  2740. rtlphy->sw_chnl_inprogress = false;
  2741. return 1;
  2742. }
  2743. static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
  2744. {
  2745. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2746. struct dig_t *de_digtable = &rtlpriv->dm_digtable;
  2747. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2748. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2749. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  2750. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  2751. switch (rtlphy->current_io_type) {
  2752. case IO_CMD_RESUME_DM_BY_SCAN:
  2753. de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  2754. rtl92d_dm_write_dig(hw);
  2755. rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
  2756. break;
  2757. case IO_CMD_PAUSE_DM_BY_SCAN:
  2758. rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue;
  2759. de_digtable->cur_igvalue = 0x37;
  2760. rtl92d_dm_write_dig(hw);
  2761. break;
  2762. default:
  2763. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2764. "switch case not processed\n");
  2765. break;
  2766. }
  2767. rtlphy->set_io_inprogress = false;
  2768. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
  2769. rtlphy->current_io_type);
  2770. }
  2771. bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  2772. {
  2773. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2774. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2775. bool postprocessing = false;
  2776. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2777. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  2778. iotype, rtlphy->set_io_inprogress);
  2779. do {
  2780. switch (iotype) {
  2781. case IO_CMD_RESUME_DM_BY_SCAN:
  2782. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2783. "[IO CMD] Resume DM after scan\n");
  2784. postprocessing = true;
  2785. break;
  2786. case IO_CMD_PAUSE_DM_BY_SCAN:
  2787. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2788. "[IO CMD] Pause DM before scan\n");
  2789. postprocessing = true;
  2790. break;
  2791. default:
  2792. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2793. "switch case not processed\n");
  2794. break;
  2795. }
  2796. } while (false);
  2797. if (postprocessing && !rtlphy->set_io_inprogress) {
  2798. rtlphy->set_io_inprogress = true;
  2799. rtlphy->current_io_type = iotype;
  2800. } else {
  2801. return false;
  2802. }
  2803. rtl92d_phy_set_io(hw);
  2804. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
  2805. return true;
  2806. }
  2807. static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
  2808. {
  2809. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2810. /* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */
  2811. /* b. SPS_CTRL 0x11[7:0] = 0x2b */
  2812. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2813. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  2814. /* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
  2815. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2816. /* RF_ON_EXCEP(d~g): */
  2817. /* d. APSD_CTRL 0x600[7:0] = 0x00 */
  2818. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2819. /* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */
  2820. /* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/
  2821. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2822. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2823. /* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */
  2824. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2825. }
  2826. static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
  2827. {
  2828. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2829. u32 u4btmp;
  2830. u8 delay = 5;
  2831. /* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
  2832. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2833. /* b. RF path 0 offset 0x00 = 0x00 disable RF */
  2834. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  2835. /* c. APSD_CTRL 0x600[7:0] = 0x40 */
  2836. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2837. /* d. APSD_CTRL 0x600[7:0] = 0x00
  2838. * APSD_CTRL 0x600[7:0] = 0x00
  2839. * RF path 0 offset 0x00 = 0x00
  2840. * APSD_CTRL 0x600[7:0] = 0x40
  2841. * */
  2842. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
  2843. while (u4btmp != 0 && delay > 0) {
  2844. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
  2845. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  2846. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2847. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK);
  2848. delay--;
  2849. }
  2850. if (delay == 0) {
  2851. /* Jump out the LPS turn off sequence to RF_ON_EXCEP */
  2852. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2853. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2854. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2855. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2856. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2857. "Fail !!! Switch RF timeout\n");
  2858. return;
  2859. }
  2860. /* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
  2861. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2862. /* f. SPS_CTRL 0x11[7:0] = 0x22 */
  2863. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2864. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  2865. /* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */
  2866. }
  2867. bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
  2868. enum rf_pwrstate rfpwr_state)
  2869. {
  2870. bool bresult = true;
  2871. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2872. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  2873. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2874. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2875. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2876. u8 i, queue_id;
  2877. struct rtl8192_tx_ring *ring = NULL;
  2878. if (rfpwr_state == ppsc->rfpwr_state)
  2879. return false;
  2880. switch (rfpwr_state) {
  2881. case ERFON:
  2882. if ((ppsc->rfpwr_state == ERFOFF) &&
  2883. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  2884. bool rtstatus;
  2885. u32 InitializeCount = 0;
  2886. do {
  2887. InitializeCount++;
  2888. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2889. "IPS Set eRf nic enable\n");
  2890. rtstatus = rtl_ps_enable_nic(hw);
  2891. } while (!rtstatus && (InitializeCount < 10));
  2892. RT_CLEAR_PS_LEVEL(ppsc,
  2893. RT_RF_OFF_LEVL_HALT_NIC);
  2894. } else {
  2895. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2896. "awake, sleeped:%d ms state_inap:%x\n",
  2897. jiffies_to_msecs(jiffies -
  2898. ppsc->last_sleep_jiffies),
  2899. rtlpriv->psc.state_inap);
  2900. ppsc->last_awake_jiffies = jiffies;
  2901. _rtl92d_phy_set_rfon(hw);
  2902. }
  2903. if (mac->link_state == MAC80211_LINKED)
  2904. rtlpriv->cfg->ops->led_control(hw,
  2905. LED_CTL_LINK);
  2906. else
  2907. rtlpriv->cfg->ops->led_control(hw,
  2908. LED_CTL_NO_LINK);
  2909. break;
  2910. case ERFOFF:
  2911. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  2912. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2913. "IPS Set eRf nic disable\n");
  2914. rtl_ps_disable_nic(hw);
  2915. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2916. } else {
  2917. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  2918. rtlpriv->cfg->ops->led_control(hw,
  2919. LED_CTL_NO_LINK);
  2920. else
  2921. rtlpriv->cfg->ops->led_control(hw,
  2922. LED_CTL_POWER_OFF);
  2923. }
  2924. break;
  2925. case ERFSLEEP:
  2926. if (ppsc->rfpwr_state == ERFOFF)
  2927. return false;
  2928. for (queue_id = 0, i = 0;
  2929. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  2930. ring = &pcipriv->dev.tx_ring[queue_id];
  2931. if (skb_queue_len(&ring->queue) == 0 ||
  2932. queue_id == BEACON_QUEUE) {
  2933. queue_id++;
  2934. continue;
  2935. } else if (rtlpci->pdev->current_state != PCI_D0) {
  2936. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2937. "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
  2938. i + 1, queue_id);
  2939. break;
  2940. } else {
  2941. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2942. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  2943. i + 1, queue_id,
  2944. skb_queue_len(&ring->queue));
  2945. udelay(10);
  2946. i++;
  2947. }
  2948. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  2949. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  2950. "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
  2951. MAX_DOZE_WAITING_TIMES_9x, queue_id,
  2952. skb_queue_len(&ring->queue));
  2953. break;
  2954. }
  2955. }
  2956. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2957. "Set rfsleep awaked:%d ms\n",
  2958. jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
  2959. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2960. "sleep awaked:%d ms state_inap:%x\n",
  2961. jiffies_to_msecs(jiffies -
  2962. ppsc->last_awake_jiffies),
  2963. rtlpriv->psc.state_inap);
  2964. ppsc->last_sleep_jiffies = jiffies;
  2965. _rtl92d_phy_set_rfsleep(hw);
  2966. break;
  2967. default:
  2968. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2969. "switch case not processed\n");
  2970. bresult = false;
  2971. break;
  2972. }
  2973. if (bresult)
  2974. ppsc->rfpwr_state = rfpwr_state;
  2975. return bresult;
  2976. }
  2977. void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
  2978. {
  2979. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2980. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2981. u8 offset = REG_MAC_PHY_CTRL_NORMAL;
  2982. switch (rtlhal->macphymode) {
  2983. case DUALMAC_DUALPHY:
  2984. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2985. "MacPhyMode: DUALMAC_DUALPHY\n");
  2986. rtl_write_byte(rtlpriv, offset, 0xF3);
  2987. break;
  2988. case SINGLEMAC_SINGLEPHY:
  2989. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2990. "MacPhyMode: SINGLEMAC_SINGLEPHY\n");
  2991. rtl_write_byte(rtlpriv, offset, 0xF4);
  2992. break;
  2993. case DUALMAC_SINGLEPHY:
  2994. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2995. "MacPhyMode: DUALMAC_SINGLEPHY\n");
  2996. rtl_write_byte(rtlpriv, offset, 0xF1);
  2997. break;
  2998. }
  2999. }
  3000. void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
  3001. {
  3002. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3003. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3004. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3005. switch (rtlhal->macphymode) {
  3006. case DUALMAC_SINGLEPHY:
  3007. rtlphy->rf_type = RF_2T2R;
  3008. rtlhal->version |= RF_TYPE_2T2R;
  3009. rtlhal->bandset = BAND_ON_BOTH;
  3010. rtlhal->current_bandtype = BAND_ON_2_4G;
  3011. break;
  3012. case SINGLEMAC_SINGLEPHY:
  3013. rtlphy->rf_type = RF_2T2R;
  3014. rtlhal->version |= RF_TYPE_2T2R;
  3015. rtlhal->bandset = BAND_ON_BOTH;
  3016. rtlhal->current_bandtype = BAND_ON_2_4G;
  3017. break;
  3018. case DUALMAC_DUALPHY:
  3019. rtlphy->rf_type = RF_1T1R;
  3020. rtlhal->version &= RF_TYPE_1T1R;
  3021. /* Now we let MAC0 run on 5G band. */
  3022. if (rtlhal->interfaceindex == 0) {
  3023. rtlhal->bandset = BAND_ON_5G;
  3024. rtlhal->current_bandtype = BAND_ON_5G;
  3025. } else {
  3026. rtlhal->bandset = BAND_ON_2_4G;
  3027. rtlhal->current_bandtype = BAND_ON_2_4G;
  3028. }
  3029. break;
  3030. default:
  3031. break;
  3032. }
  3033. }
  3034. u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
  3035. {
  3036. u8 group;
  3037. u8 channel_info[59] = {
  3038. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  3039. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
  3040. 58, 60, 62, 64, 100, 102, 104, 106, 108,
  3041. 110, 112, 114, 116, 118, 120, 122, 124,
  3042. 126, 128, 130, 132, 134, 136, 138, 140,
  3043. 149, 151, 153, 155, 157, 159, 161, 163,
  3044. 165
  3045. };
  3046. if (channel_info[chnl] <= 3)
  3047. group = 0;
  3048. else if (channel_info[chnl] <= 9)
  3049. group = 1;
  3050. else if (channel_info[chnl] <= 14)
  3051. group = 2;
  3052. else if (channel_info[chnl] <= 44)
  3053. group = 3;
  3054. else if (channel_info[chnl] <= 54)
  3055. group = 4;
  3056. else if (channel_info[chnl] <= 64)
  3057. group = 5;
  3058. else if (channel_info[chnl] <= 112)
  3059. group = 6;
  3060. else if (channel_info[chnl] <= 126)
  3061. group = 7;
  3062. else if (channel_info[chnl] <= 140)
  3063. group = 8;
  3064. else if (channel_info[chnl] <= 153)
  3065. group = 9;
  3066. else if (channel_info[chnl] <= 159)
  3067. group = 10;
  3068. else
  3069. group = 11;
  3070. return group;
  3071. }
  3072. void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
  3073. {
  3074. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3075. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3076. unsigned long flags;
  3077. u8 value8;
  3078. u16 i;
  3079. u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);
  3080. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  3081. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3082. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3083. value8 |= BIT(1);
  3084. rtl_write_byte(rtlpriv, mac_reg, value8);
  3085. } else {
  3086. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3087. value8 &= (~BIT(1));
  3088. rtl_write_byte(rtlpriv, mac_reg, value8);
  3089. }
  3090. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3091. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3092. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3093. } else {
  3094. spin_lock_irqsave(&globalmutex_power, flags);
  3095. if (rtlhal->interfaceindex == 0) {
  3096. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3097. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3098. } else {
  3099. value8 = rtl_read_byte(rtlpriv, REG_MAC1);
  3100. rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
  3101. }
  3102. value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3103. spin_unlock_irqrestore(&globalmutex_power, flags);
  3104. for (i = 0; i < 200; i++) {
  3105. if ((value8 & BIT(7)) == 0) {
  3106. break;
  3107. } else {
  3108. udelay(500);
  3109. spin_lock_irqsave(&globalmutex_power, flags);
  3110. value8 = rtl_read_byte(rtlpriv,
  3111. REG_POWER_OFF_IN_PROCESS);
  3112. spin_unlock_irqrestore(&globalmutex_power,
  3113. flags);
  3114. }
  3115. }
  3116. if (i == 200)
  3117. RT_ASSERT(false, "Another mac power off over time\n");
  3118. }
  3119. }
  3120. void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
  3121. {
  3122. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3123. switch (rtlpriv->rtlhal.macphymode) {
  3124. case DUALMAC_DUALPHY:
  3125. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3126. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3127. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3128. break;
  3129. case DUALMAC_SINGLEPHY:
  3130. rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
  3131. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3132. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3133. break;
  3134. case SINGLEMAC_SINGLEPHY:
  3135. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3136. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
  3137. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  3138. break;
  3139. default:
  3140. break;
  3141. }
  3142. }
  3143. void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
  3144. {
  3145. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3146. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3147. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3148. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  3149. u8 rfpath, i;
  3150. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  3151. /* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
  3152. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3153. /* r_select_5G for path_A/B,0x878 */
  3154. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
  3155. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
  3156. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3157. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
  3158. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
  3159. }
  3160. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
  3161. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
  3162. /* fc_area 0xd2c */
  3163. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
  3164. /* 5G LAN ON */
  3165. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
  3166. /* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
  3167. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3168. 0x40000100);
  3169. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3170. 0x40000100);
  3171. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3172. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3173. BIT(10) | BIT(6) | BIT(5),
  3174. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3175. (rtlefuse->eeprom_c9 & BIT(1)) |
  3176. ((rtlefuse->eeprom_cc & BIT(1)) << 4));
  3177. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3178. BIT(10) | BIT(6) | BIT(5),
  3179. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3180. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3181. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3182. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
  3183. } else {
  3184. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3185. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3186. BIT(6) | BIT(5),
  3187. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3188. (rtlefuse->eeprom_c9 & BIT(1)) |
  3189. ((rtlefuse->eeprom_cc & BIT(1)) << 4) |
  3190. ((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
  3191. ((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
  3192. ((rtlefuse->eeprom_cc & BIT(3)) << 18));
  3193. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3194. BIT(10) | BIT(6) | BIT(5),
  3195. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3196. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3197. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3198. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  3199. BIT(10) | BIT(6) | BIT(5),
  3200. ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
  3201. ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
  3202. ((rtlefuse->eeprom_cc & BIT(2)) << 3));
  3203. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3204. BIT(31) | BIT(15), 0);
  3205. }
  3206. /* 1.5V_LDO */
  3207. } else {
  3208. /* r_select_5G for path_A/B */
  3209. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
  3210. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
  3211. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3212. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
  3213. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
  3214. }
  3215. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
  3216. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
  3217. /* fc_area */
  3218. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
  3219. /* 5G LAN ON */
  3220. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
  3221. /* TX BB gain shift,Just for testchip,0xc80,0xc88 */
  3222. if (rtlefuse->internal_pa_5g[0])
  3223. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3224. 0x2d4000b5);
  3225. else
  3226. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD,
  3227. 0x20000080);
  3228. if (rtlefuse->internal_pa_5g[1])
  3229. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3230. 0x2d4000b5);
  3231. else
  3232. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD,
  3233. 0x20000080);
  3234. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3235. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3236. BIT(10) | BIT(6) | BIT(5),
  3237. (rtlefuse->eeprom_cc & BIT(5)));
  3238. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3239. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3240. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
  3241. (rtlefuse->eeprom_cc & BIT(4)) >> 4);
  3242. } else {
  3243. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3244. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3245. BIT(6) | BIT(5),
  3246. (rtlefuse->eeprom_cc & BIT(5)) |
  3247. ((rtlefuse->eeprom_cc & BIT(7)) << 14));
  3248. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3249. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3250. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
  3251. ((rtlefuse->eeprom_cc & BIT(6)) >> 6));
  3252. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3253. BIT(31) | BIT(15),
  3254. ((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
  3255. ((rtlefuse->eeprom_cc & BIT(6)) << 10));
  3256. }
  3257. }
  3258. /* update IQK related settings */
  3259. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, MASKDWORD, 0x40000100);
  3260. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, MASKDWORD, 0x40000100);
  3261. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
  3262. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
  3263. BIT(26) | BIT(24), 0x00);
  3264. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
  3265. rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
  3266. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);
  3267. /* Update RF */
  3268. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3269. rfpath++) {
  3270. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3271. /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
  3272. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
  3273. BIT(18), 0);
  3274. /* RF0x0b[16:14] =3b'111 */
  3275. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  3276. 0x1c000, 0x07);
  3277. } else {
  3278. /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */
  3279. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
  3280. BIT(16) | BIT(18),
  3281. (BIT(16) | BIT(8)) >> 8);
  3282. }
  3283. }
  3284. /* Update for all band. */
  3285. /* DMDP */
  3286. if (rtlphy->rf_type == RF_1T1R) {
  3287. /* Use antenna 0,0xc04,0xd04 */
  3288. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x11);
  3289. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);
  3290. /* enable ad/da clock1 for dual-phy reg0x888 */
  3291. if (rtlhal->interfaceindex == 0) {
  3292. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
  3293. BIT(13), 0x3);
  3294. } else {
  3295. rtl92d_phy_enable_anotherphy(hw, false);
  3296. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3297. "MAC1 use DBI to update 0x888\n");
  3298. /* 0x888 */
  3299. rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
  3300. rtl92de_read_dword_dbi(hw,
  3301. RFPGA0_ADDALLOCKEN,
  3302. BIT(3)) | BIT(12) | BIT(13),
  3303. BIT(3));
  3304. rtl92d_phy_powerdown_anotherphy(hw, false);
  3305. }
  3306. } else {
  3307. /* Single PHY */
  3308. /* Use antenna 0 & 1,0xc04,0xd04 */
  3309. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x33);
  3310. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
  3311. /* disable ad/da clock1,0x888 */
  3312. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
  3313. }
  3314. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3315. rfpath++) {
  3316. rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
  3317. RF_CHNLBW, RFREG_OFFSET_MASK);
  3318. rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
  3319. RFREG_OFFSET_MASK);
  3320. }
  3321. for (i = 0; i < 2; i++)
  3322. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
  3323. rtlphy->rfreg_chnlval[i]);
  3324. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
  3325. }
  3326. bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
  3327. {
  3328. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3329. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3330. u8 u1btmp;
  3331. unsigned long flags;
  3332. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3333. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3334. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3335. return true;
  3336. }
  3337. spin_lock_irqsave(&globalmutex_power, flags);
  3338. if (rtlhal->interfaceindex == 0) {
  3339. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3340. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3341. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3342. u1btmp &= MAC1_ON;
  3343. } else {
  3344. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3345. rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
  3346. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3347. u1btmp &= MAC0_ON;
  3348. }
  3349. if (u1btmp) {
  3350. spin_unlock_irqrestore(&globalmutex_power, flags);
  3351. return false;
  3352. }
  3353. u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3354. u1btmp |= BIT(7);
  3355. rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
  3356. spin_unlock_irqrestore(&globalmutex_power, flags);
  3357. return true;
  3358. }