rrpc.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct rrpc_block *rblk = a->rblk;
  27. unsigned int pg_offset;
  28. lockdep_assert_held(&rrpc->rev_lock);
  29. if (a->addr == ADDR_EMPTY || !rblk)
  30. return;
  31. spin_lock(&rblk->lock);
  32. div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
  33. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  34. rblk->nr_invalid_pages++;
  35. spin_unlock(&rblk->lock);
  36. rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
  37. }
  38. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  39. unsigned len)
  40. {
  41. sector_t i;
  42. spin_lock(&rrpc->rev_lock);
  43. for (i = slba; i < slba + len; i++) {
  44. struct rrpc_addr *gp = &rrpc->trans_map[i];
  45. rrpc_page_invalidate(rrpc, gp);
  46. gp->rblk = NULL;
  47. }
  48. spin_unlock(&rrpc->rev_lock);
  49. }
  50. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  51. sector_t laddr, unsigned int pages)
  52. {
  53. struct nvm_rq *rqd;
  54. struct rrpc_inflight_rq *inf;
  55. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  56. if (!rqd)
  57. return ERR_PTR(-ENOMEM);
  58. inf = rrpc_get_inflight_rq(rqd);
  59. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  60. mempool_free(rqd, rrpc->rq_pool);
  61. return NULL;
  62. }
  63. return rqd;
  64. }
  65. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  66. {
  67. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  68. rrpc_unlock_laddr(rrpc, inf);
  69. mempool_free(rqd, rrpc->rq_pool);
  70. }
  71. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  72. {
  73. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  74. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  75. struct nvm_rq *rqd;
  76. do {
  77. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  78. schedule();
  79. } while (!rqd);
  80. if (IS_ERR(rqd)) {
  81. pr_err("rrpc: unable to acquire inflight IO\n");
  82. bio_io_error(bio);
  83. return;
  84. }
  85. rrpc_invalidate_range(rrpc, slba, len);
  86. rrpc_inflight_laddr_release(rrpc, rqd);
  87. }
  88. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  89. {
  90. return (rblk->next_page == rrpc->dev->sec_per_blk);
  91. }
  92. /* Calculate relative addr for the given block, considering instantiated LUNs */
  93. static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  94. {
  95. struct nvm_block *blk = rblk->parent;
  96. int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
  97. return lun_blk * rrpc->dev->sec_per_blk;
  98. }
  99. /* Calculate global addr for the given block */
  100. static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  101. {
  102. struct nvm_block *blk = rblk->parent;
  103. return blk->id * rrpc->dev->sec_per_blk;
  104. }
  105. static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
  106. struct ppa_addr r)
  107. {
  108. struct ppa_addr l;
  109. int secs, pgs, blks, luns;
  110. sector_t ppa = r.ppa;
  111. l.ppa = 0;
  112. div_u64_rem(ppa, dev->sec_per_pg, &secs);
  113. l.g.sec = secs;
  114. sector_div(ppa, dev->sec_per_pg);
  115. div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
  116. l.g.pg = pgs;
  117. sector_div(ppa, dev->pgs_per_blk);
  118. div_u64_rem(ppa, dev->blks_per_lun, &blks);
  119. l.g.blk = blks;
  120. sector_div(ppa, dev->blks_per_lun);
  121. div_u64_rem(ppa, dev->luns_per_chnl, &luns);
  122. l.g.lun = luns;
  123. sector_div(ppa, dev->luns_per_chnl);
  124. l.g.ch = ppa;
  125. return l;
  126. }
  127. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
  128. {
  129. struct ppa_addr paddr;
  130. paddr.ppa = addr;
  131. return linear_to_generic_addr(dev, paddr);
  132. }
  133. /* requires lun->lock taken */
  134. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
  135. {
  136. struct rrpc *rrpc = rlun->rrpc;
  137. BUG_ON(!rblk);
  138. if (rlun->cur) {
  139. spin_lock(&rlun->cur->lock);
  140. WARN_ON(!block_is_full(rrpc, rlun->cur));
  141. spin_unlock(&rlun->cur->lock);
  142. }
  143. rlun->cur = rblk;
  144. }
  145. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  146. unsigned long flags)
  147. {
  148. struct nvm_lun *lun = rlun->parent;
  149. struct nvm_block *blk;
  150. struct rrpc_block *rblk;
  151. spin_lock(&lun->lock);
  152. blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
  153. if (!blk) {
  154. pr_err("nvm: rrpc: cannot get new block from media manager\n");
  155. spin_unlock(&lun->lock);
  156. return NULL;
  157. }
  158. rblk = rrpc_get_rblk(rlun, blk->id);
  159. list_add_tail(&rblk->list, &rlun->open_list);
  160. spin_unlock(&lun->lock);
  161. blk->priv = rblk;
  162. bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
  163. rblk->next_page = 0;
  164. rblk->nr_invalid_pages = 0;
  165. atomic_set(&rblk->data_cmnt_size, 0);
  166. return rblk;
  167. }
  168. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  169. {
  170. struct rrpc_lun *rlun = rblk->rlun;
  171. struct nvm_lun *lun = rlun->parent;
  172. spin_lock(&lun->lock);
  173. nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
  174. list_del(&rblk->list);
  175. spin_unlock(&lun->lock);
  176. }
  177. static void rrpc_put_blks(struct rrpc *rrpc)
  178. {
  179. struct rrpc_lun *rlun;
  180. int i;
  181. for (i = 0; i < rrpc->nr_luns; i++) {
  182. rlun = &rrpc->luns[i];
  183. if (rlun->cur)
  184. rrpc_put_blk(rrpc, rlun->cur);
  185. if (rlun->gc_cur)
  186. rrpc_put_blk(rrpc, rlun->gc_cur);
  187. }
  188. }
  189. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  190. {
  191. int next = atomic_inc_return(&rrpc->next_lun);
  192. return &rrpc->luns[next % rrpc->nr_luns];
  193. }
  194. static void rrpc_gc_kick(struct rrpc *rrpc)
  195. {
  196. struct rrpc_lun *rlun;
  197. unsigned int i;
  198. for (i = 0; i < rrpc->nr_luns; i++) {
  199. rlun = &rrpc->luns[i];
  200. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  201. }
  202. }
  203. /*
  204. * timed GC every interval.
  205. */
  206. static void rrpc_gc_timer(unsigned long data)
  207. {
  208. struct rrpc *rrpc = (struct rrpc *)data;
  209. rrpc_gc_kick(rrpc);
  210. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  211. }
  212. static void rrpc_end_sync_bio(struct bio *bio)
  213. {
  214. struct completion *waiting = bio->bi_private;
  215. if (bio->bi_error)
  216. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  217. complete(waiting);
  218. }
  219. /*
  220. * rrpc_move_valid_pages -- migrate live data off the block
  221. * @rrpc: the 'rrpc' structure
  222. * @block: the block from which to migrate live pages
  223. *
  224. * Description:
  225. * GC algorithms may call this function to migrate remaining live
  226. * pages off the block prior to erasing it. This function blocks
  227. * further execution until the operation is complete.
  228. */
  229. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  230. {
  231. struct request_queue *q = rrpc->dev->q;
  232. struct rrpc_rev_addr *rev;
  233. struct nvm_rq *rqd;
  234. struct bio *bio;
  235. struct page *page;
  236. int slot;
  237. int nr_sec_per_blk = rrpc->dev->sec_per_blk;
  238. u64 phys_addr;
  239. DECLARE_COMPLETION_ONSTACK(wait);
  240. if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
  241. return 0;
  242. bio = bio_alloc(GFP_NOIO, 1);
  243. if (!bio) {
  244. pr_err("nvm: could not alloc bio to gc\n");
  245. return -ENOMEM;
  246. }
  247. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  248. if (!page) {
  249. bio_put(bio);
  250. return -ENOMEM;
  251. }
  252. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  253. nr_sec_per_blk)) < nr_sec_per_blk) {
  254. /* Lock laddr */
  255. phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
  256. try:
  257. spin_lock(&rrpc->rev_lock);
  258. /* Get logical address from physical to logical table */
  259. rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
  260. /* already updated by previous regular write */
  261. if (rev->addr == ADDR_EMPTY) {
  262. spin_unlock(&rrpc->rev_lock);
  263. continue;
  264. }
  265. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  266. if (IS_ERR_OR_NULL(rqd)) {
  267. spin_unlock(&rrpc->rev_lock);
  268. schedule();
  269. goto try;
  270. }
  271. spin_unlock(&rrpc->rev_lock);
  272. /* Perform read to do GC */
  273. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  274. bio->bi_rw = READ;
  275. bio->bi_private = &wait;
  276. bio->bi_end_io = rrpc_end_sync_bio;
  277. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  278. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  279. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  280. pr_err("rrpc: gc read failed.\n");
  281. rrpc_inflight_laddr_release(rrpc, rqd);
  282. goto finished;
  283. }
  284. wait_for_completion_io(&wait);
  285. if (bio->bi_error) {
  286. rrpc_inflight_laddr_release(rrpc, rqd);
  287. goto finished;
  288. }
  289. bio_reset(bio);
  290. reinit_completion(&wait);
  291. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  292. bio->bi_rw = WRITE;
  293. bio->bi_private = &wait;
  294. bio->bi_end_io = rrpc_end_sync_bio;
  295. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  296. /* turn the command around and write the data back to a new
  297. * address
  298. */
  299. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  300. pr_err("rrpc: gc write failed.\n");
  301. rrpc_inflight_laddr_release(rrpc, rqd);
  302. goto finished;
  303. }
  304. wait_for_completion_io(&wait);
  305. rrpc_inflight_laddr_release(rrpc, rqd);
  306. if (bio->bi_error)
  307. goto finished;
  308. bio_reset(bio);
  309. }
  310. finished:
  311. mempool_free(page, rrpc->page_pool);
  312. bio_put(bio);
  313. if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
  314. pr_err("nvm: failed to garbage collect block\n");
  315. return -EIO;
  316. }
  317. return 0;
  318. }
  319. static void rrpc_block_gc(struct work_struct *work)
  320. {
  321. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  322. ws_gc);
  323. struct rrpc *rrpc = gcb->rrpc;
  324. struct rrpc_block *rblk = gcb->rblk;
  325. struct nvm_dev *dev = rrpc->dev;
  326. struct nvm_lun *lun = rblk->parent->lun;
  327. struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
  328. mempool_free(gcb, rrpc->gcb_pool);
  329. pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
  330. if (rrpc_move_valid_pages(rrpc, rblk))
  331. goto put_back;
  332. if (nvm_erase_blk(dev, rblk->parent))
  333. goto put_back;
  334. rrpc_put_blk(rrpc, rblk);
  335. return;
  336. put_back:
  337. spin_lock(&rlun->lock);
  338. list_add_tail(&rblk->prio, &rlun->prio_list);
  339. spin_unlock(&rlun->lock);
  340. }
  341. /* the block with highest number of invalid pages, will be in the beginning
  342. * of the list
  343. */
  344. static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
  345. struct rrpc_block *rb)
  346. {
  347. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  348. return ra;
  349. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  350. }
  351. /* linearly find the block with highest number of invalid pages
  352. * requires lun->lock
  353. */
  354. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  355. {
  356. struct list_head *prio_list = &rlun->prio_list;
  357. struct rrpc_block *rblock, *max;
  358. BUG_ON(list_empty(prio_list));
  359. max = list_first_entry(prio_list, struct rrpc_block, prio);
  360. list_for_each_entry(rblock, prio_list, prio)
  361. max = rblock_max_invalid(max, rblock);
  362. return max;
  363. }
  364. static void rrpc_lun_gc(struct work_struct *work)
  365. {
  366. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  367. struct rrpc *rrpc = rlun->rrpc;
  368. struct nvm_lun *lun = rlun->parent;
  369. struct rrpc_block_gc *gcb;
  370. unsigned int nr_blocks_need;
  371. nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
  372. if (nr_blocks_need < rrpc->nr_luns)
  373. nr_blocks_need = rrpc->nr_luns;
  374. spin_lock(&rlun->lock);
  375. while (nr_blocks_need > lun->nr_free_blocks &&
  376. !list_empty(&rlun->prio_list)) {
  377. struct rrpc_block *rblock = block_prio_find_max(rlun);
  378. struct nvm_block *block = rblock->parent;
  379. if (!rblock->nr_invalid_pages)
  380. break;
  381. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  382. if (!gcb)
  383. break;
  384. list_del_init(&rblock->prio);
  385. BUG_ON(!block_is_full(rrpc, rblock));
  386. pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
  387. gcb->rrpc = rrpc;
  388. gcb->rblk = rblock;
  389. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  390. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  391. nr_blocks_need--;
  392. }
  393. spin_unlock(&rlun->lock);
  394. /* TODO: Hint that request queue can be started again */
  395. }
  396. static void rrpc_gc_queue(struct work_struct *work)
  397. {
  398. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  399. ws_gc);
  400. struct rrpc *rrpc = gcb->rrpc;
  401. struct rrpc_block *rblk = gcb->rblk;
  402. struct nvm_lun *lun = rblk->parent->lun;
  403. struct nvm_block *blk = rblk->parent;
  404. struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
  405. spin_lock(&rlun->lock);
  406. list_add_tail(&rblk->prio, &rlun->prio_list);
  407. spin_unlock(&rlun->lock);
  408. spin_lock(&lun->lock);
  409. lun->nr_open_blocks--;
  410. lun->nr_closed_blocks++;
  411. blk->state &= ~NVM_BLK_ST_OPEN;
  412. blk->state |= NVM_BLK_ST_CLOSED;
  413. list_move_tail(&rblk->list, &rlun->closed_list);
  414. spin_unlock(&lun->lock);
  415. mempool_free(gcb, rrpc->gcb_pool);
  416. pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
  417. rblk->parent->id);
  418. }
  419. static const struct block_device_operations rrpc_fops = {
  420. .owner = THIS_MODULE,
  421. };
  422. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  423. {
  424. unsigned int i;
  425. struct rrpc_lun *rlun, *max_free;
  426. if (!is_gc)
  427. return get_next_lun(rrpc);
  428. /* during GC, we don't care about RR, instead we want to make
  429. * sure that we maintain evenness between the block luns.
  430. */
  431. max_free = &rrpc->luns[0];
  432. /* prevent GC-ing lun from devouring pages of a lun with
  433. * little free blocks. We don't take the lock as we only need an
  434. * estimate.
  435. */
  436. rrpc_for_each_lun(rrpc, rlun, i) {
  437. if (rlun->parent->nr_free_blocks >
  438. max_free->parent->nr_free_blocks)
  439. max_free = rlun;
  440. }
  441. return max_free;
  442. }
  443. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  444. struct rrpc_block *rblk, u64 paddr)
  445. {
  446. struct rrpc_addr *gp;
  447. struct rrpc_rev_addr *rev;
  448. BUG_ON(laddr >= rrpc->nr_sects);
  449. gp = &rrpc->trans_map[laddr];
  450. spin_lock(&rrpc->rev_lock);
  451. if (gp->rblk)
  452. rrpc_page_invalidate(rrpc, gp);
  453. gp->addr = paddr;
  454. gp->rblk = rblk;
  455. rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
  456. rev->addr = laddr;
  457. spin_unlock(&rrpc->rev_lock);
  458. return gp;
  459. }
  460. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  461. {
  462. u64 addr = ADDR_EMPTY;
  463. spin_lock(&rblk->lock);
  464. if (block_is_full(rrpc, rblk))
  465. goto out;
  466. addr = block_to_addr(rrpc, rblk) + rblk->next_page;
  467. rblk->next_page++;
  468. out:
  469. spin_unlock(&rblk->lock);
  470. return addr;
  471. }
  472. /* Simple round-robin Logical to physical address translation.
  473. *
  474. * Retrieve the mapping using the active append point. Then update the ap for
  475. * the next write to the disk.
  476. *
  477. * Returns rrpc_addr with the physical address and block. Remember to return to
  478. * rrpc->addr_cache when request is finished.
  479. */
  480. static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  481. int is_gc)
  482. {
  483. struct rrpc_lun *rlun;
  484. struct rrpc_block *rblk;
  485. struct nvm_lun *lun;
  486. u64 paddr;
  487. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  488. lun = rlun->parent;
  489. if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
  490. return NULL;
  491. spin_lock(&rlun->lock);
  492. rblk = rlun->cur;
  493. retry:
  494. paddr = rrpc_alloc_addr(rrpc, rblk);
  495. if (paddr == ADDR_EMPTY) {
  496. rblk = rrpc_get_blk(rrpc, rlun, 0);
  497. if (rblk) {
  498. rrpc_set_lun_cur(rlun, rblk);
  499. goto retry;
  500. }
  501. if (is_gc) {
  502. /* retry from emergency gc block */
  503. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  504. if (paddr == ADDR_EMPTY) {
  505. rblk = rrpc_get_blk(rrpc, rlun, 1);
  506. if (!rblk) {
  507. pr_err("rrpc: no more blocks");
  508. goto err;
  509. }
  510. rlun->gc_cur = rblk;
  511. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  512. }
  513. rblk = rlun->gc_cur;
  514. }
  515. }
  516. spin_unlock(&rlun->lock);
  517. return rrpc_update_map(rrpc, laddr, rblk, paddr);
  518. err:
  519. spin_unlock(&rlun->lock);
  520. return NULL;
  521. }
  522. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  523. {
  524. struct rrpc_block_gc *gcb;
  525. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  526. if (!gcb) {
  527. pr_err("rrpc: unable to queue block for gc.");
  528. return;
  529. }
  530. gcb->rrpc = rrpc;
  531. gcb->rblk = rblk;
  532. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  533. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  534. }
  535. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  536. sector_t laddr, uint8_t npages)
  537. {
  538. struct rrpc_addr *p;
  539. struct rrpc_block *rblk;
  540. struct nvm_lun *lun;
  541. int cmnt_size, i;
  542. for (i = 0; i < npages; i++) {
  543. p = &rrpc->trans_map[laddr + i];
  544. rblk = p->rblk;
  545. lun = rblk->parent->lun;
  546. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  547. if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
  548. rrpc_run_gc(rrpc, rblk);
  549. }
  550. }
  551. static void rrpc_end_io(struct nvm_rq *rqd)
  552. {
  553. struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
  554. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  555. uint8_t npages = rqd->nr_pages;
  556. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  557. if (bio_data_dir(rqd->bio) == WRITE)
  558. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  559. bio_put(rqd->bio);
  560. if (rrqd->flags & NVM_IOTYPE_GC)
  561. return;
  562. rrpc_unlock_rq(rrpc, rqd);
  563. if (npages > 1)
  564. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  565. if (rqd->metadata)
  566. nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
  567. mempool_free(rqd, rrpc->rq_pool);
  568. }
  569. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  570. struct nvm_rq *rqd, unsigned long flags, int npages)
  571. {
  572. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  573. struct rrpc_addr *gp;
  574. sector_t laddr = rrpc_get_laddr(bio);
  575. int is_gc = flags & NVM_IOTYPE_GC;
  576. int i;
  577. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  578. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  579. return NVM_IO_REQUEUE;
  580. }
  581. for (i = 0; i < npages; i++) {
  582. /* We assume that mapping occurs at 4KB granularity */
  583. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
  584. gp = &rrpc->trans_map[laddr + i];
  585. if (gp->rblk) {
  586. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  587. gp->addr);
  588. } else {
  589. BUG_ON(is_gc);
  590. rrpc_unlock_laddr(rrpc, r);
  591. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  592. rqd->dma_ppa_list);
  593. return NVM_IO_DONE;
  594. }
  595. }
  596. rqd->opcode = NVM_OP_HBREAD;
  597. return NVM_IO_OK;
  598. }
  599. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  600. unsigned long flags)
  601. {
  602. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  603. int is_gc = flags & NVM_IOTYPE_GC;
  604. sector_t laddr = rrpc_get_laddr(bio);
  605. struct rrpc_addr *gp;
  606. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  607. return NVM_IO_REQUEUE;
  608. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
  609. gp = &rrpc->trans_map[laddr];
  610. if (gp->rblk) {
  611. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
  612. } else {
  613. BUG_ON(is_gc);
  614. rrpc_unlock_rq(rrpc, rqd);
  615. return NVM_IO_DONE;
  616. }
  617. rqd->opcode = NVM_OP_HBREAD;
  618. rrqd->addr = gp;
  619. return NVM_IO_OK;
  620. }
  621. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  622. struct nvm_rq *rqd, unsigned long flags, int npages)
  623. {
  624. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  625. struct rrpc_addr *p;
  626. sector_t laddr = rrpc_get_laddr(bio);
  627. int is_gc = flags & NVM_IOTYPE_GC;
  628. int i;
  629. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  630. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  631. return NVM_IO_REQUEUE;
  632. }
  633. for (i = 0; i < npages; i++) {
  634. /* We assume that mapping occurs at 4KB granularity */
  635. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  636. if (!p) {
  637. BUG_ON(is_gc);
  638. rrpc_unlock_laddr(rrpc, r);
  639. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  640. rqd->dma_ppa_list);
  641. rrpc_gc_kick(rrpc);
  642. return NVM_IO_REQUEUE;
  643. }
  644. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  645. p->addr);
  646. }
  647. rqd->opcode = NVM_OP_HBWRITE;
  648. return NVM_IO_OK;
  649. }
  650. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  651. struct nvm_rq *rqd, unsigned long flags)
  652. {
  653. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  654. struct rrpc_addr *p;
  655. int is_gc = flags & NVM_IOTYPE_GC;
  656. sector_t laddr = rrpc_get_laddr(bio);
  657. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  658. return NVM_IO_REQUEUE;
  659. p = rrpc_map_page(rrpc, laddr, is_gc);
  660. if (!p) {
  661. BUG_ON(is_gc);
  662. rrpc_unlock_rq(rrpc, rqd);
  663. rrpc_gc_kick(rrpc);
  664. return NVM_IO_REQUEUE;
  665. }
  666. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
  667. rqd->opcode = NVM_OP_HBWRITE;
  668. rrqd->addr = p;
  669. return NVM_IO_OK;
  670. }
  671. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  672. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  673. {
  674. if (npages > 1) {
  675. rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
  676. &rqd->dma_ppa_list);
  677. if (!rqd->ppa_list) {
  678. pr_err("rrpc: not able to allocate ppa list\n");
  679. return NVM_IO_ERR;
  680. }
  681. if (bio_rw(bio) == WRITE)
  682. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  683. npages);
  684. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  685. }
  686. if (bio_rw(bio) == WRITE)
  687. return rrpc_write_rq(rrpc, bio, rqd, flags);
  688. return rrpc_read_rq(rrpc, bio, rqd, flags);
  689. }
  690. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  691. struct nvm_rq *rqd, unsigned long flags)
  692. {
  693. int err;
  694. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  695. uint8_t nr_pages = rrpc_get_pages(bio);
  696. int bio_size = bio_sectors(bio) << 9;
  697. if (bio_size < rrpc->dev->sec_size)
  698. return NVM_IO_ERR;
  699. else if (bio_size > rrpc->dev->max_rq_size)
  700. return NVM_IO_ERR;
  701. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  702. if (err)
  703. return err;
  704. bio_get(bio);
  705. rqd->bio = bio;
  706. rqd->ins = &rrpc->instance;
  707. rqd->nr_pages = nr_pages;
  708. rrq->flags = flags;
  709. err = nvm_submit_io(rrpc->dev, rqd);
  710. if (err) {
  711. pr_err("rrpc: I/O submission failed: %d\n", err);
  712. bio_put(bio);
  713. if (!(flags & NVM_IOTYPE_GC)) {
  714. rrpc_unlock_rq(rrpc, rqd);
  715. if (rqd->nr_pages > 1)
  716. nvm_dev_dma_free(rrpc->dev,
  717. rqd->ppa_list, rqd->dma_ppa_list);
  718. }
  719. return NVM_IO_ERR;
  720. }
  721. return NVM_IO_OK;
  722. }
  723. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  724. {
  725. struct rrpc *rrpc = q->queuedata;
  726. struct nvm_rq *rqd;
  727. int err;
  728. if (bio->bi_rw & REQ_DISCARD) {
  729. rrpc_discard(rrpc, bio);
  730. return BLK_QC_T_NONE;
  731. }
  732. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  733. if (!rqd) {
  734. pr_err_ratelimited("rrpc: not able to queue bio.");
  735. bio_io_error(bio);
  736. return BLK_QC_T_NONE;
  737. }
  738. memset(rqd, 0, sizeof(struct nvm_rq));
  739. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  740. switch (err) {
  741. case NVM_IO_OK:
  742. return BLK_QC_T_NONE;
  743. case NVM_IO_ERR:
  744. bio_io_error(bio);
  745. break;
  746. case NVM_IO_DONE:
  747. bio_endio(bio);
  748. break;
  749. case NVM_IO_REQUEUE:
  750. spin_lock(&rrpc->bio_lock);
  751. bio_list_add(&rrpc->requeue_bios, bio);
  752. spin_unlock(&rrpc->bio_lock);
  753. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  754. break;
  755. }
  756. mempool_free(rqd, rrpc->rq_pool);
  757. return BLK_QC_T_NONE;
  758. }
  759. static void rrpc_requeue(struct work_struct *work)
  760. {
  761. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  762. struct bio_list bios;
  763. struct bio *bio;
  764. bio_list_init(&bios);
  765. spin_lock(&rrpc->bio_lock);
  766. bio_list_merge(&bios, &rrpc->requeue_bios);
  767. bio_list_init(&rrpc->requeue_bios);
  768. spin_unlock(&rrpc->bio_lock);
  769. while ((bio = bio_list_pop(&bios)))
  770. rrpc_make_rq(rrpc->disk->queue, bio);
  771. }
  772. static void rrpc_gc_free(struct rrpc *rrpc)
  773. {
  774. if (rrpc->krqd_wq)
  775. destroy_workqueue(rrpc->krqd_wq);
  776. if (rrpc->kgc_wq)
  777. destroy_workqueue(rrpc->kgc_wq);
  778. }
  779. static int rrpc_gc_init(struct rrpc *rrpc)
  780. {
  781. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  782. rrpc->nr_luns);
  783. if (!rrpc->krqd_wq)
  784. return -ENOMEM;
  785. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  786. if (!rrpc->kgc_wq)
  787. return -ENOMEM;
  788. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  789. return 0;
  790. }
  791. static void rrpc_map_free(struct rrpc *rrpc)
  792. {
  793. vfree(rrpc->rev_trans_map);
  794. vfree(rrpc->trans_map);
  795. }
  796. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  797. {
  798. struct rrpc *rrpc = (struct rrpc *)private;
  799. struct nvm_dev *dev = rrpc->dev;
  800. struct rrpc_addr *addr = rrpc->trans_map + slba;
  801. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  802. u64 elba = slba + nlb;
  803. u64 i;
  804. if (unlikely(elba > dev->total_secs)) {
  805. pr_err("nvm: L2P data from device is out of bounds!\n");
  806. return -EINVAL;
  807. }
  808. for (i = 0; i < nlb; i++) {
  809. u64 pba = le64_to_cpu(entries[i]);
  810. unsigned int mod;
  811. /* LNVM treats address-spaces as silos, LBA and PBA are
  812. * equally large and zero-indexed.
  813. */
  814. if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
  815. pr_err("nvm: L2P data entry is out of bounds!\n");
  816. return -EINVAL;
  817. }
  818. /* Address zero is a special one. The first page on a disk is
  819. * protected. As it often holds internal device boot
  820. * information.
  821. */
  822. if (!pba)
  823. continue;
  824. div_u64_rem(pba, rrpc->nr_sects, &mod);
  825. addr[i].addr = pba;
  826. raddr[mod].addr = slba + i;
  827. }
  828. return 0;
  829. }
  830. static int rrpc_map_init(struct rrpc *rrpc)
  831. {
  832. struct nvm_dev *dev = rrpc->dev;
  833. sector_t i;
  834. u64 slba;
  835. int ret;
  836. slba = rrpc->soffset >> (ilog2(dev->sec_size) - 9);
  837. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
  838. if (!rrpc->trans_map)
  839. return -ENOMEM;
  840. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  841. * rrpc->nr_sects);
  842. if (!rrpc->rev_trans_map)
  843. return -ENOMEM;
  844. for (i = 0; i < rrpc->nr_sects; i++) {
  845. struct rrpc_addr *p = &rrpc->trans_map[i];
  846. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  847. p->addr = ADDR_EMPTY;
  848. r->addr = ADDR_EMPTY;
  849. }
  850. if (!dev->ops->get_l2p_tbl)
  851. return 0;
  852. /* Bring up the mapping table from device */
  853. ret = dev->ops->get_l2p_tbl(dev, slba, rrpc->nr_sects, rrpc_l2p_update,
  854. rrpc);
  855. if (ret) {
  856. pr_err("nvm: rrpc: could not read L2P table.\n");
  857. return -EINVAL;
  858. }
  859. return 0;
  860. }
  861. /* Minimum pages needed within a lun */
  862. #define PAGE_POOL_SIZE 16
  863. #define ADDR_POOL_SIZE 64
  864. static int rrpc_core_init(struct rrpc *rrpc)
  865. {
  866. down_write(&rrpc_lock);
  867. if (!rrpc_gcb_cache) {
  868. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  869. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  870. if (!rrpc_gcb_cache) {
  871. up_write(&rrpc_lock);
  872. return -ENOMEM;
  873. }
  874. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  875. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  876. 0, 0, NULL);
  877. if (!rrpc_rq_cache) {
  878. kmem_cache_destroy(rrpc_gcb_cache);
  879. up_write(&rrpc_lock);
  880. return -ENOMEM;
  881. }
  882. }
  883. up_write(&rrpc_lock);
  884. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  885. if (!rrpc->page_pool)
  886. return -ENOMEM;
  887. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
  888. rrpc_gcb_cache);
  889. if (!rrpc->gcb_pool)
  890. return -ENOMEM;
  891. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  892. if (!rrpc->rq_pool)
  893. return -ENOMEM;
  894. spin_lock_init(&rrpc->inflights.lock);
  895. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  896. return 0;
  897. }
  898. static void rrpc_core_free(struct rrpc *rrpc)
  899. {
  900. mempool_destroy(rrpc->page_pool);
  901. mempool_destroy(rrpc->gcb_pool);
  902. mempool_destroy(rrpc->rq_pool);
  903. }
  904. static void rrpc_luns_free(struct rrpc *rrpc)
  905. {
  906. struct nvm_dev *dev = rrpc->dev;
  907. struct nvm_lun *lun;
  908. struct rrpc_lun *rlun;
  909. int i;
  910. if (!rrpc->luns)
  911. return;
  912. for (i = 0; i < rrpc->nr_luns; i++) {
  913. rlun = &rrpc->luns[i];
  914. lun = rlun->parent;
  915. if (!lun)
  916. break;
  917. dev->mt->release_lun(dev, lun->id);
  918. vfree(rlun->blocks);
  919. }
  920. kfree(rrpc->luns);
  921. }
  922. static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
  923. {
  924. struct nvm_dev *dev = rrpc->dev;
  925. struct rrpc_lun *rlun;
  926. int i, j, ret = -EINVAL;
  927. if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  928. pr_err("rrpc: number of pages per block too high.");
  929. return -EINVAL;
  930. }
  931. spin_lock_init(&rrpc->rev_lock);
  932. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  933. GFP_KERNEL);
  934. if (!rrpc->luns)
  935. return -ENOMEM;
  936. /* 1:1 mapping */
  937. for (i = 0; i < rrpc->nr_luns; i++) {
  938. int lunid = lun_begin + i;
  939. struct nvm_lun *lun;
  940. if (dev->mt->reserve_lun(dev, lunid)) {
  941. pr_err("rrpc: lun %u is already allocated\n", lunid);
  942. goto err;
  943. }
  944. lun = dev->mt->get_lun(dev, lunid);
  945. if (!lun)
  946. goto err;
  947. rlun = &rrpc->luns[i];
  948. rlun->parent = lun;
  949. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  950. rrpc->dev->blks_per_lun);
  951. if (!rlun->blocks) {
  952. ret = -ENOMEM;
  953. goto err;
  954. }
  955. for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
  956. struct rrpc_block *rblk = &rlun->blocks[j];
  957. struct nvm_block *blk = &lun->blocks[j];
  958. rblk->parent = blk;
  959. rblk->rlun = rlun;
  960. INIT_LIST_HEAD(&rblk->prio);
  961. spin_lock_init(&rblk->lock);
  962. }
  963. rlun->rrpc = rrpc;
  964. INIT_LIST_HEAD(&rlun->prio_list);
  965. INIT_LIST_HEAD(&rlun->open_list);
  966. INIT_LIST_HEAD(&rlun->closed_list);
  967. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  968. spin_lock_init(&rlun->lock);
  969. rrpc->total_blocks += dev->blks_per_lun;
  970. rrpc->nr_sects += dev->sec_per_lun;
  971. }
  972. return 0;
  973. err:
  974. return ret;
  975. }
  976. /* returns 0 on success and stores the beginning address in *begin */
  977. static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
  978. {
  979. struct nvm_dev *dev = rrpc->dev;
  980. struct nvmm_type *mt = dev->mt;
  981. sector_t size = rrpc->nr_sects * dev->sec_size;
  982. size >>= 9;
  983. return mt->get_area(dev, begin, size);
  984. }
  985. static void rrpc_area_free(struct rrpc *rrpc)
  986. {
  987. struct nvm_dev *dev = rrpc->dev;
  988. struct nvmm_type *mt = dev->mt;
  989. mt->put_area(dev, rrpc->soffset);
  990. }
  991. static void rrpc_free(struct rrpc *rrpc)
  992. {
  993. rrpc_gc_free(rrpc);
  994. rrpc_map_free(rrpc);
  995. rrpc_core_free(rrpc);
  996. rrpc_luns_free(rrpc);
  997. rrpc_area_free(rrpc);
  998. kfree(rrpc);
  999. }
  1000. static void rrpc_exit(void *private)
  1001. {
  1002. struct rrpc *rrpc = private;
  1003. del_timer(&rrpc->gc_timer);
  1004. flush_workqueue(rrpc->krqd_wq);
  1005. flush_workqueue(rrpc->kgc_wq);
  1006. rrpc_free(rrpc);
  1007. }
  1008. static sector_t rrpc_capacity(void *private)
  1009. {
  1010. struct rrpc *rrpc = private;
  1011. struct nvm_dev *dev = rrpc->dev;
  1012. sector_t reserved, provisioned;
  1013. /* cur, gc, and two emergency blocks for each lun */
  1014. reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
  1015. provisioned = rrpc->nr_sects - reserved;
  1016. if (reserved > rrpc->nr_sects) {
  1017. pr_err("rrpc: not enough space available to expose storage.\n");
  1018. return 0;
  1019. }
  1020. sector_div(provisioned, 10);
  1021. return provisioned * 9 * NR_PHY_IN_LOG;
  1022. }
  1023. /*
  1024. * Looks up the logical address from reverse trans map and check if its valid by
  1025. * comparing the logical to physical address with the physical address.
  1026. * Returns 0 on free, otherwise 1 if in use
  1027. */
  1028. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  1029. {
  1030. struct nvm_dev *dev = rrpc->dev;
  1031. int offset;
  1032. struct rrpc_addr *laddr;
  1033. u64 bpaddr, paddr, pladdr;
  1034. bpaddr = block_to_rel_addr(rrpc, rblk);
  1035. for (offset = 0; offset < dev->sec_per_blk; offset++) {
  1036. paddr = bpaddr + offset;
  1037. pladdr = rrpc->rev_trans_map[paddr].addr;
  1038. if (pladdr == ADDR_EMPTY)
  1039. continue;
  1040. laddr = &rrpc->trans_map[pladdr];
  1041. if (paddr == laddr->addr) {
  1042. laddr->rblk = rblk;
  1043. } else {
  1044. set_bit(offset, rblk->invalid_pages);
  1045. rblk->nr_invalid_pages++;
  1046. }
  1047. }
  1048. }
  1049. static int rrpc_blocks_init(struct rrpc *rrpc)
  1050. {
  1051. struct rrpc_lun *rlun;
  1052. struct rrpc_block *rblk;
  1053. int lun_iter, blk_iter;
  1054. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1055. rlun = &rrpc->luns[lun_iter];
  1056. for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
  1057. blk_iter++) {
  1058. rblk = &rlun->blocks[blk_iter];
  1059. rrpc_block_map_update(rrpc, rblk);
  1060. }
  1061. }
  1062. return 0;
  1063. }
  1064. static int rrpc_luns_configure(struct rrpc *rrpc)
  1065. {
  1066. struct rrpc_lun *rlun;
  1067. struct rrpc_block *rblk;
  1068. int i;
  1069. for (i = 0; i < rrpc->nr_luns; i++) {
  1070. rlun = &rrpc->luns[i];
  1071. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1072. if (!rblk)
  1073. goto err;
  1074. rrpc_set_lun_cur(rlun, rblk);
  1075. /* Emergency gc block */
  1076. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1077. if (!rblk)
  1078. goto err;
  1079. rlun->gc_cur = rblk;
  1080. }
  1081. return 0;
  1082. err:
  1083. rrpc_put_blks(rrpc);
  1084. return -EINVAL;
  1085. }
  1086. static struct nvm_tgt_type tt_rrpc;
  1087. static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
  1088. int lun_begin, int lun_end)
  1089. {
  1090. struct request_queue *bqueue = dev->q;
  1091. struct request_queue *tqueue = tdisk->queue;
  1092. struct rrpc *rrpc;
  1093. sector_t soffset;
  1094. int ret;
  1095. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1096. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1097. dev->identity.dom);
  1098. return ERR_PTR(-EINVAL);
  1099. }
  1100. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1101. if (!rrpc)
  1102. return ERR_PTR(-ENOMEM);
  1103. rrpc->instance.tt = &tt_rrpc;
  1104. rrpc->dev = dev;
  1105. rrpc->disk = tdisk;
  1106. bio_list_init(&rrpc->requeue_bios);
  1107. spin_lock_init(&rrpc->bio_lock);
  1108. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1109. rrpc->nr_luns = lun_end - lun_begin + 1;
  1110. /* simple round-robin strategy */
  1111. atomic_set(&rrpc->next_lun, -1);
  1112. ret = rrpc_area_init(rrpc, &soffset);
  1113. if (ret < 0) {
  1114. pr_err("nvm: rrpc: could not initialize area\n");
  1115. return ERR_PTR(ret);
  1116. }
  1117. rrpc->soffset = soffset;
  1118. ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
  1119. if (ret) {
  1120. pr_err("nvm: rrpc: could not initialize luns\n");
  1121. goto err;
  1122. }
  1123. rrpc->poffset = dev->sec_per_lun * lun_begin;
  1124. rrpc->lun_offset = lun_begin;
  1125. ret = rrpc_core_init(rrpc);
  1126. if (ret) {
  1127. pr_err("nvm: rrpc: could not initialize core\n");
  1128. goto err;
  1129. }
  1130. ret = rrpc_map_init(rrpc);
  1131. if (ret) {
  1132. pr_err("nvm: rrpc: could not initialize maps\n");
  1133. goto err;
  1134. }
  1135. ret = rrpc_blocks_init(rrpc);
  1136. if (ret) {
  1137. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1138. goto err;
  1139. }
  1140. ret = rrpc_luns_configure(rrpc);
  1141. if (ret) {
  1142. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1143. goto err;
  1144. }
  1145. ret = rrpc_gc_init(rrpc);
  1146. if (ret) {
  1147. pr_err("nvm: rrpc: could not initialize gc\n");
  1148. goto err;
  1149. }
  1150. /* inherit the size from the underlying device */
  1151. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1152. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1153. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1154. rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
  1155. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1156. return rrpc;
  1157. err:
  1158. rrpc_free(rrpc);
  1159. return ERR_PTR(ret);
  1160. }
  1161. /* round robin, page-based FTL, and cost-based GC */
  1162. static struct nvm_tgt_type tt_rrpc = {
  1163. .name = "rrpc",
  1164. .version = {1, 0, 0},
  1165. .make_rq = rrpc_make_rq,
  1166. .capacity = rrpc_capacity,
  1167. .end_io = rrpc_end_io,
  1168. .init = rrpc_init,
  1169. .exit = rrpc_exit,
  1170. };
  1171. static int __init rrpc_module_init(void)
  1172. {
  1173. return nvm_register_target(&tt_rrpc);
  1174. }
  1175. static void rrpc_module_exit(void)
  1176. {
  1177. nvm_unregister_target(&tt_rrpc);
  1178. }
  1179. module_init(rrpc_module_init);
  1180. module_exit(rrpc_module_exit);
  1181. MODULE_LICENSE("GPL v2");
  1182. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");