htt_tx.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. void __ath10k_htt_tx_dec_pending(struct ath10k_htt *htt, bool limit_mgmt_desc)
  24. {
  25. if (limit_mgmt_desc)
  26. htt->num_pending_mgmt_tx--;
  27. htt->num_pending_tx--;
  28. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  29. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  30. }
  31. static void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt,
  32. bool limit_mgmt_desc)
  33. {
  34. spin_lock_bh(&htt->tx_lock);
  35. __ath10k_htt_tx_dec_pending(htt, limit_mgmt_desc);
  36. spin_unlock_bh(&htt->tx_lock);
  37. }
  38. static int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt,
  39. bool limit_mgmt_desc, bool is_probe_resp)
  40. {
  41. struct ath10k *ar = htt->ar;
  42. int ret = 0;
  43. spin_lock_bh(&htt->tx_lock);
  44. if (htt->num_pending_tx >= htt->max_num_pending_tx) {
  45. ret = -EBUSY;
  46. goto exit;
  47. }
  48. if (limit_mgmt_desc) {
  49. if (is_probe_resp && (htt->num_pending_mgmt_tx >
  50. ar->hw_params.max_probe_resp_desc_thres)) {
  51. ret = -EBUSY;
  52. goto exit;
  53. }
  54. htt->num_pending_mgmt_tx++;
  55. }
  56. htt->num_pending_tx++;
  57. if (htt->num_pending_tx == htt->max_num_pending_tx)
  58. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  59. exit:
  60. spin_unlock_bh(&htt->tx_lock);
  61. return ret;
  62. }
  63. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  64. {
  65. struct ath10k *ar = htt->ar;
  66. int ret;
  67. lockdep_assert_held(&htt->tx_lock);
  68. ret = idr_alloc(&htt->pending_tx, skb, 0,
  69. htt->max_num_pending_tx, GFP_ATOMIC);
  70. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  71. return ret;
  72. }
  73. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  74. {
  75. struct ath10k *ar = htt->ar;
  76. lockdep_assert_held(&htt->tx_lock);
  77. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  78. idr_remove(&htt->pending_tx, msdu_id);
  79. }
  80. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  81. {
  82. size_t size;
  83. if (!htt->frag_desc.vaddr)
  84. return;
  85. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  86. dma_free_coherent(htt->ar->dev,
  87. size,
  88. htt->frag_desc.vaddr,
  89. htt->frag_desc.paddr);
  90. }
  91. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  92. {
  93. struct ath10k *ar = htt->ar;
  94. size_t size;
  95. if (!ar->hw_params.continuous_frag_desc)
  96. return 0;
  97. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  98. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  99. &htt->frag_desc.paddr,
  100. GFP_KERNEL);
  101. if (!htt->frag_desc.vaddr) {
  102. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  103. return -ENOMEM;
  104. }
  105. return 0;
  106. }
  107. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  108. {
  109. struct ath10k *ar = htt->ar;
  110. size_t size;
  111. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->fw_features))
  112. return;
  113. size = sizeof(*htt->tx_q_state.vaddr);
  114. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  115. kfree(htt->tx_q_state.vaddr);
  116. }
  117. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  118. {
  119. struct ath10k *ar = htt->ar;
  120. size_t size;
  121. int ret;
  122. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->fw_features))
  123. return 0;
  124. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  125. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  126. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  127. size = sizeof(*htt->tx_q_state.vaddr);
  128. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  129. if (!htt->tx_q_state.vaddr)
  130. return -ENOMEM;
  131. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  132. size, DMA_TO_DEVICE);
  133. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  134. if (ret) {
  135. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  136. kfree(htt->tx_q_state.vaddr);
  137. return -EIO;
  138. }
  139. return 0;
  140. }
  141. int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
  142. {
  143. struct ath10k *ar = htt->ar;
  144. int ret, size;
  145. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  146. htt->max_num_pending_tx);
  147. spin_lock_init(&htt->tx_lock);
  148. idr_init(&htt->pending_tx);
  149. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  150. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size,
  151. &htt->txbuf.paddr,
  152. GFP_KERNEL);
  153. if (!htt->txbuf.vaddr) {
  154. ath10k_err(ar, "failed to alloc tx buffer\n");
  155. ret = -ENOMEM;
  156. goto free_idr_pending_tx;
  157. }
  158. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  159. if (ret) {
  160. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  161. goto free_txbuf;
  162. }
  163. ret = ath10k_htt_tx_alloc_txq(htt);
  164. if (ret) {
  165. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  166. goto free_frag_desc;
  167. }
  168. return 0;
  169. free_frag_desc:
  170. ath10k_htt_tx_free_cont_frag_desc(htt);
  171. free_txbuf:
  172. size = htt->max_num_pending_tx *
  173. sizeof(struct ath10k_htt_txbuf);
  174. dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
  175. htt->txbuf.paddr);
  176. free_idr_pending_tx:
  177. idr_destroy(&htt->pending_tx);
  178. return ret;
  179. }
  180. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  181. {
  182. struct ath10k *ar = ctx;
  183. struct ath10k_htt *htt = &ar->htt;
  184. struct htt_tx_done tx_done = {0};
  185. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  186. tx_done.discard = 1;
  187. tx_done.msdu_id = msdu_id;
  188. ath10k_txrx_tx_unref(htt, &tx_done);
  189. return 0;
  190. }
  191. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  192. {
  193. int size;
  194. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  195. idr_destroy(&htt->pending_tx);
  196. if (htt->txbuf.vaddr) {
  197. size = htt->max_num_pending_tx *
  198. sizeof(struct ath10k_htt_txbuf);
  199. dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
  200. htt->txbuf.paddr);
  201. }
  202. ath10k_htt_tx_free_txq(htt);
  203. ath10k_htt_tx_free_cont_frag_desc(htt);
  204. }
  205. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  206. {
  207. dev_kfree_skb_any(skb);
  208. }
  209. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  210. {
  211. dev_kfree_skb_any(skb);
  212. }
  213. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  214. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  215. {
  216. struct ath10k *ar = htt->ar;
  217. struct sk_buff *skb;
  218. struct htt_cmd *cmd;
  219. int len = 0;
  220. int ret;
  221. len += sizeof(cmd->hdr);
  222. len += sizeof(cmd->ver_req);
  223. skb = ath10k_htc_alloc_skb(ar, len);
  224. if (!skb)
  225. return -ENOMEM;
  226. skb_put(skb, len);
  227. cmd = (struct htt_cmd *)skb->data;
  228. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  229. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  230. if (ret) {
  231. dev_kfree_skb_any(skb);
  232. return ret;
  233. }
  234. return 0;
  235. }
  236. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  237. {
  238. struct ath10k *ar = htt->ar;
  239. struct htt_stats_req *req;
  240. struct sk_buff *skb;
  241. struct htt_cmd *cmd;
  242. int len = 0, ret;
  243. len += sizeof(cmd->hdr);
  244. len += sizeof(cmd->stats_req);
  245. skb = ath10k_htc_alloc_skb(ar, len);
  246. if (!skb)
  247. return -ENOMEM;
  248. skb_put(skb, len);
  249. cmd = (struct htt_cmd *)skb->data;
  250. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  251. req = &cmd->stats_req;
  252. memset(req, 0, sizeof(*req));
  253. /* currently we support only max 8 bit masks so no need to worry
  254. * about endian support */
  255. req->upload_types[0] = mask;
  256. req->reset_types[0] = mask;
  257. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  258. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  259. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  260. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  261. if (ret) {
  262. ath10k_warn(ar, "failed to send htt type stats request: %d",
  263. ret);
  264. dev_kfree_skb_any(skb);
  265. return ret;
  266. }
  267. return 0;
  268. }
  269. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  270. {
  271. struct ath10k *ar = htt->ar;
  272. struct sk_buff *skb;
  273. struct htt_cmd *cmd;
  274. struct htt_frag_desc_bank_cfg *cfg;
  275. int ret, size;
  276. u8 info;
  277. if (!ar->hw_params.continuous_frag_desc)
  278. return 0;
  279. if (!htt->frag_desc.paddr) {
  280. ath10k_warn(ar, "invalid frag desc memory\n");
  281. return -EINVAL;
  282. }
  283. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  284. skb = ath10k_htc_alloc_skb(ar, size);
  285. if (!skb)
  286. return -ENOMEM;
  287. skb_put(skb, size);
  288. cmd = (struct htt_cmd *)skb->data;
  289. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  290. info = 0;
  291. info |= SM(htt->tx_q_state.type,
  292. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  293. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL, ar->fw_features))
  294. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  295. cfg = &cmd->frag_desc_bank_cfg;
  296. cfg->info = info;
  297. cfg->num_banks = 1;
  298. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  299. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  300. cfg->bank_id[0].bank_min_id = 0;
  301. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  302. 1);
  303. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  304. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  305. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  306. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  307. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  308. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  309. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  310. if (ret) {
  311. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  312. ret);
  313. dev_kfree_skb_any(skb);
  314. return ret;
  315. }
  316. return 0;
  317. }
  318. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  319. {
  320. struct ath10k *ar = htt->ar;
  321. struct sk_buff *skb;
  322. struct htt_cmd *cmd;
  323. struct htt_rx_ring_setup_ring *ring;
  324. const int num_rx_ring = 1;
  325. u16 flags;
  326. u32 fw_idx;
  327. int len;
  328. int ret;
  329. /*
  330. * the HW expects the buffer to be an integral number of 4-byte
  331. * "words"
  332. */
  333. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  334. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  335. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  336. + (sizeof(*ring) * num_rx_ring);
  337. skb = ath10k_htc_alloc_skb(ar, len);
  338. if (!skb)
  339. return -ENOMEM;
  340. skb_put(skb, len);
  341. cmd = (struct htt_cmd *)skb->data;
  342. ring = &cmd->rx_setup.rings[0];
  343. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  344. cmd->rx_setup.hdr.num_rings = 1;
  345. /* FIXME: do we need all of this? */
  346. flags = 0;
  347. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  348. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  349. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  350. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  351. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  352. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  353. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  354. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  355. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  356. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  357. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  358. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  359. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  360. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  361. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  362. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  363. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  364. ring->fw_idx_shadow_reg_paddr =
  365. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  366. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  367. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  368. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  369. ring->flags = __cpu_to_le16(flags);
  370. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  371. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  372. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  373. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  374. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  375. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  376. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  377. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  378. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  379. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  380. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  381. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  382. #undef desc_offset
  383. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  384. if (ret) {
  385. dev_kfree_skb_any(skb);
  386. return ret;
  387. }
  388. return 0;
  389. }
  390. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  391. u8 max_subfrms_ampdu,
  392. u8 max_subfrms_amsdu)
  393. {
  394. struct ath10k *ar = htt->ar;
  395. struct htt_aggr_conf *aggr_conf;
  396. struct sk_buff *skb;
  397. struct htt_cmd *cmd;
  398. int len;
  399. int ret;
  400. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  401. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  402. return -EINVAL;
  403. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  404. return -EINVAL;
  405. len = sizeof(cmd->hdr);
  406. len += sizeof(cmd->aggr_conf);
  407. skb = ath10k_htc_alloc_skb(ar, len);
  408. if (!skb)
  409. return -ENOMEM;
  410. skb_put(skb, len);
  411. cmd = (struct htt_cmd *)skb->data;
  412. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  413. aggr_conf = &cmd->aggr_conf;
  414. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  415. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  416. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  417. aggr_conf->max_num_amsdu_subframes,
  418. aggr_conf->max_num_ampdu_subframes);
  419. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  420. if (ret) {
  421. dev_kfree_skb_any(skb);
  422. return ret;
  423. }
  424. return 0;
  425. }
  426. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  427. {
  428. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  429. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  430. struct ath10k_vif *arvif = (void *)cb->vif->drv_priv;
  431. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
  432. return ar->scan.vdev_id;
  433. else if (cb->vif)
  434. return arvif->vdev_id;
  435. else if (ar->monitor_started)
  436. return ar->monitor_vdev_id;
  437. else
  438. return 0;
  439. }
  440. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  441. {
  442. struct ieee80211_hdr *hdr = (void *)skb->data;
  443. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  444. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  445. return HTT_DATA_TX_EXT_TID_MGMT;
  446. else if (cb->flags & ATH10K_SKB_F_QOS)
  447. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  448. else
  449. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  450. }
  451. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  452. {
  453. struct ath10k *ar = htt->ar;
  454. struct device *dev = ar->dev;
  455. struct sk_buff *txdesc = NULL;
  456. struct htt_cmd *cmd;
  457. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  458. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  459. int len = 0;
  460. int msdu_id = -1;
  461. int res;
  462. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  463. bool limit_mgmt_desc = false;
  464. bool is_probe_resp = false;
  465. if (ar->hw_params.max_probe_resp_desc_thres) {
  466. limit_mgmt_desc = true;
  467. if (ieee80211_is_probe_resp(hdr->frame_control))
  468. is_probe_resp = true;
  469. }
  470. res = ath10k_htt_tx_inc_pending(htt, limit_mgmt_desc, is_probe_resp);
  471. if (res)
  472. goto err;
  473. len += sizeof(cmd->hdr);
  474. len += sizeof(cmd->mgmt_tx);
  475. spin_lock_bh(&htt->tx_lock);
  476. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  477. spin_unlock_bh(&htt->tx_lock);
  478. if (res < 0)
  479. goto err_tx_dec;
  480. msdu_id = res;
  481. if ((ieee80211_is_action(hdr->frame_control) ||
  482. ieee80211_is_deauth(hdr->frame_control) ||
  483. ieee80211_is_disassoc(hdr->frame_control)) &&
  484. ieee80211_has_protected(hdr->frame_control)) {
  485. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  486. }
  487. txdesc = ath10k_htc_alloc_skb(ar, len);
  488. if (!txdesc) {
  489. res = -ENOMEM;
  490. goto err_free_msdu_id;
  491. }
  492. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  493. DMA_TO_DEVICE);
  494. res = dma_mapping_error(dev, skb_cb->paddr);
  495. if (res) {
  496. res = -EIO;
  497. goto err_free_txdesc;
  498. }
  499. skb_put(txdesc, len);
  500. cmd = (struct htt_cmd *)txdesc->data;
  501. memset(cmd, 0, len);
  502. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  503. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  504. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  505. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  506. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  507. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  508. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  509. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  510. if (res)
  511. goto err_unmap_msdu;
  512. return 0;
  513. err_unmap_msdu:
  514. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  515. err_free_txdesc:
  516. dev_kfree_skb_any(txdesc);
  517. err_free_msdu_id:
  518. spin_lock_bh(&htt->tx_lock);
  519. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  520. spin_unlock_bh(&htt->tx_lock);
  521. err_tx_dec:
  522. ath10k_htt_tx_dec_pending(htt, limit_mgmt_desc);
  523. err:
  524. return res;
  525. }
  526. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  527. struct sk_buff *msdu)
  528. {
  529. struct ath10k *ar = htt->ar;
  530. struct device *dev = ar->dev;
  531. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  532. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  533. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  534. struct ath10k_hif_sg_item sg_items[2];
  535. struct ath10k_htt_txbuf *txbuf;
  536. struct htt_data_tx_desc_frag *frags;
  537. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  538. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  539. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  540. int prefetch_len;
  541. int res;
  542. u8 flags0 = 0;
  543. u16 msdu_id, flags1 = 0;
  544. u16 freq = 0;
  545. u32 frags_paddr = 0;
  546. u32 txbuf_paddr;
  547. struct htt_msdu_ext_desc *ext_desc = NULL;
  548. bool limit_mgmt_desc = false;
  549. bool is_probe_resp = false;
  550. if (unlikely(ieee80211_is_mgmt(hdr->frame_control)) &&
  551. ar->hw_params.max_probe_resp_desc_thres) {
  552. limit_mgmt_desc = true;
  553. if (ieee80211_is_probe_resp(hdr->frame_control))
  554. is_probe_resp = true;
  555. }
  556. res = ath10k_htt_tx_inc_pending(htt, limit_mgmt_desc, is_probe_resp);
  557. if (res)
  558. goto err;
  559. spin_lock_bh(&htt->tx_lock);
  560. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  561. spin_unlock_bh(&htt->tx_lock);
  562. if (res < 0)
  563. goto err_tx_dec;
  564. msdu_id = res;
  565. prefetch_len = min(htt->prefetch_len, msdu->len);
  566. prefetch_len = roundup(prefetch_len, 4);
  567. txbuf = &htt->txbuf.vaddr[msdu_id];
  568. txbuf_paddr = htt->txbuf.paddr +
  569. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  570. if ((ieee80211_is_action(hdr->frame_control) ||
  571. ieee80211_is_deauth(hdr->frame_control) ||
  572. ieee80211_is_disassoc(hdr->frame_control)) &&
  573. ieee80211_has_protected(hdr->frame_control)) {
  574. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  575. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  576. txmode == ATH10K_HW_TXRX_RAW &&
  577. ieee80211_has_protected(hdr->frame_control)) {
  578. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  579. }
  580. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  581. DMA_TO_DEVICE);
  582. res = dma_mapping_error(dev, skb_cb->paddr);
  583. if (res) {
  584. res = -EIO;
  585. goto err_free_msdu_id;
  586. }
  587. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  588. freq = ar->scan.roc_freq;
  589. switch (txmode) {
  590. case ATH10K_HW_TXRX_RAW:
  591. case ATH10K_HW_TXRX_NATIVE_WIFI:
  592. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  593. /* pass through */
  594. case ATH10K_HW_TXRX_ETHERNET:
  595. if (ar->hw_params.continuous_frag_desc) {
  596. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  597. sizeof(struct htt_msdu_ext_desc));
  598. frags = (struct htt_data_tx_desc_frag *)
  599. &htt->frag_desc.vaddr[msdu_id].frags;
  600. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  601. frags[0].tword_addr.paddr_lo =
  602. __cpu_to_le32(skb_cb->paddr);
  603. frags[0].tword_addr.paddr_hi = 0;
  604. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  605. frags_paddr = htt->frag_desc.paddr +
  606. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  607. } else {
  608. frags = txbuf->frags;
  609. frags[0].dword_addr.paddr =
  610. __cpu_to_le32(skb_cb->paddr);
  611. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  612. frags[1].dword_addr.paddr = 0;
  613. frags[1].dword_addr.len = 0;
  614. frags_paddr = txbuf_paddr;
  615. }
  616. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  617. break;
  618. case ATH10K_HW_TXRX_MGMT:
  619. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  620. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  621. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  622. frags_paddr = skb_cb->paddr;
  623. break;
  624. }
  625. /* Normally all commands go through HTC which manages tx credits for
  626. * each endpoint and notifies when tx is completed.
  627. *
  628. * HTT endpoint is creditless so there's no need to care about HTC
  629. * flags. In that case it is trivial to fill the HTC header here.
  630. *
  631. * MSDU transmission is considered completed upon HTT event. This
  632. * implies no relevant resources can be freed until after the event is
  633. * received. That's why HTC tx completion handler itself is ignored by
  634. * setting NULL to transfer_context for all sg items.
  635. *
  636. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  637. * as it's a waste of resources. By bypassing HTC it is possible to
  638. * avoid extra memory allocations, compress data structures and thus
  639. * improve performance. */
  640. txbuf->htc_hdr.eid = htt->eid;
  641. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  642. sizeof(txbuf->cmd_tx) +
  643. prefetch_len);
  644. txbuf->htc_hdr.flags = 0;
  645. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  646. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  647. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  648. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  649. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  650. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  651. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  652. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  653. if (ar->hw_params.continuous_frag_desc)
  654. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  655. }
  656. /* Prevent firmware from sending up tx inspection requests. There's
  657. * nothing ath10k can do with frames requested for inspection so force
  658. * it to simply rely a regular tx completion with discard status.
  659. */
  660. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  661. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  662. txbuf->cmd_tx.flags0 = flags0;
  663. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  664. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  665. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  666. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  667. if (ath10k_mac_tx_frm_has_freq(ar)) {
  668. txbuf->cmd_tx.offchan_tx.peerid =
  669. __cpu_to_le16(HTT_INVALID_PEERID);
  670. txbuf->cmd_tx.offchan_tx.freq =
  671. __cpu_to_le16(freq);
  672. } else {
  673. txbuf->cmd_tx.peerid =
  674. __cpu_to_le32(HTT_INVALID_PEERID);
  675. }
  676. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  677. ath10k_dbg(ar, ATH10K_DBG_HTT,
  678. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  679. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  680. (u32)skb_cb->paddr, vdev_id, tid, freq);
  681. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  682. msdu->data, msdu->len);
  683. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  684. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  685. sg_items[0].transfer_id = 0;
  686. sg_items[0].transfer_context = NULL;
  687. sg_items[0].vaddr = &txbuf->htc_hdr;
  688. sg_items[0].paddr = txbuf_paddr +
  689. sizeof(txbuf->frags);
  690. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  691. sizeof(txbuf->cmd_hdr) +
  692. sizeof(txbuf->cmd_tx);
  693. sg_items[1].transfer_id = 0;
  694. sg_items[1].transfer_context = NULL;
  695. sg_items[1].vaddr = msdu->data;
  696. sg_items[1].paddr = skb_cb->paddr;
  697. sg_items[1].len = prefetch_len;
  698. res = ath10k_hif_tx_sg(htt->ar,
  699. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  700. sg_items, ARRAY_SIZE(sg_items));
  701. if (res)
  702. goto err_unmap_msdu;
  703. return 0;
  704. err_unmap_msdu:
  705. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  706. err_free_msdu_id:
  707. spin_lock_bh(&htt->tx_lock);
  708. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  709. spin_unlock_bh(&htt->tx_lock);
  710. err_tx_dec:
  711. ath10k_htt_tx_dec_pending(htt, limit_mgmt_desc);
  712. err:
  713. return res;
  714. }