en_rx.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <net/busy_poll.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/rculist.h>
  39. #include <linux/if_ether.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/irq.h>
  43. #if IS_ENABLED(CONFIG_IPV6)
  44. #include <net/ip6_checksum.h>
  45. #endif
  46. #include "mlx4_en.h"
  47. static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
  48. struct mlx4_en_rx_alloc *page_alloc,
  49. const struct mlx4_en_frag_info *frag_info,
  50. gfp_t _gfp)
  51. {
  52. int order;
  53. struct page *page;
  54. dma_addr_t dma;
  55. for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
  56. gfp_t gfp = _gfp;
  57. if (order)
  58. gfp |= __GFP_COMP | __GFP_NOWARN;
  59. page = alloc_pages(gfp, order);
  60. if (likely(page))
  61. break;
  62. if (--order < 0 ||
  63. ((PAGE_SIZE << order) < frag_info->frag_size))
  64. return -ENOMEM;
  65. }
  66. dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
  67. PCI_DMA_FROMDEVICE);
  68. if (dma_mapping_error(priv->ddev, dma)) {
  69. put_page(page);
  70. return -ENOMEM;
  71. }
  72. page_alloc->page_size = PAGE_SIZE << order;
  73. page_alloc->page = page;
  74. page_alloc->dma = dma;
  75. page_alloc->page_offset = 0;
  76. /* Not doing get_page() for each frag is a big win
  77. * on asymetric workloads. Note we can not use atomic_set().
  78. */
  79. page_ref_add(page, page_alloc->page_size / frag_info->frag_stride - 1);
  80. return 0;
  81. }
  82. static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
  83. struct mlx4_en_rx_desc *rx_desc,
  84. struct mlx4_en_rx_alloc *frags,
  85. struct mlx4_en_rx_alloc *ring_alloc,
  86. gfp_t gfp)
  87. {
  88. struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
  89. const struct mlx4_en_frag_info *frag_info;
  90. struct page *page;
  91. dma_addr_t dma;
  92. int i;
  93. for (i = 0; i < priv->num_frags; i++) {
  94. frag_info = &priv->frag_info[i];
  95. page_alloc[i] = ring_alloc[i];
  96. page_alloc[i].page_offset += frag_info->frag_stride;
  97. if (page_alloc[i].page_offset + frag_info->frag_stride <=
  98. ring_alloc[i].page_size)
  99. continue;
  100. if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
  101. goto out;
  102. }
  103. for (i = 0; i < priv->num_frags; i++) {
  104. frags[i] = ring_alloc[i];
  105. dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
  106. ring_alloc[i] = page_alloc[i];
  107. rx_desc->data[i].addr = cpu_to_be64(dma);
  108. }
  109. return 0;
  110. out:
  111. while (i--) {
  112. if (page_alloc[i].page != ring_alloc[i].page) {
  113. dma_unmap_page(priv->ddev, page_alloc[i].dma,
  114. page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
  115. page = page_alloc[i].page;
  116. set_page_count(page, 1);
  117. put_page(page);
  118. }
  119. }
  120. return -ENOMEM;
  121. }
  122. static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
  123. struct mlx4_en_rx_alloc *frags,
  124. int i)
  125. {
  126. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  127. u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
  128. if (next_frag_end > frags[i].page_size)
  129. dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
  130. PCI_DMA_FROMDEVICE);
  131. if (frags[i].page)
  132. put_page(frags[i].page);
  133. }
  134. static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
  135. struct mlx4_en_rx_ring *ring)
  136. {
  137. int i;
  138. struct mlx4_en_rx_alloc *page_alloc;
  139. for (i = 0; i < priv->num_frags; i++) {
  140. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  141. if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
  142. frag_info, GFP_KERNEL | __GFP_COLD))
  143. goto out;
  144. en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n",
  145. i, ring->page_alloc[i].page_size,
  146. page_ref_count(ring->page_alloc[i].page));
  147. }
  148. return 0;
  149. out:
  150. while (i--) {
  151. struct page *page;
  152. page_alloc = &ring->page_alloc[i];
  153. dma_unmap_page(priv->ddev, page_alloc->dma,
  154. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  155. page = page_alloc->page;
  156. set_page_count(page, 1);
  157. put_page(page);
  158. page_alloc->page = NULL;
  159. }
  160. return -ENOMEM;
  161. }
  162. static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
  163. struct mlx4_en_rx_ring *ring)
  164. {
  165. struct mlx4_en_rx_alloc *page_alloc;
  166. int i;
  167. for (i = 0; i < priv->num_frags; i++) {
  168. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  169. page_alloc = &ring->page_alloc[i];
  170. en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
  171. i, page_count(page_alloc->page));
  172. dma_unmap_page(priv->ddev, page_alloc->dma,
  173. page_alloc->page_size, PCI_DMA_FROMDEVICE);
  174. while (page_alloc->page_offset + frag_info->frag_stride <
  175. page_alloc->page_size) {
  176. put_page(page_alloc->page);
  177. page_alloc->page_offset += frag_info->frag_stride;
  178. }
  179. page_alloc->page = NULL;
  180. }
  181. }
  182. static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
  183. struct mlx4_en_rx_ring *ring, int index)
  184. {
  185. struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
  186. int possible_frags;
  187. int i;
  188. /* Set size and memtype fields */
  189. for (i = 0; i < priv->num_frags; i++) {
  190. rx_desc->data[i].byte_count =
  191. cpu_to_be32(priv->frag_info[i].frag_size);
  192. rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
  193. }
  194. /* If the number of used fragments does not fill up the ring stride,
  195. * remaining (unused) fragments must be padded with null address/size
  196. * and a special memory key */
  197. possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
  198. for (i = priv->num_frags; i < possible_frags; i++) {
  199. rx_desc->data[i].byte_count = 0;
  200. rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
  201. rx_desc->data[i].addr = 0;
  202. }
  203. }
  204. static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
  205. struct mlx4_en_rx_ring *ring, int index,
  206. gfp_t gfp)
  207. {
  208. struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
  209. struct mlx4_en_rx_alloc *frags = ring->rx_info +
  210. (index << priv->log_rx_info);
  211. return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
  212. }
  213. static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring)
  214. {
  215. return ring->prod == ring->cons;
  216. }
  217. static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
  218. {
  219. *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
  220. }
  221. static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
  222. struct mlx4_en_rx_ring *ring,
  223. int index)
  224. {
  225. struct mlx4_en_rx_alloc *frags;
  226. int nr;
  227. frags = ring->rx_info + (index << priv->log_rx_info);
  228. for (nr = 0; nr < priv->num_frags; nr++) {
  229. en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
  230. mlx4_en_free_frag(priv, frags, nr);
  231. }
  232. }
  233. static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
  234. {
  235. struct mlx4_en_rx_ring *ring;
  236. int ring_ind;
  237. int buf_ind;
  238. int new_size;
  239. for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
  240. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  241. ring = priv->rx_ring[ring_ind];
  242. if (mlx4_en_prepare_rx_desc(priv, ring,
  243. ring->actual_size,
  244. GFP_KERNEL | __GFP_COLD)) {
  245. if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
  246. en_err(priv, "Failed to allocate enough rx buffers\n");
  247. return -ENOMEM;
  248. } else {
  249. new_size = rounddown_pow_of_two(ring->actual_size);
  250. en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
  251. ring->actual_size, new_size);
  252. goto reduce_rings;
  253. }
  254. }
  255. ring->actual_size++;
  256. ring->prod++;
  257. }
  258. }
  259. return 0;
  260. reduce_rings:
  261. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  262. ring = priv->rx_ring[ring_ind];
  263. while (ring->actual_size > new_size) {
  264. ring->actual_size--;
  265. ring->prod--;
  266. mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
  267. }
  268. }
  269. return 0;
  270. }
  271. static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
  272. struct mlx4_en_rx_ring *ring)
  273. {
  274. int index;
  275. en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
  276. ring->cons, ring->prod);
  277. /* Unmap and free Rx buffers */
  278. while (!mlx4_en_is_ring_empty(ring)) {
  279. index = ring->cons & ring->size_mask;
  280. en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
  281. mlx4_en_free_rx_desc(priv, ring, index);
  282. ++ring->cons;
  283. }
  284. }
  285. void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
  286. {
  287. int i;
  288. int num_of_eqs;
  289. int num_rx_rings;
  290. struct mlx4_dev *dev = mdev->dev;
  291. mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
  292. num_of_eqs = max_t(int, MIN_RX_RINGS,
  293. min_t(int,
  294. mlx4_get_eqs_per_port(mdev->dev, i),
  295. DEF_RX_RINGS));
  296. num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
  297. min_t(int, num_of_eqs,
  298. netif_get_num_default_rss_queues());
  299. mdev->profile.prof[i].rx_ring_num =
  300. rounddown_pow_of_two(num_rx_rings);
  301. }
  302. }
  303. int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
  304. struct mlx4_en_rx_ring **pring,
  305. u32 size, u16 stride, int node)
  306. {
  307. struct mlx4_en_dev *mdev = priv->mdev;
  308. struct mlx4_en_rx_ring *ring;
  309. int err = -ENOMEM;
  310. int tmp;
  311. ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
  312. if (!ring) {
  313. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  314. if (!ring) {
  315. en_err(priv, "Failed to allocate RX ring structure\n");
  316. return -ENOMEM;
  317. }
  318. }
  319. ring->prod = 0;
  320. ring->cons = 0;
  321. ring->size = size;
  322. ring->size_mask = size - 1;
  323. ring->stride = stride;
  324. ring->log_stride = ffs(ring->stride) - 1;
  325. ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
  326. tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
  327. sizeof(struct mlx4_en_rx_alloc));
  328. ring->rx_info = vmalloc_node(tmp, node);
  329. if (!ring->rx_info) {
  330. ring->rx_info = vmalloc(tmp);
  331. if (!ring->rx_info) {
  332. err = -ENOMEM;
  333. goto err_ring;
  334. }
  335. }
  336. en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
  337. ring->rx_info, tmp);
  338. /* Allocate HW buffers on provided NUMA node */
  339. set_dev_node(&mdev->dev->persist->pdev->dev, node);
  340. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
  341. ring->buf_size, 2 * PAGE_SIZE);
  342. set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
  343. if (err)
  344. goto err_info;
  345. err = mlx4_en_map_buffer(&ring->wqres.buf);
  346. if (err) {
  347. en_err(priv, "Failed to map RX buffer\n");
  348. goto err_hwq;
  349. }
  350. ring->buf = ring->wqres.buf.direct.buf;
  351. ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
  352. *pring = ring;
  353. return 0;
  354. err_hwq:
  355. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  356. err_info:
  357. vfree(ring->rx_info);
  358. ring->rx_info = NULL;
  359. err_ring:
  360. kfree(ring);
  361. *pring = NULL;
  362. return err;
  363. }
  364. int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
  365. {
  366. struct mlx4_en_rx_ring *ring;
  367. int i;
  368. int ring_ind;
  369. int err;
  370. int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
  371. DS_SIZE * priv->num_frags);
  372. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  373. ring = priv->rx_ring[ring_ind];
  374. ring->prod = 0;
  375. ring->cons = 0;
  376. ring->actual_size = 0;
  377. ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
  378. ring->stride = stride;
  379. if (ring->stride <= TXBB_SIZE)
  380. ring->buf += TXBB_SIZE;
  381. ring->log_stride = ffs(ring->stride) - 1;
  382. ring->buf_size = ring->size * ring->stride;
  383. memset(ring->buf, 0, ring->buf_size);
  384. mlx4_en_update_rx_prod_db(ring);
  385. /* Initialize all descriptors */
  386. for (i = 0; i < ring->size; i++)
  387. mlx4_en_init_rx_desc(priv, ring, i);
  388. /* Initialize page allocators */
  389. err = mlx4_en_init_allocator(priv, ring);
  390. if (err) {
  391. en_err(priv, "Failed initializing ring allocator\n");
  392. if (ring->stride <= TXBB_SIZE)
  393. ring->buf -= TXBB_SIZE;
  394. ring_ind--;
  395. goto err_allocator;
  396. }
  397. }
  398. err = mlx4_en_fill_rx_buffers(priv);
  399. if (err)
  400. goto err_buffers;
  401. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  402. ring = priv->rx_ring[ring_ind];
  403. ring->size_mask = ring->actual_size - 1;
  404. mlx4_en_update_rx_prod_db(ring);
  405. }
  406. return 0;
  407. err_buffers:
  408. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
  409. mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
  410. ring_ind = priv->rx_ring_num - 1;
  411. err_allocator:
  412. while (ring_ind >= 0) {
  413. if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
  414. priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
  415. mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
  416. ring_ind--;
  417. }
  418. return err;
  419. }
  420. /* We recover from out of memory by scheduling our napi poll
  421. * function (mlx4_en_process_cq), which tries to allocate
  422. * all missing RX buffers (call to mlx4_en_refill_rx_buffers).
  423. */
  424. void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv)
  425. {
  426. int ring;
  427. if (!priv->port_up)
  428. return;
  429. for (ring = 0; ring < priv->rx_ring_num; ring++) {
  430. if (mlx4_en_is_ring_empty(priv->rx_ring[ring]))
  431. napi_reschedule(&priv->rx_cq[ring]->napi);
  432. }
  433. }
  434. void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
  435. struct mlx4_en_rx_ring **pring,
  436. u32 size, u16 stride)
  437. {
  438. struct mlx4_en_dev *mdev = priv->mdev;
  439. struct mlx4_en_rx_ring *ring = *pring;
  440. mlx4_en_unmap_buffer(&ring->wqres.buf);
  441. mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
  442. vfree(ring->rx_info);
  443. ring->rx_info = NULL;
  444. kfree(ring);
  445. *pring = NULL;
  446. #ifdef CONFIG_RFS_ACCEL
  447. mlx4_en_cleanup_filters(priv);
  448. #endif
  449. }
  450. void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
  451. struct mlx4_en_rx_ring *ring)
  452. {
  453. mlx4_en_free_rx_buf(priv, ring);
  454. if (ring->stride <= TXBB_SIZE)
  455. ring->buf -= TXBB_SIZE;
  456. mlx4_en_destroy_allocator(priv, ring);
  457. }
  458. static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
  459. struct mlx4_en_rx_desc *rx_desc,
  460. struct mlx4_en_rx_alloc *frags,
  461. struct sk_buff *skb,
  462. int length)
  463. {
  464. struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
  465. struct mlx4_en_frag_info *frag_info;
  466. int nr;
  467. dma_addr_t dma;
  468. /* Collect used fragments while replacing them in the HW descriptors */
  469. for (nr = 0; nr < priv->num_frags; nr++) {
  470. frag_info = &priv->frag_info[nr];
  471. if (length <= frag_info->frag_prefix_size)
  472. break;
  473. if (!frags[nr].page)
  474. goto fail;
  475. dma = be64_to_cpu(rx_desc->data[nr].addr);
  476. dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
  477. DMA_FROM_DEVICE);
  478. /* Save page reference in skb */
  479. __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
  480. skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
  481. skb_frags_rx[nr].page_offset = frags[nr].page_offset;
  482. skb->truesize += frag_info->frag_stride;
  483. frags[nr].page = NULL;
  484. }
  485. /* Adjust size of last fragment to match actual length */
  486. if (nr > 0)
  487. skb_frag_size_set(&skb_frags_rx[nr - 1],
  488. length - priv->frag_info[nr - 1].frag_prefix_size);
  489. return nr;
  490. fail:
  491. while (nr > 0) {
  492. nr--;
  493. __skb_frag_unref(&skb_frags_rx[nr]);
  494. }
  495. return 0;
  496. }
  497. static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
  498. struct mlx4_en_rx_desc *rx_desc,
  499. struct mlx4_en_rx_alloc *frags,
  500. unsigned int length)
  501. {
  502. struct sk_buff *skb;
  503. void *va;
  504. int used_frags;
  505. dma_addr_t dma;
  506. skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
  507. if (!skb) {
  508. en_dbg(RX_ERR, priv, "Failed allocating skb\n");
  509. return NULL;
  510. }
  511. skb_reserve(skb, NET_IP_ALIGN);
  512. skb->len = length;
  513. /* Get pointer to first fragment so we could copy the headers into the
  514. * (linear part of the) skb */
  515. va = page_address(frags[0].page) + frags[0].page_offset;
  516. if (length <= SMALL_PACKET_SIZE) {
  517. /* We are copying all relevant data to the skb - temporarily
  518. * sync buffers for the copy */
  519. dma = be64_to_cpu(rx_desc->data[0].addr);
  520. dma_sync_single_for_cpu(priv->ddev, dma, length,
  521. DMA_FROM_DEVICE);
  522. skb_copy_to_linear_data(skb, va, length);
  523. skb->tail += length;
  524. } else {
  525. unsigned int pull_len;
  526. /* Move relevant fragments to skb */
  527. used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
  528. skb, length);
  529. if (unlikely(!used_frags)) {
  530. kfree_skb(skb);
  531. return NULL;
  532. }
  533. skb_shinfo(skb)->nr_frags = used_frags;
  534. pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
  535. /* Copy headers into the skb linear buffer */
  536. memcpy(skb->data, va, pull_len);
  537. skb->tail += pull_len;
  538. /* Skip headers in first fragment */
  539. skb_shinfo(skb)->frags[0].page_offset += pull_len;
  540. /* Adjust size of first fragment */
  541. skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
  542. skb->data_len = length - pull_len;
  543. }
  544. return skb;
  545. }
  546. static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
  547. {
  548. int i;
  549. int offset = ETH_HLEN;
  550. for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
  551. if (*(skb->data + offset) != (unsigned char) (i & 0xff))
  552. goto out_loopback;
  553. }
  554. /* Loopback found */
  555. priv->loopback_ok = 1;
  556. out_loopback:
  557. dev_kfree_skb_any(skb);
  558. }
  559. static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
  560. struct mlx4_en_rx_ring *ring)
  561. {
  562. int index = ring->prod & ring->size_mask;
  563. while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
  564. if (mlx4_en_prepare_rx_desc(priv, ring, index,
  565. GFP_ATOMIC | __GFP_COLD))
  566. break;
  567. ring->prod++;
  568. index = ring->prod & ring->size_mask;
  569. }
  570. }
  571. /* When hardware doesn't strip the vlan, we need to calculate the checksum
  572. * over it and add it to the hardware's checksum calculation
  573. */
  574. static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
  575. struct vlan_hdr *vlanh)
  576. {
  577. return csum_add(hw_checksum, *(__wsum *)vlanh);
  578. }
  579. /* Although the stack expects checksum which doesn't include the pseudo
  580. * header, the HW adds it. To address that, we are subtracting the pseudo
  581. * header checksum from the checksum value provided by the HW.
  582. */
  583. static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
  584. struct iphdr *iph)
  585. {
  586. __u16 length_for_csum = 0;
  587. __wsum csum_pseudo_header = 0;
  588. length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
  589. csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
  590. length_for_csum, iph->protocol, 0);
  591. skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
  592. }
  593. #if IS_ENABLED(CONFIG_IPV6)
  594. /* In IPv6 packets, besides subtracting the pseudo header checksum,
  595. * we also compute/add the IP header checksum which
  596. * is not added by the HW.
  597. */
  598. static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
  599. struct ipv6hdr *ipv6h)
  600. {
  601. __wsum csum_pseudo_hdr = 0;
  602. if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)
  603. return -1;
  604. hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8));
  605. csum_pseudo_hdr = csum_partial(&ipv6h->saddr,
  606. sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0);
  607. csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len);
  608. csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr));
  609. skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr);
  610. skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0));
  611. return 0;
  612. }
  613. #endif
  614. static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
  615. netdev_features_t dev_features)
  616. {
  617. __wsum hw_checksum = 0;
  618. void *hdr = (u8 *)va + sizeof(struct ethhdr);
  619. hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
  620. if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) &&
  621. !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) {
  622. hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
  623. hdr += sizeof(struct vlan_hdr);
  624. }
  625. if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4))
  626. get_fixed_ipv4_csum(hw_checksum, skb, hdr);
  627. #if IS_ENABLED(CONFIG_IPV6)
  628. else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
  629. if (get_fixed_ipv6_csum(hw_checksum, skb, hdr))
  630. return -1;
  631. #endif
  632. return 0;
  633. }
  634. int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
  635. {
  636. struct mlx4_en_priv *priv = netdev_priv(dev);
  637. struct mlx4_en_dev *mdev = priv->mdev;
  638. struct mlx4_cqe *cqe;
  639. struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
  640. struct mlx4_en_rx_alloc *frags;
  641. struct mlx4_en_rx_desc *rx_desc;
  642. struct sk_buff *skb;
  643. int index;
  644. int nr;
  645. unsigned int length;
  646. int polled = 0;
  647. int ip_summed;
  648. int factor = priv->cqe_factor;
  649. u64 timestamp;
  650. bool l2_tunnel;
  651. if (!priv->port_up)
  652. return 0;
  653. if (budget <= 0)
  654. return polled;
  655. /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
  656. * descriptor offset can be deduced from the CQE index instead of
  657. * reading 'cqe->index' */
  658. index = cq->mcq.cons_index & ring->size_mask;
  659. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  660. /* Process all completed CQEs */
  661. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  662. cq->mcq.cons_index & cq->size)) {
  663. frags = ring->rx_info + (index << priv->log_rx_info);
  664. rx_desc = ring->buf + (index << ring->log_stride);
  665. /*
  666. * make sure we read the CQE after we read the ownership bit
  667. */
  668. dma_rmb();
  669. /* Drop packet on bad receive or bad checksum */
  670. if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
  671. MLX4_CQE_OPCODE_ERROR)) {
  672. en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
  673. ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
  674. ((struct mlx4_err_cqe *)cqe)->syndrome);
  675. goto next;
  676. }
  677. if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
  678. en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
  679. goto next;
  680. }
  681. /* Check if we need to drop the packet if SRIOV is not enabled
  682. * and not performing the selftest or flb disabled
  683. */
  684. if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
  685. struct ethhdr *ethh;
  686. dma_addr_t dma;
  687. /* Get pointer to first fragment since we haven't
  688. * skb yet and cast it to ethhdr struct
  689. */
  690. dma = be64_to_cpu(rx_desc->data[0].addr);
  691. dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
  692. DMA_FROM_DEVICE);
  693. ethh = (struct ethhdr *)(page_address(frags[0].page) +
  694. frags[0].page_offset);
  695. if (is_multicast_ether_addr(ethh->h_dest)) {
  696. struct mlx4_mac_entry *entry;
  697. struct hlist_head *bucket;
  698. unsigned int mac_hash;
  699. /* Drop the packet, since HW loopback-ed it */
  700. mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
  701. bucket = &priv->mac_hash[mac_hash];
  702. rcu_read_lock();
  703. hlist_for_each_entry_rcu(entry, bucket, hlist) {
  704. if (ether_addr_equal_64bits(entry->mac,
  705. ethh->h_source)) {
  706. rcu_read_unlock();
  707. goto next;
  708. }
  709. }
  710. rcu_read_unlock();
  711. }
  712. }
  713. /*
  714. * Packet is OK - process it.
  715. */
  716. length = be32_to_cpu(cqe->byte_cnt);
  717. length -= ring->fcs_del;
  718. ring->bytes += length;
  719. ring->packets++;
  720. l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
  721. (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
  722. if (likely(dev->features & NETIF_F_RXCSUM)) {
  723. if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
  724. MLX4_CQE_STATUS_UDP)) {
  725. if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
  726. cqe->checksum == cpu_to_be16(0xffff)) {
  727. ip_summed = CHECKSUM_UNNECESSARY;
  728. ring->csum_ok++;
  729. } else {
  730. ip_summed = CHECKSUM_NONE;
  731. ring->csum_none++;
  732. }
  733. } else {
  734. if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
  735. (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 |
  736. MLX4_CQE_STATUS_IPV6))) {
  737. ip_summed = CHECKSUM_COMPLETE;
  738. ring->csum_complete++;
  739. } else {
  740. ip_summed = CHECKSUM_NONE;
  741. ring->csum_none++;
  742. }
  743. }
  744. } else {
  745. ip_summed = CHECKSUM_NONE;
  746. ring->csum_none++;
  747. }
  748. /* This packet is eligible for GRO if it is:
  749. * - DIX Ethernet (type interpretation)
  750. * - TCP/IP (v4)
  751. * - without IP options
  752. * - not an IP fragment
  753. */
  754. if (dev->features & NETIF_F_GRO) {
  755. struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
  756. if (!gro_skb)
  757. goto next;
  758. nr = mlx4_en_complete_rx_desc(priv,
  759. rx_desc, frags, gro_skb,
  760. length);
  761. if (!nr)
  762. goto next;
  763. if (ip_summed == CHECKSUM_COMPLETE) {
  764. void *va = skb_frag_address(skb_shinfo(gro_skb)->frags);
  765. if (check_csum(cqe, gro_skb, va,
  766. dev->features)) {
  767. ip_summed = CHECKSUM_NONE;
  768. ring->csum_none++;
  769. ring->csum_complete--;
  770. }
  771. }
  772. skb_shinfo(gro_skb)->nr_frags = nr;
  773. gro_skb->len = length;
  774. gro_skb->data_len = length;
  775. gro_skb->ip_summed = ip_summed;
  776. if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
  777. gro_skb->csum_level = 1;
  778. if ((cqe->vlan_my_qpn &
  779. cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) &&
  780. (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  781. u16 vid = be16_to_cpu(cqe->sl_vid);
  782. __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
  783. } else if ((be32_to_cpu(cqe->vlan_my_qpn) &
  784. MLX4_CQE_SVLAN_PRESENT_MASK) &&
  785. (dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
  786. __vlan_hwaccel_put_tag(gro_skb,
  787. htons(ETH_P_8021AD),
  788. be16_to_cpu(cqe->sl_vid));
  789. }
  790. if (dev->features & NETIF_F_RXHASH)
  791. skb_set_hash(gro_skb,
  792. be32_to_cpu(cqe->immed_rss_invalid),
  793. (ip_summed == CHECKSUM_UNNECESSARY) ?
  794. PKT_HASH_TYPE_L4 :
  795. PKT_HASH_TYPE_L3);
  796. skb_record_rx_queue(gro_skb, cq->ring);
  797. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  798. timestamp = mlx4_en_get_cqe_ts(cqe);
  799. mlx4_en_fill_hwtstamps(mdev,
  800. skb_hwtstamps(gro_skb),
  801. timestamp);
  802. }
  803. napi_gro_frags(&cq->napi);
  804. goto next;
  805. }
  806. /* GRO not possible, complete processing here */
  807. skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
  808. if (!skb) {
  809. priv->stats.rx_dropped++;
  810. goto next;
  811. }
  812. if (unlikely(priv->validate_loopback)) {
  813. validate_loopback(priv, skb);
  814. goto next;
  815. }
  816. if (ip_summed == CHECKSUM_COMPLETE) {
  817. if (check_csum(cqe, skb, skb->data, dev->features)) {
  818. ip_summed = CHECKSUM_NONE;
  819. ring->csum_complete--;
  820. ring->csum_none++;
  821. }
  822. }
  823. skb->ip_summed = ip_summed;
  824. skb->protocol = eth_type_trans(skb, dev);
  825. skb_record_rx_queue(skb, cq->ring);
  826. if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
  827. skb->csum_level = 1;
  828. if (dev->features & NETIF_F_RXHASH)
  829. skb_set_hash(skb,
  830. be32_to_cpu(cqe->immed_rss_invalid),
  831. (ip_summed == CHECKSUM_UNNECESSARY) ?
  832. PKT_HASH_TYPE_L4 :
  833. PKT_HASH_TYPE_L3);
  834. if ((be32_to_cpu(cqe->vlan_my_qpn) &
  835. MLX4_CQE_CVLAN_PRESENT_MASK) &&
  836. (dev->features & NETIF_F_HW_VLAN_CTAG_RX))
  837. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
  838. else if ((be32_to_cpu(cqe->vlan_my_qpn) &
  839. MLX4_CQE_SVLAN_PRESENT_MASK) &&
  840. (dev->features & NETIF_F_HW_VLAN_STAG_RX))
  841. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD),
  842. be16_to_cpu(cqe->sl_vid));
  843. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  844. timestamp = mlx4_en_get_cqe_ts(cqe);
  845. mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
  846. timestamp);
  847. }
  848. napi_gro_receive(&cq->napi, skb);
  849. next:
  850. for (nr = 0; nr < priv->num_frags; nr++)
  851. mlx4_en_free_frag(priv, frags, nr);
  852. ++cq->mcq.cons_index;
  853. index = (cq->mcq.cons_index) & ring->size_mask;
  854. cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
  855. if (++polled == budget)
  856. goto out;
  857. }
  858. out:
  859. AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
  860. mlx4_cq_set_ci(&cq->mcq);
  861. wmb(); /* ensure HW sees CQ consumer before we post new buffers */
  862. ring->cons = cq->mcq.cons_index;
  863. mlx4_en_refill_rx_buffers(priv, ring);
  864. mlx4_en_update_rx_prod_db(ring);
  865. return polled;
  866. }
  867. void mlx4_en_rx_irq(struct mlx4_cq *mcq)
  868. {
  869. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  870. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  871. if (likely(priv->port_up))
  872. napi_schedule_irqoff(&cq->napi);
  873. else
  874. mlx4_en_arm_cq(priv, cq);
  875. }
  876. /* Rx CQ polling - called by NAPI */
  877. int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
  878. {
  879. struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
  880. struct net_device *dev = cq->dev;
  881. struct mlx4_en_priv *priv = netdev_priv(dev);
  882. int done;
  883. done = mlx4_en_process_rx_cq(dev, cq, budget);
  884. /* If we used up all the quota - we're probably not done yet... */
  885. if (done == budget) {
  886. const struct cpumask *aff;
  887. struct irq_data *idata;
  888. int cpu_curr;
  889. INC_PERF_COUNTER(priv->pstats.napi_quota);
  890. cpu_curr = smp_processor_id();
  891. idata = irq_desc_get_irq_data(cq->irq_desc);
  892. aff = irq_data_get_affinity_mask(idata);
  893. if (likely(cpumask_test_cpu(cpu_curr, aff)))
  894. return budget;
  895. /* Current cpu is not according to smp_irq_affinity -
  896. * probably affinity changed. need to stop this NAPI
  897. * poll, and restart it on the right CPU
  898. */
  899. done = 0;
  900. }
  901. /* Done for now */
  902. napi_complete_done(napi, done);
  903. mlx4_en_arm_cq(priv, cq);
  904. return done;
  905. }
  906. static const int frag_sizes[] = {
  907. FRAG_SZ0,
  908. FRAG_SZ1,
  909. FRAG_SZ2,
  910. FRAG_SZ3
  911. };
  912. void mlx4_en_calc_rx_buf(struct net_device *dev)
  913. {
  914. struct mlx4_en_priv *priv = netdev_priv(dev);
  915. /* VLAN_HLEN is added twice,to support skb vlan tagged with multiple
  916. * headers. (For example: ETH_P_8021Q and ETH_P_8021AD).
  917. */
  918. int eff_mtu = dev->mtu + ETH_HLEN + (2 * VLAN_HLEN);
  919. int buf_size = 0;
  920. int i = 0;
  921. while (buf_size < eff_mtu) {
  922. priv->frag_info[i].frag_size =
  923. (eff_mtu > buf_size + frag_sizes[i]) ?
  924. frag_sizes[i] : eff_mtu - buf_size;
  925. priv->frag_info[i].frag_prefix_size = buf_size;
  926. priv->frag_info[i].frag_stride =
  927. ALIGN(priv->frag_info[i].frag_size,
  928. SMP_CACHE_BYTES);
  929. buf_size += priv->frag_info[i].frag_size;
  930. i++;
  931. }
  932. priv->num_frags = i;
  933. priv->rx_skb_size = eff_mtu;
  934. priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
  935. en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
  936. eff_mtu, priv->num_frags);
  937. for (i = 0; i < priv->num_frags; i++) {
  938. en_err(priv,
  939. " frag:%d - size:%d prefix:%d stride:%d\n",
  940. i,
  941. priv->frag_info[i].frag_size,
  942. priv->frag_info[i].frag_prefix_size,
  943. priv->frag_info[i].frag_stride);
  944. }
  945. }
  946. /* RSS related functions */
  947. static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
  948. struct mlx4_en_rx_ring *ring,
  949. enum mlx4_qp_state *state,
  950. struct mlx4_qp *qp)
  951. {
  952. struct mlx4_en_dev *mdev = priv->mdev;
  953. struct mlx4_qp_context *context;
  954. int err = 0;
  955. context = kmalloc(sizeof(*context), GFP_KERNEL);
  956. if (!context)
  957. return -ENOMEM;
  958. err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
  959. if (err) {
  960. en_err(priv, "Failed to allocate qp #%x\n", qpn);
  961. goto out;
  962. }
  963. qp->event = mlx4_en_sqp_event;
  964. memset(context, 0, sizeof *context);
  965. mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
  966. qpn, ring->cqn, -1, context);
  967. context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
  968. /* Cancel FCS removal if FW allows */
  969. if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
  970. context->param3 |= cpu_to_be32(1 << 29);
  971. if (priv->dev->features & NETIF_F_RXFCS)
  972. ring->fcs_del = 0;
  973. else
  974. ring->fcs_del = ETH_FCS_LEN;
  975. } else
  976. ring->fcs_del = 0;
  977. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
  978. if (err) {
  979. mlx4_qp_remove(mdev->dev, qp);
  980. mlx4_qp_free(mdev->dev, qp);
  981. }
  982. mlx4_en_update_rx_prod_db(ring);
  983. out:
  984. kfree(context);
  985. return err;
  986. }
  987. int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
  988. {
  989. int err;
  990. u32 qpn;
  991. err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn,
  992. MLX4_RESERVE_A0_QP);
  993. if (err) {
  994. en_err(priv, "Failed reserving drop qpn\n");
  995. return err;
  996. }
  997. err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
  998. if (err) {
  999. en_err(priv, "Failed allocating drop qp\n");
  1000. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  1001. return err;
  1002. }
  1003. return 0;
  1004. }
  1005. void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
  1006. {
  1007. u32 qpn;
  1008. qpn = priv->drop_qp.qpn;
  1009. mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
  1010. mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
  1011. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  1012. }
  1013. /* Allocate rx qp's and configure them according to rss map */
  1014. int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
  1015. {
  1016. struct mlx4_en_dev *mdev = priv->mdev;
  1017. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  1018. struct mlx4_qp_context context;
  1019. struct mlx4_rss_context *rss_context;
  1020. int rss_rings;
  1021. void *ptr;
  1022. u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
  1023. MLX4_RSS_TCP_IPV6);
  1024. int i, qpn;
  1025. int err = 0;
  1026. int good_qps = 0;
  1027. en_dbg(DRV, priv, "Configuring rss steering\n");
  1028. err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
  1029. priv->rx_ring_num,
  1030. &rss_map->base_qpn, 0);
  1031. if (err) {
  1032. en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
  1033. return err;
  1034. }
  1035. for (i = 0; i < priv->rx_ring_num; i++) {
  1036. qpn = rss_map->base_qpn + i;
  1037. err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
  1038. &rss_map->state[i],
  1039. &rss_map->qps[i]);
  1040. if (err)
  1041. goto rss_err;
  1042. ++good_qps;
  1043. }
  1044. /* Configure RSS indirection qp */
  1045. err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
  1046. if (err) {
  1047. en_err(priv, "Failed to allocate RSS indirection QP\n");
  1048. goto rss_err;
  1049. }
  1050. rss_map->indir_qp.event = mlx4_en_sqp_event;
  1051. mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
  1052. priv->rx_ring[0]->cqn, -1, &context);
  1053. if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
  1054. rss_rings = priv->rx_ring_num;
  1055. else
  1056. rss_rings = priv->prof->rss_rings;
  1057. ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
  1058. + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
  1059. rss_context = ptr;
  1060. rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
  1061. (rss_map->base_qpn));
  1062. rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
  1063. if (priv->mdev->profile.udp_rss) {
  1064. rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
  1065. rss_context->base_qpn_udp = rss_context->default_qpn;
  1066. }
  1067. if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
  1068. en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
  1069. rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
  1070. }
  1071. rss_context->flags = rss_mask;
  1072. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  1073. if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
  1074. rss_context->hash_fn = MLX4_RSS_HASH_XOR;
  1075. } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
  1076. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  1077. memcpy(rss_context->rss_key, priv->rss_key,
  1078. MLX4_EN_RSS_KEY_SIZE);
  1079. } else {
  1080. en_err(priv, "Unknown RSS hash function requested\n");
  1081. err = -EINVAL;
  1082. goto indir_err;
  1083. }
  1084. err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
  1085. &rss_map->indir_qp, &rss_map->indir_state);
  1086. if (err)
  1087. goto indir_err;
  1088. return 0;
  1089. indir_err:
  1090. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  1091. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  1092. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  1093. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  1094. rss_err:
  1095. for (i = 0; i < good_qps; i++) {
  1096. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  1097. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  1098. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  1099. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  1100. }
  1101. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1102. return err;
  1103. }
  1104. void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
  1105. {
  1106. struct mlx4_en_dev *mdev = priv->mdev;
  1107. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  1108. int i;
  1109. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  1110. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  1111. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  1112. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  1113. for (i = 0; i < priv->rx_ring_num; i++) {
  1114. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  1115. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  1116. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  1117. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  1118. }
  1119. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  1120. }