chip.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "debug.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. /* Max possibly supported memory size (limited by IO mapped memory) */
  94. #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024)
  95. #define CORE_SB(base, field) \
  96. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  97. #define SBCOREREV(sbidh) \
  98. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  99. ((sbidh) & SSB_IDHIGH_RCLO))
  100. struct sbconfig {
  101. u32 PAD[2];
  102. u32 sbipsflag; /* initiator port ocp slave flag */
  103. u32 PAD[3];
  104. u32 sbtpsflag; /* target port ocp slave flag */
  105. u32 PAD[11];
  106. u32 sbtmerrloga; /* (sonics >= 2.3) */
  107. u32 PAD;
  108. u32 sbtmerrlog; /* (sonics >= 2.3) */
  109. u32 PAD[3];
  110. u32 sbadmatch3; /* address match3 */
  111. u32 PAD;
  112. u32 sbadmatch2; /* address match2 */
  113. u32 PAD;
  114. u32 sbadmatch1; /* address match1 */
  115. u32 PAD[7];
  116. u32 sbimstate; /* initiator agent state */
  117. u32 sbintvec; /* interrupt mask */
  118. u32 sbtmstatelow; /* target state */
  119. u32 sbtmstatehigh; /* target state */
  120. u32 sbbwa0; /* bandwidth allocation table0 */
  121. u32 PAD;
  122. u32 sbimconfiglow; /* initiator configuration */
  123. u32 sbimconfighigh; /* initiator configuration */
  124. u32 sbadmatch0; /* address match0 */
  125. u32 PAD;
  126. u32 sbtmconfiglow; /* target configuration */
  127. u32 sbtmconfighigh; /* target configuration */
  128. u32 sbbconfig; /* broadcast configuration */
  129. u32 PAD;
  130. u32 sbbstate; /* broadcast state */
  131. u32 PAD[3];
  132. u32 sbactcnfg; /* activate configuration */
  133. u32 PAD[3];
  134. u32 sbflagst; /* current sbflags */
  135. u32 PAD[3];
  136. u32 sbidlow; /* identification */
  137. u32 sbidhigh; /* identification */
  138. };
  139. /* bankidx and bankinfo reg defines corerev >= 8 */
  140. #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
  141. #define SOCRAM_BANKINFO_SZMASK 0x0000007f
  142. #define SOCRAM_BANKIDX_ROM_MASK 0x00000100
  143. #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
  144. /* socram bankinfo memtype */
  145. #define SOCRAM_MEMTYPE_RAM 0
  146. #define SOCRAM_MEMTYPE_R0M 1
  147. #define SOCRAM_MEMTYPE_DEVRAM 2
  148. #define SOCRAM_BANKINFO_SZBASE 8192
  149. #define SRCI_LSS_MASK 0x00f00000
  150. #define SRCI_LSS_SHIFT 20
  151. #define SRCI_SRNB_MASK 0xf0
  152. #define SRCI_SRNB_SHIFT 4
  153. #define SRCI_SRBSZ_MASK 0xf
  154. #define SRCI_SRBSZ_SHIFT 0
  155. #define SR_BSZ_BASE 14
  156. struct sbsocramregs {
  157. u32 coreinfo;
  158. u32 bwalloc;
  159. u32 extracoreinfo;
  160. u32 biststat;
  161. u32 bankidx;
  162. u32 standbyctrl;
  163. u32 errlogstatus; /* rev 6 */
  164. u32 errlogaddr; /* rev 6 */
  165. /* used for patching rev 3 & 5 */
  166. u32 cambankidx;
  167. u32 cambankstandbyctrl;
  168. u32 cambankpatchctrl;
  169. u32 cambankpatchtblbaseaddr;
  170. u32 cambankcmdreg;
  171. u32 cambankdatareg;
  172. u32 cambankmaskreg;
  173. u32 PAD[1];
  174. u32 bankinfo; /* corev 8 */
  175. u32 bankpda;
  176. u32 PAD[14];
  177. u32 extmemconfig;
  178. u32 extmemparitycsr;
  179. u32 extmemparityerrdata;
  180. u32 extmemparityerrcnt;
  181. u32 extmemwrctrlandsize;
  182. u32 PAD[84];
  183. u32 workaround;
  184. u32 pwrctl; /* corerev >= 2 */
  185. u32 PAD[133];
  186. u32 sr_control; /* corerev >= 15 */
  187. u32 sr_status; /* corerev >= 15 */
  188. u32 sr_address; /* corerev >= 15 */
  189. u32 sr_data; /* corerev >= 15 */
  190. };
  191. #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  192. #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  193. #define ARMCR4_CAP (0x04)
  194. #define ARMCR4_BANKIDX (0x40)
  195. #define ARMCR4_BANKINFO (0x44)
  196. #define ARMCR4_BANKPDA (0x4C)
  197. #define ARMCR4_TCBBNB_MASK 0xf0
  198. #define ARMCR4_TCBBNB_SHIFT 4
  199. #define ARMCR4_TCBANB_MASK 0xf
  200. #define ARMCR4_TCBANB_SHIFT 0
  201. #define ARMCR4_BSZ_MASK 0x3f
  202. #define ARMCR4_BSZ_MULT 8192
  203. struct brcmf_core_priv {
  204. struct brcmf_core pub;
  205. u32 wrapbase;
  206. struct list_head list;
  207. struct brcmf_chip_priv *chip;
  208. };
  209. struct brcmf_chip_priv {
  210. struct brcmf_chip pub;
  211. const struct brcmf_buscore_ops *ops;
  212. void *ctx;
  213. /* assured first core is chipcommon, second core is buscore */
  214. struct list_head cores;
  215. u16 num_cores;
  216. bool (*iscoreup)(struct brcmf_core_priv *core);
  217. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  218. u32 reset);
  219. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  220. u32 postreset);
  221. };
  222. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  223. struct brcmf_core *core)
  224. {
  225. u32 regdata;
  226. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  227. core->rev = SBCOREREV(regdata);
  228. }
  229. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  230. {
  231. struct brcmf_chip_priv *ci;
  232. u32 regdata;
  233. u32 address;
  234. ci = core->chip;
  235. address = CORE_SB(core->pub.base, sbtmstatelow);
  236. regdata = ci->ops->read32(ci->ctx, address);
  237. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  238. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  239. return SSB_TMSLOW_CLOCK == regdata;
  240. }
  241. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  242. {
  243. struct brcmf_chip_priv *ci;
  244. u32 regdata;
  245. bool ret;
  246. ci = core->chip;
  247. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  248. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  249. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  250. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  251. return ret;
  252. }
  253. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  254. u32 prereset, u32 reset)
  255. {
  256. struct brcmf_chip_priv *ci;
  257. u32 val, base;
  258. ci = core->chip;
  259. base = core->pub.base;
  260. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  261. if (val & SSB_TMSLOW_RESET)
  262. return;
  263. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  264. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  265. /*
  266. * set target reject and spin until busy is clear
  267. * (preserve core-specific bits)
  268. */
  269. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  270. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  271. val | SSB_TMSLOW_REJECT);
  272. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  273. udelay(1);
  274. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  275. & SSB_TMSHIGH_BUSY), 100000);
  276. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  277. if (val & SSB_TMSHIGH_BUSY)
  278. brcmf_err("core state still busy\n");
  279. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  280. if (val & SSB_IDLOW_INITIATOR) {
  281. val = ci->ops->read32(ci->ctx,
  282. CORE_SB(base, sbimstate));
  283. val |= SSB_IMSTATE_REJECT;
  284. ci->ops->write32(ci->ctx,
  285. CORE_SB(base, sbimstate), val);
  286. val = ci->ops->read32(ci->ctx,
  287. CORE_SB(base, sbimstate));
  288. udelay(1);
  289. SPINWAIT((ci->ops->read32(ci->ctx,
  290. CORE_SB(base, sbimstate)) &
  291. SSB_IMSTATE_BUSY), 100000);
  292. }
  293. /* set reset and reject while enabling the clocks */
  294. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  295. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  296. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  297. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  298. udelay(10);
  299. /* clear the initiator reject bit */
  300. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  301. if (val & SSB_IDLOW_INITIATOR) {
  302. val = ci->ops->read32(ci->ctx,
  303. CORE_SB(base, sbimstate));
  304. val &= ~SSB_IMSTATE_REJECT;
  305. ci->ops->write32(ci->ctx,
  306. CORE_SB(base, sbimstate), val);
  307. }
  308. }
  309. /* leave reset and reject asserted */
  310. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  311. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  312. udelay(1);
  313. }
  314. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  315. u32 prereset, u32 reset)
  316. {
  317. struct brcmf_chip_priv *ci;
  318. u32 regdata;
  319. ci = core->chip;
  320. /* if core is already in reset, skip reset */
  321. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  322. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  323. goto in_reset_configure;
  324. /* configure reset */
  325. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  326. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  327. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  328. /* put in reset */
  329. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  330. BCMA_RESET_CTL_RESET);
  331. usleep_range(10, 20);
  332. /* wait till reset is 1 */
  333. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  334. BCMA_RESET_CTL_RESET, 300);
  335. in_reset_configure:
  336. /* in-reset configure */
  337. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  338. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  339. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  340. }
  341. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  342. u32 reset, u32 postreset)
  343. {
  344. struct brcmf_chip_priv *ci;
  345. u32 regdata;
  346. u32 base;
  347. ci = core->chip;
  348. base = core->pub.base;
  349. /*
  350. * Must do the disable sequence first to work for
  351. * arbitrary current core state.
  352. */
  353. brcmf_chip_sb_coredisable(core, 0, 0);
  354. /*
  355. * Now do the initialization sequence.
  356. * set reset while enabling the clock and
  357. * forcing them on throughout the core
  358. */
  359. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  360. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  361. SSB_TMSLOW_RESET);
  362. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  363. udelay(1);
  364. /* clear any serror */
  365. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  366. if (regdata & SSB_TMSHIGH_SERR)
  367. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  368. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  369. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  370. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  371. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  372. }
  373. /* clear reset and allow it to propagate throughout the core */
  374. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  375. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  376. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  377. udelay(1);
  378. /* leave clock enabled */
  379. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  380. SSB_TMSLOW_CLOCK);
  381. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  382. udelay(1);
  383. }
  384. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  385. u32 reset, u32 postreset)
  386. {
  387. struct brcmf_chip_priv *ci;
  388. int count;
  389. ci = core->chip;
  390. /* must disable first to work for arbitrary current core state */
  391. brcmf_chip_ai_coredisable(core, prereset, reset);
  392. count = 0;
  393. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  394. BCMA_RESET_CTL_RESET) {
  395. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  396. count++;
  397. if (count > 50)
  398. break;
  399. usleep_range(40, 60);
  400. }
  401. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  402. postreset | BCMA_IOCTL_CLK);
  403. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  404. }
  405. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  406. {
  407. const char *fmt;
  408. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  409. snprintf(buf, len, fmt, chipid);
  410. return buf;
  411. }
  412. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  413. u16 coreid, u32 base,
  414. u32 wrapbase)
  415. {
  416. struct brcmf_core_priv *core;
  417. core = kzalloc(sizeof(*core), GFP_KERNEL);
  418. if (!core)
  419. return ERR_PTR(-ENOMEM);
  420. core->pub.id = coreid;
  421. core->pub.base = base;
  422. core->chip = ci;
  423. core->wrapbase = wrapbase;
  424. list_add_tail(&core->list, &ci->cores);
  425. return &core->pub;
  426. }
  427. /* safety check for chipinfo */
  428. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  429. {
  430. struct brcmf_core_priv *core;
  431. bool need_socram = false;
  432. bool has_socram = false;
  433. bool cpu_found = false;
  434. int idx = 1;
  435. list_for_each_entry(core, &ci->cores, list) {
  436. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  437. idx++, core->pub.id, core->pub.rev, core->pub.base,
  438. core->wrapbase);
  439. switch (core->pub.id) {
  440. case BCMA_CORE_ARM_CM3:
  441. cpu_found = true;
  442. need_socram = true;
  443. break;
  444. case BCMA_CORE_INTERNAL_MEM:
  445. has_socram = true;
  446. break;
  447. case BCMA_CORE_ARM_CR4:
  448. cpu_found = true;
  449. break;
  450. case BCMA_CORE_ARM_CA7:
  451. cpu_found = true;
  452. break;
  453. default:
  454. break;
  455. }
  456. }
  457. if (!cpu_found) {
  458. brcmf_err("CPU core not detected\n");
  459. return -ENXIO;
  460. }
  461. /* check RAM core presence for ARM CM3 core */
  462. if (need_socram && !has_socram) {
  463. brcmf_err("RAM core not provided with ARM CM3 core\n");
  464. return -ENODEV;
  465. }
  466. return 0;
  467. }
  468. static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
  469. {
  470. return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
  471. }
  472. static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
  473. u16 reg, u32 val)
  474. {
  475. core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
  476. }
  477. static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
  478. u32 *banksize)
  479. {
  480. u32 bankinfo;
  481. u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
  482. bankidx |= idx;
  483. brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
  484. bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
  485. *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
  486. *banksize *= SOCRAM_BANKINFO_SZBASE;
  487. return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
  488. }
  489. static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
  490. u32 *srsize)
  491. {
  492. u32 coreinfo;
  493. uint nb, banksize, lss;
  494. bool retent;
  495. int i;
  496. *ramsize = 0;
  497. *srsize = 0;
  498. if (WARN_ON(sr->pub.rev < 4))
  499. return;
  500. if (!brcmf_chip_iscoreup(&sr->pub))
  501. brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
  502. /* Get info for determining size */
  503. coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
  504. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  505. if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
  506. banksize = (coreinfo & SRCI_SRBSZ_MASK);
  507. lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
  508. if (lss != 0)
  509. nb--;
  510. *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
  511. if (lss != 0)
  512. *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
  513. } else {
  514. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  515. for (i = 0; i < nb; i++) {
  516. retent = brcmf_chip_socram_banksize(sr, i, &banksize);
  517. *ramsize += banksize;
  518. if (retent)
  519. *srsize += banksize;
  520. }
  521. }
  522. /* hardcoded save&restore memory sizes */
  523. switch (sr->chip->pub.chip) {
  524. case BRCM_CC_4334_CHIP_ID:
  525. if (sr->chip->pub.chiprev < 2)
  526. *srsize = (32 * 1024);
  527. break;
  528. case BRCM_CC_43430_CHIP_ID:
  529. /* assume sr for now as we can not check
  530. * firmware sr capability at this point.
  531. */
  532. *srsize = (64 * 1024);
  533. break;
  534. default:
  535. break;
  536. }
  537. }
  538. /** Return the SYS MEM size */
  539. static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
  540. {
  541. u32 memsize = 0;
  542. u32 coreinfo;
  543. u32 idx;
  544. u32 nb;
  545. u32 banksize;
  546. if (!brcmf_chip_iscoreup(&sysmem->pub))
  547. brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
  548. coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
  549. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  550. for (idx = 0; idx < nb; idx++) {
  551. brcmf_chip_socram_banksize(sysmem, idx, &banksize);
  552. memsize += banksize;
  553. }
  554. return memsize;
  555. }
  556. /** Return the TCM-RAM size of the ARMCR4 core. */
  557. static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
  558. {
  559. u32 corecap;
  560. u32 memsize = 0;
  561. u32 nab;
  562. u32 nbb;
  563. u32 totb;
  564. u32 bxinfo;
  565. u32 idx;
  566. corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
  567. nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
  568. nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
  569. totb = nab + nbb;
  570. for (idx = 0; idx < totb; idx++) {
  571. brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
  572. bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
  573. memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
  574. }
  575. return memsize;
  576. }
  577. static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
  578. {
  579. switch (ci->pub.chip) {
  580. case BRCM_CC_4345_CHIP_ID:
  581. return 0x198000;
  582. case BRCM_CC_4335_CHIP_ID:
  583. case BRCM_CC_4339_CHIP_ID:
  584. case BRCM_CC_4350_CHIP_ID:
  585. case BRCM_CC_4354_CHIP_ID:
  586. case BRCM_CC_4356_CHIP_ID:
  587. case BRCM_CC_43567_CHIP_ID:
  588. case BRCM_CC_43569_CHIP_ID:
  589. case BRCM_CC_43570_CHIP_ID:
  590. case BRCM_CC_4358_CHIP_ID:
  591. case BRCM_CC_4359_CHIP_ID:
  592. case BRCM_CC_43602_CHIP_ID:
  593. case BRCM_CC_4371_CHIP_ID:
  594. return 0x180000;
  595. case BRCM_CC_4365_CHIP_ID:
  596. case BRCM_CC_4366_CHIP_ID:
  597. return 0x200000;
  598. default:
  599. brcmf_err("unknown chip: %s\n", ci->pub.name);
  600. break;
  601. }
  602. return 0;
  603. }
  604. static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  605. {
  606. struct brcmf_core_priv *mem_core;
  607. struct brcmf_core *mem;
  608. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
  609. if (mem) {
  610. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  611. ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
  612. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  613. if (!ci->pub.rambase) {
  614. brcmf_err("RAM base not provided with ARM CR4 core\n");
  615. return -EINVAL;
  616. }
  617. } else {
  618. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
  619. if (mem) {
  620. mem_core = container_of(mem, struct brcmf_core_priv,
  621. pub);
  622. ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
  623. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  624. if (!ci->pub.rambase) {
  625. brcmf_err("RAM base not provided with ARM CA7 core\n");
  626. return -EINVAL;
  627. }
  628. } else {
  629. mem = brcmf_chip_get_core(&ci->pub,
  630. BCMA_CORE_INTERNAL_MEM);
  631. if (!mem) {
  632. brcmf_err("No memory cores found\n");
  633. return -ENOMEM;
  634. }
  635. mem_core = container_of(mem, struct brcmf_core_priv,
  636. pub);
  637. brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
  638. &ci->pub.srsize);
  639. }
  640. }
  641. brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
  642. ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
  643. ci->pub.srsize, ci->pub.srsize);
  644. if (!ci->pub.ramsize) {
  645. brcmf_err("RAM size is undetermined\n");
  646. return -ENOMEM;
  647. }
  648. if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
  649. brcmf_err("RAM size is incorrect\n");
  650. return -ENOMEM;
  651. }
  652. return 0;
  653. }
  654. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  655. u8 *type)
  656. {
  657. u32 val;
  658. /* read next descriptor */
  659. val = ci->ops->read32(ci->ctx, *eromaddr);
  660. *eromaddr += 4;
  661. if (!type)
  662. return val;
  663. /* determine descriptor type */
  664. *type = (val & DMP_DESC_TYPE_MSK);
  665. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  666. *type = DMP_DESC_ADDRESS;
  667. return val;
  668. }
  669. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  670. u32 *regbase, u32 *wrapbase)
  671. {
  672. u8 desc;
  673. u32 val;
  674. u8 mpnum = 0;
  675. u8 stype, sztype, wraptype;
  676. *regbase = 0;
  677. *wrapbase = 0;
  678. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  679. if (desc == DMP_DESC_MASTER_PORT) {
  680. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  681. wraptype = DMP_SLAVE_TYPE_MWRAP;
  682. } else if (desc == DMP_DESC_ADDRESS) {
  683. /* revert erom address */
  684. *eromaddr -= 4;
  685. wraptype = DMP_SLAVE_TYPE_SWRAP;
  686. } else {
  687. *eromaddr -= 4;
  688. return -EILSEQ;
  689. }
  690. do {
  691. /* locate address descriptor */
  692. do {
  693. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  694. /* unexpected table end */
  695. if (desc == DMP_DESC_EOT) {
  696. *eromaddr -= 4;
  697. return -EFAULT;
  698. }
  699. } while (desc != DMP_DESC_ADDRESS &&
  700. desc != DMP_DESC_COMPONENT);
  701. /* stop if we crossed current component border */
  702. if (desc == DMP_DESC_COMPONENT) {
  703. *eromaddr -= 4;
  704. return 0;
  705. }
  706. /* skip upper 32-bit address descriptor */
  707. if (val & DMP_DESC_ADDRSIZE_GT32)
  708. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  709. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  710. /* next size descriptor can be skipped */
  711. if (sztype == DMP_SLAVE_SIZE_DESC) {
  712. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  713. /* skip upper size descriptor if present */
  714. if (val & DMP_DESC_ADDRSIZE_GT32)
  715. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  716. }
  717. /* only look for 4K register regions */
  718. if (sztype != DMP_SLAVE_SIZE_4K)
  719. continue;
  720. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  721. /* only regular slave and wrapper */
  722. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  723. *regbase = val & DMP_SLAVE_ADDR_BASE;
  724. if (*wrapbase == 0 && stype == wraptype)
  725. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  726. } while (*regbase == 0 || *wrapbase == 0);
  727. return 0;
  728. }
  729. static
  730. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  731. {
  732. struct brcmf_core *core;
  733. u32 eromaddr;
  734. u8 desc_type = 0;
  735. u32 val;
  736. u16 id;
  737. u8 nmp, nsp, nmw, nsw, rev;
  738. u32 base, wrap;
  739. int err;
  740. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  741. while (desc_type != DMP_DESC_EOT) {
  742. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  743. if (!(val & DMP_DESC_VALID))
  744. continue;
  745. if (desc_type == DMP_DESC_EMPTY)
  746. continue;
  747. /* need a component descriptor */
  748. if (desc_type != DMP_DESC_COMPONENT)
  749. continue;
  750. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  751. /* next descriptor must be component as well */
  752. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  753. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  754. return -EFAULT;
  755. /* only look at cores with master port(s) */
  756. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  757. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  758. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  759. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  760. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  761. /* need core with ports */
  762. if (nmw + nsw == 0 &&
  763. id != BCMA_CORE_PMU)
  764. continue;
  765. /* try to obtain register address info */
  766. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  767. if (err)
  768. continue;
  769. /* finally a core to be added */
  770. core = brcmf_chip_add_core(ci, id, base, wrap);
  771. if (IS_ERR(core))
  772. return PTR_ERR(core);
  773. core->rev = rev;
  774. }
  775. return 0;
  776. }
  777. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  778. {
  779. struct brcmf_core *core;
  780. u32 regdata;
  781. u32 socitype;
  782. int ret;
  783. /* Get CC core rev
  784. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  785. * For different chiptypes or old sdio hosts w/o chipcommon,
  786. * other ways of recognition should be added here.
  787. */
  788. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  789. ci->pub.chip = regdata & CID_ID_MASK;
  790. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  791. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  792. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  793. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  794. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  795. ci->pub.chiprev);
  796. if (socitype == SOCI_SB) {
  797. if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
  798. brcmf_err("SB chip is not supported\n");
  799. return -ENODEV;
  800. }
  801. ci->iscoreup = brcmf_chip_sb_iscoreup;
  802. ci->coredisable = brcmf_chip_sb_coredisable;
  803. ci->resetcore = brcmf_chip_sb_resetcore;
  804. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  805. SI_ENUM_BASE, 0);
  806. brcmf_chip_sb_corerev(ci, core);
  807. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  808. BCM4329_CORE_BUS_BASE, 0);
  809. brcmf_chip_sb_corerev(ci, core);
  810. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  811. BCM4329_CORE_SOCRAM_BASE, 0);
  812. brcmf_chip_sb_corerev(ci, core);
  813. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  814. BCM4329_CORE_ARM_BASE, 0);
  815. brcmf_chip_sb_corerev(ci, core);
  816. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  817. brcmf_chip_sb_corerev(ci, core);
  818. } else if (socitype == SOCI_AI) {
  819. ci->iscoreup = brcmf_chip_ai_iscoreup;
  820. ci->coredisable = brcmf_chip_ai_coredisable;
  821. ci->resetcore = brcmf_chip_ai_resetcore;
  822. brcmf_chip_dmp_erom_scan(ci);
  823. } else {
  824. brcmf_err("chip backplane type %u is not supported\n",
  825. socitype);
  826. return -ENODEV;
  827. }
  828. ret = brcmf_chip_cores_check(ci);
  829. if (ret)
  830. return ret;
  831. /* assure chip is passive for core access */
  832. brcmf_chip_set_passive(&ci->pub);
  833. /* Call bus specific reset function now. Cores have been determined
  834. * but further access may require a chip specific reset at this point.
  835. */
  836. if (ci->ops->reset) {
  837. ci->ops->reset(ci->ctx, &ci->pub);
  838. brcmf_chip_set_passive(&ci->pub);
  839. }
  840. return brcmf_chip_get_raminfo(ci);
  841. }
  842. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  843. {
  844. struct brcmf_core *core;
  845. struct brcmf_core_priv *cpu;
  846. u32 val;
  847. core = brcmf_chip_get_core(&chip->pub, id);
  848. if (!core)
  849. return;
  850. switch (id) {
  851. case BCMA_CORE_ARM_CM3:
  852. brcmf_chip_coredisable(core, 0, 0);
  853. break;
  854. case BCMA_CORE_ARM_CR4:
  855. case BCMA_CORE_ARM_CA7:
  856. cpu = container_of(core, struct brcmf_core_priv, pub);
  857. /* clear all IOCTL bits except HALT bit */
  858. val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
  859. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  860. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  861. ARMCR4_BCMA_IOCTL_CPUHALT);
  862. break;
  863. default:
  864. brcmf_err("unknown id: %u\n", id);
  865. break;
  866. }
  867. }
  868. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  869. {
  870. struct brcmf_chip *pub;
  871. struct brcmf_core_priv *cc;
  872. struct brcmf_core *pmu;
  873. u32 base;
  874. u32 val;
  875. int ret = 0;
  876. pub = &chip->pub;
  877. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  878. base = cc->pub.base;
  879. /* get chipcommon capabilites */
  880. pub->cc_caps = chip->ops->read32(chip->ctx,
  881. CORE_CC_REG(base, capabilities));
  882. pub->cc_caps_ext = chip->ops->read32(chip->ctx,
  883. CORE_CC_REG(base,
  884. capabilities_ext));
  885. /* get pmu caps & rev */
  886. pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
  887. if (pub->cc_caps & CC_CAP_PMU) {
  888. val = chip->ops->read32(chip->ctx,
  889. CORE_CC_REG(pmu->base, pmucapabilities));
  890. pub->pmurev = val & PCAP_REV_MASK;
  891. pub->pmucaps = val;
  892. }
  893. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  894. cc->pub.rev, pub->pmurev, pub->pmucaps);
  895. /* execute bus core specific setup */
  896. if (chip->ops->setup)
  897. ret = chip->ops->setup(chip->ctx, pub);
  898. return ret;
  899. }
  900. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  901. const struct brcmf_buscore_ops *ops)
  902. {
  903. struct brcmf_chip_priv *chip;
  904. int err = 0;
  905. if (WARN_ON(!ops->read32))
  906. err = -EINVAL;
  907. if (WARN_ON(!ops->write32))
  908. err = -EINVAL;
  909. if (WARN_ON(!ops->prepare))
  910. err = -EINVAL;
  911. if (WARN_ON(!ops->activate))
  912. err = -EINVAL;
  913. if (err < 0)
  914. return ERR_PTR(-EINVAL);
  915. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  916. if (!chip)
  917. return ERR_PTR(-ENOMEM);
  918. INIT_LIST_HEAD(&chip->cores);
  919. chip->num_cores = 0;
  920. chip->ops = ops;
  921. chip->ctx = ctx;
  922. err = ops->prepare(ctx);
  923. if (err < 0)
  924. goto fail;
  925. err = brcmf_chip_recognition(chip);
  926. if (err < 0)
  927. goto fail;
  928. err = brcmf_chip_setup(chip);
  929. if (err < 0)
  930. goto fail;
  931. return &chip->pub;
  932. fail:
  933. brcmf_chip_detach(&chip->pub);
  934. return ERR_PTR(err);
  935. }
  936. void brcmf_chip_detach(struct brcmf_chip *pub)
  937. {
  938. struct brcmf_chip_priv *chip;
  939. struct brcmf_core_priv *core;
  940. struct brcmf_core_priv *tmp;
  941. chip = container_of(pub, struct brcmf_chip_priv, pub);
  942. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  943. list_del(&core->list);
  944. kfree(core);
  945. }
  946. kfree(chip);
  947. }
  948. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  949. {
  950. struct brcmf_chip_priv *chip;
  951. struct brcmf_core_priv *core;
  952. chip = container_of(pub, struct brcmf_chip_priv, pub);
  953. list_for_each_entry(core, &chip->cores, list)
  954. if (core->pub.id == coreid)
  955. return &core->pub;
  956. return NULL;
  957. }
  958. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  959. {
  960. struct brcmf_chip_priv *chip;
  961. struct brcmf_core_priv *cc;
  962. chip = container_of(pub, struct brcmf_chip_priv, pub);
  963. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  964. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  965. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  966. return &cc->pub;
  967. }
  968. struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
  969. {
  970. struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
  971. struct brcmf_core *pmu;
  972. /* See if there is separated PMU core available */
  973. if (cc->rev >= 35 &&
  974. pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
  975. pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
  976. if (pmu)
  977. return pmu;
  978. }
  979. /* Fallback to ChipCommon core for older hardware */
  980. return cc;
  981. }
  982. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  983. {
  984. struct brcmf_core_priv *core;
  985. core = container_of(pub, struct brcmf_core_priv, pub);
  986. return core->chip->iscoreup(core);
  987. }
  988. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  989. {
  990. struct brcmf_core_priv *core;
  991. core = container_of(pub, struct brcmf_core_priv, pub);
  992. core->chip->coredisable(core, prereset, reset);
  993. }
  994. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  995. u32 postreset)
  996. {
  997. struct brcmf_core_priv *core;
  998. core = container_of(pub, struct brcmf_core_priv, pub);
  999. core->chip->resetcore(core, prereset, reset, postreset);
  1000. }
  1001. static void
  1002. brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
  1003. {
  1004. struct brcmf_core *core;
  1005. struct brcmf_core_priv *sr;
  1006. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  1007. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  1008. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  1009. D11_BCMA_IOCTL_PHYCLOCKEN,
  1010. D11_BCMA_IOCTL_PHYCLOCKEN,
  1011. D11_BCMA_IOCTL_PHYCLOCKEN);
  1012. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  1013. brcmf_chip_resetcore(core, 0, 0, 0);
  1014. /* disable bank #3 remap for this device */
  1015. if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
  1016. sr = container_of(core, struct brcmf_core_priv, pub);
  1017. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
  1018. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
  1019. }
  1020. }
  1021. static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
  1022. {
  1023. struct brcmf_core *core;
  1024. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  1025. if (!brcmf_chip_iscoreup(core)) {
  1026. brcmf_err("SOCRAM core is down after reset?\n");
  1027. return false;
  1028. }
  1029. chip->ops->activate(chip->ctx, &chip->pub, 0);
  1030. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  1031. brcmf_chip_resetcore(core, 0, 0, 0);
  1032. return true;
  1033. }
  1034. static inline void
  1035. brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
  1036. {
  1037. struct brcmf_core *core;
  1038. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  1039. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  1040. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  1041. D11_BCMA_IOCTL_PHYCLOCKEN,
  1042. D11_BCMA_IOCTL_PHYCLOCKEN,
  1043. D11_BCMA_IOCTL_PHYCLOCKEN);
  1044. }
  1045. static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  1046. {
  1047. struct brcmf_core *core;
  1048. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  1049. /* restore ARM */
  1050. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  1051. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  1052. return true;
  1053. }
  1054. static inline void
  1055. brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
  1056. {
  1057. struct brcmf_core *core;
  1058. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
  1059. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  1060. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  1061. D11_BCMA_IOCTL_PHYCLOCKEN,
  1062. D11_BCMA_IOCTL_PHYCLOCKEN,
  1063. D11_BCMA_IOCTL_PHYCLOCKEN);
  1064. }
  1065. static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  1066. {
  1067. struct brcmf_core *core;
  1068. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  1069. /* restore ARM */
  1070. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
  1071. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  1072. return true;
  1073. }
  1074. void brcmf_chip_set_passive(struct brcmf_chip *pub)
  1075. {
  1076. struct brcmf_chip_priv *chip;
  1077. struct brcmf_core *arm;
  1078. brcmf_dbg(TRACE, "Enter\n");
  1079. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1080. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  1081. if (arm) {
  1082. brcmf_chip_cr4_set_passive(chip);
  1083. return;
  1084. }
  1085. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
  1086. if (arm) {
  1087. brcmf_chip_ca7_set_passive(chip);
  1088. return;
  1089. }
  1090. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
  1091. if (arm) {
  1092. brcmf_chip_cm3_set_passive(chip);
  1093. return;
  1094. }
  1095. }
  1096. bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
  1097. {
  1098. struct brcmf_chip_priv *chip;
  1099. struct brcmf_core *arm;
  1100. brcmf_dbg(TRACE, "Enter\n");
  1101. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1102. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  1103. if (arm)
  1104. return brcmf_chip_cr4_set_active(chip, rstvec);
  1105. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
  1106. if (arm)
  1107. return brcmf_chip_ca7_set_active(chip, rstvec);
  1108. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
  1109. if (arm)
  1110. return brcmf_chip_cm3_set_active(chip);
  1111. return false;
  1112. }
  1113. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  1114. {
  1115. u32 base, addr, reg, pmu_cc3_mask = ~0;
  1116. struct brcmf_chip_priv *chip;
  1117. struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
  1118. brcmf_dbg(TRACE, "Enter\n");
  1119. /* old chips with PMU version less than 17 don't support save restore */
  1120. if (pub->pmurev < 17)
  1121. return false;
  1122. base = brcmf_chip_get_chipcommon(pub)->base;
  1123. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1124. switch (pub->chip) {
  1125. case BRCM_CC_4354_CHIP_ID:
  1126. /* explicitly check SR engine enable bit */
  1127. pmu_cc3_mask = BIT(2);
  1128. /* fall-through */
  1129. case BRCM_CC_43241_CHIP_ID:
  1130. case BRCM_CC_4335_CHIP_ID:
  1131. case BRCM_CC_4339_CHIP_ID:
  1132. /* read PMU chipcontrol register 3 */
  1133. addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
  1134. chip->ops->write32(chip->ctx, addr, 3);
  1135. addr = CORE_CC_REG(pmu->base, chipcontrol_data);
  1136. reg = chip->ops->read32(chip->ctx, addr);
  1137. return (reg & pmu_cc3_mask) != 0;
  1138. case BRCM_CC_43430_CHIP_ID:
  1139. addr = CORE_CC_REG(base, sr_control1);
  1140. reg = chip->ops->read32(chip->ctx, addr);
  1141. return reg != 0;
  1142. default:
  1143. addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
  1144. reg = chip->ops->read32(chip->ctx, addr);
  1145. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  1146. return false;
  1147. addr = CORE_CC_REG(pmu->base, retention_ctl);
  1148. reg = chip->ops->read32(chip->ctx, addr);
  1149. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  1150. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  1151. }
  1152. }