card_utils.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@gmx.net>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sched.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/iommu.h>
  31. #include <linux/delay.h>
  32. #include <linux/pci.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/ctype.h>
  35. #include <linux/module.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <asm/pgtable.h>
  39. #include "genwqe_driver.h"
  40. #include "card_base.h"
  41. #include "card_ddcb.h"
  42. /**
  43. * __genwqe_writeq() - Write 64-bit register
  44. * @cd: genwqe device descriptor
  45. * @byte_offs: byte offset within BAR
  46. * @val: 64-bit value
  47. *
  48. * Return: 0 if success; < 0 if error
  49. */
  50. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  51. {
  52. struct pci_dev *pci_dev = cd->pci_dev;
  53. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  54. return -EIO;
  55. if (cd->mmio == NULL)
  56. return -EIO;
  57. if (pci_channel_offline(pci_dev))
  58. return -EIO;
  59. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  60. return 0;
  61. }
  62. /**
  63. * __genwqe_readq() - Read 64-bit register
  64. * @cd: genwqe device descriptor
  65. * @byte_offs: offset within BAR
  66. *
  67. * Return: value from register
  68. */
  69. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  70. {
  71. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  72. return 0xffffffffffffffffull;
  73. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  74. (byte_offs == IO_SLC_CFGREG_GFIR))
  75. return 0x000000000000ffffull;
  76. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  77. (byte_offs == IO_SLC_CFGREG_GFIR))
  78. return 0x00000000ffff0000ull;
  79. if (cd->mmio == NULL)
  80. return 0xffffffffffffffffull;
  81. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  82. }
  83. /**
  84. * __genwqe_writel() - Write 32-bit register
  85. * @cd: genwqe device descriptor
  86. * @byte_offs: byte offset within BAR
  87. * @val: 32-bit value
  88. *
  89. * Return: 0 if success; < 0 if error
  90. */
  91. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  92. {
  93. struct pci_dev *pci_dev = cd->pci_dev;
  94. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  95. return -EIO;
  96. if (cd->mmio == NULL)
  97. return -EIO;
  98. if (pci_channel_offline(pci_dev))
  99. return -EIO;
  100. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  101. return 0;
  102. }
  103. /**
  104. * __genwqe_readl() - Read 32-bit register
  105. * @cd: genwqe device descriptor
  106. * @byte_offs: offset within BAR
  107. *
  108. * Return: Value from register
  109. */
  110. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  111. {
  112. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  113. return 0xffffffff;
  114. if (cd->mmio == NULL)
  115. return 0xffffffff;
  116. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  117. }
  118. /**
  119. * genwqe_read_app_id() - Extract app_id
  120. *
  121. * app_unitcfg need to be filled with valid data first
  122. */
  123. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  124. {
  125. int i, j;
  126. u32 app_id = (u32)cd->app_unitcfg;
  127. memset(app_name, 0, len);
  128. for (i = 0, j = 0; j < min(len, 4); j++) {
  129. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  130. if (ch == ' ')
  131. continue;
  132. app_name[i++] = isprint(ch) ? ch : 'X';
  133. }
  134. return i;
  135. }
  136. /**
  137. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  138. *
  139. * Existing kernel functions seem to use a different polynom,
  140. * therefore we could not use them here.
  141. *
  142. * Genwqe's Polynomial = 0x20044009
  143. */
  144. #define CRC32_POLYNOMIAL 0x20044009
  145. static u32 crc32_tab[256]; /* crc32 lookup table */
  146. void genwqe_init_crc32(void)
  147. {
  148. int i, j;
  149. u32 crc;
  150. for (i = 0; i < 256; i++) {
  151. crc = i << 24;
  152. for (j = 0; j < 8; j++) {
  153. if (crc & 0x80000000)
  154. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  155. else
  156. crc = (crc << 1);
  157. }
  158. crc32_tab[i] = crc;
  159. }
  160. }
  161. /**
  162. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  163. * @buff: pointer to data buffer
  164. * @len: length of data for calculation
  165. * @init: initial crc (0xffffffff at start)
  166. *
  167. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  168. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  169. * result in a crc32 of 0xf33cb7d3.
  170. *
  171. * The existing kernel crc functions did not cover this polynom yet.
  172. *
  173. * Return: crc32 checksum.
  174. */
  175. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  176. {
  177. int i;
  178. u32 crc;
  179. crc = init;
  180. while (len--) {
  181. i = ((crc >> 24) ^ *buff++) & 0xFF;
  182. crc = (crc << 8) ^ crc32_tab[i];
  183. }
  184. return crc;
  185. }
  186. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  187. dma_addr_t *dma_handle)
  188. {
  189. if (get_order(size) > MAX_ORDER)
  190. return NULL;
  191. return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
  192. GFP_KERNEL);
  193. }
  194. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  195. void *vaddr, dma_addr_t dma_handle)
  196. {
  197. if (vaddr == NULL)
  198. return;
  199. dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
  200. }
  201. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  202. int num_pages)
  203. {
  204. int i;
  205. struct pci_dev *pci_dev = cd->pci_dev;
  206. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  207. pci_unmap_page(pci_dev, dma_list[i],
  208. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  209. dma_list[i] = 0x0;
  210. }
  211. }
  212. static int genwqe_map_pages(struct genwqe_dev *cd,
  213. struct page **page_list, int num_pages,
  214. dma_addr_t *dma_list)
  215. {
  216. int i;
  217. struct pci_dev *pci_dev = cd->pci_dev;
  218. /* establish DMA mapping for requested pages */
  219. for (i = 0; i < num_pages; i++) {
  220. dma_addr_t daddr;
  221. dma_list[i] = 0x0;
  222. daddr = pci_map_page(pci_dev, page_list[i],
  223. 0, /* map_offs */
  224. PAGE_SIZE,
  225. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  226. if (pci_dma_mapping_error(pci_dev, daddr)) {
  227. dev_err(&pci_dev->dev,
  228. "[%s] err: no dma addr daddr=%016llx!\n",
  229. __func__, (long long)daddr);
  230. goto err;
  231. }
  232. dma_list[i] = daddr;
  233. }
  234. return 0;
  235. err:
  236. genwqe_unmap_pages(cd, dma_list, num_pages);
  237. return -EIO;
  238. }
  239. static int genwqe_sgl_size(int num_pages)
  240. {
  241. int len, num_tlb = num_pages / 7;
  242. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  243. return roundup(len, PAGE_SIZE);
  244. }
  245. /**
  246. * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
  247. *
  248. * Allocates memory for sgl and overlapping pages. Pages which might
  249. * overlap other user-space memory blocks are being cached for DMAs,
  250. * such that we do not run into syncronization issues. Data is copied
  251. * from user-space into the cached pages.
  252. */
  253. int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  254. void __user *user_addr, size_t user_size)
  255. {
  256. int rc;
  257. struct pci_dev *pci_dev = cd->pci_dev;
  258. sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
  259. sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
  260. sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
  261. sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
  262. dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
  263. __func__, user_addr, user_size, sgl->nr_pages,
  264. sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
  265. sgl->user_addr = user_addr;
  266. sgl->user_size = user_size;
  267. sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
  268. if (get_order(sgl->sgl_size) > MAX_ORDER) {
  269. dev_err(&pci_dev->dev,
  270. "[%s] err: too much memory requested!\n", __func__);
  271. return -ENOMEM;
  272. }
  273. sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
  274. &sgl->sgl_dma_addr);
  275. if (sgl->sgl == NULL) {
  276. dev_err(&pci_dev->dev,
  277. "[%s] err: no memory available!\n", __func__);
  278. return -ENOMEM;
  279. }
  280. /* Only use buffering on incomplete pages */
  281. if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
  282. sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  283. &sgl->fpage_dma_addr);
  284. if (sgl->fpage == NULL)
  285. goto err_out;
  286. /* Sync with user memory */
  287. if (copy_from_user(sgl->fpage + sgl->fpage_offs,
  288. user_addr, sgl->fpage_size)) {
  289. rc = -EFAULT;
  290. goto err_out;
  291. }
  292. }
  293. if (sgl->lpage_size != 0) {
  294. sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  295. &sgl->lpage_dma_addr);
  296. if (sgl->lpage == NULL)
  297. goto err_out1;
  298. /* Sync with user memory */
  299. if (copy_from_user(sgl->lpage, user_addr + user_size -
  300. sgl->lpage_size, sgl->lpage_size)) {
  301. rc = -EFAULT;
  302. goto err_out1;
  303. }
  304. }
  305. return 0;
  306. err_out1:
  307. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  308. sgl->fpage_dma_addr);
  309. err_out:
  310. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  311. sgl->sgl_dma_addr);
  312. return -ENOMEM;
  313. }
  314. int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  315. dma_addr_t *dma_list)
  316. {
  317. int i = 0, j = 0, p;
  318. unsigned long dma_offs, map_offs;
  319. dma_addr_t prev_daddr = 0;
  320. struct sg_entry *s, *last_s = NULL;
  321. size_t size = sgl->user_size;
  322. dma_offs = 128; /* next block if needed/dma_offset */
  323. map_offs = sgl->fpage_offs; /* offset in first page */
  324. s = &sgl->sgl[0]; /* first set of 8 entries */
  325. p = 0; /* page */
  326. while (p < sgl->nr_pages) {
  327. dma_addr_t daddr;
  328. unsigned int size_to_map;
  329. /* always write the chaining entry, cleanup is done later */
  330. j = 0;
  331. s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
  332. s[j].len = cpu_to_be32(128);
  333. s[j].flags = cpu_to_be32(SG_CHAINED);
  334. j++;
  335. while (j < 8) {
  336. /* DMA mapping for requested page, offs, size */
  337. size_to_map = min(size, PAGE_SIZE - map_offs);
  338. if ((p == 0) && (sgl->fpage != NULL)) {
  339. daddr = sgl->fpage_dma_addr + map_offs;
  340. } else if ((p == sgl->nr_pages - 1) &&
  341. (sgl->lpage != NULL)) {
  342. daddr = sgl->lpage_dma_addr;
  343. } else {
  344. daddr = dma_list[p] + map_offs;
  345. }
  346. size -= size_to_map;
  347. map_offs = 0;
  348. if (prev_daddr == daddr) {
  349. u32 prev_len = be32_to_cpu(last_s->len);
  350. /* pr_info("daddr combining: "
  351. "%016llx/%08x -> %016llx\n",
  352. prev_daddr, prev_len, daddr); */
  353. last_s->len = cpu_to_be32(prev_len +
  354. size_to_map);
  355. p++; /* process next page */
  356. if (p == sgl->nr_pages)
  357. goto fixup; /* nothing to do */
  358. prev_daddr = daddr + size_to_map;
  359. continue;
  360. }
  361. /* start new entry */
  362. s[j].target_addr = cpu_to_be64(daddr);
  363. s[j].len = cpu_to_be32(size_to_map);
  364. s[j].flags = cpu_to_be32(SG_DATA);
  365. prev_daddr = daddr + size_to_map;
  366. last_s = &s[j];
  367. j++;
  368. p++; /* process next page */
  369. if (p == sgl->nr_pages)
  370. goto fixup; /* nothing to do */
  371. }
  372. dma_offs += 128;
  373. s += 8; /* continue 8 elements further */
  374. }
  375. fixup:
  376. if (j == 1) { /* combining happend on last entry! */
  377. s -= 8; /* full shift needed on previous sgl block */
  378. j = 7; /* shift all elements */
  379. }
  380. for (i = 0; i < j; i++) /* move elements 1 up */
  381. s[i] = s[i + 1];
  382. s[i].target_addr = cpu_to_be64(0);
  383. s[i].len = cpu_to_be32(0);
  384. s[i].flags = cpu_to_be32(SG_END_LIST);
  385. return 0;
  386. }
  387. /**
  388. * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
  389. *
  390. * After the DMA transfer has been completed we free the memory for
  391. * the sgl and the cached pages. Data is being transfered from cached
  392. * pages into user-space buffers.
  393. */
  394. int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
  395. {
  396. int rc = 0;
  397. struct pci_dev *pci_dev = cd->pci_dev;
  398. if (sgl->fpage) {
  399. if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
  400. sgl->fpage_size)) {
  401. dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
  402. __func__);
  403. rc = -EFAULT;
  404. }
  405. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  406. sgl->fpage_dma_addr);
  407. sgl->fpage = NULL;
  408. sgl->fpage_dma_addr = 0;
  409. }
  410. if (sgl->lpage) {
  411. if (copy_to_user(sgl->user_addr + sgl->user_size -
  412. sgl->lpage_size, sgl->lpage,
  413. sgl->lpage_size)) {
  414. dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
  415. __func__);
  416. rc = -EFAULT;
  417. }
  418. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  419. sgl->lpage_dma_addr);
  420. sgl->lpage = NULL;
  421. sgl->lpage_dma_addr = 0;
  422. }
  423. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  424. sgl->sgl_dma_addr);
  425. sgl->sgl = NULL;
  426. sgl->sgl_dma_addr = 0x0;
  427. sgl->sgl_size = 0;
  428. return rc;
  429. }
  430. /**
  431. * free_user_pages() - Give pinned pages back
  432. *
  433. * Documentation of get_user_pages is in mm/memory.c:
  434. *
  435. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  436. * as appropriate) must be called after the page is finished with, and
  437. * before put_page is called.
  438. *
  439. * FIXME Could be of use to others and might belong in the generic
  440. * code, if others agree. E.g.
  441. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
  442. * ceph_put_page_vector in net/ceph/pagevec.c
  443. * maybe more?
  444. */
  445. static int free_user_pages(struct page **page_list, unsigned int nr_pages,
  446. int dirty)
  447. {
  448. unsigned int i;
  449. for (i = 0; i < nr_pages; i++) {
  450. if (page_list[i] != NULL) {
  451. if (dirty)
  452. set_page_dirty_lock(page_list[i]);
  453. put_page(page_list[i]);
  454. }
  455. }
  456. return 0;
  457. }
  458. /**
  459. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  460. * @cd: pointer to genwqe device
  461. * @m: mapping params
  462. * @uaddr: user virtual address
  463. * @size: size of memory to be mapped
  464. *
  465. * We need to think about how we could speed this up. Of course it is
  466. * not a good idea to do this over and over again, like we are
  467. * currently doing it. Nevertheless, I am curious where on the path
  468. * the performance is spend. Most probably within the memory
  469. * allocation functions, but maybe also in the DMA mapping code.
  470. *
  471. * Restrictions: The maximum size of the possible mapping currently depends
  472. * on the amount of memory we can get using kzalloc() for the
  473. * page_list and pci_alloc_consistent for the sg_list.
  474. * The sg_list is currently itself not scattered, which could
  475. * be fixed with some effort. The page_list must be split into
  476. * PAGE_SIZE chunks too. All that will make the complicated
  477. * code more complicated.
  478. *
  479. * Return: 0 if success
  480. */
  481. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  482. unsigned long size, struct ddcb_requ *req)
  483. {
  484. int rc = -EINVAL;
  485. unsigned long data, offs;
  486. struct pci_dev *pci_dev = cd->pci_dev;
  487. if ((uaddr == NULL) || (size == 0)) {
  488. m->size = 0; /* mark unused and not added */
  489. return -EINVAL;
  490. }
  491. m->u_vaddr = uaddr;
  492. m->size = size;
  493. /* determine space needed for page_list. */
  494. data = (unsigned long)uaddr;
  495. offs = offset_in_page(data);
  496. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  497. m->page_list = kcalloc(m->nr_pages,
  498. sizeof(struct page *) + sizeof(dma_addr_t),
  499. GFP_KERNEL);
  500. if (!m->page_list) {
  501. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  502. m->nr_pages = 0;
  503. m->u_vaddr = NULL;
  504. m->size = 0; /* mark unused and not added */
  505. return -ENOMEM;
  506. }
  507. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  508. /* pin user pages in memory */
  509. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  510. m->nr_pages,
  511. 1, /* write by caller */
  512. m->page_list); /* ptrs to pages */
  513. if (rc < 0)
  514. goto fail_get_user_pages;
  515. /* assumption: get_user_pages can be killed by signals. */
  516. if (rc < m->nr_pages) {
  517. free_user_pages(m->page_list, rc, 0);
  518. rc = -EFAULT;
  519. goto fail_get_user_pages;
  520. }
  521. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  522. if (rc != 0)
  523. goto fail_free_user_pages;
  524. return 0;
  525. fail_free_user_pages:
  526. free_user_pages(m->page_list, m->nr_pages, 0);
  527. fail_get_user_pages:
  528. kfree(m->page_list);
  529. m->page_list = NULL;
  530. m->dma_list = NULL;
  531. m->nr_pages = 0;
  532. m->u_vaddr = NULL;
  533. m->size = 0; /* mark unused and not added */
  534. return rc;
  535. }
  536. /**
  537. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  538. * memory
  539. * @cd: pointer to genwqe device
  540. * @m: mapping params
  541. */
  542. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
  543. struct ddcb_requ *req)
  544. {
  545. struct pci_dev *pci_dev = cd->pci_dev;
  546. if (!dma_mapping_used(m)) {
  547. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  548. __func__, m);
  549. return -EINVAL;
  550. }
  551. if (m->dma_list)
  552. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  553. if (m->page_list) {
  554. free_user_pages(m->page_list, m->nr_pages, 1);
  555. kfree(m->page_list);
  556. m->page_list = NULL;
  557. m->dma_list = NULL;
  558. m->nr_pages = 0;
  559. }
  560. m->u_vaddr = NULL;
  561. m->size = 0; /* mark as unused and not added */
  562. return 0;
  563. }
  564. /**
  565. * genwqe_card_type() - Get chip type SLU Configuration Register
  566. * @cd: pointer to the genwqe device descriptor
  567. * Return: 0: Altera Stratix-IV 230
  568. * 1: Altera Stratix-IV 530
  569. * 2: Altera Stratix-V A4
  570. * 3: Altera Stratix-V A7
  571. */
  572. u8 genwqe_card_type(struct genwqe_dev *cd)
  573. {
  574. u64 card_type = cd->slu_unitcfg;
  575. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  576. }
  577. /**
  578. * genwqe_card_reset() - Reset the card
  579. * @cd: pointer to the genwqe device descriptor
  580. */
  581. int genwqe_card_reset(struct genwqe_dev *cd)
  582. {
  583. u64 softrst;
  584. struct pci_dev *pci_dev = cd->pci_dev;
  585. if (!genwqe_is_privileged(cd))
  586. return -ENODEV;
  587. /* new SL */
  588. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  589. msleep(1000);
  590. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  591. __genwqe_readq(cd, IO_APP_FIR_CLR);
  592. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  593. /*
  594. * Read-modify-write to preserve the stealth bits
  595. *
  596. * For SL >= 039, Stealth WE bit allows removing
  597. * the read-modify-wrote.
  598. * r-m-w may require a mask 0x3C to avoid hitting hard
  599. * reset again for error reset (should be 0, chicken).
  600. */
  601. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  602. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  603. /* give ERRORRESET some time to finish */
  604. msleep(50);
  605. if (genwqe_need_err_masking(cd)) {
  606. dev_info(&pci_dev->dev,
  607. "[%s] masking errors for old bitstreams\n", __func__);
  608. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  609. }
  610. return 0;
  611. }
  612. int genwqe_read_softreset(struct genwqe_dev *cd)
  613. {
  614. u64 bitstream;
  615. if (!genwqe_is_privileged(cd))
  616. return -ENODEV;
  617. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  618. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  619. return 0;
  620. }
  621. /**
  622. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  623. * @cd: pointer to the device
  624. * Return: 0 if no error
  625. */
  626. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  627. {
  628. int rc;
  629. struct pci_dev *pci_dev = cd->pci_dev;
  630. rc = pci_enable_msi_range(pci_dev, 1, count);
  631. if (rc < 0)
  632. return rc;
  633. cd->flags |= GENWQE_FLAG_MSI_ENABLED;
  634. return 0;
  635. }
  636. /**
  637. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  638. * @cd: pointer to the device
  639. */
  640. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  641. {
  642. struct pci_dev *pci_dev = cd->pci_dev;
  643. if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
  644. pci_disable_msi(pci_dev);
  645. cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
  646. }
  647. }
  648. /**
  649. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  650. * @cd: card device
  651. * @r: debug register array
  652. * @i: index to desired entry
  653. * @m: maximum possible entries
  654. * @addr: addr which is read
  655. * @index: index in debug array
  656. * @val: read value
  657. */
  658. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  659. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  660. u64 val)
  661. {
  662. if (WARN_ON_ONCE(*i >= m))
  663. return -EFAULT;
  664. r[*i].addr = addr;
  665. r[*i].idx = idx;
  666. r[*i].val = val;
  667. ++*i;
  668. return 0;
  669. }
  670. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  671. unsigned int *i, unsigned int m, u32 addr, u64 val)
  672. {
  673. return set_reg_idx(cd, r, i, m, addr, 0, val);
  674. }
  675. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  676. unsigned int max_regs, int all)
  677. {
  678. unsigned int i, j, idx = 0;
  679. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  680. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  681. /* Global FIR */
  682. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  683. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  684. /* UnitCfg for SLU */
  685. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  686. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  687. /* UnitCfg for APP */
  688. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  689. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  690. /* Check all chip Units */
  691. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  692. /* Unit FIR */
  693. ufir_addr = (i << 24) | 0x008;
  694. ufir = __genwqe_readq(cd, ufir_addr);
  695. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  696. /* Unit FEC */
  697. ufec_addr = (i << 24) | 0x018;
  698. ufec = __genwqe_readq(cd, ufec_addr);
  699. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  700. for (j = 0; j < 64; j++) {
  701. /* wherever there is a primary 1, read the 2ndary */
  702. if (!all && (!(ufir & (1ull << j))))
  703. continue;
  704. sfir_addr = (i << 24) | (0x100 + 8 * j);
  705. sfir = __genwqe_readq(cd, sfir_addr);
  706. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  707. sfec_addr = (i << 24) | (0x300 + 8 * j);
  708. sfec = __genwqe_readq(cd, sfec_addr);
  709. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  710. }
  711. }
  712. /* fill with invalid data until end */
  713. for (i = idx; i < max_regs; i++) {
  714. regs[i].addr = 0xffffffff;
  715. regs[i].val = 0xffffffffffffffffull;
  716. }
  717. return idx;
  718. }
  719. /**
  720. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  721. */
  722. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  723. {
  724. int entries = 0, ring, traps, traces, trace_entries;
  725. u32 eevptr_addr, l_addr, d_len, d_type;
  726. u64 eevptr, val, addr;
  727. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  728. eevptr = __genwqe_readq(cd, eevptr_addr);
  729. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  730. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  731. while (1) {
  732. val = __genwqe_readq(cd, l_addr);
  733. if ((val == 0x0) || (val == -1ull))
  734. break;
  735. /* 38:24 */
  736. d_len = (val & 0x0000007fff000000ull) >> 24;
  737. /* 39 */
  738. d_type = (val & 0x0000008000000000ull) >> 36;
  739. if (d_type) { /* repeat */
  740. entries += d_len;
  741. } else { /* size in bytes! */
  742. entries += d_len >> 3;
  743. }
  744. l_addr += 8;
  745. }
  746. }
  747. for (ring = 0; ring < 8; ring++) {
  748. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  749. val = __genwqe_readq(cd, addr);
  750. if ((val == 0x0ull) || (val == -1ull))
  751. continue;
  752. traps = (val >> 24) & 0xff;
  753. traces = (val >> 16) & 0xff;
  754. trace_entries = val & 0xffff;
  755. entries += traps + (traces * trace_entries);
  756. }
  757. return entries;
  758. }
  759. /**
  760. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  761. */
  762. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  763. struct genwqe_reg *regs, unsigned int max_regs)
  764. {
  765. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  766. unsigned int idx = 0;
  767. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  768. u64 eevptr, e, val, addr;
  769. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  770. eevptr = __genwqe_readq(cd, eevptr_addr);
  771. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  772. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  773. while (1) {
  774. e = __genwqe_readq(cd, l_addr);
  775. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  776. break;
  777. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  778. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  779. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  780. d_addr |= GENWQE_UID_OFFS(uid);
  781. if (d_type) {
  782. for (i = 0; i < (int)d_len; i++) {
  783. val = __genwqe_readq(cd, d_addr);
  784. set_reg_idx(cd, regs, &idx, max_regs,
  785. d_addr, i, val);
  786. }
  787. } else {
  788. d_len >>= 3; /* Size in bytes! */
  789. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  790. val = __genwqe_readq(cd, d_addr);
  791. set_reg_idx(cd, regs, &idx, max_regs,
  792. d_addr, 0, val);
  793. }
  794. }
  795. l_addr += 8;
  796. }
  797. }
  798. /*
  799. * To save time, there are only 6 traces poplulated on Uid=2,
  800. * Ring=1. each with iters=512.
  801. */
  802. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  803. 2...7 are ASI rings */
  804. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  805. val = __genwqe_readq(cd, addr);
  806. if ((val == 0x0ull) || (val == -1ull))
  807. continue;
  808. traps = (val >> 24) & 0xff; /* Number of Traps */
  809. traces = (val >> 16) & 0xff; /* Number of Traces */
  810. trace_entries = val & 0xffff; /* Entries per trace */
  811. /* Note: This is a combined loop that dumps both the traps */
  812. /* (for the trace == 0 case) as well as the traces 1 to */
  813. /* 'traces'. */
  814. for (trace = 0; trace <= traces; trace++) {
  815. u32 diag_sel =
  816. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  817. addr = (GENWQE_UID_OFFS(uid) |
  818. IO_EXTENDED_DIAG_SELECTOR);
  819. __genwqe_writeq(cd, addr, diag_sel);
  820. for (trace_entry = 0;
  821. trace_entry < (trace ? trace_entries : traps);
  822. trace_entry++) {
  823. addr = (GENWQE_UID_OFFS(uid) |
  824. IO_EXTENDED_DIAG_READ_MBX);
  825. val = __genwqe_readq(cd, addr);
  826. set_reg_idx(cd, regs, &idx, max_regs, addr,
  827. (diag_sel<<16) | trace_entry, val);
  828. }
  829. }
  830. }
  831. return 0;
  832. }
  833. /**
  834. * genwqe_write_vreg() - Write register in virtual window
  835. *
  836. * Note, these registers are only accessible to the PF through the
  837. * VF-window. It is not intended for the VF to access.
  838. */
  839. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  840. {
  841. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  842. __genwqe_writeq(cd, reg, val);
  843. return 0;
  844. }
  845. /**
  846. * genwqe_read_vreg() - Read register in virtual window
  847. *
  848. * Note, these registers are only accessible to the PF through the
  849. * VF-window. It is not intended for the VF to access.
  850. */
  851. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  852. {
  853. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  854. return __genwqe_readq(cd, reg);
  855. }
  856. /**
  857. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  858. *
  859. * Note: From a design perspective it turned out to be a bad idea to
  860. * use codes here to specifiy the frequency/speed values. An old
  861. * driver cannot understand new codes and is therefore always a
  862. * problem. Better is to measure out the value or put the
  863. * speed/frequency directly into a register which is always a valid
  864. * value for old as well as for new software.
  865. *
  866. * Return: Card clock in MHz
  867. */
  868. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  869. {
  870. u16 speed; /* MHz MHz MHz MHz */
  871. static const int speed_grade[] = { 250, 200, 166, 175 };
  872. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  873. if (speed >= ARRAY_SIZE(speed_grade))
  874. return 0; /* illegal value */
  875. return speed_grade[speed];
  876. }
  877. /**
  878. * genwqe_stop_traps() - Stop traps
  879. *
  880. * Before reading out the analysis data, we need to stop the traps.
  881. */
  882. void genwqe_stop_traps(struct genwqe_dev *cd)
  883. {
  884. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  885. }
  886. /**
  887. * genwqe_start_traps() - Start traps
  888. *
  889. * After having read the data, we can/must enable the traps again.
  890. */
  891. void genwqe_start_traps(struct genwqe_dev *cd)
  892. {
  893. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  894. if (genwqe_need_err_masking(cd))
  895. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  896. }