db8500-prcmu.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/of.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/mfd/core.h>
  32. #include <linux/mfd/dbx500-prcmu.h>
  33. #include <linux/mfd/abx500/ab8500.h>
  34. #include <linux/regulator/db8500-prcmu.h>
  35. #include <linux/regulator/machine.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/platform_data/ux500_wdt.h>
  38. #include <linux/platform_data/db8500_thermal.h>
  39. #include "dbx500-prcmu-regs.h"
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC0_OFF 0x1
  122. #define PLL_SOC0_ON 0x2
  123. #define PLL_SOC1_OFF 0x4
  124. #define PLL_SOC1_ON 0x8
  125. /* Mailbox 1 ACKs */
  126. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  127. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  128. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  129. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  130. /* Mailbox 2 headers */
  131. #define MB2H_DPS 0x0
  132. #define MB2H_AUTO_PWR 0x1
  133. /* Mailbox 2 REQs */
  134. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  135. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  136. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  137. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  138. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  139. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  140. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  141. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  142. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  143. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  144. /* Mailbox 2 ACKs */
  145. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  146. #define HWACC_PWR_ST_OK 0xFE
  147. /* Mailbox 3 headers */
  148. #define MB3H_ANC 0x0
  149. #define MB3H_SIDETONE 0x1
  150. #define MB3H_SYSCLK 0xE
  151. /* Mailbox 3 Requests */
  152. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  153. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  154. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  155. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  158. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  159. /* Mailbox 4 headers */
  160. #define MB4H_DDR_INIT 0x0
  161. #define MB4H_MEM_ST 0x1
  162. #define MB4H_HOTDOG 0x12
  163. #define MB4H_HOTMON 0x13
  164. #define MB4H_HOT_PERIOD 0x14
  165. #define MB4H_A9WDOG_CONF 0x16
  166. #define MB4H_A9WDOG_EN 0x17
  167. #define MB4H_A9WDOG_DIS 0x18
  168. #define MB4H_A9WDOG_LOAD 0x19
  169. #define MB4H_A9WDOG_KICK 0x20
  170. /* Mailbox 4 Requests */
  171. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  172. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  173. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  174. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  177. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  178. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  179. #define HOTMON_CONFIG_LOW BIT(0)
  180. #define HOTMON_CONFIG_HIGH BIT(1)
  181. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  182. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  183. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  184. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  185. #define A9WDOG_AUTO_OFF_EN BIT(7)
  186. #define A9WDOG_AUTO_OFF_DIS 0
  187. #define A9WDOG_ID_MASK 0xf
  188. /* Mailbox 5 Requests */
  189. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  190. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  191. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  192. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  193. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  194. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  195. #define PRCMU_I2C_STOP_EN BIT(3)
  196. /* Mailbox 5 ACKs */
  197. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  198. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  199. #define I2C_WR_OK 0x1
  200. #define I2C_RD_OK 0x2
  201. #define NUM_MB 8
  202. #define MBOX_BIT BIT
  203. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  204. /*
  205. * Wakeups/IRQs
  206. */
  207. #define WAKEUP_BIT_RTC BIT(0)
  208. #define WAKEUP_BIT_RTT0 BIT(1)
  209. #define WAKEUP_BIT_RTT1 BIT(2)
  210. #define WAKEUP_BIT_HSI0 BIT(3)
  211. #define WAKEUP_BIT_HSI1 BIT(4)
  212. #define WAKEUP_BIT_CA_WAKE BIT(5)
  213. #define WAKEUP_BIT_USB BIT(6)
  214. #define WAKEUP_BIT_ABB BIT(7)
  215. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  216. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  217. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  218. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  219. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  220. #define WAKEUP_BIT_ANC_OK BIT(13)
  221. #define WAKEUP_BIT_SW_ERROR BIT(14)
  222. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  223. #define WAKEUP_BIT_ARM BIT(17)
  224. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  225. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  226. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  227. #define WAKEUP_BIT_GPIO0 BIT(23)
  228. #define WAKEUP_BIT_GPIO1 BIT(24)
  229. #define WAKEUP_BIT_GPIO2 BIT(25)
  230. #define WAKEUP_BIT_GPIO3 BIT(26)
  231. #define WAKEUP_BIT_GPIO4 BIT(27)
  232. #define WAKEUP_BIT_GPIO5 BIT(28)
  233. #define WAKEUP_BIT_GPIO6 BIT(29)
  234. #define WAKEUP_BIT_GPIO7 BIT(30)
  235. #define WAKEUP_BIT_GPIO8 BIT(31)
  236. static struct {
  237. bool valid;
  238. struct prcmu_fw_version version;
  239. } fw_info;
  240. static struct irq_domain *db8500_irq_domain;
  241. /*
  242. * This vector maps irq numbers to the bits in the bit field used in
  243. * communication with the PRCMU firmware.
  244. *
  245. * The reason for having this is to keep the irq numbers contiguous even though
  246. * the bits in the bit field are not. (The bits also have a tendency to move
  247. * around, to further complicate matters.)
  248. */
  249. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
  250. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  251. #define IRQ_PRCMU_RTC 0
  252. #define IRQ_PRCMU_RTT0 1
  253. #define IRQ_PRCMU_RTT1 2
  254. #define IRQ_PRCMU_HSI0 3
  255. #define IRQ_PRCMU_HSI1 4
  256. #define IRQ_PRCMU_CA_WAKE 5
  257. #define IRQ_PRCMU_USB 6
  258. #define IRQ_PRCMU_ABB 7
  259. #define IRQ_PRCMU_ABB_FIFO 8
  260. #define IRQ_PRCMU_ARM 9
  261. #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
  262. #define IRQ_PRCMU_GPIO0 11
  263. #define IRQ_PRCMU_GPIO1 12
  264. #define IRQ_PRCMU_GPIO2 13
  265. #define IRQ_PRCMU_GPIO3 14
  266. #define IRQ_PRCMU_GPIO4 15
  267. #define IRQ_PRCMU_GPIO5 16
  268. #define IRQ_PRCMU_GPIO6 17
  269. #define IRQ_PRCMU_GPIO7 18
  270. #define IRQ_PRCMU_GPIO8 19
  271. #define IRQ_PRCMU_CA_SLEEP 20
  272. #define IRQ_PRCMU_HOTMON_LOW 21
  273. #define IRQ_PRCMU_HOTMON_HIGH 22
  274. #define NUM_PRCMU_WAKEUPS 23
  275. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  276. IRQ_ENTRY(RTC),
  277. IRQ_ENTRY(RTT0),
  278. IRQ_ENTRY(RTT1),
  279. IRQ_ENTRY(HSI0),
  280. IRQ_ENTRY(HSI1),
  281. IRQ_ENTRY(CA_WAKE),
  282. IRQ_ENTRY(USB),
  283. IRQ_ENTRY(ABB),
  284. IRQ_ENTRY(ABB_FIFO),
  285. IRQ_ENTRY(CA_SLEEP),
  286. IRQ_ENTRY(ARM),
  287. IRQ_ENTRY(HOTMON_LOW),
  288. IRQ_ENTRY(HOTMON_HIGH),
  289. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  290. IRQ_ENTRY(GPIO0),
  291. IRQ_ENTRY(GPIO1),
  292. IRQ_ENTRY(GPIO2),
  293. IRQ_ENTRY(GPIO3),
  294. IRQ_ENTRY(GPIO4),
  295. IRQ_ENTRY(GPIO5),
  296. IRQ_ENTRY(GPIO6),
  297. IRQ_ENTRY(GPIO7),
  298. IRQ_ENTRY(GPIO8)
  299. };
  300. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  301. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  302. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  303. WAKEUP_ENTRY(RTC),
  304. WAKEUP_ENTRY(RTT0),
  305. WAKEUP_ENTRY(RTT1),
  306. WAKEUP_ENTRY(HSI0),
  307. WAKEUP_ENTRY(HSI1),
  308. WAKEUP_ENTRY(USB),
  309. WAKEUP_ENTRY(ABB),
  310. WAKEUP_ENTRY(ABB_FIFO),
  311. WAKEUP_ENTRY(ARM)
  312. };
  313. /*
  314. * mb0_transfer - state needed for mailbox 0 communication.
  315. * @lock: The transaction lock.
  316. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  317. * the request data.
  318. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  319. * @req: Request data that need to persist between requests.
  320. */
  321. static struct {
  322. spinlock_t lock;
  323. spinlock_t dbb_irqs_lock;
  324. struct work_struct mask_work;
  325. struct mutex ac_wake_lock;
  326. struct completion ac_wake_work;
  327. struct {
  328. u32 dbb_irqs;
  329. u32 dbb_wakeups;
  330. u32 abb_events;
  331. } req;
  332. } mb0_transfer;
  333. /*
  334. * mb1_transfer - state needed for mailbox 1 communication.
  335. * @lock: The transaction lock.
  336. * @work: The transaction completion structure.
  337. * @ape_opp: The current APE OPP.
  338. * @ack: Reply ("acknowledge") data.
  339. */
  340. static struct {
  341. struct mutex lock;
  342. struct completion work;
  343. u8 ape_opp;
  344. struct {
  345. u8 header;
  346. u8 arm_opp;
  347. u8 ape_opp;
  348. u8 ape_voltage_status;
  349. } ack;
  350. } mb1_transfer;
  351. /*
  352. * mb2_transfer - state needed for mailbox 2 communication.
  353. * @lock: The transaction lock.
  354. * @work: The transaction completion structure.
  355. * @auto_pm_lock: The autonomous power management configuration lock.
  356. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  357. * @req: Request data that need to persist between requests.
  358. * @ack: Reply ("acknowledge") data.
  359. */
  360. static struct {
  361. struct mutex lock;
  362. struct completion work;
  363. spinlock_t auto_pm_lock;
  364. bool auto_pm_enabled;
  365. struct {
  366. u8 status;
  367. } ack;
  368. } mb2_transfer;
  369. /*
  370. * mb3_transfer - state needed for mailbox 3 communication.
  371. * @lock: The request lock.
  372. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  373. * @sysclk_work: Work structure used for sysclk requests.
  374. */
  375. static struct {
  376. spinlock_t lock;
  377. struct mutex sysclk_lock;
  378. struct completion sysclk_work;
  379. } mb3_transfer;
  380. /*
  381. * mb4_transfer - state needed for mailbox 4 communication.
  382. * @lock: The transaction lock.
  383. * @work: The transaction completion structure.
  384. */
  385. static struct {
  386. struct mutex lock;
  387. struct completion work;
  388. } mb4_transfer;
  389. /*
  390. * mb5_transfer - state needed for mailbox 5 communication.
  391. * @lock: The transaction lock.
  392. * @work: The transaction completion structure.
  393. * @ack: Reply ("acknowledge") data.
  394. */
  395. static struct {
  396. struct mutex lock;
  397. struct completion work;
  398. struct {
  399. u8 status;
  400. u8 value;
  401. } ack;
  402. } mb5_transfer;
  403. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  404. /* Spinlocks */
  405. static DEFINE_SPINLOCK(prcmu_lock);
  406. static DEFINE_SPINLOCK(clkout_lock);
  407. /* Global var to runtime determine TCDM base for v2 or v1 */
  408. static __iomem void *tcdm_base;
  409. static __iomem void *prcmu_base;
  410. struct clk_mgt {
  411. u32 offset;
  412. u32 pllsw;
  413. int branch;
  414. bool clk38div;
  415. };
  416. enum {
  417. PLL_RAW,
  418. PLL_FIX,
  419. PLL_DIV
  420. };
  421. static DEFINE_SPINLOCK(clk_mgt_lock);
  422. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  423. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  424. static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  425. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  426. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  431. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  432. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  433. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  434. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  435. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  436. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  437. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  438. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  439. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  440. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  441. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  442. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  443. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  444. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  445. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  446. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  447. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  448. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  449. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  450. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  451. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  452. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  453. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  454. };
  455. struct dsiclk {
  456. u32 divsel_mask;
  457. u32 divsel_shift;
  458. u32 divsel;
  459. };
  460. static struct dsiclk dsiclk[2] = {
  461. {
  462. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  463. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  464. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  465. },
  466. {
  467. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  468. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  469. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  470. }
  471. };
  472. struct dsiescclk {
  473. u32 en;
  474. u32 div_mask;
  475. u32 div_shift;
  476. };
  477. static struct dsiescclk dsiescclk[3] = {
  478. {
  479. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  480. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  481. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  482. },
  483. {
  484. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  485. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  486. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  487. },
  488. {
  489. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  490. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  491. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  492. }
  493. };
  494. /*
  495. * Used by MCDE to setup all necessary PRCMU registers
  496. */
  497. #define PRCMU_RESET_DSIPLL 0x00004000
  498. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  499. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  500. #define PRCMU_CLK_PLL_SW_SHIFT 5
  501. #define PRCMU_CLK_38 (1 << 9)
  502. #define PRCMU_CLK_38_SRC (1 << 10)
  503. #define PRCMU_CLK_38_DIV (1 << 11)
  504. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  505. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  506. /* DPI 50000000 Hz */
  507. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  508. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  509. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  510. /* D=101, N=1, R=4, SELDIV2=0 */
  511. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  512. #define PRCMU_ENABLE_PLLDSI 0x00000001
  513. #define PRCMU_DISABLE_PLLDSI 0x00000000
  514. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  515. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  516. /* ESC clk, div0=1, div1=1, div2=3 */
  517. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  518. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  519. #define PRCMU_DSI_RESET_SW 0x00000007
  520. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  521. int db8500_prcmu_enable_dsipll(void)
  522. {
  523. int i;
  524. /* Clear DSIPLL_RESETN */
  525. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  526. /* Unclamp DSIPLL in/out */
  527. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  528. /* Set DSI PLL FREQ */
  529. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  530. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  531. /* Enable Escape clocks */
  532. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  533. /* Start DSI PLL */
  534. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  535. /* Reset DSI PLL */
  536. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  537. for (i = 0; i < 10; i++) {
  538. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  539. == PRCMU_PLLDSI_LOCKP_LOCKED)
  540. break;
  541. udelay(100);
  542. }
  543. /* Set DSIPLL_RESETN */
  544. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  545. return 0;
  546. }
  547. int db8500_prcmu_disable_dsipll(void)
  548. {
  549. /* Disable dsi pll */
  550. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  551. /* Disable escapeclock */
  552. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  553. return 0;
  554. }
  555. int db8500_prcmu_set_display_clocks(void)
  556. {
  557. unsigned long flags;
  558. spin_lock_irqsave(&clk_mgt_lock, flags);
  559. /* Grab the HW semaphore. */
  560. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  561. cpu_relax();
  562. writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
  563. writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
  564. writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
  565. /* Release the HW semaphore. */
  566. writel(0, PRCM_SEM);
  567. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  568. return 0;
  569. }
  570. u32 db8500_prcmu_read(unsigned int reg)
  571. {
  572. return readl(prcmu_base + reg);
  573. }
  574. void db8500_prcmu_write(unsigned int reg, u32 value)
  575. {
  576. unsigned long flags;
  577. spin_lock_irqsave(&prcmu_lock, flags);
  578. writel(value, (prcmu_base + reg));
  579. spin_unlock_irqrestore(&prcmu_lock, flags);
  580. }
  581. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  582. {
  583. u32 val;
  584. unsigned long flags;
  585. spin_lock_irqsave(&prcmu_lock, flags);
  586. val = readl(prcmu_base + reg);
  587. val = ((val & ~mask) | (value & mask));
  588. writel(val, (prcmu_base + reg));
  589. spin_unlock_irqrestore(&prcmu_lock, flags);
  590. }
  591. struct prcmu_fw_version *prcmu_get_fw_version(void)
  592. {
  593. return fw_info.valid ? &fw_info.version : NULL;
  594. }
  595. bool prcmu_has_arm_maxopp(void)
  596. {
  597. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  598. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  599. }
  600. /**
  601. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  602. * @val: Value to be set, i.e. transition requested
  603. * Returns: 0 on success, -EINVAL on invalid argument
  604. *
  605. * This function is used to run the following power state sequences -
  606. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  607. */
  608. int prcmu_set_rc_a2p(enum romcode_write val)
  609. {
  610. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  611. return -EINVAL;
  612. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  613. return 0;
  614. }
  615. /**
  616. * prcmu_get_rc_p2a - This function is used to get power state sequences
  617. * Returns: the power transition that has last happened
  618. *
  619. * This function can return the following transitions-
  620. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  621. */
  622. enum romcode_read prcmu_get_rc_p2a(void)
  623. {
  624. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  625. }
  626. /**
  627. * prcmu_get_current_mode - Return the current XP70 power mode
  628. * Returns: Returns the current AP(ARM) power mode: init,
  629. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  630. */
  631. enum ap_pwrst prcmu_get_xp70_current_state(void)
  632. {
  633. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  634. }
  635. /**
  636. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  637. * @clkout: The CLKOUT number (0 or 1).
  638. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  639. * @div: The divider to be applied.
  640. *
  641. * Configures one of the programmable clock outputs (CLKOUTs).
  642. * @div should be in the range [1,63] to request a configuration, or 0 to
  643. * inform that the configuration is no longer requested.
  644. */
  645. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  646. {
  647. static int requests[2];
  648. int r = 0;
  649. unsigned long flags;
  650. u32 val;
  651. u32 bits;
  652. u32 mask;
  653. u32 div_mask;
  654. BUG_ON(clkout > 1);
  655. BUG_ON(div > 63);
  656. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  657. if (!div && !requests[clkout])
  658. return -EINVAL;
  659. if (clkout == 0) {
  660. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  661. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  662. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  663. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  664. } else {
  665. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  666. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  667. PRCM_CLKOCR_CLK1TYPE);
  668. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  669. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  670. }
  671. bits &= mask;
  672. spin_lock_irqsave(&clkout_lock, flags);
  673. val = readl(PRCM_CLKOCR);
  674. if (val & div_mask) {
  675. if (div) {
  676. if ((val & mask) != bits) {
  677. r = -EBUSY;
  678. goto unlock_and_return;
  679. }
  680. } else {
  681. if ((val & mask & ~div_mask) != bits) {
  682. r = -EINVAL;
  683. goto unlock_and_return;
  684. }
  685. }
  686. }
  687. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  688. requests[clkout] += (div ? 1 : -1);
  689. unlock_and_return:
  690. spin_unlock_irqrestore(&clkout_lock, flags);
  691. return r;
  692. }
  693. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  694. {
  695. unsigned long flags;
  696. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  697. spin_lock_irqsave(&mb0_transfer.lock, flags);
  698. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  699. cpu_relax();
  700. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  701. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  702. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  703. writeb((keep_ulp_clk ? 1 : 0),
  704. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  705. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  706. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  707. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  708. return 0;
  709. }
  710. u8 db8500_prcmu_get_power_state_result(void)
  711. {
  712. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  713. }
  714. /* This function should only be called while mb0_transfer.lock is held. */
  715. static void config_wakeups(void)
  716. {
  717. const u8 header[2] = {
  718. MB0H_CONFIG_WAKEUPS_EXE,
  719. MB0H_CONFIG_WAKEUPS_SLEEP
  720. };
  721. static u32 last_dbb_events;
  722. static u32 last_abb_events;
  723. u32 dbb_events;
  724. u32 abb_events;
  725. unsigned int i;
  726. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  727. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  728. abb_events = mb0_transfer.req.abb_events;
  729. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  730. return;
  731. for (i = 0; i < 2; i++) {
  732. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  733. cpu_relax();
  734. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  735. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  736. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  737. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  738. }
  739. last_dbb_events = dbb_events;
  740. last_abb_events = abb_events;
  741. }
  742. void db8500_prcmu_enable_wakeups(u32 wakeups)
  743. {
  744. unsigned long flags;
  745. u32 bits;
  746. int i;
  747. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  748. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  749. if (wakeups & BIT(i))
  750. bits |= prcmu_wakeup_bit[i];
  751. }
  752. spin_lock_irqsave(&mb0_transfer.lock, flags);
  753. mb0_transfer.req.dbb_wakeups = bits;
  754. config_wakeups();
  755. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  756. }
  757. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  758. {
  759. unsigned long flags;
  760. spin_lock_irqsave(&mb0_transfer.lock, flags);
  761. mb0_transfer.req.abb_events = abb_events;
  762. config_wakeups();
  763. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  764. }
  765. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  766. {
  767. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  768. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  769. else
  770. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  771. }
  772. /**
  773. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  774. * @opp: The new ARM operating point to which transition is to be made
  775. * Returns: 0 on success, non-zero on failure
  776. *
  777. * This function sets the the operating point of the ARM.
  778. */
  779. int db8500_prcmu_set_arm_opp(u8 opp)
  780. {
  781. int r;
  782. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  783. return -EINVAL;
  784. r = 0;
  785. mutex_lock(&mb1_transfer.lock);
  786. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  787. cpu_relax();
  788. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  789. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  790. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  791. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  792. wait_for_completion(&mb1_transfer.work);
  793. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  794. (mb1_transfer.ack.arm_opp != opp))
  795. r = -EIO;
  796. mutex_unlock(&mb1_transfer.lock);
  797. return r;
  798. }
  799. /**
  800. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  801. *
  802. * Returns: the current ARM OPP
  803. */
  804. int db8500_prcmu_get_arm_opp(void)
  805. {
  806. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  807. }
  808. /**
  809. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  810. *
  811. * Returns: the current DDR OPP
  812. */
  813. int db8500_prcmu_get_ddr_opp(void)
  814. {
  815. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  816. }
  817. /**
  818. * db8500_set_ddr_opp - set the appropriate DDR OPP
  819. * @opp: The new DDR operating point to which transition is to be made
  820. * Returns: 0 on success, non-zero on failure
  821. *
  822. * This function sets the operating point of the DDR.
  823. */
  824. static bool enable_set_ddr_opp;
  825. int db8500_prcmu_set_ddr_opp(u8 opp)
  826. {
  827. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  828. return -EINVAL;
  829. /* Changing the DDR OPP can hang the hardware pre-v21 */
  830. if (enable_set_ddr_opp)
  831. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  832. return 0;
  833. }
  834. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  835. static void request_even_slower_clocks(bool enable)
  836. {
  837. u32 clock_reg[] = {
  838. PRCM_ACLK_MGT,
  839. PRCM_DMACLK_MGT
  840. };
  841. unsigned long flags;
  842. unsigned int i;
  843. spin_lock_irqsave(&clk_mgt_lock, flags);
  844. /* Grab the HW semaphore. */
  845. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  846. cpu_relax();
  847. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  848. u32 val;
  849. u32 div;
  850. val = readl(prcmu_base + clock_reg[i]);
  851. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  852. if (enable) {
  853. if ((div <= 1) || (div > 15)) {
  854. pr_err("prcmu: Bad clock divider %d in %s\n",
  855. div, __func__);
  856. goto unlock_and_return;
  857. }
  858. div <<= 1;
  859. } else {
  860. if (div <= 2)
  861. goto unlock_and_return;
  862. div >>= 1;
  863. }
  864. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  865. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  866. writel(val, prcmu_base + clock_reg[i]);
  867. }
  868. unlock_and_return:
  869. /* Release the HW semaphore. */
  870. writel(0, PRCM_SEM);
  871. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  872. }
  873. /**
  874. * db8500_set_ape_opp - set the appropriate APE OPP
  875. * @opp: The new APE operating point to which transition is to be made
  876. * Returns: 0 on success, non-zero on failure
  877. *
  878. * This function sets the operating point of the APE.
  879. */
  880. int db8500_prcmu_set_ape_opp(u8 opp)
  881. {
  882. int r = 0;
  883. if (opp == mb1_transfer.ape_opp)
  884. return 0;
  885. mutex_lock(&mb1_transfer.lock);
  886. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  887. request_even_slower_clocks(false);
  888. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  889. goto skip_message;
  890. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  891. cpu_relax();
  892. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  893. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  894. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  895. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  896. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  897. wait_for_completion(&mb1_transfer.work);
  898. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  899. (mb1_transfer.ack.ape_opp != opp))
  900. r = -EIO;
  901. skip_message:
  902. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  903. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  904. request_even_slower_clocks(true);
  905. if (!r)
  906. mb1_transfer.ape_opp = opp;
  907. mutex_unlock(&mb1_transfer.lock);
  908. return r;
  909. }
  910. /**
  911. * db8500_prcmu_get_ape_opp - get the current APE OPP
  912. *
  913. * Returns: the current APE OPP
  914. */
  915. int db8500_prcmu_get_ape_opp(void)
  916. {
  917. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  918. }
  919. /**
  920. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  921. * @enable: true to request the higher voltage, false to drop a request.
  922. *
  923. * Calls to this function to enable and disable requests must be balanced.
  924. */
  925. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  926. {
  927. int r = 0;
  928. u8 header;
  929. static unsigned int requests;
  930. mutex_lock(&mb1_transfer.lock);
  931. if (enable) {
  932. if (0 != requests++)
  933. goto unlock_and_return;
  934. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  935. } else {
  936. if (requests == 0) {
  937. r = -EIO;
  938. goto unlock_and_return;
  939. } else if (1 != requests--) {
  940. goto unlock_and_return;
  941. }
  942. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  943. }
  944. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  945. cpu_relax();
  946. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  947. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  948. wait_for_completion(&mb1_transfer.work);
  949. if ((mb1_transfer.ack.header != header) ||
  950. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  951. r = -EIO;
  952. unlock_and_return:
  953. mutex_unlock(&mb1_transfer.lock);
  954. return r;
  955. }
  956. /**
  957. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  958. *
  959. * This function releases the power state requirements of a USB wakeup.
  960. */
  961. int prcmu_release_usb_wakeup_state(void)
  962. {
  963. int r = 0;
  964. mutex_lock(&mb1_transfer.lock);
  965. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  966. cpu_relax();
  967. writeb(MB1H_RELEASE_USB_WAKEUP,
  968. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  969. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  970. wait_for_completion(&mb1_transfer.work);
  971. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  972. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  973. r = -EIO;
  974. mutex_unlock(&mb1_transfer.lock);
  975. return r;
  976. }
  977. static int request_pll(u8 clock, bool enable)
  978. {
  979. int r = 0;
  980. if (clock == PRCMU_PLLSOC0)
  981. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  982. else if (clock == PRCMU_PLLSOC1)
  983. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  984. else
  985. return -EINVAL;
  986. mutex_lock(&mb1_transfer.lock);
  987. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  988. cpu_relax();
  989. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  990. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  991. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  992. wait_for_completion(&mb1_transfer.work);
  993. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  994. r = -EIO;
  995. mutex_unlock(&mb1_transfer.lock);
  996. return r;
  997. }
  998. /**
  999. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1000. * @epod_id: The EPOD to set
  1001. * @epod_state: The new EPOD state
  1002. *
  1003. * This function sets the state of a EPOD (power domain). It may not be called
  1004. * from interrupt context.
  1005. */
  1006. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1007. {
  1008. int r = 0;
  1009. bool ram_retention = false;
  1010. int i;
  1011. /* check argument */
  1012. BUG_ON(epod_id >= NUM_EPOD_ID);
  1013. /* set flag if retention is possible */
  1014. switch (epod_id) {
  1015. case EPOD_ID_SVAMMDSP:
  1016. case EPOD_ID_SIAMMDSP:
  1017. case EPOD_ID_ESRAM12:
  1018. case EPOD_ID_ESRAM34:
  1019. ram_retention = true;
  1020. break;
  1021. }
  1022. /* check argument */
  1023. BUG_ON(epod_state > EPOD_STATE_ON);
  1024. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1025. /* get lock */
  1026. mutex_lock(&mb2_transfer.lock);
  1027. /* wait for mailbox */
  1028. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1029. cpu_relax();
  1030. /* fill in mailbox */
  1031. for (i = 0; i < NUM_EPOD_ID; i++)
  1032. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1033. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1034. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1035. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1036. /*
  1037. * The current firmware version does not handle errors correctly,
  1038. * and we cannot recover if there is an error.
  1039. * This is expected to change when the firmware is updated.
  1040. */
  1041. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1042. msecs_to_jiffies(20000))) {
  1043. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1044. __func__);
  1045. r = -EIO;
  1046. goto unlock_and_return;
  1047. }
  1048. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1049. r = -EIO;
  1050. unlock_and_return:
  1051. mutex_unlock(&mb2_transfer.lock);
  1052. return r;
  1053. }
  1054. /**
  1055. * prcmu_configure_auto_pm - Configure autonomous power management.
  1056. * @sleep: Configuration for ApSleep.
  1057. * @idle: Configuration for ApIdle.
  1058. */
  1059. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1060. struct prcmu_auto_pm_config *idle)
  1061. {
  1062. u32 sleep_cfg;
  1063. u32 idle_cfg;
  1064. unsigned long flags;
  1065. BUG_ON((sleep == NULL) || (idle == NULL));
  1066. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1067. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1068. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1069. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1070. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1071. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1072. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1073. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1074. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1075. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1076. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1077. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1078. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1079. /*
  1080. * The autonomous power management configuration is done through
  1081. * fields in mailbox 2, but these fields are only used as shared
  1082. * variables - i.e. there is no need to send a message.
  1083. */
  1084. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1085. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1086. mb2_transfer.auto_pm_enabled =
  1087. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1088. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1089. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1090. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1091. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1092. }
  1093. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1094. bool prcmu_is_auto_pm_enabled(void)
  1095. {
  1096. return mb2_transfer.auto_pm_enabled;
  1097. }
  1098. static int request_sysclk(bool enable)
  1099. {
  1100. int r;
  1101. unsigned long flags;
  1102. r = 0;
  1103. mutex_lock(&mb3_transfer.sysclk_lock);
  1104. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1105. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1106. cpu_relax();
  1107. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1108. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1109. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1110. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1111. /*
  1112. * The firmware only sends an ACK if we want to enable the
  1113. * SysClk, and it succeeds.
  1114. */
  1115. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1116. msecs_to_jiffies(20000))) {
  1117. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1118. __func__);
  1119. r = -EIO;
  1120. }
  1121. mutex_unlock(&mb3_transfer.sysclk_lock);
  1122. return r;
  1123. }
  1124. static int request_timclk(bool enable)
  1125. {
  1126. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1127. if (!enable)
  1128. val |= PRCM_TCR_STOP_TIMERS;
  1129. writel(val, PRCM_TCR);
  1130. return 0;
  1131. }
  1132. static int request_clock(u8 clock, bool enable)
  1133. {
  1134. u32 val;
  1135. unsigned long flags;
  1136. spin_lock_irqsave(&clk_mgt_lock, flags);
  1137. /* Grab the HW semaphore. */
  1138. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1139. cpu_relax();
  1140. val = readl(prcmu_base + clk_mgt[clock].offset);
  1141. if (enable) {
  1142. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1143. } else {
  1144. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1145. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1146. }
  1147. writel(val, prcmu_base + clk_mgt[clock].offset);
  1148. /* Release the HW semaphore. */
  1149. writel(0, PRCM_SEM);
  1150. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1151. return 0;
  1152. }
  1153. static int request_sga_clock(u8 clock, bool enable)
  1154. {
  1155. u32 val;
  1156. int ret;
  1157. if (enable) {
  1158. val = readl(PRCM_CGATING_BYPASS);
  1159. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1160. }
  1161. ret = request_clock(clock, enable);
  1162. if (!ret && !enable) {
  1163. val = readl(PRCM_CGATING_BYPASS);
  1164. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1165. }
  1166. return ret;
  1167. }
  1168. static inline bool plldsi_locked(void)
  1169. {
  1170. return (readl(PRCM_PLLDSI_LOCKP) &
  1171. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1172. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1173. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1174. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1175. }
  1176. static int request_plldsi(bool enable)
  1177. {
  1178. int r = 0;
  1179. u32 val;
  1180. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1181. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1182. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1183. val = readl(PRCM_PLLDSI_ENABLE);
  1184. if (enable)
  1185. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1186. else
  1187. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1188. writel(val, PRCM_PLLDSI_ENABLE);
  1189. if (enable) {
  1190. unsigned int i;
  1191. bool locked = plldsi_locked();
  1192. for (i = 10; !locked && (i > 0); --i) {
  1193. udelay(100);
  1194. locked = plldsi_locked();
  1195. }
  1196. if (locked) {
  1197. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1198. PRCM_APE_RESETN_SET);
  1199. } else {
  1200. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1201. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1202. PRCM_MMIP_LS_CLAMP_SET);
  1203. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1204. writel(val, PRCM_PLLDSI_ENABLE);
  1205. r = -EAGAIN;
  1206. }
  1207. } else {
  1208. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1209. }
  1210. return r;
  1211. }
  1212. static int request_dsiclk(u8 n, bool enable)
  1213. {
  1214. u32 val;
  1215. val = readl(PRCM_DSI_PLLOUT_SEL);
  1216. val &= ~dsiclk[n].divsel_mask;
  1217. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1218. dsiclk[n].divsel_shift);
  1219. writel(val, PRCM_DSI_PLLOUT_SEL);
  1220. return 0;
  1221. }
  1222. static int request_dsiescclk(u8 n, bool enable)
  1223. {
  1224. u32 val;
  1225. val = readl(PRCM_DSITVCLK_DIV);
  1226. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1227. writel(val, PRCM_DSITVCLK_DIV);
  1228. return 0;
  1229. }
  1230. /**
  1231. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1232. * @clock: The clock for which the request is made.
  1233. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1234. *
  1235. * This function should only be used by the clock implementation.
  1236. * Do not use it from any other place!
  1237. */
  1238. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1239. {
  1240. if (clock == PRCMU_SGACLK)
  1241. return request_sga_clock(clock, enable);
  1242. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1243. return request_clock(clock, enable);
  1244. else if (clock == PRCMU_TIMCLK)
  1245. return request_timclk(enable);
  1246. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1247. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1248. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1249. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1250. else if (clock == PRCMU_PLLDSI)
  1251. return request_plldsi(enable);
  1252. else if (clock == PRCMU_SYSCLK)
  1253. return request_sysclk(enable);
  1254. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1255. return request_pll(clock, enable);
  1256. else
  1257. return -EINVAL;
  1258. }
  1259. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1260. int branch)
  1261. {
  1262. u64 rate;
  1263. u32 val;
  1264. u32 d;
  1265. u32 div = 1;
  1266. val = readl(reg);
  1267. rate = src_rate;
  1268. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1269. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1270. if (d > 1)
  1271. div *= d;
  1272. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1273. if (d > 1)
  1274. div *= d;
  1275. if (val & PRCM_PLL_FREQ_SELDIV2)
  1276. div *= 2;
  1277. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1278. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1279. ((reg == PRCM_PLLSOC0_FREQ) ||
  1280. (reg == PRCM_PLLARM_FREQ) ||
  1281. (reg == PRCM_PLLDDR_FREQ))))
  1282. div *= 2;
  1283. (void)do_div(rate, div);
  1284. return (unsigned long)rate;
  1285. }
  1286. #define ROOT_CLOCK_RATE 38400000
  1287. static unsigned long clock_rate(u8 clock)
  1288. {
  1289. u32 val;
  1290. u32 pllsw;
  1291. unsigned long rate = ROOT_CLOCK_RATE;
  1292. val = readl(prcmu_base + clk_mgt[clock].offset);
  1293. if (val & PRCM_CLK_MGT_CLK38) {
  1294. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1295. rate /= 2;
  1296. return rate;
  1297. }
  1298. val |= clk_mgt[clock].pllsw;
  1299. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1300. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1301. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1302. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1303. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1304. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1305. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1306. else
  1307. return 0;
  1308. if ((clock == PRCMU_SGACLK) &&
  1309. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1310. u64 r = (rate * 10);
  1311. (void)do_div(r, 25);
  1312. return (unsigned long)r;
  1313. }
  1314. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1315. if (val)
  1316. return rate / val;
  1317. else
  1318. return 0;
  1319. }
  1320. static unsigned long armss_rate(void)
  1321. {
  1322. u32 r;
  1323. unsigned long rate;
  1324. r = readl(PRCM_ARM_CHGCLKREQ);
  1325. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1326. /* External ARMCLKFIX clock */
  1327. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1328. /* Check PRCM_ARM_CHGCLKREQ divider */
  1329. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1330. rate /= 2;
  1331. /* Check PRCM_ARMCLKFIX_MGT divider */
  1332. r = readl(PRCM_ARMCLKFIX_MGT);
  1333. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1334. rate /= r;
  1335. } else {/* ARM PLL */
  1336. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1337. }
  1338. return rate;
  1339. }
  1340. static unsigned long dsiclk_rate(u8 n)
  1341. {
  1342. u32 divsel;
  1343. u32 div = 1;
  1344. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1345. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1346. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1347. divsel = dsiclk[n].divsel;
  1348. else
  1349. dsiclk[n].divsel = divsel;
  1350. switch (divsel) {
  1351. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1352. div *= 2;
  1353. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1354. div *= 2;
  1355. case PRCM_DSI_PLLOUT_SEL_PHI:
  1356. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1357. PLL_RAW) / div;
  1358. default:
  1359. return 0;
  1360. }
  1361. }
  1362. static unsigned long dsiescclk_rate(u8 n)
  1363. {
  1364. u32 div;
  1365. div = readl(PRCM_DSITVCLK_DIV);
  1366. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1367. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1368. }
  1369. unsigned long prcmu_clock_rate(u8 clock)
  1370. {
  1371. if (clock < PRCMU_NUM_REG_CLOCKS)
  1372. return clock_rate(clock);
  1373. else if (clock == PRCMU_TIMCLK)
  1374. return ROOT_CLOCK_RATE / 16;
  1375. else if (clock == PRCMU_SYSCLK)
  1376. return ROOT_CLOCK_RATE;
  1377. else if (clock == PRCMU_PLLSOC0)
  1378. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1379. else if (clock == PRCMU_PLLSOC1)
  1380. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1381. else if (clock == PRCMU_ARMSS)
  1382. return armss_rate();
  1383. else if (clock == PRCMU_PLLDDR)
  1384. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1385. else if (clock == PRCMU_PLLDSI)
  1386. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1387. PLL_RAW);
  1388. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1389. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1390. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1391. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1392. else
  1393. return 0;
  1394. }
  1395. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1396. {
  1397. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1398. return ROOT_CLOCK_RATE;
  1399. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1400. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1401. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1402. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1403. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1404. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1405. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1406. else
  1407. return 0;
  1408. }
  1409. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1410. {
  1411. u32 div;
  1412. div = (src_rate / rate);
  1413. if (div == 0)
  1414. return 1;
  1415. if (rate < (src_rate / div))
  1416. div++;
  1417. return div;
  1418. }
  1419. static long round_clock_rate(u8 clock, unsigned long rate)
  1420. {
  1421. u32 val;
  1422. u32 div;
  1423. unsigned long src_rate;
  1424. long rounded_rate;
  1425. val = readl(prcmu_base + clk_mgt[clock].offset);
  1426. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1427. clk_mgt[clock].branch);
  1428. div = clock_divider(src_rate, rate);
  1429. if (val & PRCM_CLK_MGT_CLK38) {
  1430. if (clk_mgt[clock].clk38div) {
  1431. if (div > 2)
  1432. div = 2;
  1433. } else {
  1434. div = 1;
  1435. }
  1436. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1437. u64 r = (src_rate * 10);
  1438. (void)do_div(r, 25);
  1439. if (r <= rate)
  1440. return (unsigned long)r;
  1441. }
  1442. rounded_rate = (src_rate / min(div, (u32)31));
  1443. return rounded_rate;
  1444. }
  1445. /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
  1446. static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
  1447. { .frequency = 200000, .driver_data = ARM_EXTCLK,},
  1448. { .frequency = 400000, .driver_data = ARM_50_OPP,},
  1449. { .frequency = 800000, .driver_data = ARM_100_OPP,},
  1450. { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
  1451. { .frequency = CPUFREQ_TABLE_END,},
  1452. };
  1453. static long round_armss_rate(unsigned long rate)
  1454. {
  1455. struct cpufreq_frequency_table *pos;
  1456. long freq = 0;
  1457. /* cpufreq table frequencies is in KHz. */
  1458. rate = rate / 1000;
  1459. /* Find the corresponding arm opp from the cpufreq table. */
  1460. cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
  1461. freq = pos->frequency;
  1462. if (freq == rate)
  1463. break;
  1464. }
  1465. /* Return the last valid value, even if a match was not found. */
  1466. return freq * 1000;
  1467. }
  1468. #define MIN_PLL_VCO_RATE 600000000ULL
  1469. #define MAX_PLL_VCO_RATE 1680640000ULL
  1470. static long round_plldsi_rate(unsigned long rate)
  1471. {
  1472. long rounded_rate = 0;
  1473. unsigned long src_rate;
  1474. unsigned long rem;
  1475. u32 r;
  1476. src_rate = clock_rate(PRCMU_HDMICLK);
  1477. rem = rate;
  1478. for (r = 7; (rem > 0) && (r > 0); r--) {
  1479. u64 d;
  1480. d = (r * rate);
  1481. (void)do_div(d, src_rate);
  1482. if (d < 6)
  1483. d = 6;
  1484. else if (d > 255)
  1485. d = 255;
  1486. d *= src_rate;
  1487. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1488. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1489. continue;
  1490. (void)do_div(d, r);
  1491. if (rate < d) {
  1492. if (rounded_rate == 0)
  1493. rounded_rate = (long)d;
  1494. break;
  1495. }
  1496. if ((rate - d) < rem) {
  1497. rem = (rate - d);
  1498. rounded_rate = (long)d;
  1499. }
  1500. }
  1501. return rounded_rate;
  1502. }
  1503. static long round_dsiclk_rate(unsigned long rate)
  1504. {
  1505. u32 div;
  1506. unsigned long src_rate;
  1507. long rounded_rate;
  1508. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1509. PLL_RAW);
  1510. div = clock_divider(src_rate, rate);
  1511. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1512. return rounded_rate;
  1513. }
  1514. static long round_dsiescclk_rate(unsigned long rate)
  1515. {
  1516. u32 div;
  1517. unsigned long src_rate;
  1518. long rounded_rate;
  1519. src_rate = clock_rate(PRCMU_TVCLK);
  1520. div = clock_divider(src_rate, rate);
  1521. rounded_rate = (src_rate / min(div, (u32)255));
  1522. return rounded_rate;
  1523. }
  1524. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1525. {
  1526. if (clock < PRCMU_NUM_REG_CLOCKS)
  1527. return round_clock_rate(clock, rate);
  1528. else if (clock == PRCMU_ARMSS)
  1529. return round_armss_rate(rate);
  1530. else if (clock == PRCMU_PLLDSI)
  1531. return round_plldsi_rate(rate);
  1532. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1533. return round_dsiclk_rate(rate);
  1534. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1535. return round_dsiescclk_rate(rate);
  1536. else
  1537. return (long)prcmu_clock_rate(clock);
  1538. }
  1539. static void set_clock_rate(u8 clock, unsigned long rate)
  1540. {
  1541. u32 val;
  1542. u32 div;
  1543. unsigned long src_rate;
  1544. unsigned long flags;
  1545. spin_lock_irqsave(&clk_mgt_lock, flags);
  1546. /* Grab the HW semaphore. */
  1547. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1548. cpu_relax();
  1549. val = readl(prcmu_base + clk_mgt[clock].offset);
  1550. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1551. clk_mgt[clock].branch);
  1552. div = clock_divider(src_rate, rate);
  1553. if (val & PRCM_CLK_MGT_CLK38) {
  1554. if (clk_mgt[clock].clk38div) {
  1555. if (div > 1)
  1556. val |= PRCM_CLK_MGT_CLK38DIV;
  1557. else
  1558. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1559. }
  1560. } else if (clock == PRCMU_SGACLK) {
  1561. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1562. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1563. if (div == 3) {
  1564. u64 r = (src_rate * 10);
  1565. (void)do_div(r, 25);
  1566. if (r <= rate) {
  1567. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1568. div = 0;
  1569. }
  1570. }
  1571. val |= min(div, (u32)31);
  1572. } else {
  1573. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1574. val |= min(div, (u32)31);
  1575. }
  1576. writel(val, prcmu_base + clk_mgt[clock].offset);
  1577. /* Release the HW semaphore. */
  1578. writel(0, PRCM_SEM);
  1579. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1580. }
  1581. static int set_armss_rate(unsigned long rate)
  1582. {
  1583. struct cpufreq_frequency_table *pos;
  1584. /* cpufreq table frequencies is in KHz. */
  1585. rate = rate / 1000;
  1586. /* Find the corresponding arm opp from the cpufreq table. */
  1587. cpufreq_for_each_entry(pos, db8500_cpufreq_table)
  1588. if (pos->frequency == rate)
  1589. break;
  1590. if (pos->frequency != rate)
  1591. return -EINVAL;
  1592. /* Set the new arm opp. */
  1593. return db8500_prcmu_set_arm_opp(pos->driver_data);
  1594. }
  1595. static int set_plldsi_rate(unsigned long rate)
  1596. {
  1597. unsigned long src_rate;
  1598. unsigned long rem;
  1599. u32 pll_freq = 0;
  1600. u32 r;
  1601. src_rate = clock_rate(PRCMU_HDMICLK);
  1602. rem = rate;
  1603. for (r = 7; (rem > 0) && (r > 0); r--) {
  1604. u64 d;
  1605. u64 hwrate;
  1606. d = (r * rate);
  1607. (void)do_div(d, src_rate);
  1608. if (d < 6)
  1609. d = 6;
  1610. else if (d > 255)
  1611. d = 255;
  1612. hwrate = (d * src_rate);
  1613. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1614. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1615. continue;
  1616. (void)do_div(hwrate, r);
  1617. if (rate < hwrate) {
  1618. if (pll_freq == 0)
  1619. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1620. (r << PRCM_PLL_FREQ_R_SHIFT));
  1621. break;
  1622. }
  1623. if ((rate - hwrate) < rem) {
  1624. rem = (rate - hwrate);
  1625. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1626. (r << PRCM_PLL_FREQ_R_SHIFT));
  1627. }
  1628. }
  1629. if (pll_freq == 0)
  1630. return -EINVAL;
  1631. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1632. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1633. return 0;
  1634. }
  1635. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1636. {
  1637. u32 val;
  1638. u32 div;
  1639. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1640. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1641. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1642. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1643. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1644. val = readl(PRCM_DSI_PLLOUT_SEL);
  1645. val &= ~dsiclk[n].divsel_mask;
  1646. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1647. writel(val, PRCM_DSI_PLLOUT_SEL);
  1648. }
  1649. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1650. {
  1651. u32 val;
  1652. u32 div;
  1653. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1654. val = readl(PRCM_DSITVCLK_DIV);
  1655. val &= ~dsiescclk[n].div_mask;
  1656. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1657. writel(val, PRCM_DSITVCLK_DIV);
  1658. }
  1659. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1660. {
  1661. if (clock < PRCMU_NUM_REG_CLOCKS)
  1662. set_clock_rate(clock, rate);
  1663. else if (clock == PRCMU_ARMSS)
  1664. return set_armss_rate(rate);
  1665. else if (clock == PRCMU_PLLDSI)
  1666. return set_plldsi_rate(rate);
  1667. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1668. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1669. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1670. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1671. return 0;
  1672. }
  1673. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1674. {
  1675. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1676. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1677. return -EINVAL;
  1678. mutex_lock(&mb4_transfer.lock);
  1679. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1680. cpu_relax();
  1681. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1682. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1683. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1684. writeb(DDR_PWR_STATE_ON,
  1685. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1686. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1687. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1688. wait_for_completion(&mb4_transfer.work);
  1689. mutex_unlock(&mb4_transfer.lock);
  1690. return 0;
  1691. }
  1692. int db8500_prcmu_config_hotdog(u8 threshold)
  1693. {
  1694. mutex_lock(&mb4_transfer.lock);
  1695. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1696. cpu_relax();
  1697. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1698. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1699. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1700. wait_for_completion(&mb4_transfer.work);
  1701. mutex_unlock(&mb4_transfer.lock);
  1702. return 0;
  1703. }
  1704. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1705. {
  1706. mutex_lock(&mb4_transfer.lock);
  1707. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1708. cpu_relax();
  1709. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1710. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1711. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1712. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1713. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1714. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1715. wait_for_completion(&mb4_transfer.work);
  1716. mutex_unlock(&mb4_transfer.lock);
  1717. return 0;
  1718. }
  1719. EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
  1720. static int config_hot_period(u16 val)
  1721. {
  1722. mutex_lock(&mb4_transfer.lock);
  1723. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1724. cpu_relax();
  1725. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1726. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1727. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1728. wait_for_completion(&mb4_transfer.work);
  1729. mutex_unlock(&mb4_transfer.lock);
  1730. return 0;
  1731. }
  1732. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1733. {
  1734. if (cycles32k == 0xFFFF)
  1735. return -EINVAL;
  1736. return config_hot_period(cycles32k);
  1737. }
  1738. EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
  1739. int db8500_prcmu_stop_temp_sense(void)
  1740. {
  1741. return config_hot_period(0xFFFF);
  1742. }
  1743. EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
  1744. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1745. {
  1746. mutex_lock(&mb4_transfer.lock);
  1747. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1748. cpu_relax();
  1749. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1750. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1751. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1752. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1753. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1754. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1755. wait_for_completion(&mb4_transfer.work);
  1756. mutex_unlock(&mb4_transfer.lock);
  1757. return 0;
  1758. }
  1759. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1760. {
  1761. BUG_ON(num == 0 || num > 0xf);
  1762. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1763. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1764. A9WDOG_AUTO_OFF_DIS);
  1765. }
  1766. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1767. int db8500_prcmu_enable_a9wdog(u8 id)
  1768. {
  1769. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1770. }
  1771. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1772. int db8500_prcmu_disable_a9wdog(u8 id)
  1773. {
  1774. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1775. }
  1776. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1777. int db8500_prcmu_kick_a9wdog(u8 id)
  1778. {
  1779. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1780. }
  1781. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1782. /*
  1783. * timeout is 28 bit, in ms.
  1784. */
  1785. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1786. {
  1787. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1788. (id & A9WDOG_ID_MASK) |
  1789. /*
  1790. * Put the lowest 28 bits of timeout at
  1791. * offset 4. Four first bits are used for id.
  1792. */
  1793. (u8)((timeout << 4) & 0xf0),
  1794. (u8)((timeout >> 4) & 0xff),
  1795. (u8)((timeout >> 12) & 0xff),
  1796. (u8)((timeout >> 20) & 0xff));
  1797. }
  1798. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1799. /**
  1800. * prcmu_abb_read() - Read register value(s) from the ABB.
  1801. * @slave: The I2C slave address.
  1802. * @reg: The (start) register address.
  1803. * @value: The read out value(s).
  1804. * @size: The number of registers to read.
  1805. *
  1806. * Reads register value(s) from the ABB.
  1807. * @size has to be 1 for the current firmware version.
  1808. */
  1809. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1810. {
  1811. int r;
  1812. if (size != 1)
  1813. return -EINVAL;
  1814. mutex_lock(&mb5_transfer.lock);
  1815. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1816. cpu_relax();
  1817. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1818. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1819. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1820. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1821. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1822. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1823. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1824. msecs_to_jiffies(20000))) {
  1825. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1826. __func__);
  1827. r = -EIO;
  1828. } else {
  1829. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1830. }
  1831. if (!r)
  1832. *value = mb5_transfer.ack.value;
  1833. mutex_unlock(&mb5_transfer.lock);
  1834. return r;
  1835. }
  1836. /**
  1837. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1838. * @slave: The I2C slave address.
  1839. * @reg: The (start) register address.
  1840. * @value: The value(s) to write.
  1841. * @mask: The mask(s) to use.
  1842. * @size: The number of registers to write.
  1843. *
  1844. * Writes masked register value(s) to the ABB.
  1845. * For each @value, only the bits set to 1 in the corresponding @mask
  1846. * will be written. The other bits are not changed.
  1847. * @size has to be 1 for the current firmware version.
  1848. */
  1849. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1850. {
  1851. int r;
  1852. if (size != 1)
  1853. return -EINVAL;
  1854. mutex_lock(&mb5_transfer.lock);
  1855. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1856. cpu_relax();
  1857. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1858. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1859. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1860. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1861. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1862. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1863. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1864. msecs_to_jiffies(20000))) {
  1865. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1866. __func__);
  1867. r = -EIO;
  1868. } else {
  1869. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1870. }
  1871. mutex_unlock(&mb5_transfer.lock);
  1872. return r;
  1873. }
  1874. /**
  1875. * prcmu_abb_write() - Write register value(s) to the ABB.
  1876. * @slave: The I2C slave address.
  1877. * @reg: The (start) register address.
  1878. * @value: The value(s) to write.
  1879. * @size: The number of registers to write.
  1880. *
  1881. * Writes register value(s) to the ABB.
  1882. * @size has to be 1 for the current firmware version.
  1883. */
  1884. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1885. {
  1886. u8 mask = ~0;
  1887. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1888. }
  1889. /**
  1890. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1891. */
  1892. int prcmu_ac_wake_req(void)
  1893. {
  1894. u32 val;
  1895. int ret = 0;
  1896. mutex_lock(&mb0_transfer.ac_wake_lock);
  1897. val = readl(PRCM_HOSTACCESS_REQ);
  1898. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1899. goto unlock_and_return;
  1900. atomic_set(&ac_wake_req_state, 1);
  1901. /*
  1902. * Force Modem Wake-up before hostaccess_req ping-pong.
  1903. * It prevents Modem to enter in Sleep while acking the hostaccess
  1904. * request. The 31us delay has been calculated by HWI.
  1905. */
  1906. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1907. writel(val, PRCM_HOSTACCESS_REQ);
  1908. udelay(31);
  1909. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1910. writel(val, PRCM_HOSTACCESS_REQ);
  1911. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1912. msecs_to_jiffies(5000))) {
  1913. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1914. __func__);
  1915. ret = -EFAULT;
  1916. }
  1917. unlock_and_return:
  1918. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1919. return ret;
  1920. }
  1921. /**
  1922. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1923. */
  1924. void prcmu_ac_sleep_req(void)
  1925. {
  1926. u32 val;
  1927. mutex_lock(&mb0_transfer.ac_wake_lock);
  1928. val = readl(PRCM_HOSTACCESS_REQ);
  1929. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1930. goto unlock_and_return;
  1931. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1932. PRCM_HOSTACCESS_REQ);
  1933. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1934. msecs_to_jiffies(5000))) {
  1935. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1936. __func__);
  1937. }
  1938. atomic_set(&ac_wake_req_state, 0);
  1939. unlock_and_return:
  1940. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1941. }
  1942. bool db8500_prcmu_is_ac_wake_requested(void)
  1943. {
  1944. return (atomic_read(&ac_wake_req_state) != 0);
  1945. }
  1946. /**
  1947. * db8500_prcmu_system_reset - System reset
  1948. *
  1949. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1950. * fires interrupt to fw
  1951. */
  1952. void db8500_prcmu_system_reset(u16 reset_code)
  1953. {
  1954. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1955. writel(1, PRCM_APE_SOFTRST);
  1956. }
  1957. /**
  1958. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1959. *
  1960. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1961. * last restart.
  1962. */
  1963. u16 db8500_prcmu_get_reset_code(void)
  1964. {
  1965. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1966. }
  1967. /**
  1968. * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
  1969. */
  1970. void db8500_prcmu_modem_reset(void)
  1971. {
  1972. mutex_lock(&mb1_transfer.lock);
  1973. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1974. cpu_relax();
  1975. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1976. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1977. wait_for_completion(&mb1_transfer.work);
  1978. /*
  1979. * No need to check return from PRCMU as modem should go in reset state
  1980. * This state is already managed by upper layer
  1981. */
  1982. mutex_unlock(&mb1_transfer.lock);
  1983. }
  1984. static void ack_dbb_wakeup(void)
  1985. {
  1986. unsigned long flags;
  1987. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1988. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1989. cpu_relax();
  1990. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1991. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1992. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1993. }
  1994. static inline void print_unknown_header_warning(u8 n, u8 header)
  1995. {
  1996. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  1997. header, n);
  1998. }
  1999. static bool read_mailbox_0(void)
  2000. {
  2001. bool r;
  2002. u32 ev;
  2003. unsigned int n;
  2004. u8 header;
  2005. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  2006. switch (header) {
  2007. case MB0H_WAKEUP_EXE:
  2008. case MB0H_WAKEUP_SLEEP:
  2009. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  2010. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  2011. else
  2012. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  2013. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  2014. complete(&mb0_transfer.ac_wake_work);
  2015. if (ev & WAKEUP_BIT_SYSCLK_OK)
  2016. complete(&mb3_transfer.sysclk_work);
  2017. ev &= mb0_transfer.req.dbb_irqs;
  2018. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  2019. if (ev & prcmu_irq_bit[n])
  2020. generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
  2021. }
  2022. r = true;
  2023. break;
  2024. default:
  2025. print_unknown_header_warning(0, header);
  2026. r = false;
  2027. break;
  2028. }
  2029. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  2030. return r;
  2031. }
  2032. static bool read_mailbox_1(void)
  2033. {
  2034. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  2035. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  2036. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  2037. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  2038. PRCM_ACK_MB1_CURRENT_APE_OPP);
  2039. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  2040. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  2041. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  2042. complete(&mb1_transfer.work);
  2043. return false;
  2044. }
  2045. static bool read_mailbox_2(void)
  2046. {
  2047. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2048. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2049. complete(&mb2_transfer.work);
  2050. return false;
  2051. }
  2052. static bool read_mailbox_3(void)
  2053. {
  2054. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2055. return false;
  2056. }
  2057. static bool read_mailbox_4(void)
  2058. {
  2059. u8 header;
  2060. bool do_complete = true;
  2061. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2062. switch (header) {
  2063. case MB4H_MEM_ST:
  2064. case MB4H_HOTDOG:
  2065. case MB4H_HOTMON:
  2066. case MB4H_HOT_PERIOD:
  2067. case MB4H_A9WDOG_CONF:
  2068. case MB4H_A9WDOG_EN:
  2069. case MB4H_A9WDOG_DIS:
  2070. case MB4H_A9WDOG_LOAD:
  2071. case MB4H_A9WDOG_KICK:
  2072. break;
  2073. default:
  2074. print_unknown_header_warning(4, header);
  2075. do_complete = false;
  2076. break;
  2077. }
  2078. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2079. if (do_complete)
  2080. complete(&mb4_transfer.work);
  2081. return false;
  2082. }
  2083. static bool read_mailbox_5(void)
  2084. {
  2085. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2086. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2087. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2088. complete(&mb5_transfer.work);
  2089. return false;
  2090. }
  2091. static bool read_mailbox_6(void)
  2092. {
  2093. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2094. return false;
  2095. }
  2096. static bool read_mailbox_7(void)
  2097. {
  2098. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2099. return false;
  2100. }
  2101. static bool (* const read_mailbox[NUM_MB])(void) = {
  2102. read_mailbox_0,
  2103. read_mailbox_1,
  2104. read_mailbox_2,
  2105. read_mailbox_3,
  2106. read_mailbox_4,
  2107. read_mailbox_5,
  2108. read_mailbox_6,
  2109. read_mailbox_7
  2110. };
  2111. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2112. {
  2113. u32 bits;
  2114. u8 n;
  2115. irqreturn_t r;
  2116. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2117. if (unlikely(!bits))
  2118. return IRQ_NONE;
  2119. r = IRQ_HANDLED;
  2120. for (n = 0; bits; n++) {
  2121. if (bits & MBOX_BIT(n)) {
  2122. bits -= MBOX_BIT(n);
  2123. if (read_mailbox[n]())
  2124. r = IRQ_WAKE_THREAD;
  2125. }
  2126. }
  2127. return r;
  2128. }
  2129. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2130. {
  2131. ack_dbb_wakeup();
  2132. return IRQ_HANDLED;
  2133. }
  2134. static void prcmu_mask_work(struct work_struct *work)
  2135. {
  2136. unsigned long flags;
  2137. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2138. config_wakeups();
  2139. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2140. }
  2141. static void prcmu_irq_mask(struct irq_data *d)
  2142. {
  2143. unsigned long flags;
  2144. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2145. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2146. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2147. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2148. schedule_work(&mb0_transfer.mask_work);
  2149. }
  2150. static void prcmu_irq_unmask(struct irq_data *d)
  2151. {
  2152. unsigned long flags;
  2153. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2154. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2155. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2156. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2157. schedule_work(&mb0_transfer.mask_work);
  2158. }
  2159. static void noop(struct irq_data *d)
  2160. {
  2161. }
  2162. static struct irq_chip prcmu_irq_chip = {
  2163. .name = "prcmu",
  2164. .irq_disable = prcmu_irq_mask,
  2165. .irq_ack = noop,
  2166. .irq_mask = prcmu_irq_mask,
  2167. .irq_unmask = prcmu_irq_unmask,
  2168. };
  2169. static __init char *fw_project_name(u32 project)
  2170. {
  2171. switch (project) {
  2172. case PRCMU_FW_PROJECT_U8500:
  2173. return "U8500";
  2174. case PRCMU_FW_PROJECT_U8400:
  2175. return "U8400";
  2176. case PRCMU_FW_PROJECT_U9500:
  2177. return "U9500";
  2178. case PRCMU_FW_PROJECT_U8500_MBB:
  2179. return "U8500 MBB";
  2180. case PRCMU_FW_PROJECT_U8500_C1:
  2181. return "U8500 C1";
  2182. case PRCMU_FW_PROJECT_U8500_C2:
  2183. return "U8500 C2";
  2184. case PRCMU_FW_PROJECT_U8500_C3:
  2185. return "U8500 C3";
  2186. case PRCMU_FW_PROJECT_U8500_C4:
  2187. return "U8500 C4";
  2188. case PRCMU_FW_PROJECT_U9500_MBL:
  2189. return "U9500 MBL";
  2190. case PRCMU_FW_PROJECT_U8500_MBL:
  2191. return "U8500 MBL";
  2192. case PRCMU_FW_PROJECT_U8500_MBL2:
  2193. return "U8500 MBL2";
  2194. case PRCMU_FW_PROJECT_U8520:
  2195. return "U8520 MBL";
  2196. case PRCMU_FW_PROJECT_U8420:
  2197. return "U8420";
  2198. case PRCMU_FW_PROJECT_U9540:
  2199. return "U9540";
  2200. case PRCMU_FW_PROJECT_A9420:
  2201. return "A9420";
  2202. case PRCMU_FW_PROJECT_L8540:
  2203. return "L8540";
  2204. case PRCMU_FW_PROJECT_L8580:
  2205. return "L8580";
  2206. default:
  2207. return "Unknown";
  2208. }
  2209. }
  2210. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2211. irq_hw_number_t hwirq)
  2212. {
  2213. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2214. handle_simple_irq);
  2215. return 0;
  2216. }
  2217. static const struct irq_domain_ops db8500_irq_ops = {
  2218. .map = db8500_irq_map,
  2219. .xlate = irq_domain_xlate_twocell,
  2220. };
  2221. static int db8500_irq_init(struct device_node *np)
  2222. {
  2223. int i;
  2224. db8500_irq_domain = irq_domain_add_simple(
  2225. np, NUM_PRCMU_WAKEUPS, 0,
  2226. &db8500_irq_ops, NULL);
  2227. if (!db8500_irq_domain) {
  2228. pr_err("Failed to create irqdomain\n");
  2229. return -ENOSYS;
  2230. }
  2231. /* All wakeups will be used, so create mappings for all */
  2232. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2233. irq_create_mapping(db8500_irq_domain, i);
  2234. return 0;
  2235. }
  2236. static void dbx500_fw_version_init(struct platform_device *pdev,
  2237. u32 version_offset)
  2238. {
  2239. struct resource *res;
  2240. void __iomem *tcpm_base;
  2241. u32 version;
  2242. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2243. "prcmu-tcpm");
  2244. if (!res) {
  2245. dev_err(&pdev->dev,
  2246. "Error: no prcmu tcpm memory region provided\n");
  2247. return;
  2248. }
  2249. tcpm_base = ioremap(res->start, resource_size(res));
  2250. if (!tcpm_base) {
  2251. dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
  2252. return;
  2253. }
  2254. version = readl(tcpm_base + version_offset);
  2255. fw_info.version.project = (version & 0xFF);
  2256. fw_info.version.api_version = (version >> 8) & 0xFF;
  2257. fw_info.version.func_version = (version >> 16) & 0xFF;
  2258. fw_info.version.errata = (version >> 24) & 0xFF;
  2259. strncpy(fw_info.version.project_name,
  2260. fw_project_name(fw_info.version.project),
  2261. PRCMU_FW_PROJECT_NAME_LEN);
  2262. fw_info.valid = true;
  2263. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2264. fw_info.version.project_name,
  2265. fw_info.version.project,
  2266. fw_info.version.api_version,
  2267. fw_info.version.func_version,
  2268. fw_info.version.errata);
  2269. iounmap(tcpm_base);
  2270. }
  2271. void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
  2272. {
  2273. /*
  2274. * This is a temporary remap to bring up the clocks. It is
  2275. * subsequently replaces with a real remap. After the merge of
  2276. * the mailbox subsystem all of this early code goes away, and the
  2277. * clock driver can probe independently. An early initcall will
  2278. * still be needed, but it can be diverted into drivers/clk/ux500.
  2279. */
  2280. prcmu_base = ioremap(phy_base, size);
  2281. if (!prcmu_base)
  2282. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2283. spin_lock_init(&mb0_transfer.lock);
  2284. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2285. mutex_init(&mb0_transfer.ac_wake_lock);
  2286. init_completion(&mb0_transfer.ac_wake_work);
  2287. mutex_init(&mb1_transfer.lock);
  2288. init_completion(&mb1_transfer.work);
  2289. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2290. mutex_init(&mb2_transfer.lock);
  2291. init_completion(&mb2_transfer.work);
  2292. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2293. spin_lock_init(&mb3_transfer.lock);
  2294. mutex_init(&mb3_transfer.sysclk_lock);
  2295. init_completion(&mb3_transfer.sysclk_work);
  2296. mutex_init(&mb4_transfer.lock);
  2297. init_completion(&mb4_transfer.work);
  2298. mutex_init(&mb5_transfer.lock);
  2299. init_completion(&mb5_transfer.work);
  2300. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2301. }
  2302. static void __init init_prcm_registers(void)
  2303. {
  2304. u32 val;
  2305. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2306. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2307. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2308. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2309. }
  2310. /*
  2311. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2312. */
  2313. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2314. REGULATOR_SUPPLY("v-ape", NULL),
  2315. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2316. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2317. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2318. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2319. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2320. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2321. REGULATOR_SUPPLY("vcore", "sdi0"),
  2322. REGULATOR_SUPPLY("vcore", "sdi1"),
  2323. REGULATOR_SUPPLY("vcore", "sdi2"),
  2324. REGULATOR_SUPPLY("vcore", "sdi3"),
  2325. REGULATOR_SUPPLY("vcore", "sdi4"),
  2326. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2327. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2328. /* "v-uart" changed to "vcore" in the mainline kernel */
  2329. REGULATOR_SUPPLY("vcore", "uart0"),
  2330. REGULATOR_SUPPLY("vcore", "uart1"),
  2331. REGULATOR_SUPPLY("vcore", "uart2"),
  2332. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2333. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2334. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2335. };
  2336. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2337. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2338. /* AV8100 regulator */
  2339. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2340. };
  2341. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2342. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2343. REGULATOR_SUPPLY("vsupply", "mcde"),
  2344. };
  2345. /* SVA MMDSP regulator switch */
  2346. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2347. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2348. };
  2349. /* SVA pipe regulator switch */
  2350. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2351. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2352. };
  2353. /* SIA MMDSP regulator switch */
  2354. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2355. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2356. };
  2357. /* SIA pipe regulator switch */
  2358. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2359. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2360. };
  2361. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2362. REGULATOR_SUPPLY("v-mali", NULL),
  2363. };
  2364. /* ESRAM1 and 2 regulator switch */
  2365. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2366. REGULATOR_SUPPLY("esram12", "cm_control"),
  2367. };
  2368. /* ESRAM3 and 4 regulator switch */
  2369. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2370. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2371. REGULATOR_SUPPLY("esram34", "cm_control"),
  2372. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2373. };
  2374. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2375. [DB8500_REGULATOR_VAPE] = {
  2376. .constraints = {
  2377. .name = "db8500-vape",
  2378. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2379. .always_on = true,
  2380. },
  2381. .consumer_supplies = db8500_vape_consumers,
  2382. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2383. },
  2384. [DB8500_REGULATOR_VARM] = {
  2385. .constraints = {
  2386. .name = "db8500-varm",
  2387. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2388. },
  2389. },
  2390. [DB8500_REGULATOR_VMODEM] = {
  2391. .constraints = {
  2392. .name = "db8500-vmodem",
  2393. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2394. },
  2395. },
  2396. [DB8500_REGULATOR_VPLL] = {
  2397. .constraints = {
  2398. .name = "db8500-vpll",
  2399. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2400. },
  2401. },
  2402. [DB8500_REGULATOR_VSMPS1] = {
  2403. .constraints = {
  2404. .name = "db8500-vsmps1",
  2405. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2406. },
  2407. },
  2408. [DB8500_REGULATOR_VSMPS2] = {
  2409. .constraints = {
  2410. .name = "db8500-vsmps2",
  2411. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2412. },
  2413. .consumer_supplies = db8500_vsmps2_consumers,
  2414. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2415. },
  2416. [DB8500_REGULATOR_VSMPS3] = {
  2417. .constraints = {
  2418. .name = "db8500-vsmps3",
  2419. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2420. },
  2421. },
  2422. [DB8500_REGULATOR_VRF1] = {
  2423. .constraints = {
  2424. .name = "db8500-vrf1",
  2425. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2426. },
  2427. },
  2428. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2429. /* dependency to u8500-vape is handled outside regulator framework */
  2430. .constraints = {
  2431. .name = "db8500-sva-mmdsp",
  2432. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2433. },
  2434. .consumer_supplies = db8500_svammdsp_consumers,
  2435. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2436. },
  2437. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2438. .constraints = {
  2439. /* "ret" means "retention" */
  2440. .name = "db8500-sva-mmdsp-ret",
  2441. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2442. },
  2443. },
  2444. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2445. /* dependency to u8500-vape is handled outside regulator framework */
  2446. .constraints = {
  2447. .name = "db8500-sva-pipe",
  2448. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2449. },
  2450. .consumer_supplies = db8500_svapipe_consumers,
  2451. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2452. },
  2453. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2454. /* dependency to u8500-vape is handled outside regulator framework */
  2455. .constraints = {
  2456. .name = "db8500-sia-mmdsp",
  2457. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2458. },
  2459. .consumer_supplies = db8500_siammdsp_consumers,
  2460. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2461. },
  2462. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2463. .constraints = {
  2464. .name = "db8500-sia-mmdsp-ret",
  2465. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2466. },
  2467. },
  2468. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2469. /* dependency to u8500-vape is handled outside regulator framework */
  2470. .constraints = {
  2471. .name = "db8500-sia-pipe",
  2472. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2473. },
  2474. .consumer_supplies = db8500_siapipe_consumers,
  2475. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2476. },
  2477. [DB8500_REGULATOR_SWITCH_SGA] = {
  2478. .supply_regulator = "db8500-vape",
  2479. .constraints = {
  2480. .name = "db8500-sga",
  2481. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2482. },
  2483. .consumer_supplies = db8500_sga_consumers,
  2484. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2485. },
  2486. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2487. .supply_regulator = "db8500-vape",
  2488. .constraints = {
  2489. .name = "db8500-b2r2-mcde",
  2490. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2491. },
  2492. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2493. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2494. },
  2495. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2496. /*
  2497. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2498. * no need to hold Vape
  2499. */
  2500. .constraints = {
  2501. .name = "db8500-esram12",
  2502. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2503. },
  2504. .consumer_supplies = db8500_esram12_consumers,
  2505. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2506. },
  2507. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2508. .constraints = {
  2509. .name = "db8500-esram12-ret",
  2510. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2511. },
  2512. },
  2513. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2514. /*
  2515. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2516. * no need to hold Vape
  2517. */
  2518. .constraints = {
  2519. .name = "db8500-esram34",
  2520. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2521. },
  2522. .consumer_supplies = db8500_esram34_consumers,
  2523. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2524. },
  2525. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2526. .constraints = {
  2527. .name = "db8500-esram34-ret",
  2528. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2529. },
  2530. },
  2531. };
  2532. static struct ux500_wdt_data db8500_wdt_pdata = {
  2533. .timeout = 600, /* 10 minutes */
  2534. .has_28_bits_resolution = true,
  2535. };
  2536. /*
  2537. * Thermal Sensor
  2538. */
  2539. static struct resource db8500_thsens_resources[] = {
  2540. {
  2541. .name = "IRQ_HOTMON_LOW",
  2542. .start = IRQ_PRCMU_HOTMON_LOW,
  2543. .end = IRQ_PRCMU_HOTMON_LOW,
  2544. .flags = IORESOURCE_IRQ,
  2545. },
  2546. {
  2547. .name = "IRQ_HOTMON_HIGH",
  2548. .start = IRQ_PRCMU_HOTMON_HIGH,
  2549. .end = IRQ_PRCMU_HOTMON_HIGH,
  2550. .flags = IORESOURCE_IRQ,
  2551. },
  2552. };
  2553. static struct db8500_thsens_platform_data db8500_thsens_data = {
  2554. .trip_points[0] = {
  2555. .temp = 70000,
  2556. .type = THERMAL_TRIP_ACTIVE,
  2557. .cdev_name = {
  2558. [0] = "thermal-cpufreq-0",
  2559. },
  2560. },
  2561. .trip_points[1] = {
  2562. .temp = 75000,
  2563. .type = THERMAL_TRIP_ACTIVE,
  2564. .cdev_name = {
  2565. [0] = "thermal-cpufreq-0",
  2566. },
  2567. },
  2568. .trip_points[2] = {
  2569. .temp = 80000,
  2570. .type = THERMAL_TRIP_ACTIVE,
  2571. .cdev_name = {
  2572. [0] = "thermal-cpufreq-0",
  2573. },
  2574. },
  2575. .trip_points[3] = {
  2576. .temp = 85000,
  2577. .type = THERMAL_TRIP_CRITICAL,
  2578. },
  2579. .num_trips = 4,
  2580. };
  2581. static const struct mfd_cell common_prcmu_devs[] = {
  2582. {
  2583. .name = "ux500_wdt",
  2584. .platform_data = &db8500_wdt_pdata,
  2585. .pdata_size = sizeof(db8500_wdt_pdata),
  2586. .id = -1,
  2587. },
  2588. };
  2589. static const struct mfd_cell db8500_prcmu_devs[] = {
  2590. {
  2591. .name = "db8500-prcmu-regulators",
  2592. .of_compatible = "stericsson,db8500-prcmu-regulator",
  2593. .platform_data = &db8500_regulators,
  2594. .pdata_size = sizeof(db8500_regulators),
  2595. },
  2596. {
  2597. .name = "cpufreq-ux500",
  2598. .of_compatible = "stericsson,cpufreq-ux500",
  2599. .platform_data = &db8500_cpufreq_table,
  2600. .pdata_size = sizeof(db8500_cpufreq_table),
  2601. },
  2602. {
  2603. .name = "cpuidle-dbx500",
  2604. .of_compatible = "stericsson,cpuidle-dbx500",
  2605. },
  2606. {
  2607. .name = "db8500-thermal",
  2608. .num_resources = ARRAY_SIZE(db8500_thsens_resources),
  2609. .resources = db8500_thsens_resources,
  2610. .platform_data = &db8500_thsens_data,
  2611. .pdata_size = sizeof(db8500_thsens_data),
  2612. },
  2613. };
  2614. static void db8500_prcmu_update_cpufreq(void)
  2615. {
  2616. if (prcmu_has_arm_maxopp()) {
  2617. db8500_cpufreq_table[3].frequency = 1000000;
  2618. db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
  2619. }
  2620. }
  2621. static int db8500_prcmu_register_ab8500(struct device *parent,
  2622. struct ab8500_platform_data *pdata)
  2623. {
  2624. struct device_node *np;
  2625. struct resource ab8500_resource;
  2626. const struct mfd_cell ab8500_cell = {
  2627. .name = "ab8500-core",
  2628. .of_compatible = "stericsson,ab8500",
  2629. .id = AB8500_VERSION_AB8500,
  2630. .platform_data = pdata,
  2631. .pdata_size = sizeof(struct ab8500_platform_data),
  2632. .resources = &ab8500_resource,
  2633. .num_resources = 1,
  2634. };
  2635. if (!parent->of_node)
  2636. return -ENODEV;
  2637. /* Look up the device node, sneak the IRQ out of it */
  2638. for_each_child_of_node(parent->of_node, np) {
  2639. if (of_device_is_compatible(np, ab8500_cell.of_compatible))
  2640. break;
  2641. }
  2642. if (!np) {
  2643. dev_info(parent, "could not find AB8500 node in the device tree\n");
  2644. return -ENODEV;
  2645. }
  2646. of_irq_to_resource_table(np, &ab8500_resource, 1);
  2647. return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
  2648. }
  2649. /**
  2650. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2651. *
  2652. */
  2653. static int db8500_prcmu_probe(struct platform_device *pdev)
  2654. {
  2655. struct device_node *np = pdev->dev.of_node;
  2656. struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
  2657. int irq = 0, err = 0;
  2658. struct resource *res;
  2659. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2660. if (!res) {
  2661. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2662. return -EINVAL;
  2663. }
  2664. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2665. if (!prcmu_base) {
  2666. dev_err(&pdev->dev,
  2667. "failed to ioremap prcmu register memory\n");
  2668. return -ENOMEM;
  2669. }
  2670. init_prcm_registers();
  2671. dbx500_fw_version_init(pdev, pdata->version_offset);
  2672. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2673. if (!res) {
  2674. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2675. return -EINVAL;
  2676. }
  2677. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2678. resource_size(res));
  2679. if (!tcdm_base) {
  2680. dev_err(&pdev->dev,
  2681. "failed to ioremap prcmu-tcdm register memory\n");
  2682. return -ENOMEM;
  2683. }
  2684. /* Clean up the mailbox interrupts after pre-kernel code. */
  2685. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2686. irq = platform_get_irq(pdev, 0);
  2687. if (irq <= 0) {
  2688. dev_err(&pdev->dev, "no prcmu irq provided\n");
  2689. return irq;
  2690. }
  2691. err = request_threaded_irq(irq, prcmu_irq_handler,
  2692. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2693. if (err < 0) {
  2694. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2695. return err;
  2696. }
  2697. db8500_irq_init(np);
  2698. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2699. db8500_prcmu_update_cpufreq();
  2700. err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
  2701. ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
  2702. if (err) {
  2703. pr_err("prcmu: Failed to add subdevices\n");
  2704. return err;
  2705. }
  2706. /* TODO: Remove restriction when clk definitions are available. */
  2707. if (!of_machine_is_compatible("st-ericsson,u8540")) {
  2708. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2709. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
  2710. db8500_irq_domain);
  2711. if (err) {
  2712. mfd_remove_devices(&pdev->dev);
  2713. pr_err("prcmu: Failed to add subdevices\n");
  2714. return err;
  2715. }
  2716. }
  2717. err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
  2718. if (err) {
  2719. mfd_remove_devices(&pdev->dev);
  2720. pr_err("prcmu: Failed to add ab8500 subdevice\n");
  2721. return err;
  2722. }
  2723. pr_info("DB8500 PRCMU initialized\n");
  2724. return err;
  2725. }
  2726. static const struct of_device_id db8500_prcmu_match[] = {
  2727. { .compatible = "stericsson,db8500-prcmu"},
  2728. { },
  2729. };
  2730. static struct platform_driver db8500_prcmu_driver = {
  2731. .driver = {
  2732. .name = "db8500-prcmu",
  2733. .of_match_table = db8500_prcmu_match,
  2734. },
  2735. .probe = db8500_prcmu_probe,
  2736. };
  2737. static int __init db8500_prcmu_init(void)
  2738. {
  2739. return platform_driver_register(&db8500_prcmu_driver);
  2740. }
  2741. core_initcall(db8500_prcmu_init);
  2742. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2743. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2744. MODULE_LICENSE("GPL v2");