mem.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include <rdma/ib_user_verbs.h>
  37. #include "iw_cxgb4.h"
  38. int use_dsgl = 0;
  39. module_param(use_dsgl, int, 0644);
  40. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)");
  41. #define T4_ULPTX_MIN_IO 32
  42. #define C4IW_MAX_INLINE_SIZE 96
  43. #define T4_ULPTX_MAX_DMA 1024
  44. #define C4IW_INLINE_THRESHOLD 128
  45. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  46. module_param(inline_threshold, int, 0644);
  47. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  48. static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
  49. {
  50. return (is_t4(dev->rdev.lldi.adapter_type) ||
  51. is_t5(dev->rdev.lldi.adapter_type)) &&
  52. length >= 8*1024*1024*1024ULL;
  53. }
  54. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  55. u32 len, dma_addr_t data, int wait)
  56. {
  57. struct sk_buff *skb;
  58. struct ulp_mem_io *req;
  59. struct ulptx_sgl *sgl;
  60. u8 wr_len;
  61. int ret = 0;
  62. struct c4iw_wr_wait wr_wait;
  63. addr &= 0x7FFFFFF;
  64. if (wait)
  65. c4iw_init_wr_wait(&wr_wait);
  66. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  67. skb = alloc_skb(wr_len, GFP_KERNEL);
  68. if (!skb)
  69. return -ENOMEM;
  70. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  71. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  72. memset(req, 0, wr_len);
  73. INIT_ULPTX_WR(req, wr_len, 0, 0);
  74. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  75. (wait ? FW_WR_COMPL_F : 0));
  76. req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
  77. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  78. req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  79. req->cmd |= cpu_to_be32(T5_ULP_MEMIO_ORDER_V(1));
  80. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
  81. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  82. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
  83. sgl = (struct ulptx_sgl *)(req + 1);
  84. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
  85. ULPTX_NSGE_V(1));
  86. sgl->len0 = cpu_to_be32(len);
  87. sgl->addr0 = cpu_to_be64(data);
  88. ret = c4iw_ofld_send(rdev, skb);
  89. if (ret)
  90. return ret;
  91. if (wait)
  92. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  93. return ret;
  94. }
  95. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  96. void *data)
  97. {
  98. struct sk_buff *skb;
  99. struct ulp_mem_io *req;
  100. struct ulptx_idata *sc;
  101. u8 wr_len, *to_dp, *from_dp;
  102. int copy_len, num_wqe, i, ret = 0;
  103. struct c4iw_wr_wait wr_wait;
  104. __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  105. if (is_t4(rdev->lldi.adapter_type))
  106. cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
  107. else
  108. cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
  109. addr &= 0x7FFFFFF;
  110. PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
  111. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  112. c4iw_init_wr_wait(&wr_wait);
  113. for (i = 0; i < num_wqe; i++) {
  114. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  115. len;
  116. wr_len = roundup(sizeof *req + sizeof *sc +
  117. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  118. skb = alloc_skb(wr_len, GFP_KERNEL);
  119. if (!skb)
  120. return -ENOMEM;
  121. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  122. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  123. memset(req, 0, wr_len);
  124. INIT_ULPTX_WR(req, wr_len, 0, 0);
  125. if (i == (num_wqe-1)) {
  126. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  127. FW_WR_COMPL_F);
  128. req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait;
  129. } else
  130. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
  131. req->wr.wr_mid = cpu_to_be32(
  132. FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  133. req->cmd = cmd;
  134. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
  135. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  136. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  137. 16));
  138. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
  139. sc = (struct ulptx_idata *)(req + 1);
  140. sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
  141. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  142. to_dp = (u8 *)(sc + 1);
  143. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  144. if (data)
  145. memcpy(to_dp, from_dp, copy_len);
  146. else
  147. memset(to_dp, 0, copy_len);
  148. if (copy_len % T4_ULPTX_MIN_IO)
  149. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  150. (copy_len % T4_ULPTX_MIN_IO));
  151. ret = c4iw_ofld_send(rdev, skb);
  152. if (ret)
  153. return ret;
  154. len -= C4IW_MAX_INLINE_SIZE;
  155. }
  156. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  157. return ret;
  158. }
  159. static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
  160. {
  161. u32 remain = len;
  162. u32 dmalen;
  163. int ret = 0;
  164. dma_addr_t daddr;
  165. dma_addr_t save;
  166. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  167. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  168. return -1;
  169. save = daddr;
  170. while (remain > inline_threshold) {
  171. if (remain < T4_ULPTX_MAX_DMA) {
  172. if (remain & ~T4_ULPTX_MIN_IO)
  173. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  174. else
  175. dmalen = remain;
  176. } else
  177. dmalen = T4_ULPTX_MAX_DMA;
  178. remain -= dmalen;
  179. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  180. !remain);
  181. if (ret)
  182. goto out;
  183. addr += dmalen >> 5;
  184. data += dmalen;
  185. daddr += dmalen;
  186. }
  187. if (remain)
  188. ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
  189. out:
  190. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  191. return ret;
  192. }
  193. /*
  194. * write len bytes of data into addr (32B aligned address)
  195. * If data is NULL, clear len byte of memory to zero.
  196. */
  197. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  198. void *data)
  199. {
  200. if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
  201. if (len > inline_threshold) {
  202. if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
  203. printk_ratelimited(KERN_WARNING
  204. "%s: dma map"
  205. " failure (non fatal)\n",
  206. pci_name(rdev->lldi.pdev));
  207. return _c4iw_write_mem_inline(rdev, addr, len,
  208. data);
  209. } else
  210. return 0;
  211. } else
  212. return _c4iw_write_mem_inline(rdev, addr, len, data);
  213. } else
  214. return _c4iw_write_mem_inline(rdev, addr, len, data);
  215. }
  216. /*
  217. * Build and write a TPT entry.
  218. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  219. * pbl_size and pbl_addr
  220. * OUT: stag index
  221. */
  222. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  223. u32 *stag, u8 stag_state, u32 pdid,
  224. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  225. int bind_enabled, u32 zbva, u64 to,
  226. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
  227. {
  228. int err;
  229. struct fw_ri_tpte tpt;
  230. u32 stag_idx;
  231. static atomic_t key;
  232. if (c4iw_fatal_error(rdev))
  233. return -EIO;
  234. stag_state = stag_state > 0;
  235. stag_idx = (*stag) >> 8;
  236. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  237. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  238. if (!stag_idx) {
  239. mutex_lock(&rdev->stats.lock);
  240. rdev->stats.stag.fail++;
  241. mutex_unlock(&rdev->stats.lock);
  242. return -ENOMEM;
  243. }
  244. mutex_lock(&rdev->stats.lock);
  245. rdev->stats.stag.cur += 32;
  246. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  247. rdev->stats.stag.max = rdev->stats.stag.cur;
  248. mutex_unlock(&rdev->stats.lock);
  249. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  250. }
  251. PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  252. __func__, stag_state, type, pdid, stag_idx);
  253. /* write TPT entry */
  254. if (reset_tpt_entry)
  255. memset(&tpt, 0, sizeof(tpt));
  256. else {
  257. tpt.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
  258. FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
  259. FW_RI_TPTE_STAGSTATE_V(stag_state) |
  260. FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
  261. tpt.locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
  262. (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
  263. FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
  264. FW_RI_VA_BASED_TO))|
  265. FW_RI_TPTE_PS_V(page_size));
  266. tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  267. FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
  268. tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  269. tpt.va_hi = cpu_to_be32((u32)(to >> 32));
  270. tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  271. tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
  272. tpt.len_hi = cpu_to_be32((u32)(len >> 32));
  273. }
  274. err = write_adapter_mem(rdev, stag_idx +
  275. (rdev->lldi.vr->stag.start >> 5),
  276. sizeof(tpt), &tpt);
  277. if (reset_tpt_entry) {
  278. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  279. mutex_lock(&rdev->stats.lock);
  280. rdev->stats.stag.cur -= 32;
  281. mutex_unlock(&rdev->stats.lock);
  282. }
  283. return err;
  284. }
  285. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  286. u32 pbl_addr, u32 pbl_size)
  287. {
  288. int err;
  289. PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  290. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  291. pbl_size);
  292. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
  293. return err;
  294. }
  295. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  296. u32 pbl_addr)
  297. {
  298. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  299. pbl_size, pbl_addr);
  300. }
  301. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  302. {
  303. *stag = T4_STAG_UNSET;
  304. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  305. 0UL, 0, 0, 0, 0);
  306. }
  307. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
  308. {
  309. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  310. 0);
  311. }
  312. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  313. u32 pbl_size, u32 pbl_addr)
  314. {
  315. *stag = T4_STAG_UNSET;
  316. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  317. 0UL, 0, 0, pbl_size, pbl_addr);
  318. }
  319. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  320. {
  321. u32 mmid;
  322. mhp->attr.state = 1;
  323. mhp->attr.stag = stag;
  324. mmid = stag >> 8;
  325. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  326. PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  327. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  328. }
  329. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  330. struct c4iw_mr *mhp, int shift)
  331. {
  332. u32 stag = T4_STAG_UNSET;
  333. int ret;
  334. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  335. FW_RI_STAG_NSMR, mhp->attr.len ?
  336. mhp->attr.perms : 0,
  337. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  338. mhp->attr.va_fbo, mhp->attr.len ?
  339. mhp->attr.len : -1, shift - 12,
  340. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  341. if (ret)
  342. return ret;
  343. ret = finish_mem_reg(mhp, stag);
  344. if (ret)
  345. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  346. mhp->attr.pbl_addr);
  347. return ret;
  348. }
  349. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  350. {
  351. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  352. npages << 3);
  353. if (!mhp->attr.pbl_addr)
  354. return -ENOMEM;
  355. mhp->attr.pbl_size = npages;
  356. return 0;
  357. }
  358. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  359. {
  360. struct c4iw_dev *rhp;
  361. struct c4iw_pd *php;
  362. struct c4iw_mr *mhp;
  363. int ret;
  364. u32 stag = T4_STAG_UNSET;
  365. PDBG("%s ib_pd %p\n", __func__, pd);
  366. php = to_c4iw_pd(pd);
  367. rhp = php->rhp;
  368. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  369. if (!mhp)
  370. return ERR_PTR(-ENOMEM);
  371. mhp->rhp = rhp;
  372. mhp->attr.pdid = php->pdid;
  373. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  374. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  375. mhp->attr.zbva = 0;
  376. mhp->attr.va_fbo = 0;
  377. mhp->attr.page_size = 0;
  378. mhp->attr.len = ~0ULL;
  379. mhp->attr.pbl_size = 0;
  380. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  381. FW_RI_STAG_NSMR, mhp->attr.perms,
  382. mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0);
  383. if (ret)
  384. goto err1;
  385. ret = finish_mem_reg(mhp, stag);
  386. if (ret)
  387. goto err2;
  388. return &mhp->ibmr;
  389. err2:
  390. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  391. mhp->attr.pbl_addr);
  392. err1:
  393. kfree(mhp);
  394. return ERR_PTR(ret);
  395. }
  396. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  397. u64 virt, int acc, struct ib_udata *udata)
  398. {
  399. __be64 *pages;
  400. int shift, n, len;
  401. int i, k, entry;
  402. int err = 0;
  403. struct scatterlist *sg;
  404. struct c4iw_dev *rhp;
  405. struct c4iw_pd *php;
  406. struct c4iw_mr *mhp;
  407. PDBG("%s ib_pd %p\n", __func__, pd);
  408. if (length == ~0ULL)
  409. return ERR_PTR(-EINVAL);
  410. if ((length + start) < start)
  411. return ERR_PTR(-EINVAL);
  412. php = to_c4iw_pd(pd);
  413. rhp = php->rhp;
  414. if (mr_exceeds_hw_limits(rhp, length))
  415. return ERR_PTR(-EINVAL);
  416. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  417. if (!mhp)
  418. return ERR_PTR(-ENOMEM);
  419. mhp->rhp = rhp;
  420. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  421. if (IS_ERR(mhp->umem)) {
  422. err = PTR_ERR(mhp->umem);
  423. kfree(mhp);
  424. return ERR_PTR(err);
  425. }
  426. shift = ffs(mhp->umem->page_size) - 1;
  427. n = mhp->umem->nmap;
  428. err = alloc_pbl(mhp, n);
  429. if (err)
  430. goto err;
  431. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  432. if (!pages) {
  433. err = -ENOMEM;
  434. goto err_pbl;
  435. }
  436. i = n = 0;
  437. for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
  438. len = sg_dma_len(sg) >> shift;
  439. for (k = 0; k < len; ++k) {
  440. pages[i++] = cpu_to_be64(sg_dma_address(sg) +
  441. mhp->umem->page_size * k);
  442. if (i == PAGE_SIZE / sizeof *pages) {
  443. err = write_pbl(&mhp->rhp->rdev,
  444. pages,
  445. mhp->attr.pbl_addr + (n << 3), i);
  446. if (err)
  447. goto pbl_done;
  448. n += i;
  449. i = 0;
  450. }
  451. }
  452. }
  453. if (i)
  454. err = write_pbl(&mhp->rhp->rdev, pages,
  455. mhp->attr.pbl_addr + (n << 3), i);
  456. pbl_done:
  457. free_page((unsigned long) pages);
  458. if (err)
  459. goto err_pbl;
  460. mhp->attr.pdid = php->pdid;
  461. mhp->attr.zbva = 0;
  462. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  463. mhp->attr.va_fbo = virt;
  464. mhp->attr.page_size = shift - 12;
  465. mhp->attr.len = length;
  466. err = register_mem(rhp, php, mhp, shift);
  467. if (err)
  468. goto err_pbl;
  469. return &mhp->ibmr;
  470. err_pbl:
  471. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  472. mhp->attr.pbl_size << 3);
  473. err:
  474. ib_umem_release(mhp->umem);
  475. kfree(mhp);
  476. return ERR_PTR(err);
  477. }
  478. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
  479. struct ib_udata *udata)
  480. {
  481. struct c4iw_dev *rhp;
  482. struct c4iw_pd *php;
  483. struct c4iw_mw *mhp;
  484. u32 mmid;
  485. u32 stag = 0;
  486. int ret;
  487. if (type != IB_MW_TYPE_1)
  488. return ERR_PTR(-EINVAL);
  489. php = to_c4iw_pd(pd);
  490. rhp = php->rhp;
  491. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  492. if (!mhp)
  493. return ERR_PTR(-ENOMEM);
  494. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  495. if (ret) {
  496. kfree(mhp);
  497. return ERR_PTR(ret);
  498. }
  499. mhp->rhp = rhp;
  500. mhp->attr.pdid = php->pdid;
  501. mhp->attr.type = FW_RI_STAG_MW;
  502. mhp->attr.stag = stag;
  503. mmid = (stag) >> 8;
  504. mhp->ibmw.rkey = stag;
  505. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  506. deallocate_window(&rhp->rdev, mhp->attr.stag);
  507. kfree(mhp);
  508. return ERR_PTR(-ENOMEM);
  509. }
  510. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  511. return &(mhp->ibmw);
  512. }
  513. int c4iw_dealloc_mw(struct ib_mw *mw)
  514. {
  515. struct c4iw_dev *rhp;
  516. struct c4iw_mw *mhp;
  517. u32 mmid;
  518. mhp = to_c4iw_mw(mw);
  519. rhp = mhp->rhp;
  520. mmid = (mw->rkey) >> 8;
  521. remove_handle(rhp, &rhp->mmidr, mmid);
  522. deallocate_window(&rhp->rdev, mhp->attr.stag);
  523. kfree(mhp);
  524. PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  525. return 0;
  526. }
  527. struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
  528. enum ib_mr_type mr_type,
  529. u32 max_num_sg)
  530. {
  531. struct c4iw_dev *rhp;
  532. struct c4iw_pd *php;
  533. struct c4iw_mr *mhp;
  534. u32 mmid;
  535. u32 stag = 0;
  536. int ret = 0;
  537. int length = roundup(max_num_sg * sizeof(u64), 32);
  538. php = to_c4iw_pd(pd);
  539. rhp = php->rhp;
  540. if (mr_type != IB_MR_TYPE_MEM_REG ||
  541. max_num_sg > t4_max_fr_depth(&rhp->rdev.lldi.ulptx_memwrite_dsgl &&
  542. use_dsgl))
  543. return ERR_PTR(-EINVAL);
  544. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  545. if (!mhp) {
  546. ret = -ENOMEM;
  547. goto err;
  548. }
  549. mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev,
  550. length, &mhp->mpl_addr, GFP_KERNEL);
  551. if (!mhp->mpl) {
  552. ret = -ENOMEM;
  553. goto err_mpl;
  554. }
  555. mhp->max_mpl_len = length;
  556. mhp->rhp = rhp;
  557. ret = alloc_pbl(mhp, max_num_sg);
  558. if (ret)
  559. goto err1;
  560. mhp->attr.pbl_size = max_num_sg;
  561. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  562. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  563. if (ret)
  564. goto err2;
  565. mhp->attr.pdid = php->pdid;
  566. mhp->attr.type = FW_RI_STAG_NSMR;
  567. mhp->attr.stag = stag;
  568. mhp->attr.state = 1;
  569. mmid = (stag) >> 8;
  570. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  571. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  572. ret = -ENOMEM;
  573. goto err3;
  574. }
  575. PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  576. return &(mhp->ibmr);
  577. err3:
  578. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  579. mhp->attr.pbl_addr);
  580. err2:
  581. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  582. mhp->attr.pbl_size << 3);
  583. err1:
  584. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  585. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  586. err_mpl:
  587. kfree(mhp);
  588. err:
  589. return ERR_PTR(ret);
  590. }
  591. static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
  592. {
  593. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  594. if (unlikely(mhp->mpl_len == mhp->max_mpl_len))
  595. return -ENOMEM;
  596. mhp->mpl[mhp->mpl_len++] = addr;
  597. return 0;
  598. }
  599. int c4iw_map_mr_sg(struct ib_mr *ibmr,
  600. struct scatterlist *sg,
  601. int sg_nents)
  602. {
  603. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  604. mhp->mpl_len = 0;
  605. return ib_sg_to_pages(ibmr, sg, sg_nents, c4iw_set_page);
  606. }
  607. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  608. {
  609. struct c4iw_dev *rhp;
  610. struct c4iw_mr *mhp;
  611. u32 mmid;
  612. PDBG("%s ib_mr %p\n", __func__, ib_mr);
  613. mhp = to_c4iw_mr(ib_mr);
  614. rhp = mhp->rhp;
  615. mmid = mhp->attr.stag >> 8;
  616. remove_handle(rhp, &rhp->mmidr, mmid);
  617. if (mhp->mpl)
  618. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  619. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  620. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  621. mhp->attr.pbl_addr);
  622. if (mhp->attr.pbl_size)
  623. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  624. mhp->attr.pbl_size << 3);
  625. if (mhp->kva)
  626. kfree((void *) (unsigned long) mhp->kva);
  627. if (mhp->umem)
  628. ib_umem_release(mhp->umem);
  629. PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  630. kfree(mhp);
  631. return 0;
  632. }