writeback.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "writeback.h"
  12. #include <linux/delay.h>
  13. #include <linux/freezer.h>
  14. #include <linux/kthread.h>
  15. #include <trace/events/bcache.h>
  16. /* Rate limiting */
  17. static void __update_writeback_rate(struct cached_dev *dc)
  18. {
  19. struct cache_set *c = dc->disk.c;
  20. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  21. uint64_t cache_dirty_target =
  22. div_u64(cache_sectors * dc->writeback_percent, 100);
  23. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  24. c->cached_dev_sectors);
  25. /* PD controller */
  26. int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  27. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  28. int64_t proportional = dirty - target;
  29. int64_t change;
  30. dc->disk.sectors_dirty_last = dirty;
  31. /* Scale to sectors per second */
  32. proportional *= dc->writeback_rate_update_seconds;
  33. proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
  34. derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
  35. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  36. (dc->writeback_rate_d_term /
  37. dc->writeback_rate_update_seconds) ?: 1, 0);
  38. derivative *= dc->writeback_rate_d_term;
  39. derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
  40. change = proportional + derivative;
  41. /* Don't increase writeback rate if the device isn't keeping up */
  42. if (change > 0 &&
  43. time_after64(local_clock(),
  44. dc->writeback_rate.next + NSEC_PER_MSEC))
  45. change = 0;
  46. dc->writeback_rate.rate =
  47. clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
  48. 1, NSEC_PER_MSEC);
  49. dc->writeback_rate_proportional = proportional;
  50. dc->writeback_rate_derivative = derivative;
  51. dc->writeback_rate_change = change;
  52. dc->writeback_rate_target = target;
  53. }
  54. static void update_writeback_rate(struct work_struct *work)
  55. {
  56. struct cached_dev *dc = container_of(to_delayed_work(work),
  57. struct cached_dev,
  58. writeback_rate_update);
  59. down_read(&dc->writeback_lock);
  60. if (atomic_read(&dc->has_dirty) &&
  61. dc->writeback_percent)
  62. __update_writeback_rate(dc);
  63. up_read(&dc->writeback_lock);
  64. schedule_delayed_work(&dc->writeback_rate_update,
  65. dc->writeback_rate_update_seconds * HZ);
  66. }
  67. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  68. {
  69. if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
  70. !dc->writeback_percent)
  71. return 0;
  72. return bch_next_delay(&dc->writeback_rate, sectors);
  73. }
  74. struct dirty_io {
  75. struct closure cl;
  76. struct cached_dev *dc;
  77. struct bio bio;
  78. };
  79. static void dirty_init(struct keybuf_key *w)
  80. {
  81. struct dirty_io *io = w->private;
  82. struct bio *bio = &io->bio;
  83. bio_init(bio);
  84. if (!io->dc->writeback_percent)
  85. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  86. bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
  87. bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
  88. bio->bi_private = w;
  89. bio->bi_io_vec = bio->bi_inline_vecs;
  90. bch_bio_map(bio, NULL);
  91. }
  92. static void dirty_io_destructor(struct closure *cl)
  93. {
  94. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  95. kfree(io);
  96. }
  97. static void write_dirty_finish(struct closure *cl)
  98. {
  99. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  100. struct keybuf_key *w = io->bio.bi_private;
  101. struct cached_dev *dc = io->dc;
  102. struct bio_vec *bv;
  103. int i;
  104. bio_for_each_segment_all(bv, &io->bio, i)
  105. __free_page(bv->bv_page);
  106. /* This is kind of a dumb way of signalling errors. */
  107. if (KEY_DIRTY(&w->key)) {
  108. int ret;
  109. unsigned i;
  110. struct keylist keys;
  111. bch_keylist_init(&keys);
  112. bkey_copy(keys.top, &w->key);
  113. SET_KEY_DIRTY(keys.top, false);
  114. bch_keylist_push(&keys);
  115. for (i = 0; i < KEY_PTRS(&w->key); i++)
  116. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  117. ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
  118. if (ret)
  119. trace_bcache_writeback_collision(&w->key);
  120. atomic_long_inc(ret
  121. ? &dc->disk.c->writeback_keys_failed
  122. : &dc->disk.c->writeback_keys_done);
  123. }
  124. bch_keybuf_del(&dc->writeback_keys, w);
  125. up(&dc->in_flight);
  126. closure_return_with_destructor(cl, dirty_io_destructor);
  127. }
  128. static void dirty_endio(struct bio *bio)
  129. {
  130. struct keybuf_key *w = bio->bi_private;
  131. struct dirty_io *io = w->private;
  132. if (bio->bi_error)
  133. SET_KEY_DIRTY(&w->key, false);
  134. closure_put(&io->cl);
  135. }
  136. static void write_dirty(struct closure *cl)
  137. {
  138. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  139. struct keybuf_key *w = io->bio.bi_private;
  140. dirty_init(w);
  141. io->bio.bi_rw = WRITE;
  142. io->bio.bi_iter.bi_sector = KEY_START(&w->key);
  143. io->bio.bi_bdev = io->dc->bdev;
  144. io->bio.bi_end_io = dirty_endio;
  145. closure_bio_submit(&io->bio, cl);
  146. continue_at(cl, write_dirty_finish, system_wq);
  147. }
  148. static void read_dirty_endio(struct bio *bio)
  149. {
  150. struct keybuf_key *w = bio->bi_private;
  151. struct dirty_io *io = w->private;
  152. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  153. bio->bi_error, "reading dirty data from cache");
  154. dirty_endio(bio);
  155. }
  156. static void read_dirty_submit(struct closure *cl)
  157. {
  158. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  159. closure_bio_submit(&io->bio, cl);
  160. continue_at(cl, write_dirty, system_wq);
  161. }
  162. static void read_dirty(struct cached_dev *dc)
  163. {
  164. unsigned delay = 0;
  165. struct keybuf_key *w;
  166. struct dirty_io *io;
  167. struct closure cl;
  168. closure_init_stack(&cl);
  169. /*
  170. * XXX: if we error, background writeback just spins. Should use some
  171. * mempools.
  172. */
  173. while (!kthread_should_stop()) {
  174. try_to_freeze();
  175. w = bch_keybuf_next(&dc->writeback_keys);
  176. if (!w)
  177. break;
  178. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  179. if (KEY_START(&w->key) != dc->last_read ||
  180. jiffies_to_msecs(delay) > 50)
  181. while (!kthread_should_stop() && delay)
  182. delay = schedule_timeout_interruptible(delay);
  183. dc->last_read = KEY_OFFSET(&w->key);
  184. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  185. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  186. GFP_KERNEL);
  187. if (!io)
  188. goto err;
  189. w->private = io;
  190. io->dc = dc;
  191. dirty_init(w);
  192. io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
  193. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  194. &w->key, 0)->bdev;
  195. io->bio.bi_rw = READ;
  196. io->bio.bi_end_io = read_dirty_endio;
  197. if (bio_alloc_pages(&io->bio, GFP_KERNEL))
  198. goto err_free;
  199. trace_bcache_writeback(&w->key);
  200. down(&dc->in_flight);
  201. closure_call(&io->cl, read_dirty_submit, NULL, &cl);
  202. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  203. }
  204. if (0) {
  205. err_free:
  206. kfree(w->private);
  207. err:
  208. bch_keybuf_del(&dc->writeback_keys, w);
  209. }
  210. /*
  211. * Wait for outstanding writeback IOs to finish (and keybuf slots to be
  212. * freed) before refilling again
  213. */
  214. closure_sync(&cl);
  215. }
  216. /* Scan for dirty data */
  217. void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
  218. uint64_t offset, int nr_sectors)
  219. {
  220. struct bcache_device *d = c->devices[inode];
  221. unsigned stripe_offset, stripe, sectors_dirty;
  222. if (!d)
  223. return;
  224. stripe = offset_to_stripe(d, offset);
  225. stripe_offset = offset & (d->stripe_size - 1);
  226. while (nr_sectors) {
  227. int s = min_t(unsigned, abs(nr_sectors),
  228. d->stripe_size - stripe_offset);
  229. if (nr_sectors < 0)
  230. s = -s;
  231. if (stripe >= d->nr_stripes)
  232. return;
  233. sectors_dirty = atomic_add_return(s,
  234. d->stripe_sectors_dirty + stripe);
  235. if (sectors_dirty == d->stripe_size)
  236. set_bit(stripe, d->full_dirty_stripes);
  237. else
  238. clear_bit(stripe, d->full_dirty_stripes);
  239. nr_sectors -= s;
  240. stripe_offset = 0;
  241. stripe++;
  242. }
  243. }
  244. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  245. {
  246. struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
  247. BUG_ON(KEY_INODE(k) != dc->disk.id);
  248. return KEY_DIRTY(k);
  249. }
  250. static void refill_full_stripes(struct cached_dev *dc)
  251. {
  252. struct keybuf *buf = &dc->writeback_keys;
  253. unsigned start_stripe, stripe, next_stripe;
  254. bool wrapped = false;
  255. stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
  256. if (stripe >= dc->disk.nr_stripes)
  257. stripe = 0;
  258. start_stripe = stripe;
  259. while (1) {
  260. stripe = find_next_bit(dc->disk.full_dirty_stripes,
  261. dc->disk.nr_stripes, stripe);
  262. if (stripe == dc->disk.nr_stripes)
  263. goto next;
  264. next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
  265. dc->disk.nr_stripes, stripe);
  266. buf->last_scanned = KEY(dc->disk.id,
  267. stripe * dc->disk.stripe_size, 0);
  268. bch_refill_keybuf(dc->disk.c, buf,
  269. &KEY(dc->disk.id,
  270. next_stripe * dc->disk.stripe_size, 0),
  271. dirty_pred);
  272. if (array_freelist_empty(&buf->freelist))
  273. return;
  274. stripe = next_stripe;
  275. next:
  276. if (wrapped && stripe > start_stripe)
  277. return;
  278. if (stripe == dc->disk.nr_stripes) {
  279. stripe = 0;
  280. wrapped = true;
  281. }
  282. }
  283. }
  284. /*
  285. * Returns true if we scanned the entire disk
  286. */
  287. static bool refill_dirty(struct cached_dev *dc)
  288. {
  289. struct keybuf *buf = &dc->writeback_keys;
  290. struct bkey start = KEY(dc->disk.id, 0, 0);
  291. struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
  292. struct bkey start_pos;
  293. /*
  294. * make sure keybuf pos is inside the range for this disk - at bringup
  295. * we might not be attached yet so this disk's inode nr isn't
  296. * initialized then
  297. */
  298. if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
  299. bkey_cmp(&buf->last_scanned, &end) > 0)
  300. buf->last_scanned = start;
  301. if (dc->partial_stripes_expensive) {
  302. refill_full_stripes(dc);
  303. if (array_freelist_empty(&buf->freelist))
  304. return false;
  305. }
  306. start_pos = buf->last_scanned;
  307. bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
  308. if (bkey_cmp(&buf->last_scanned, &end) < 0)
  309. return false;
  310. /*
  311. * If we get to the end start scanning again from the beginning, and
  312. * only scan up to where we initially started scanning from:
  313. */
  314. buf->last_scanned = start;
  315. bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
  316. return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
  317. }
  318. static int bch_writeback_thread(void *arg)
  319. {
  320. struct cached_dev *dc = arg;
  321. bool searched_full_index;
  322. while (!kthread_should_stop()) {
  323. down_write(&dc->writeback_lock);
  324. if (!atomic_read(&dc->has_dirty) ||
  325. (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
  326. !dc->writeback_running)) {
  327. up_write(&dc->writeback_lock);
  328. set_current_state(TASK_INTERRUPTIBLE);
  329. if (kthread_should_stop())
  330. return 0;
  331. try_to_freeze();
  332. schedule();
  333. continue;
  334. }
  335. searched_full_index = refill_dirty(dc);
  336. if (searched_full_index &&
  337. RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
  338. atomic_set(&dc->has_dirty, 0);
  339. cached_dev_put(dc);
  340. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  341. bch_write_bdev_super(dc, NULL);
  342. }
  343. up_write(&dc->writeback_lock);
  344. bch_ratelimit_reset(&dc->writeback_rate);
  345. read_dirty(dc);
  346. if (searched_full_index) {
  347. unsigned delay = dc->writeback_delay * HZ;
  348. while (delay &&
  349. !kthread_should_stop() &&
  350. !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
  351. delay = schedule_timeout_interruptible(delay);
  352. }
  353. }
  354. return 0;
  355. }
  356. /* Init */
  357. struct sectors_dirty_init {
  358. struct btree_op op;
  359. unsigned inode;
  360. };
  361. static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
  362. struct bkey *k)
  363. {
  364. struct sectors_dirty_init *op = container_of(_op,
  365. struct sectors_dirty_init, op);
  366. if (KEY_INODE(k) > op->inode)
  367. return MAP_DONE;
  368. if (KEY_DIRTY(k))
  369. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  370. KEY_START(k), KEY_SIZE(k));
  371. return MAP_CONTINUE;
  372. }
  373. void bch_sectors_dirty_init(struct cached_dev *dc)
  374. {
  375. struct sectors_dirty_init op;
  376. bch_btree_op_init(&op.op, -1);
  377. op.inode = dc->disk.id;
  378. bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
  379. sectors_dirty_init_fn, 0);
  380. dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
  381. }
  382. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  383. {
  384. sema_init(&dc->in_flight, 64);
  385. init_rwsem(&dc->writeback_lock);
  386. bch_keybuf_init(&dc->writeback_keys);
  387. dc->writeback_metadata = true;
  388. dc->writeback_running = true;
  389. dc->writeback_percent = 10;
  390. dc->writeback_delay = 30;
  391. dc->writeback_rate.rate = 1024;
  392. dc->writeback_rate_update_seconds = 5;
  393. dc->writeback_rate_d_term = 30;
  394. dc->writeback_rate_p_term_inverse = 6000;
  395. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  396. }
  397. int bch_cached_dev_writeback_start(struct cached_dev *dc)
  398. {
  399. dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
  400. "bcache_writeback");
  401. if (IS_ERR(dc->writeback_thread))
  402. return PTR_ERR(dc->writeback_thread);
  403. schedule_delayed_work(&dc->writeback_rate_update,
  404. dc->writeback_rate_update_seconds * HZ);
  405. bch_writeback_queue(dc);
  406. return 0;
  407. }