intel_pm.c 206 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * DOC: RC6
  34. *
  35. * RC6 is a special power stage which allows the GPU to enter an very
  36. * low-voltage mode when idle, using down to 0V while at this stage. This
  37. * stage is entered automatically when the GPU is idle when RC6 support is
  38. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  39. *
  40. * There are different RC6 modes available in Intel GPU, which differentiate
  41. * among each other with the latency required to enter and leave RC6 and
  42. * voltage consumed by the GPU in different states.
  43. *
  44. * The combination of the following flags define which states GPU is allowed
  45. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  46. * RC6pp is deepest RC6. Their support by hardware varies according to the
  47. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  48. * which brings the most power savings; deeper states save more power, but
  49. * require higher latency to switch to and wake up.
  50. */
  51. #define INTEL_RC6_ENABLE (1<<0)
  52. #define INTEL_RC6p_ENABLE (1<<1)
  53. #define INTEL_RC6pp_ENABLE (1<<2)
  54. static void bxt_init_clock_gating(struct drm_device *dev)
  55. {
  56. struct drm_i915_private *dev_priv = dev->dev_private;
  57. /* WaDisableSDEUnitClockGating:bxt */
  58. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  59. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  60. /*
  61. * FIXME:
  62. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  63. */
  64. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  65. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  66. /*
  67. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  68. * to stay fully on.
  69. */
  70. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  71. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  72. PWM1_GATING_DIS | PWM2_GATING_DIS);
  73. }
  74. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. u32 tmp;
  78. tmp = I915_READ(CLKCFG);
  79. switch (tmp & CLKCFG_FSB_MASK) {
  80. case CLKCFG_FSB_533:
  81. dev_priv->fsb_freq = 533; /* 133*4 */
  82. break;
  83. case CLKCFG_FSB_800:
  84. dev_priv->fsb_freq = 800; /* 200*4 */
  85. break;
  86. case CLKCFG_FSB_667:
  87. dev_priv->fsb_freq = 667; /* 167*4 */
  88. break;
  89. case CLKCFG_FSB_400:
  90. dev_priv->fsb_freq = 400; /* 100*4 */
  91. break;
  92. }
  93. switch (tmp & CLKCFG_MEM_MASK) {
  94. case CLKCFG_MEM_533:
  95. dev_priv->mem_freq = 533;
  96. break;
  97. case CLKCFG_MEM_667:
  98. dev_priv->mem_freq = 667;
  99. break;
  100. case CLKCFG_MEM_800:
  101. dev_priv->mem_freq = 800;
  102. break;
  103. }
  104. /* detect pineview DDR3 setting */
  105. tmp = I915_READ(CSHRDDR3CTL);
  106. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  107. }
  108. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  109. {
  110. struct drm_i915_private *dev_priv = dev->dev_private;
  111. u16 ddrpll, csipll;
  112. ddrpll = I915_READ16(DDRMPLL1);
  113. csipll = I915_READ16(CSIPLL0);
  114. switch (ddrpll & 0xff) {
  115. case 0xc:
  116. dev_priv->mem_freq = 800;
  117. break;
  118. case 0x10:
  119. dev_priv->mem_freq = 1066;
  120. break;
  121. case 0x14:
  122. dev_priv->mem_freq = 1333;
  123. break;
  124. case 0x18:
  125. dev_priv->mem_freq = 1600;
  126. break;
  127. default:
  128. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  129. ddrpll & 0xff);
  130. dev_priv->mem_freq = 0;
  131. break;
  132. }
  133. dev_priv->ips.r_t = dev_priv->mem_freq;
  134. switch (csipll & 0x3ff) {
  135. case 0x00c:
  136. dev_priv->fsb_freq = 3200;
  137. break;
  138. case 0x00e:
  139. dev_priv->fsb_freq = 3733;
  140. break;
  141. case 0x010:
  142. dev_priv->fsb_freq = 4266;
  143. break;
  144. case 0x012:
  145. dev_priv->fsb_freq = 4800;
  146. break;
  147. case 0x014:
  148. dev_priv->fsb_freq = 5333;
  149. break;
  150. case 0x016:
  151. dev_priv->fsb_freq = 5866;
  152. break;
  153. case 0x018:
  154. dev_priv->fsb_freq = 6400;
  155. break;
  156. default:
  157. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  158. csipll & 0x3ff);
  159. dev_priv->fsb_freq = 0;
  160. break;
  161. }
  162. if (dev_priv->fsb_freq == 3200) {
  163. dev_priv->ips.c_m = 0;
  164. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  165. dev_priv->ips.c_m = 1;
  166. } else {
  167. dev_priv->ips.c_m = 2;
  168. }
  169. }
  170. static const struct cxsr_latency cxsr_latency_table[] = {
  171. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  172. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  173. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  174. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  175. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  176. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  177. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  178. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  179. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  180. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  181. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  182. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  183. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  184. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  185. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  186. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  187. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  188. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  189. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  190. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  191. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  192. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  193. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  194. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  195. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  196. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  197. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  198. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  199. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  200. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  201. };
  202. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  203. int is_ddr3,
  204. int fsb,
  205. int mem)
  206. {
  207. const struct cxsr_latency *latency;
  208. int i;
  209. if (fsb == 0 || mem == 0)
  210. return NULL;
  211. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  212. latency = &cxsr_latency_table[i];
  213. if (is_desktop == latency->is_desktop &&
  214. is_ddr3 == latency->is_ddr3 &&
  215. fsb == latency->fsb_freq && mem == latency->mem_freq)
  216. return latency;
  217. }
  218. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  219. return NULL;
  220. }
  221. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  222. {
  223. u32 val;
  224. mutex_lock(&dev_priv->rps.hw_lock);
  225. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  226. if (enable)
  227. val &= ~FORCE_DDR_HIGH_FREQ;
  228. else
  229. val |= FORCE_DDR_HIGH_FREQ;
  230. val &= ~FORCE_DDR_LOW_FREQ;
  231. val |= FORCE_DDR_FREQ_REQ_ACK;
  232. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  233. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  234. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  235. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  236. mutex_unlock(&dev_priv->rps.hw_lock);
  237. }
  238. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  239. {
  240. u32 val;
  241. mutex_lock(&dev_priv->rps.hw_lock);
  242. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  243. if (enable)
  244. val |= DSP_MAXFIFO_PM5_ENABLE;
  245. else
  246. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  247. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  248. mutex_unlock(&dev_priv->rps.hw_lock);
  249. }
  250. #define FW_WM(value, plane) \
  251. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  252. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  253. {
  254. struct drm_device *dev = dev_priv->dev;
  255. u32 val;
  256. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  257. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  258. POSTING_READ(FW_BLC_SELF_VLV);
  259. dev_priv->wm.vlv.cxsr = enable;
  260. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  261. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  262. POSTING_READ(FW_BLC_SELF);
  263. } else if (IS_PINEVIEW(dev)) {
  264. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  265. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  266. I915_WRITE(DSPFW3, val);
  267. POSTING_READ(DSPFW3);
  268. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  269. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  270. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  271. I915_WRITE(FW_BLC_SELF, val);
  272. POSTING_READ(FW_BLC_SELF);
  273. } else if (IS_I915GM(dev)) {
  274. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  275. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  276. I915_WRITE(INSTPM, val);
  277. POSTING_READ(INSTPM);
  278. } else {
  279. return;
  280. }
  281. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  282. enable ? "enabled" : "disabled");
  283. }
  284. /*
  285. * Latency for FIFO fetches is dependent on several factors:
  286. * - memory configuration (speed, channels)
  287. * - chipset
  288. * - current MCH state
  289. * It can be fairly high in some situations, so here we assume a fairly
  290. * pessimal value. It's a tradeoff between extra memory fetches (if we
  291. * set this value too high, the FIFO will fetch frequently to stay full)
  292. * and power consumption (set it too low to save power and we might see
  293. * FIFO underruns and display "flicker").
  294. *
  295. * A value of 5us seems to be a good balance; safe for very low end
  296. * platforms but not overly aggressive on lower latency configs.
  297. */
  298. static const int pessimal_latency_ns = 5000;
  299. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  300. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  301. static int vlv_get_fifo_size(struct drm_device *dev,
  302. enum pipe pipe, int plane)
  303. {
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. int sprite0_start, sprite1_start, size;
  306. switch (pipe) {
  307. uint32_t dsparb, dsparb2, dsparb3;
  308. case PIPE_A:
  309. dsparb = I915_READ(DSPARB);
  310. dsparb2 = I915_READ(DSPARB2);
  311. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  312. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  313. break;
  314. case PIPE_B:
  315. dsparb = I915_READ(DSPARB);
  316. dsparb2 = I915_READ(DSPARB2);
  317. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  318. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  319. break;
  320. case PIPE_C:
  321. dsparb2 = I915_READ(DSPARB2);
  322. dsparb3 = I915_READ(DSPARB3);
  323. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  324. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  325. break;
  326. default:
  327. return 0;
  328. }
  329. switch (plane) {
  330. case 0:
  331. size = sprite0_start;
  332. break;
  333. case 1:
  334. size = sprite1_start - sprite0_start;
  335. break;
  336. case 2:
  337. size = 512 - 1 - sprite1_start;
  338. break;
  339. default:
  340. return 0;
  341. }
  342. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  343. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  344. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  345. size);
  346. return size;
  347. }
  348. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  349. {
  350. struct drm_i915_private *dev_priv = dev->dev_private;
  351. uint32_t dsparb = I915_READ(DSPARB);
  352. int size;
  353. size = dsparb & 0x7f;
  354. if (plane)
  355. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  356. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  357. plane ? "B" : "A", size);
  358. return size;
  359. }
  360. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  361. {
  362. struct drm_i915_private *dev_priv = dev->dev_private;
  363. uint32_t dsparb = I915_READ(DSPARB);
  364. int size;
  365. size = dsparb & 0x1ff;
  366. if (plane)
  367. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  368. size >>= 1; /* Convert to cachelines */
  369. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  370. plane ? "B" : "A", size);
  371. return size;
  372. }
  373. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  374. {
  375. struct drm_i915_private *dev_priv = dev->dev_private;
  376. uint32_t dsparb = I915_READ(DSPARB);
  377. int size;
  378. size = dsparb & 0x7f;
  379. size >>= 2; /* Convert to cachelines */
  380. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  381. plane ? "B" : "A",
  382. size);
  383. return size;
  384. }
  385. /* Pineview has different values for various configs */
  386. static const struct intel_watermark_params pineview_display_wm = {
  387. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  388. .max_wm = PINEVIEW_MAX_WM,
  389. .default_wm = PINEVIEW_DFT_WM,
  390. .guard_size = PINEVIEW_GUARD_WM,
  391. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  392. };
  393. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  394. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  395. .max_wm = PINEVIEW_MAX_WM,
  396. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  397. .guard_size = PINEVIEW_GUARD_WM,
  398. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  399. };
  400. static const struct intel_watermark_params pineview_cursor_wm = {
  401. .fifo_size = PINEVIEW_CURSOR_FIFO,
  402. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  403. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  404. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  405. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  406. };
  407. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  408. .fifo_size = PINEVIEW_CURSOR_FIFO,
  409. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  410. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  411. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  412. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  413. };
  414. static const struct intel_watermark_params g4x_wm_info = {
  415. .fifo_size = G4X_FIFO_SIZE,
  416. .max_wm = G4X_MAX_WM,
  417. .default_wm = G4X_MAX_WM,
  418. .guard_size = 2,
  419. .cacheline_size = G4X_FIFO_LINE_SIZE,
  420. };
  421. static const struct intel_watermark_params g4x_cursor_wm_info = {
  422. .fifo_size = I965_CURSOR_FIFO,
  423. .max_wm = I965_CURSOR_MAX_WM,
  424. .default_wm = I965_CURSOR_DFT_WM,
  425. .guard_size = 2,
  426. .cacheline_size = G4X_FIFO_LINE_SIZE,
  427. };
  428. static const struct intel_watermark_params valleyview_wm_info = {
  429. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  430. .max_wm = VALLEYVIEW_MAX_WM,
  431. .default_wm = VALLEYVIEW_MAX_WM,
  432. .guard_size = 2,
  433. .cacheline_size = G4X_FIFO_LINE_SIZE,
  434. };
  435. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  436. .fifo_size = I965_CURSOR_FIFO,
  437. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  438. .default_wm = I965_CURSOR_DFT_WM,
  439. .guard_size = 2,
  440. .cacheline_size = G4X_FIFO_LINE_SIZE,
  441. };
  442. static const struct intel_watermark_params i965_cursor_wm_info = {
  443. .fifo_size = I965_CURSOR_FIFO,
  444. .max_wm = I965_CURSOR_MAX_WM,
  445. .default_wm = I965_CURSOR_DFT_WM,
  446. .guard_size = 2,
  447. .cacheline_size = I915_FIFO_LINE_SIZE,
  448. };
  449. static const struct intel_watermark_params i945_wm_info = {
  450. .fifo_size = I945_FIFO_SIZE,
  451. .max_wm = I915_MAX_WM,
  452. .default_wm = 1,
  453. .guard_size = 2,
  454. .cacheline_size = I915_FIFO_LINE_SIZE,
  455. };
  456. static const struct intel_watermark_params i915_wm_info = {
  457. .fifo_size = I915_FIFO_SIZE,
  458. .max_wm = I915_MAX_WM,
  459. .default_wm = 1,
  460. .guard_size = 2,
  461. .cacheline_size = I915_FIFO_LINE_SIZE,
  462. };
  463. static const struct intel_watermark_params i830_a_wm_info = {
  464. .fifo_size = I855GM_FIFO_SIZE,
  465. .max_wm = I915_MAX_WM,
  466. .default_wm = 1,
  467. .guard_size = 2,
  468. .cacheline_size = I830_FIFO_LINE_SIZE,
  469. };
  470. static const struct intel_watermark_params i830_bc_wm_info = {
  471. .fifo_size = I855GM_FIFO_SIZE,
  472. .max_wm = I915_MAX_WM/2,
  473. .default_wm = 1,
  474. .guard_size = 2,
  475. .cacheline_size = I830_FIFO_LINE_SIZE,
  476. };
  477. static const struct intel_watermark_params i845_wm_info = {
  478. .fifo_size = I830_FIFO_SIZE,
  479. .max_wm = I915_MAX_WM,
  480. .default_wm = 1,
  481. .guard_size = 2,
  482. .cacheline_size = I830_FIFO_LINE_SIZE,
  483. };
  484. /**
  485. * intel_calculate_wm - calculate watermark level
  486. * @clock_in_khz: pixel clock
  487. * @wm: chip FIFO params
  488. * @cpp: bytes per pixel
  489. * @latency_ns: memory latency for the platform
  490. *
  491. * Calculate the watermark level (the level at which the display plane will
  492. * start fetching from memory again). Each chip has a different display
  493. * FIFO size and allocation, so the caller needs to figure that out and pass
  494. * in the correct intel_watermark_params structure.
  495. *
  496. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  497. * on the pixel size. When it reaches the watermark level, it'll start
  498. * fetching FIFO line sized based chunks from memory until the FIFO fills
  499. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  500. * will occur, and a display engine hang could result.
  501. */
  502. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  503. const struct intel_watermark_params *wm,
  504. int fifo_size, int cpp,
  505. unsigned long latency_ns)
  506. {
  507. long entries_required, wm_size;
  508. /*
  509. * Note: we need to make sure we don't overflow for various clock &
  510. * latency values.
  511. * clocks go from a few thousand to several hundred thousand.
  512. * latency is usually a few thousand
  513. */
  514. entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
  515. 1000;
  516. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  517. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  518. wm_size = fifo_size - (entries_required + wm->guard_size);
  519. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  520. /* Don't promote wm_size to unsigned... */
  521. if (wm_size > (long)wm->max_wm)
  522. wm_size = wm->max_wm;
  523. if (wm_size <= 0)
  524. wm_size = wm->default_wm;
  525. /*
  526. * Bspec seems to indicate that the value shouldn't be lower than
  527. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  528. * Lets go for 8 which is the burst size since certain platforms
  529. * already use a hardcoded 8 (which is what the spec says should be
  530. * done).
  531. */
  532. if (wm_size <= 8)
  533. wm_size = 8;
  534. return wm_size;
  535. }
  536. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  537. {
  538. struct drm_crtc *crtc, *enabled = NULL;
  539. for_each_crtc(dev, crtc) {
  540. if (intel_crtc_active(crtc)) {
  541. if (enabled)
  542. return NULL;
  543. enabled = crtc;
  544. }
  545. }
  546. return enabled;
  547. }
  548. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  549. {
  550. struct drm_device *dev = unused_crtc->dev;
  551. struct drm_i915_private *dev_priv = dev->dev_private;
  552. struct drm_crtc *crtc;
  553. const struct cxsr_latency *latency;
  554. u32 reg;
  555. unsigned long wm;
  556. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  557. dev_priv->fsb_freq, dev_priv->mem_freq);
  558. if (!latency) {
  559. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  560. intel_set_memory_cxsr(dev_priv, false);
  561. return;
  562. }
  563. crtc = single_enabled_crtc(dev);
  564. if (crtc) {
  565. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  566. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  567. int clock = adjusted_mode->crtc_clock;
  568. /* Display SR */
  569. wm = intel_calculate_wm(clock, &pineview_display_wm,
  570. pineview_display_wm.fifo_size,
  571. cpp, latency->display_sr);
  572. reg = I915_READ(DSPFW1);
  573. reg &= ~DSPFW_SR_MASK;
  574. reg |= FW_WM(wm, SR);
  575. I915_WRITE(DSPFW1, reg);
  576. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  577. /* cursor SR */
  578. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  579. pineview_display_wm.fifo_size,
  580. cpp, latency->cursor_sr);
  581. reg = I915_READ(DSPFW3);
  582. reg &= ~DSPFW_CURSOR_SR_MASK;
  583. reg |= FW_WM(wm, CURSOR_SR);
  584. I915_WRITE(DSPFW3, reg);
  585. /* Display HPLL off SR */
  586. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  587. pineview_display_hplloff_wm.fifo_size,
  588. cpp, latency->display_hpll_disable);
  589. reg = I915_READ(DSPFW3);
  590. reg &= ~DSPFW_HPLL_SR_MASK;
  591. reg |= FW_WM(wm, HPLL_SR);
  592. I915_WRITE(DSPFW3, reg);
  593. /* cursor HPLL off SR */
  594. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  595. pineview_display_hplloff_wm.fifo_size,
  596. cpp, latency->cursor_hpll_disable);
  597. reg = I915_READ(DSPFW3);
  598. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  599. reg |= FW_WM(wm, HPLL_CURSOR);
  600. I915_WRITE(DSPFW3, reg);
  601. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  602. intel_set_memory_cxsr(dev_priv, true);
  603. } else {
  604. intel_set_memory_cxsr(dev_priv, false);
  605. }
  606. }
  607. static bool g4x_compute_wm0(struct drm_device *dev,
  608. int plane,
  609. const struct intel_watermark_params *display,
  610. int display_latency_ns,
  611. const struct intel_watermark_params *cursor,
  612. int cursor_latency_ns,
  613. int *plane_wm,
  614. int *cursor_wm)
  615. {
  616. struct drm_crtc *crtc;
  617. const struct drm_display_mode *adjusted_mode;
  618. int htotal, hdisplay, clock, cpp;
  619. int line_time_us, line_count;
  620. int entries, tlb_miss;
  621. crtc = intel_get_crtc_for_plane(dev, plane);
  622. if (!intel_crtc_active(crtc)) {
  623. *cursor_wm = cursor->guard_size;
  624. *plane_wm = display->guard_size;
  625. return false;
  626. }
  627. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  628. clock = adjusted_mode->crtc_clock;
  629. htotal = adjusted_mode->crtc_htotal;
  630. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  631. cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  632. /* Use the small buffer method to calculate plane watermark */
  633. entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
  634. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  635. if (tlb_miss > 0)
  636. entries += tlb_miss;
  637. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  638. *plane_wm = entries + display->guard_size;
  639. if (*plane_wm > (int)display->max_wm)
  640. *plane_wm = display->max_wm;
  641. /* Use the large buffer method to calculate cursor watermark */
  642. line_time_us = max(htotal * 1000 / clock, 1);
  643. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  644. entries = line_count * crtc->cursor->state->crtc_w * cpp;
  645. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  646. if (tlb_miss > 0)
  647. entries += tlb_miss;
  648. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  649. *cursor_wm = entries + cursor->guard_size;
  650. if (*cursor_wm > (int)cursor->max_wm)
  651. *cursor_wm = (int)cursor->max_wm;
  652. return true;
  653. }
  654. /*
  655. * Check the wm result.
  656. *
  657. * If any calculated watermark values is larger than the maximum value that
  658. * can be programmed into the associated watermark register, that watermark
  659. * must be disabled.
  660. */
  661. static bool g4x_check_srwm(struct drm_device *dev,
  662. int display_wm, int cursor_wm,
  663. const struct intel_watermark_params *display,
  664. const struct intel_watermark_params *cursor)
  665. {
  666. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  667. display_wm, cursor_wm);
  668. if (display_wm > display->max_wm) {
  669. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  670. display_wm, display->max_wm);
  671. return false;
  672. }
  673. if (cursor_wm > cursor->max_wm) {
  674. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  675. cursor_wm, cursor->max_wm);
  676. return false;
  677. }
  678. if (!(display_wm || cursor_wm)) {
  679. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  680. return false;
  681. }
  682. return true;
  683. }
  684. static bool g4x_compute_srwm(struct drm_device *dev,
  685. int plane,
  686. int latency_ns,
  687. const struct intel_watermark_params *display,
  688. const struct intel_watermark_params *cursor,
  689. int *display_wm, int *cursor_wm)
  690. {
  691. struct drm_crtc *crtc;
  692. const struct drm_display_mode *adjusted_mode;
  693. int hdisplay, htotal, cpp, clock;
  694. unsigned long line_time_us;
  695. int line_count, line_size;
  696. int small, large;
  697. int entries;
  698. if (!latency_ns) {
  699. *display_wm = *cursor_wm = 0;
  700. return false;
  701. }
  702. crtc = intel_get_crtc_for_plane(dev, plane);
  703. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  704. clock = adjusted_mode->crtc_clock;
  705. htotal = adjusted_mode->crtc_htotal;
  706. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  707. cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  708. line_time_us = max(htotal * 1000 / clock, 1);
  709. line_count = (latency_ns / line_time_us + 1000) / 1000;
  710. line_size = hdisplay * cpp;
  711. /* Use the minimum of the small and large buffer method for primary */
  712. small = ((clock * cpp / 1000) * latency_ns) / 1000;
  713. large = line_count * line_size;
  714. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  715. *display_wm = entries + display->guard_size;
  716. /* calculate the self-refresh watermark for display cursor */
  717. entries = line_count * cpp * crtc->cursor->state->crtc_w;
  718. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  719. *cursor_wm = entries + cursor->guard_size;
  720. return g4x_check_srwm(dev,
  721. *display_wm, *cursor_wm,
  722. display, cursor);
  723. }
  724. #define FW_WM_VLV(value, plane) \
  725. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  726. static void vlv_write_wm_values(struct intel_crtc *crtc,
  727. const struct vlv_wm_values *wm)
  728. {
  729. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  730. enum pipe pipe = crtc->pipe;
  731. I915_WRITE(VLV_DDL(pipe),
  732. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  733. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  734. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  735. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  736. I915_WRITE(DSPFW1,
  737. FW_WM(wm->sr.plane, SR) |
  738. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  739. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  740. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  741. I915_WRITE(DSPFW2,
  742. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  743. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  744. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  745. I915_WRITE(DSPFW3,
  746. FW_WM(wm->sr.cursor, CURSOR_SR));
  747. if (IS_CHERRYVIEW(dev_priv)) {
  748. I915_WRITE(DSPFW7_CHV,
  749. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  750. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  751. I915_WRITE(DSPFW8_CHV,
  752. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  753. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  754. I915_WRITE(DSPFW9_CHV,
  755. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  756. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  757. I915_WRITE(DSPHOWM,
  758. FW_WM(wm->sr.plane >> 9, SR_HI) |
  759. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  760. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  761. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  762. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  763. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  764. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  765. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  766. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  767. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  768. } else {
  769. I915_WRITE(DSPFW7,
  770. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  771. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  772. I915_WRITE(DSPHOWM,
  773. FW_WM(wm->sr.plane >> 9, SR_HI) |
  774. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  775. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  776. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  777. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  778. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  779. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  780. }
  781. /* zero (unused) WM1 watermarks */
  782. I915_WRITE(DSPFW4, 0);
  783. I915_WRITE(DSPFW5, 0);
  784. I915_WRITE(DSPFW6, 0);
  785. I915_WRITE(DSPHOWM1, 0);
  786. POSTING_READ(DSPFW1);
  787. }
  788. #undef FW_WM_VLV
  789. enum vlv_wm_level {
  790. VLV_WM_LEVEL_PM2,
  791. VLV_WM_LEVEL_PM5,
  792. VLV_WM_LEVEL_DDR_DVFS,
  793. };
  794. /* latency must be in 0.1us units. */
  795. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  796. unsigned int pipe_htotal,
  797. unsigned int horiz_pixels,
  798. unsigned int cpp,
  799. unsigned int latency)
  800. {
  801. unsigned int ret;
  802. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  803. ret = (ret + 1) * horiz_pixels * cpp;
  804. ret = DIV_ROUND_UP(ret, 64);
  805. return ret;
  806. }
  807. static void vlv_setup_wm_latency(struct drm_device *dev)
  808. {
  809. struct drm_i915_private *dev_priv = dev->dev_private;
  810. /* all latencies in usec */
  811. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  812. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  813. if (IS_CHERRYVIEW(dev_priv)) {
  814. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  815. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  816. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  817. }
  818. }
  819. static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
  820. struct intel_crtc *crtc,
  821. const struct intel_plane_state *state,
  822. int level)
  823. {
  824. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  825. int clock, htotal, cpp, width, wm;
  826. if (dev_priv->wm.pri_latency[level] == 0)
  827. return USHRT_MAX;
  828. if (!state->visible)
  829. return 0;
  830. cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  831. clock = crtc->config->base.adjusted_mode.crtc_clock;
  832. htotal = crtc->config->base.adjusted_mode.crtc_htotal;
  833. width = crtc->config->pipe_src_w;
  834. if (WARN_ON(htotal == 0))
  835. htotal = 1;
  836. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  837. /*
  838. * FIXME the formula gives values that are
  839. * too big for the cursor FIFO, and hence we
  840. * would never be able to use cursors. For
  841. * now just hardcode the watermark.
  842. */
  843. wm = 63;
  844. } else {
  845. wm = vlv_wm_method2(clock, htotal, width, cpp,
  846. dev_priv->wm.pri_latency[level] * 10);
  847. }
  848. return min_t(int, wm, USHRT_MAX);
  849. }
  850. static void vlv_compute_fifo(struct intel_crtc *crtc)
  851. {
  852. struct drm_device *dev = crtc->base.dev;
  853. struct vlv_wm_state *wm_state = &crtc->wm_state;
  854. struct intel_plane *plane;
  855. unsigned int total_rate = 0;
  856. const int fifo_size = 512 - 1;
  857. int fifo_extra, fifo_left = fifo_size;
  858. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  859. struct intel_plane_state *state =
  860. to_intel_plane_state(plane->base.state);
  861. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  862. continue;
  863. if (state->visible) {
  864. wm_state->num_active_planes++;
  865. total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  866. }
  867. }
  868. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  869. struct intel_plane_state *state =
  870. to_intel_plane_state(plane->base.state);
  871. unsigned int rate;
  872. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  873. plane->wm.fifo_size = 63;
  874. continue;
  875. }
  876. if (!state->visible) {
  877. plane->wm.fifo_size = 0;
  878. continue;
  879. }
  880. rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  881. plane->wm.fifo_size = fifo_size * rate / total_rate;
  882. fifo_left -= plane->wm.fifo_size;
  883. }
  884. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  885. /* spread the remainder evenly */
  886. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  887. int plane_extra;
  888. if (fifo_left == 0)
  889. break;
  890. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  891. continue;
  892. /* give it all to the first plane if none are active */
  893. if (plane->wm.fifo_size == 0 &&
  894. wm_state->num_active_planes)
  895. continue;
  896. plane_extra = min(fifo_extra, fifo_left);
  897. plane->wm.fifo_size += plane_extra;
  898. fifo_left -= plane_extra;
  899. }
  900. WARN_ON(fifo_left != 0);
  901. }
  902. static void vlv_invert_wms(struct intel_crtc *crtc)
  903. {
  904. struct vlv_wm_state *wm_state = &crtc->wm_state;
  905. int level;
  906. for (level = 0; level < wm_state->num_levels; level++) {
  907. struct drm_device *dev = crtc->base.dev;
  908. const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  909. struct intel_plane *plane;
  910. wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
  911. wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
  912. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  913. switch (plane->base.type) {
  914. int sprite;
  915. case DRM_PLANE_TYPE_CURSOR:
  916. wm_state->wm[level].cursor = plane->wm.fifo_size -
  917. wm_state->wm[level].cursor;
  918. break;
  919. case DRM_PLANE_TYPE_PRIMARY:
  920. wm_state->wm[level].primary = plane->wm.fifo_size -
  921. wm_state->wm[level].primary;
  922. break;
  923. case DRM_PLANE_TYPE_OVERLAY:
  924. sprite = plane->plane;
  925. wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
  926. wm_state->wm[level].sprite[sprite];
  927. break;
  928. }
  929. }
  930. }
  931. }
  932. static void vlv_compute_wm(struct intel_crtc *crtc)
  933. {
  934. struct drm_device *dev = crtc->base.dev;
  935. struct vlv_wm_state *wm_state = &crtc->wm_state;
  936. struct intel_plane *plane;
  937. int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  938. int level;
  939. memset(wm_state, 0, sizeof(*wm_state));
  940. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  941. wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
  942. wm_state->num_active_planes = 0;
  943. vlv_compute_fifo(crtc);
  944. if (wm_state->num_active_planes != 1)
  945. wm_state->cxsr = false;
  946. if (wm_state->cxsr) {
  947. for (level = 0; level < wm_state->num_levels; level++) {
  948. wm_state->sr[level].plane = sr_fifo_size;
  949. wm_state->sr[level].cursor = 63;
  950. }
  951. }
  952. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  953. struct intel_plane_state *state =
  954. to_intel_plane_state(plane->base.state);
  955. if (!state->visible)
  956. continue;
  957. /* normal watermarks */
  958. for (level = 0; level < wm_state->num_levels; level++) {
  959. int wm = vlv_compute_wm_level(plane, crtc, state, level);
  960. int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
  961. /* hack */
  962. if (WARN_ON(level == 0 && wm > max_wm))
  963. wm = max_wm;
  964. if (wm > plane->wm.fifo_size)
  965. break;
  966. switch (plane->base.type) {
  967. int sprite;
  968. case DRM_PLANE_TYPE_CURSOR:
  969. wm_state->wm[level].cursor = wm;
  970. break;
  971. case DRM_PLANE_TYPE_PRIMARY:
  972. wm_state->wm[level].primary = wm;
  973. break;
  974. case DRM_PLANE_TYPE_OVERLAY:
  975. sprite = plane->plane;
  976. wm_state->wm[level].sprite[sprite] = wm;
  977. break;
  978. }
  979. }
  980. wm_state->num_levels = level;
  981. if (!wm_state->cxsr)
  982. continue;
  983. /* maxfifo watermarks */
  984. switch (plane->base.type) {
  985. int sprite, level;
  986. case DRM_PLANE_TYPE_CURSOR:
  987. for (level = 0; level < wm_state->num_levels; level++)
  988. wm_state->sr[level].cursor =
  989. wm_state->wm[level].cursor;
  990. break;
  991. case DRM_PLANE_TYPE_PRIMARY:
  992. for (level = 0; level < wm_state->num_levels; level++)
  993. wm_state->sr[level].plane =
  994. min(wm_state->sr[level].plane,
  995. wm_state->wm[level].primary);
  996. break;
  997. case DRM_PLANE_TYPE_OVERLAY:
  998. sprite = plane->plane;
  999. for (level = 0; level < wm_state->num_levels; level++)
  1000. wm_state->sr[level].plane =
  1001. min(wm_state->sr[level].plane,
  1002. wm_state->wm[level].sprite[sprite]);
  1003. break;
  1004. }
  1005. }
  1006. /* clear any (partially) filled invalid levels */
  1007. for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
  1008. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1009. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1010. }
  1011. vlv_invert_wms(crtc);
  1012. }
  1013. #define VLV_FIFO(plane, value) \
  1014. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1015. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1016. {
  1017. struct drm_device *dev = crtc->base.dev;
  1018. struct drm_i915_private *dev_priv = to_i915(dev);
  1019. struct intel_plane *plane;
  1020. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1021. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1022. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1023. WARN_ON(plane->wm.fifo_size != 63);
  1024. continue;
  1025. }
  1026. if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1027. sprite0_start = plane->wm.fifo_size;
  1028. else if (plane->plane == 0)
  1029. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1030. else
  1031. fifo_size = sprite1_start + plane->wm.fifo_size;
  1032. }
  1033. WARN_ON(fifo_size != 512 - 1);
  1034. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1035. pipe_name(crtc->pipe), sprite0_start,
  1036. sprite1_start, fifo_size);
  1037. switch (crtc->pipe) {
  1038. uint32_t dsparb, dsparb2, dsparb3;
  1039. case PIPE_A:
  1040. dsparb = I915_READ(DSPARB);
  1041. dsparb2 = I915_READ(DSPARB2);
  1042. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1043. VLV_FIFO(SPRITEB, 0xff));
  1044. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1045. VLV_FIFO(SPRITEB, sprite1_start));
  1046. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1047. VLV_FIFO(SPRITEB_HI, 0x1));
  1048. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1049. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1050. I915_WRITE(DSPARB, dsparb);
  1051. I915_WRITE(DSPARB2, dsparb2);
  1052. break;
  1053. case PIPE_B:
  1054. dsparb = I915_READ(DSPARB);
  1055. dsparb2 = I915_READ(DSPARB2);
  1056. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1057. VLV_FIFO(SPRITED, 0xff));
  1058. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1059. VLV_FIFO(SPRITED, sprite1_start));
  1060. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1061. VLV_FIFO(SPRITED_HI, 0xff));
  1062. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1063. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1064. I915_WRITE(DSPARB, dsparb);
  1065. I915_WRITE(DSPARB2, dsparb2);
  1066. break;
  1067. case PIPE_C:
  1068. dsparb3 = I915_READ(DSPARB3);
  1069. dsparb2 = I915_READ(DSPARB2);
  1070. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1071. VLV_FIFO(SPRITEF, 0xff));
  1072. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1073. VLV_FIFO(SPRITEF, sprite1_start));
  1074. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1075. VLV_FIFO(SPRITEF_HI, 0xff));
  1076. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1077. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1078. I915_WRITE(DSPARB3, dsparb3);
  1079. I915_WRITE(DSPARB2, dsparb2);
  1080. break;
  1081. default:
  1082. break;
  1083. }
  1084. }
  1085. #undef VLV_FIFO
  1086. static void vlv_merge_wm(struct drm_device *dev,
  1087. struct vlv_wm_values *wm)
  1088. {
  1089. struct intel_crtc *crtc;
  1090. int num_active_crtcs = 0;
  1091. wm->level = to_i915(dev)->wm.max_level;
  1092. wm->cxsr = true;
  1093. for_each_intel_crtc(dev, crtc) {
  1094. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1095. if (!crtc->active)
  1096. continue;
  1097. if (!wm_state->cxsr)
  1098. wm->cxsr = false;
  1099. num_active_crtcs++;
  1100. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1101. }
  1102. if (num_active_crtcs != 1)
  1103. wm->cxsr = false;
  1104. if (num_active_crtcs > 1)
  1105. wm->level = VLV_WM_LEVEL_PM2;
  1106. for_each_intel_crtc(dev, crtc) {
  1107. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1108. enum pipe pipe = crtc->pipe;
  1109. if (!crtc->active)
  1110. continue;
  1111. wm->pipe[pipe] = wm_state->wm[wm->level];
  1112. if (wm->cxsr)
  1113. wm->sr = wm_state->sr[wm->level];
  1114. wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
  1115. wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
  1116. wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
  1117. wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
  1118. }
  1119. }
  1120. static void vlv_update_wm(struct drm_crtc *crtc)
  1121. {
  1122. struct drm_device *dev = crtc->dev;
  1123. struct drm_i915_private *dev_priv = dev->dev_private;
  1124. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1125. enum pipe pipe = intel_crtc->pipe;
  1126. struct vlv_wm_values wm = {};
  1127. vlv_compute_wm(intel_crtc);
  1128. vlv_merge_wm(dev, &wm);
  1129. if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
  1130. /* FIXME should be part of crtc atomic commit */
  1131. vlv_pipe_set_fifo_size(intel_crtc);
  1132. return;
  1133. }
  1134. if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
  1135. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
  1136. chv_set_memory_dvfs(dev_priv, false);
  1137. if (wm.level < VLV_WM_LEVEL_PM5 &&
  1138. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
  1139. chv_set_memory_pm5(dev_priv, false);
  1140. if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
  1141. intel_set_memory_cxsr(dev_priv, false);
  1142. /* FIXME should be part of crtc atomic commit */
  1143. vlv_pipe_set_fifo_size(intel_crtc);
  1144. vlv_write_wm_values(intel_crtc, &wm);
  1145. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1146. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1147. pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  1148. wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
  1149. wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
  1150. if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
  1151. intel_set_memory_cxsr(dev_priv, true);
  1152. if (wm.level >= VLV_WM_LEVEL_PM5 &&
  1153. dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
  1154. chv_set_memory_pm5(dev_priv, true);
  1155. if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
  1156. dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
  1157. chv_set_memory_dvfs(dev_priv, true);
  1158. dev_priv->wm.vlv = wm;
  1159. }
  1160. #define single_plane_enabled(mask) is_power_of_2(mask)
  1161. static void g4x_update_wm(struct drm_crtc *crtc)
  1162. {
  1163. struct drm_device *dev = crtc->dev;
  1164. static const int sr_latency_ns = 12000;
  1165. struct drm_i915_private *dev_priv = dev->dev_private;
  1166. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1167. int plane_sr, cursor_sr;
  1168. unsigned int enabled = 0;
  1169. bool cxsr_enabled;
  1170. if (g4x_compute_wm0(dev, PIPE_A,
  1171. &g4x_wm_info, pessimal_latency_ns,
  1172. &g4x_cursor_wm_info, pessimal_latency_ns,
  1173. &planea_wm, &cursora_wm))
  1174. enabled |= 1 << PIPE_A;
  1175. if (g4x_compute_wm0(dev, PIPE_B,
  1176. &g4x_wm_info, pessimal_latency_ns,
  1177. &g4x_cursor_wm_info, pessimal_latency_ns,
  1178. &planeb_wm, &cursorb_wm))
  1179. enabled |= 1 << PIPE_B;
  1180. if (single_plane_enabled(enabled) &&
  1181. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1182. sr_latency_ns,
  1183. &g4x_wm_info,
  1184. &g4x_cursor_wm_info,
  1185. &plane_sr, &cursor_sr)) {
  1186. cxsr_enabled = true;
  1187. } else {
  1188. cxsr_enabled = false;
  1189. intel_set_memory_cxsr(dev_priv, false);
  1190. plane_sr = cursor_sr = 0;
  1191. }
  1192. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1193. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1194. planea_wm, cursora_wm,
  1195. planeb_wm, cursorb_wm,
  1196. plane_sr, cursor_sr);
  1197. I915_WRITE(DSPFW1,
  1198. FW_WM(plane_sr, SR) |
  1199. FW_WM(cursorb_wm, CURSORB) |
  1200. FW_WM(planeb_wm, PLANEB) |
  1201. FW_WM(planea_wm, PLANEA));
  1202. I915_WRITE(DSPFW2,
  1203. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1204. FW_WM(cursora_wm, CURSORA));
  1205. /* HPLL off in SR has some issues on G4x... disable it */
  1206. I915_WRITE(DSPFW3,
  1207. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1208. FW_WM(cursor_sr, CURSOR_SR));
  1209. if (cxsr_enabled)
  1210. intel_set_memory_cxsr(dev_priv, true);
  1211. }
  1212. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1213. {
  1214. struct drm_device *dev = unused_crtc->dev;
  1215. struct drm_i915_private *dev_priv = dev->dev_private;
  1216. struct drm_crtc *crtc;
  1217. int srwm = 1;
  1218. int cursor_sr = 16;
  1219. bool cxsr_enabled;
  1220. /* Calc sr entries for one plane configs */
  1221. crtc = single_enabled_crtc(dev);
  1222. if (crtc) {
  1223. /* self-refresh has much higher latency */
  1224. static const int sr_latency_ns = 12000;
  1225. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1226. int clock = adjusted_mode->crtc_clock;
  1227. int htotal = adjusted_mode->crtc_htotal;
  1228. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1229. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1230. unsigned long line_time_us;
  1231. int entries;
  1232. line_time_us = max(htotal * 1000 / clock, 1);
  1233. /* Use ns/us then divide to preserve precision */
  1234. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1235. cpp * hdisplay;
  1236. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1237. srwm = I965_FIFO_SIZE - entries;
  1238. if (srwm < 0)
  1239. srwm = 1;
  1240. srwm &= 0x1ff;
  1241. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1242. entries, srwm);
  1243. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1244. cpp * crtc->cursor->state->crtc_w;
  1245. entries = DIV_ROUND_UP(entries,
  1246. i965_cursor_wm_info.cacheline_size);
  1247. cursor_sr = i965_cursor_wm_info.fifo_size -
  1248. (entries + i965_cursor_wm_info.guard_size);
  1249. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1250. cursor_sr = i965_cursor_wm_info.max_wm;
  1251. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1252. "cursor %d\n", srwm, cursor_sr);
  1253. cxsr_enabled = true;
  1254. } else {
  1255. cxsr_enabled = false;
  1256. /* Turn off self refresh if both pipes are enabled */
  1257. intel_set_memory_cxsr(dev_priv, false);
  1258. }
  1259. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1260. srwm);
  1261. /* 965 has limitations... */
  1262. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1263. FW_WM(8, CURSORB) |
  1264. FW_WM(8, PLANEB) |
  1265. FW_WM(8, PLANEA));
  1266. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1267. FW_WM(8, PLANEC_OLD));
  1268. /* update cursor SR watermark */
  1269. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1270. if (cxsr_enabled)
  1271. intel_set_memory_cxsr(dev_priv, true);
  1272. }
  1273. #undef FW_WM
  1274. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1275. {
  1276. struct drm_device *dev = unused_crtc->dev;
  1277. struct drm_i915_private *dev_priv = dev->dev_private;
  1278. const struct intel_watermark_params *wm_info;
  1279. uint32_t fwater_lo;
  1280. uint32_t fwater_hi;
  1281. int cwm, srwm = 1;
  1282. int fifo_size;
  1283. int planea_wm, planeb_wm;
  1284. struct drm_crtc *crtc, *enabled = NULL;
  1285. if (IS_I945GM(dev))
  1286. wm_info = &i945_wm_info;
  1287. else if (!IS_GEN2(dev))
  1288. wm_info = &i915_wm_info;
  1289. else
  1290. wm_info = &i830_a_wm_info;
  1291. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1292. crtc = intel_get_crtc_for_plane(dev, 0);
  1293. if (intel_crtc_active(crtc)) {
  1294. const struct drm_display_mode *adjusted_mode;
  1295. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1296. if (IS_GEN2(dev))
  1297. cpp = 4;
  1298. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1299. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1300. wm_info, fifo_size, cpp,
  1301. pessimal_latency_ns);
  1302. enabled = crtc;
  1303. } else {
  1304. planea_wm = fifo_size - wm_info->guard_size;
  1305. if (planea_wm > (long)wm_info->max_wm)
  1306. planea_wm = wm_info->max_wm;
  1307. }
  1308. if (IS_GEN2(dev))
  1309. wm_info = &i830_bc_wm_info;
  1310. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1311. crtc = intel_get_crtc_for_plane(dev, 1);
  1312. if (intel_crtc_active(crtc)) {
  1313. const struct drm_display_mode *adjusted_mode;
  1314. int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
  1315. if (IS_GEN2(dev))
  1316. cpp = 4;
  1317. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1318. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1319. wm_info, fifo_size, cpp,
  1320. pessimal_latency_ns);
  1321. if (enabled == NULL)
  1322. enabled = crtc;
  1323. else
  1324. enabled = NULL;
  1325. } else {
  1326. planeb_wm = fifo_size - wm_info->guard_size;
  1327. if (planeb_wm > (long)wm_info->max_wm)
  1328. planeb_wm = wm_info->max_wm;
  1329. }
  1330. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1331. if (IS_I915GM(dev) && enabled) {
  1332. struct drm_i915_gem_object *obj;
  1333. obj = intel_fb_obj(enabled->primary->state->fb);
  1334. /* self-refresh seems busted with untiled */
  1335. if (obj->tiling_mode == I915_TILING_NONE)
  1336. enabled = NULL;
  1337. }
  1338. /*
  1339. * Overlay gets an aggressive default since video jitter is bad.
  1340. */
  1341. cwm = 2;
  1342. /* Play safe and disable self-refresh before adjusting watermarks. */
  1343. intel_set_memory_cxsr(dev_priv, false);
  1344. /* Calc sr entries for one plane configs */
  1345. if (HAS_FW_BLC(dev) && enabled) {
  1346. /* self-refresh has much higher latency */
  1347. static const int sr_latency_ns = 6000;
  1348. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1349. int clock = adjusted_mode->crtc_clock;
  1350. int htotal = adjusted_mode->crtc_htotal;
  1351. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1352. int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
  1353. unsigned long line_time_us;
  1354. int entries;
  1355. line_time_us = max(htotal * 1000 / clock, 1);
  1356. /* Use ns/us then divide to preserve precision */
  1357. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1358. cpp * hdisplay;
  1359. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1360. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1361. srwm = wm_info->fifo_size - entries;
  1362. if (srwm < 0)
  1363. srwm = 1;
  1364. if (IS_I945G(dev) || IS_I945GM(dev))
  1365. I915_WRITE(FW_BLC_SELF,
  1366. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1367. else if (IS_I915GM(dev))
  1368. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1369. }
  1370. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1371. planea_wm, planeb_wm, cwm, srwm);
  1372. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1373. fwater_hi = (cwm & 0x1f);
  1374. /* Set request length to 8 cachelines per fetch */
  1375. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1376. fwater_hi = fwater_hi | (1 << 8);
  1377. I915_WRITE(FW_BLC, fwater_lo);
  1378. I915_WRITE(FW_BLC2, fwater_hi);
  1379. if (enabled)
  1380. intel_set_memory_cxsr(dev_priv, true);
  1381. }
  1382. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1383. {
  1384. struct drm_device *dev = unused_crtc->dev;
  1385. struct drm_i915_private *dev_priv = dev->dev_private;
  1386. struct drm_crtc *crtc;
  1387. const struct drm_display_mode *adjusted_mode;
  1388. uint32_t fwater_lo;
  1389. int planea_wm;
  1390. crtc = single_enabled_crtc(dev);
  1391. if (crtc == NULL)
  1392. return;
  1393. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1394. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1395. &i845_wm_info,
  1396. dev_priv->display.get_fifo_size(dev, 0),
  1397. 4, pessimal_latency_ns);
  1398. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1399. fwater_lo |= (3<<8) | planea_wm;
  1400. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1401. I915_WRITE(FW_BLC, fwater_lo);
  1402. }
  1403. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1404. {
  1405. uint32_t pixel_rate;
  1406. pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1407. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1408. * adjust the pixel_rate here. */
  1409. if (pipe_config->pch_pfit.enabled) {
  1410. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1411. uint32_t pfit_size = pipe_config->pch_pfit.size;
  1412. pipe_w = pipe_config->pipe_src_w;
  1413. pipe_h = pipe_config->pipe_src_h;
  1414. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1415. pfit_h = pfit_size & 0xFFFF;
  1416. if (pipe_w < pfit_w)
  1417. pipe_w = pfit_w;
  1418. if (pipe_h < pfit_h)
  1419. pipe_h = pfit_h;
  1420. if (WARN_ON(!pfit_w || !pfit_h))
  1421. return pixel_rate;
  1422. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1423. pfit_w * pfit_h);
  1424. }
  1425. return pixel_rate;
  1426. }
  1427. /* latency must be in 0.1us units. */
  1428. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  1429. {
  1430. uint64_t ret;
  1431. if (WARN(latency == 0, "Latency value missing\n"))
  1432. return UINT_MAX;
  1433. ret = (uint64_t) pixel_rate * cpp * latency;
  1434. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1435. return ret;
  1436. }
  1437. /* latency must be in 0.1us units. */
  1438. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1439. uint32_t horiz_pixels, uint8_t cpp,
  1440. uint32_t latency)
  1441. {
  1442. uint32_t ret;
  1443. if (WARN(latency == 0, "Latency value missing\n"))
  1444. return UINT_MAX;
  1445. if (WARN_ON(!pipe_htotal))
  1446. return UINT_MAX;
  1447. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1448. ret = (ret + 1) * horiz_pixels * cpp;
  1449. ret = DIV_ROUND_UP(ret, 64) + 2;
  1450. return ret;
  1451. }
  1452. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1453. uint8_t cpp)
  1454. {
  1455. /*
  1456. * Neither of these should be possible since this function shouldn't be
  1457. * called if the CRTC is off or the plane is invisible. But let's be
  1458. * extra paranoid to avoid a potential divide-by-zero if we screw up
  1459. * elsewhere in the driver.
  1460. */
  1461. if (WARN_ON(!cpp))
  1462. return 0;
  1463. if (WARN_ON(!horiz_pixels))
  1464. return 0;
  1465. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  1466. }
  1467. struct ilk_wm_maximums {
  1468. uint16_t pri;
  1469. uint16_t spr;
  1470. uint16_t cur;
  1471. uint16_t fbc;
  1472. };
  1473. /*
  1474. * For both WM_PIPE and WM_LP.
  1475. * mem_value must be in 0.1us units.
  1476. */
  1477. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1478. const struct intel_plane_state *pstate,
  1479. uint32_t mem_value,
  1480. bool is_lp)
  1481. {
  1482. int cpp = pstate->base.fb ?
  1483. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1484. uint32_t method1, method2;
  1485. if (!cstate->base.active || !pstate->visible)
  1486. return 0;
  1487. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1488. if (!is_lp)
  1489. return method1;
  1490. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1491. cstate->base.adjusted_mode.crtc_htotal,
  1492. drm_rect_width(&pstate->dst),
  1493. cpp, mem_value);
  1494. return min(method1, method2);
  1495. }
  1496. /*
  1497. * For both WM_PIPE and WM_LP.
  1498. * mem_value must be in 0.1us units.
  1499. */
  1500. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1501. const struct intel_plane_state *pstate,
  1502. uint32_t mem_value)
  1503. {
  1504. int cpp = pstate->base.fb ?
  1505. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1506. uint32_t method1, method2;
  1507. if (!cstate->base.active || !pstate->visible)
  1508. return 0;
  1509. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
  1510. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1511. cstate->base.adjusted_mode.crtc_htotal,
  1512. drm_rect_width(&pstate->dst),
  1513. cpp, mem_value);
  1514. return min(method1, method2);
  1515. }
  1516. /*
  1517. * For both WM_PIPE and WM_LP.
  1518. * mem_value must be in 0.1us units.
  1519. */
  1520. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1521. const struct intel_plane_state *pstate,
  1522. uint32_t mem_value)
  1523. {
  1524. /*
  1525. * We treat the cursor plane as always-on for the purposes of watermark
  1526. * calculation. Until we have two-stage watermark programming merged,
  1527. * this is necessary to avoid flickering.
  1528. */
  1529. int cpp = 4;
  1530. int width = pstate->visible ? pstate->base.crtc_w : 64;
  1531. if (!cstate->base.active)
  1532. return 0;
  1533. return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1534. cstate->base.adjusted_mode.crtc_htotal,
  1535. width, cpp, mem_value);
  1536. }
  1537. /* Only for WM_LP. */
  1538. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1539. const struct intel_plane_state *pstate,
  1540. uint32_t pri_val)
  1541. {
  1542. int cpp = pstate->base.fb ?
  1543. drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
  1544. if (!cstate->base.active || !pstate->visible)
  1545. return 0;
  1546. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
  1547. }
  1548. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1549. {
  1550. if (INTEL_INFO(dev)->gen >= 8)
  1551. return 3072;
  1552. else if (INTEL_INFO(dev)->gen >= 7)
  1553. return 768;
  1554. else
  1555. return 512;
  1556. }
  1557. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1558. int level, bool is_sprite)
  1559. {
  1560. if (INTEL_INFO(dev)->gen >= 8)
  1561. /* BDW primary/sprite plane watermarks */
  1562. return level == 0 ? 255 : 2047;
  1563. else if (INTEL_INFO(dev)->gen >= 7)
  1564. /* IVB/HSW primary/sprite plane watermarks */
  1565. return level == 0 ? 127 : 1023;
  1566. else if (!is_sprite)
  1567. /* ILK/SNB primary plane watermarks */
  1568. return level == 0 ? 127 : 511;
  1569. else
  1570. /* ILK/SNB sprite plane watermarks */
  1571. return level == 0 ? 63 : 255;
  1572. }
  1573. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1574. int level)
  1575. {
  1576. if (INTEL_INFO(dev)->gen >= 7)
  1577. return level == 0 ? 63 : 255;
  1578. else
  1579. return level == 0 ? 31 : 63;
  1580. }
  1581. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1582. {
  1583. if (INTEL_INFO(dev)->gen >= 8)
  1584. return 31;
  1585. else
  1586. return 15;
  1587. }
  1588. /* Calculate the maximum primary/sprite plane watermark */
  1589. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1590. int level,
  1591. const struct intel_wm_config *config,
  1592. enum intel_ddb_partitioning ddb_partitioning,
  1593. bool is_sprite)
  1594. {
  1595. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1596. /* if sprites aren't enabled, sprites get nothing */
  1597. if (is_sprite && !config->sprites_enabled)
  1598. return 0;
  1599. /* HSW allows LP1+ watermarks even with multiple pipes */
  1600. if (level == 0 || config->num_pipes_active > 1) {
  1601. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1602. /*
  1603. * For some reason the non self refresh
  1604. * FIFO size is only half of the self
  1605. * refresh FIFO size on ILK/SNB.
  1606. */
  1607. if (INTEL_INFO(dev)->gen <= 6)
  1608. fifo_size /= 2;
  1609. }
  1610. if (config->sprites_enabled) {
  1611. /* level 0 is always calculated with 1:1 split */
  1612. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1613. if (is_sprite)
  1614. fifo_size *= 5;
  1615. fifo_size /= 6;
  1616. } else {
  1617. fifo_size /= 2;
  1618. }
  1619. }
  1620. /* clamp to max that the registers can hold */
  1621. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1622. }
  1623. /* Calculate the maximum cursor plane watermark */
  1624. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1625. int level,
  1626. const struct intel_wm_config *config)
  1627. {
  1628. /* HSW LP1+ watermarks w/ multiple pipes */
  1629. if (level > 0 && config->num_pipes_active > 1)
  1630. return 64;
  1631. /* otherwise just report max that registers can hold */
  1632. return ilk_cursor_wm_reg_max(dev, level);
  1633. }
  1634. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1635. int level,
  1636. const struct intel_wm_config *config,
  1637. enum intel_ddb_partitioning ddb_partitioning,
  1638. struct ilk_wm_maximums *max)
  1639. {
  1640. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1641. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1642. max->cur = ilk_cursor_wm_max(dev, level, config);
  1643. max->fbc = ilk_fbc_wm_reg_max(dev);
  1644. }
  1645. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1646. int level,
  1647. struct ilk_wm_maximums *max)
  1648. {
  1649. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1650. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1651. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1652. max->fbc = ilk_fbc_wm_reg_max(dev);
  1653. }
  1654. static bool ilk_validate_wm_level(int level,
  1655. const struct ilk_wm_maximums *max,
  1656. struct intel_wm_level *result)
  1657. {
  1658. bool ret;
  1659. /* already determined to be invalid? */
  1660. if (!result->enable)
  1661. return false;
  1662. result->enable = result->pri_val <= max->pri &&
  1663. result->spr_val <= max->spr &&
  1664. result->cur_val <= max->cur;
  1665. ret = result->enable;
  1666. /*
  1667. * HACK until we can pre-compute everything,
  1668. * and thus fail gracefully if LP0 watermarks
  1669. * are exceeded...
  1670. */
  1671. if (level == 0 && !result->enable) {
  1672. if (result->pri_val > max->pri)
  1673. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1674. level, result->pri_val, max->pri);
  1675. if (result->spr_val > max->spr)
  1676. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1677. level, result->spr_val, max->spr);
  1678. if (result->cur_val > max->cur)
  1679. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1680. level, result->cur_val, max->cur);
  1681. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1682. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1683. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1684. result->enable = true;
  1685. }
  1686. return ret;
  1687. }
  1688. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1689. const struct intel_crtc *intel_crtc,
  1690. int level,
  1691. struct intel_crtc_state *cstate,
  1692. struct intel_plane_state *pristate,
  1693. struct intel_plane_state *sprstate,
  1694. struct intel_plane_state *curstate,
  1695. struct intel_wm_level *result)
  1696. {
  1697. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1698. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1699. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1700. /* WM1+ latency values stored in 0.5us units */
  1701. if (level > 0) {
  1702. pri_latency *= 5;
  1703. spr_latency *= 5;
  1704. cur_latency *= 5;
  1705. }
  1706. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  1707. pri_latency, level);
  1708. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  1709. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  1710. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  1711. result->enable = true;
  1712. }
  1713. static uint32_t
  1714. hsw_compute_linetime_wm(struct drm_device *dev,
  1715. struct intel_crtc_state *cstate)
  1716. {
  1717. struct drm_i915_private *dev_priv = dev->dev_private;
  1718. const struct drm_display_mode *adjusted_mode =
  1719. &cstate->base.adjusted_mode;
  1720. u32 linetime, ips_linetime;
  1721. if (!cstate->base.active)
  1722. return 0;
  1723. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  1724. return 0;
  1725. if (WARN_ON(dev_priv->cdclk_freq == 0))
  1726. return 0;
  1727. /* The WM are computed with base on how long it takes to fill a single
  1728. * row at the given clock rate, multiplied by 8.
  1729. * */
  1730. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1731. adjusted_mode->crtc_clock);
  1732. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1733. dev_priv->cdclk_freq);
  1734. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1735. PIPE_WM_LINETIME_TIME(linetime);
  1736. }
  1737. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1738. {
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. if (IS_GEN9(dev)) {
  1741. uint32_t val;
  1742. int ret, i;
  1743. int level, max_level = ilk_wm_max_level(dev);
  1744. /* read the first set of memory latencies[0:3] */
  1745. val = 0; /* data0 to be programmed to 0 for first set */
  1746. mutex_lock(&dev_priv->rps.hw_lock);
  1747. ret = sandybridge_pcode_read(dev_priv,
  1748. GEN9_PCODE_READ_MEM_LATENCY,
  1749. &val);
  1750. mutex_unlock(&dev_priv->rps.hw_lock);
  1751. if (ret) {
  1752. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1753. return;
  1754. }
  1755. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1756. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1757. GEN9_MEM_LATENCY_LEVEL_MASK;
  1758. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1759. GEN9_MEM_LATENCY_LEVEL_MASK;
  1760. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1761. GEN9_MEM_LATENCY_LEVEL_MASK;
  1762. /* read the second set of memory latencies[4:7] */
  1763. val = 1; /* data0 to be programmed to 1 for second set */
  1764. mutex_lock(&dev_priv->rps.hw_lock);
  1765. ret = sandybridge_pcode_read(dev_priv,
  1766. GEN9_PCODE_READ_MEM_LATENCY,
  1767. &val);
  1768. mutex_unlock(&dev_priv->rps.hw_lock);
  1769. if (ret) {
  1770. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1771. return;
  1772. }
  1773. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1774. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1775. GEN9_MEM_LATENCY_LEVEL_MASK;
  1776. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1777. GEN9_MEM_LATENCY_LEVEL_MASK;
  1778. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1779. GEN9_MEM_LATENCY_LEVEL_MASK;
  1780. /*
  1781. * WaWmMemoryReadLatency:skl
  1782. *
  1783. * punit doesn't take into account the read latency so we need
  1784. * to add 2us to the various latency levels we retrieve from
  1785. * the punit.
  1786. * - W0 is a bit special in that it's the only level that
  1787. * can't be disabled if we want to have display working, so
  1788. * we always add 2us there.
  1789. * - For levels >=1, punit returns 0us latency when they are
  1790. * disabled, so we respect that and don't add 2us then
  1791. *
  1792. * Additionally, if a level n (n > 1) has a 0us latency, all
  1793. * levels m (m >= n) need to be disabled. We make sure to
  1794. * sanitize the values out of the punit to satisfy this
  1795. * requirement.
  1796. */
  1797. wm[0] += 2;
  1798. for (level = 1; level <= max_level; level++)
  1799. if (wm[level] != 0)
  1800. wm[level] += 2;
  1801. else {
  1802. for (i = level + 1; i <= max_level; i++)
  1803. wm[i] = 0;
  1804. break;
  1805. }
  1806. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1807. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1808. wm[0] = (sskpd >> 56) & 0xFF;
  1809. if (wm[0] == 0)
  1810. wm[0] = sskpd & 0xF;
  1811. wm[1] = (sskpd >> 4) & 0xFF;
  1812. wm[2] = (sskpd >> 12) & 0xFF;
  1813. wm[3] = (sskpd >> 20) & 0x1FF;
  1814. wm[4] = (sskpd >> 32) & 0x1FF;
  1815. } else if (INTEL_INFO(dev)->gen >= 6) {
  1816. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1817. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1818. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1819. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1820. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1821. } else if (INTEL_INFO(dev)->gen >= 5) {
  1822. uint32_t mltr = I915_READ(MLTR_ILK);
  1823. /* ILK primary LP0 latency is 700 ns */
  1824. wm[0] = 7;
  1825. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1826. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1827. }
  1828. }
  1829. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1830. {
  1831. /* ILK sprite LP0 latency is 1300 ns */
  1832. if (INTEL_INFO(dev)->gen == 5)
  1833. wm[0] = 13;
  1834. }
  1835. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1836. {
  1837. /* ILK cursor LP0 latency is 1300 ns */
  1838. if (INTEL_INFO(dev)->gen == 5)
  1839. wm[0] = 13;
  1840. /* WaDoubleCursorLP3Latency:ivb */
  1841. if (IS_IVYBRIDGE(dev))
  1842. wm[3] *= 2;
  1843. }
  1844. int ilk_wm_max_level(const struct drm_device *dev)
  1845. {
  1846. /* how many WM levels are we expecting */
  1847. if (INTEL_INFO(dev)->gen >= 9)
  1848. return 7;
  1849. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1850. return 4;
  1851. else if (INTEL_INFO(dev)->gen >= 6)
  1852. return 3;
  1853. else
  1854. return 2;
  1855. }
  1856. static void intel_print_wm_latency(struct drm_device *dev,
  1857. const char *name,
  1858. const uint16_t wm[8])
  1859. {
  1860. int level, max_level = ilk_wm_max_level(dev);
  1861. for (level = 0; level <= max_level; level++) {
  1862. unsigned int latency = wm[level];
  1863. if (latency == 0) {
  1864. DRM_ERROR("%s WM%d latency not provided\n",
  1865. name, level);
  1866. continue;
  1867. }
  1868. /*
  1869. * - latencies are in us on gen9.
  1870. * - before then, WM1+ latency values are in 0.5us units
  1871. */
  1872. if (IS_GEN9(dev))
  1873. latency *= 10;
  1874. else if (level > 0)
  1875. latency *= 5;
  1876. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1877. name, level, wm[level],
  1878. latency / 10, latency % 10);
  1879. }
  1880. }
  1881. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1882. uint16_t wm[5], uint16_t min)
  1883. {
  1884. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1885. if (wm[0] >= min)
  1886. return false;
  1887. wm[0] = max(wm[0], min);
  1888. for (level = 1; level <= max_level; level++)
  1889. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1890. return true;
  1891. }
  1892. static void snb_wm_latency_quirk(struct drm_device *dev)
  1893. {
  1894. struct drm_i915_private *dev_priv = dev->dev_private;
  1895. bool changed;
  1896. /*
  1897. * The BIOS provided WM memory latency values are often
  1898. * inadequate for high resolution displays. Adjust them.
  1899. */
  1900. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1901. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1902. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1903. if (!changed)
  1904. return;
  1905. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1906. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1907. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1908. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1909. }
  1910. static void ilk_setup_wm_latency(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1914. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1915. sizeof(dev_priv->wm.pri_latency));
  1916. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1917. sizeof(dev_priv->wm.pri_latency));
  1918. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1919. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1920. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1921. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1922. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1923. if (IS_GEN6(dev))
  1924. snb_wm_latency_quirk(dev);
  1925. }
  1926. static void skl_setup_wm_latency(struct drm_device *dev)
  1927. {
  1928. struct drm_i915_private *dev_priv = dev->dev_private;
  1929. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1930. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1931. }
  1932. /* Compute new watermarks for the pipe */
  1933. static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
  1934. struct drm_atomic_state *state)
  1935. {
  1936. struct intel_pipe_wm *pipe_wm;
  1937. struct drm_device *dev = intel_crtc->base.dev;
  1938. const struct drm_i915_private *dev_priv = dev->dev_private;
  1939. struct intel_crtc_state *cstate = NULL;
  1940. struct intel_plane *intel_plane;
  1941. struct drm_plane_state *ps;
  1942. struct intel_plane_state *pristate = NULL;
  1943. struct intel_plane_state *sprstate = NULL;
  1944. struct intel_plane_state *curstate = NULL;
  1945. int level, max_level = ilk_wm_max_level(dev);
  1946. /* LP0 watermark maximums depend on this pipe alone */
  1947. struct intel_wm_config config = {
  1948. .num_pipes_active = 1,
  1949. };
  1950. struct ilk_wm_maximums max;
  1951. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  1952. if (IS_ERR(cstate))
  1953. return PTR_ERR(cstate);
  1954. pipe_wm = &cstate->wm.optimal.ilk;
  1955. memset(pipe_wm, 0, sizeof(*pipe_wm));
  1956. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  1957. ps = drm_atomic_get_plane_state(state,
  1958. &intel_plane->base);
  1959. if (IS_ERR(ps))
  1960. return PTR_ERR(ps);
  1961. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1962. pristate = to_intel_plane_state(ps);
  1963. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  1964. sprstate = to_intel_plane_state(ps);
  1965. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  1966. curstate = to_intel_plane_state(ps);
  1967. }
  1968. config.sprites_enabled = sprstate->visible;
  1969. config.sprites_scaled = sprstate->visible &&
  1970. (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
  1971. drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
  1972. pipe_wm->pipe_enabled = cstate->base.active;
  1973. pipe_wm->sprites_enabled = config.sprites_enabled;
  1974. pipe_wm->sprites_scaled = config.sprites_scaled;
  1975. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1976. if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
  1977. max_level = 1;
  1978. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1979. if (config.sprites_scaled)
  1980. max_level = 0;
  1981. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  1982. pristate, sprstate, curstate, &pipe_wm->wm[0]);
  1983. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1984. pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
  1985. /* LP0 watermarks always use 1/2 DDB partitioning */
  1986. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1987. /* At least LP0 must be valid */
  1988. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1989. return -EINVAL;
  1990. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1991. for (level = 1; level <= max_level; level++) {
  1992. struct intel_wm_level wm = {};
  1993. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  1994. pristate, sprstate, curstate, &wm);
  1995. /*
  1996. * Disable any watermark level that exceeds the
  1997. * register maximums since such watermarks are
  1998. * always invalid.
  1999. */
  2000. if (!ilk_validate_wm_level(level, &max, &wm))
  2001. break;
  2002. pipe_wm->wm[level] = wm;
  2003. }
  2004. return 0;
  2005. }
  2006. /*
  2007. * Merge the watermarks from all active pipes for a specific level.
  2008. */
  2009. static void ilk_merge_wm_level(struct drm_device *dev,
  2010. int level,
  2011. struct intel_wm_level *ret_wm)
  2012. {
  2013. const struct intel_crtc *intel_crtc;
  2014. ret_wm->enable = true;
  2015. for_each_intel_crtc(dev, intel_crtc) {
  2016. const struct intel_crtc_state *cstate =
  2017. to_intel_crtc_state(intel_crtc->base.state);
  2018. const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  2019. const struct intel_wm_level *wm = &active->wm[level];
  2020. if (!active->pipe_enabled)
  2021. continue;
  2022. /*
  2023. * The watermark values may have been used in the past,
  2024. * so we must maintain them in the registers for some
  2025. * time even if the level is now disabled.
  2026. */
  2027. if (!wm->enable)
  2028. ret_wm->enable = false;
  2029. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2030. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2031. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2032. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2033. }
  2034. }
  2035. /*
  2036. * Merge all low power watermarks for all active pipes.
  2037. */
  2038. static void ilk_wm_merge(struct drm_device *dev,
  2039. const struct intel_wm_config *config,
  2040. const struct ilk_wm_maximums *max,
  2041. struct intel_pipe_wm *merged)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. int level, max_level = ilk_wm_max_level(dev);
  2045. int last_enabled_level = max_level;
  2046. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2047. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2048. config->num_pipes_active > 1)
  2049. return;
  2050. /* ILK: FBC WM must be disabled always */
  2051. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2052. /* merge each WM1+ level */
  2053. for (level = 1; level <= max_level; level++) {
  2054. struct intel_wm_level *wm = &merged->wm[level];
  2055. ilk_merge_wm_level(dev, level, wm);
  2056. if (level > last_enabled_level)
  2057. wm->enable = false;
  2058. else if (!ilk_validate_wm_level(level, max, wm))
  2059. /* make sure all following levels get disabled */
  2060. last_enabled_level = level - 1;
  2061. /*
  2062. * The spec says it is preferred to disable
  2063. * FBC WMs instead of disabling a WM level.
  2064. */
  2065. if (wm->fbc_val > max->fbc) {
  2066. if (wm->enable)
  2067. merged->fbc_wm_enabled = false;
  2068. wm->fbc_val = 0;
  2069. }
  2070. }
  2071. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2072. /*
  2073. * FIXME this is racy. FBC might get enabled later.
  2074. * What we should check here is whether FBC can be
  2075. * enabled sometime later.
  2076. */
  2077. if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
  2078. intel_fbc_is_active(dev_priv)) {
  2079. for (level = 2; level <= max_level; level++) {
  2080. struct intel_wm_level *wm = &merged->wm[level];
  2081. wm->enable = false;
  2082. }
  2083. }
  2084. }
  2085. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2086. {
  2087. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2088. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2089. }
  2090. /* The value we need to program into the WM_LPx latency field */
  2091. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2092. {
  2093. struct drm_i915_private *dev_priv = dev->dev_private;
  2094. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2095. return 2 * level;
  2096. else
  2097. return dev_priv->wm.pri_latency[level];
  2098. }
  2099. static void ilk_compute_wm_results(struct drm_device *dev,
  2100. const struct intel_pipe_wm *merged,
  2101. enum intel_ddb_partitioning partitioning,
  2102. struct ilk_wm_values *results)
  2103. {
  2104. struct intel_crtc *intel_crtc;
  2105. int level, wm_lp;
  2106. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2107. results->partitioning = partitioning;
  2108. /* LP1+ register values */
  2109. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2110. const struct intel_wm_level *r;
  2111. level = ilk_wm_lp_to_level(wm_lp, merged);
  2112. r = &merged->wm[level];
  2113. /*
  2114. * Maintain the watermark values even if the level is
  2115. * disabled. Doing otherwise could cause underruns.
  2116. */
  2117. results->wm_lp[wm_lp - 1] =
  2118. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2119. (r->pri_val << WM1_LP_SR_SHIFT) |
  2120. r->cur_val;
  2121. if (r->enable)
  2122. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2123. if (INTEL_INFO(dev)->gen >= 8)
  2124. results->wm_lp[wm_lp - 1] |=
  2125. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2126. else
  2127. results->wm_lp[wm_lp - 1] |=
  2128. r->fbc_val << WM1_LP_FBC_SHIFT;
  2129. /*
  2130. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2131. * level is disabled. Doing otherwise could cause underruns.
  2132. */
  2133. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2134. WARN_ON(wm_lp != 1);
  2135. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2136. } else
  2137. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2138. }
  2139. /* LP0 register values */
  2140. for_each_intel_crtc(dev, intel_crtc) {
  2141. const struct intel_crtc_state *cstate =
  2142. to_intel_crtc_state(intel_crtc->base.state);
  2143. enum pipe pipe = intel_crtc->pipe;
  2144. const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
  2145. if (WARN_ON(!r->enable))
  2146. continue;
  2147. results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
  2148. results->wm_pipe[pipe] =
  2149. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2150. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2151. r->cur_val;
  2152. }
  2153. }
  2154. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2155. * case both are at the same level. Prefer r1 in case they're the same. */
  2156. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2157. struct intel_pipe_wm *r1,
  2158. struct intel_pipe_wm *r2)
  2159. {
  2160. int level, max_level = ilk_wm_max_level(dev);
  2161. int level1 = 0, level2 = 0;
  2162. for (level = 1; level <= max_level; level++) {
  2163. if (r1->wm[level].enable)
  2164. level1 = level;
  2165. if (r2->wm[level].enable)
  2166. level2 = level;
  2167. }
  2168. if (level1 == level2) {
  2169. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2170. return r2;
  2171. else
  2172. return r1;
  2173. } else if (level1 > level2) {
  2174. return r1;
  2175. } else {
  2176. return r2;
  2177. }
  2178. }
  2179. /* dirty bits used to track which watermarks need changes */
  2180. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2181. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2182. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2183. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2184. #define WM_DIRTY_FBC (1 << 24)
  2185. #define WM_DIRTY_DDB (1 << 25)
  2186. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2187. const struct ilk_wm_values *old,
  2188. const struct ilk_wm_values *new)
  2189. {
  2190. unsigned int dirty = 0;
  2191. enum pipe pipe;
  2192. int wm_lp;
  2193. for_each_pipe(dev_priv, pipe) {
  2194. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2195. dirty |= WM_DIRTY_LINETIME(pipe);
  2196. /* Must disable LP1+ watermarks too */
  2197. dirty |= WM_DIRTY_LP_ALL;
  2198. }
  2199. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2200. dirty |= WM_DIRTY_PIPE(pipe);
  2201. /* Must disable LP1+ watermarks too */
  2202. dirty |= WM_DIRTY_LP_ALL;
  2203. }
  2204. }
  2205. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2206. dirty |= WM_DIRTY_FBC;
  2207. /* Must disable LP1+ watermarks too */
  2208. dirty |= WM_DIRTY_LP_ALL;
  2209. }
  2210. if (old->partitioning != new->partitioning) {
  2211. dirty |= WM_DIRTY_DDB;
  2212. /* Must disable LP1+ watermarks too */
  2213. dirty |= WM_DIRTY_LP_ALL;
  2214. }
  2215. /* LP1+ watermarks already deemed dirty, no need to continue */
  2216. if (dirty & WM_DIRTY_LP_ALL)
  2217. return dirty;
  2218. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2219. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2220. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2221. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2222. break;
  2223. }
  2224. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2225. for (; wm_lp <= 3; wm_lp++)
  2226. dirty |= WM_DIRTY_LP(wm_lp);
  2227. return dirty;
  2228. }
  2229. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2230. unsigned int dirty)
  2231. {
  2232. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2233. bool changed = false;
  2234. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2235. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2236. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2237. changed = true;
  2238. }
  2239. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2240. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2241. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2242. changed = true;
  2243. }
  2244. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2245. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2246. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2247. changed = true;
  2248. }
  2249. /*
  2250. * Don't touch WM1S_LP_EN here.
  2251. * Doing so could cause underruns.
  2252. */
  2253. return changed;
  2254. }
  2255. /*
  2256. * The spec says we shouldn't write when we don't need, because every write
  2257. * causes WMs to be re-evaluated, expending some power.
  2258. */
  2259. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2260. struct ilk_wm_values *results)
  2261. {
  2262. struct drm_device *dev = dev_priv->dev;
  2263. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2264. unsigned int dirty;
  2265. uint32_t val;
  2266. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2267. if (!dirty)
  2268. return;
  2269. _ilk_disable_lp_wm(dev_priv, dirty);
  2270. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2271. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2272. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2273. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2274. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2275. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2276. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2277. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2278. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2279. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2280. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2281. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2282. if (dirty & WM_DIRTY_DDB) {
  2283. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2284. val = I915_READ(WM_MISC);
  2285. if (results->partitioning == INTEL_DDB_PART_1_2)
  2286. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2287. else
  2288. val |= WM_MISC_DATA_PARTITION_5_6;
  2289. I915_WRITE(WM_MISC, val);
  2290. } else {
  2291. val = I915_READ(DISP_ARB_CTL2);
  2292. if (results->partitioning == INTEL_DDB_PART_1_2)
  2293. val &= ~DISP_DATA_PARTITION_5_6;
  2294. else
  2295. val |= DISP_DATA_PARTITION_5_6;
  2296. I915_WRITE(DISP_ARB_CTL2, val);
  2297. }
  2298. }
  2299. if (dirty & WM_DIRTY_FBC) {
  2300. val = I915_READ(DISP_ARB_CTL);
  2301. if (results->enable_fbc_wm)
  2302. val &= ~DISP_FBC_WM_DIS;
  2303. else
  2304. val |= DISP_FBC_WM_DIS;
  2305. I915_WRITE(DISP_ARB_CTL, val);
  2306. }
  2307. if (dirty & WM_DIRTY_LP(1) &&
  2308. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2309. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2310. if (INTEL_INFO(dev)->gen >= 7) {
  2311. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2312. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2313. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2314. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2315. }
  2316. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2317. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2318. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2319. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2320. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2321. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2322. dev_priv->wm.hw = *results;
  2323. }
  2324. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2325. {
  2326. struct drm_i915_private *dev_priv = dev->dev_private;
  2327. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2328. }
  2329. /*
  2330. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2331. * different active planes.
  2332. */
  2333. #define SKL_DDB_SIZE 896 /* in blocks */
  2334. #define BXT_DDB_SIZE 512
  2335. /*
  2336. * Return the index of a plane in the SKL DDB and wm result arrays. Primary
  2337. * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
  2338. * other universal planes are in indices 1..n. Note that this may leave unused
  2339. * indices between the top "sprite" plane and the cursor.
  2340. */
  2341. static int
  2342. skl_wm_plane_id(const struct intel_plane *plane)
  2343. {
  2344. switch (plane->base.type) {
  2345. case DRM_PLANE_TYPE_PRIMARY:
  2346. return 0;
  2347. case DRM_PLANE_TYPE_CURSOR:
  2348. return PLANE_CURSOR;
  2349. case DRM_PLANE_TYPE_OVERLAY:
  2350. return plane->plane + 1;
  2351. default:
  2352. MISSING_CASE(plane->base.type);
  2353. return plane->plane;
  2354. }
  2355. }
  2356. static void
  2357. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2358. const struct intel_crtc_state *cstate,
  2359. const struct intel_wm_config *config,
  2360. struct skl_ddb_entry *alloc /* out */)
  2361. {
  2362. struct drm_crtc *for_crtc = cstate->base.crtc;
  2363. struct drm_crtc *crtc;
  2364. unsigned int pipe_size, ddb_size;
  2365. int nth_active_pipe;
  2366. if (!cstate->base.active) {
  2367. alloc->start = 0;
  2368. alloc->end = 0;
  2369. return;
  2370. }
  2371. if (IS_BROXTON(dev))
  2372. ddb_size = BXT_DDB_SIZE;
  2373. else
  2374. ddb_size = SKL_DDB_SIZE;
  2375. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2376. nth_active_pipe = 0;
  2377. for_each_crtc(dev, crtc) {
  2378. if (!to_intel_crtc(crtc)->active)
  2379. continue;
  2380. if (crtc == for_crtc)
  2381. break;
  2382. nth_active_pipe++;
  2383. }
  2384. pipe_size = ddb_size / config->num_pipes_active;
  2385. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2386. alloc->end = alloc->start + pipe_size;
  2387. }
  2388. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2389. {
  2390. if (config->num_pipes_active == 1)
  2391. return 32;
  2392. return 8;
  2393. }
  2394. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2395. {
  2396. entry->start = reg & 0x3ff;
  2397. entry->end = (reg >> 16) & 0x3ff;
  2398. if (entry->end)
  2399. entry->end += 1;
  2400. }
  2401. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2402. struct skl_ddb_allocation *ddb /* out */)
  2403. {
  2404. enum pipe pipe;
  2405. int plane;
  2406. u32 val;
  2407. memset(ddb, 0, sizeof(*ddb));
  2408. for_each_pipe(dev_priv, pipe) {
  2409. enum intel_display_power_domain power_domain;
  2410. power_domain = POWER_DOMAIN_PIPE(pipe);
  2411. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  2412. continue;
  2413. for_each_plane(dev_priv, pipe, plane) {
  2414. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2415. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2416. val);
  2417. }
  2418. val = I915_READ(CUR_BUF_CFG(pipe));
  2419. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
  2420. val);
  2421. intel_display_power_put(dev_priv, power_domain);
  2422. }
  2423. }
  2424. static unsigned int
  2425. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2426. const struct drm_plane_state *pstate,
  2427. int y)
  2428. {
  2429. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2430. struct drm_framebuffer *fb = pstate->fb;
  2431. /* for planar format */
  2432. if (fb->pixel_format == DRM_FORMAT_NV12) {
  2433. if (y) /* y-plane data rate */
  2434. return intel_crtc->config->pipe_src_w *
  2435. intel_crtc->config->pipe_src_h *
  2436. drm_format_plane_cpp(fb->pixel_format, 0);
  2437. else /* uv-plane data rate */
  2438. return (intel_crtc->config->pipe_src_w/2) *
  2439. (intel_crtc->config->pipe_src_h/2) *
  2440. drm_format_plane_cpp(fb->pixel_format, 1);
  2441. }
  2442. /* for packed formats */
  2443. return intel_crtc->config->pipe_src_w *
  2444. intel_crtc->config->pipe_src_h *
  2445. drm_format_plane_cpp(fb->pixel_format, 0);
  2446. }
  2447. /*
  2448. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2449. * a 8192x4096@32bpp framebuffer:
  2450. * 3 * 4096 * 8192 * 4 < 2^32
  2451. */
  2452. static unsigned int
  2453. skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
  2454. {
  2455. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2456. struct drm_device *dev = intel_crtc->base.dev;
  2457. const struct intel_plane *intel_plane;
  2458. unsigned int total_data_rate = 0;
  2459. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2460. const struct drm_plane_state *pstate = intel_plane->base.state;
  2461. if (pstate->fb == NULL)
  2462. continue;
  2463. if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2464. continue;
  2465. /* packed/uv */
  2466. total_data_rate += skl_plane_relative_data_rate(cstate,
  2467. pstate,
  2468. 0);
  2469. if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
  2470. /* y-plane */
  2471. total_data_rate += skl_plane_relative_data_rate(cstate,
  2472. pstate,
  2473. 1);
  2474. }
  2475. return total_data_rate;
  2476. }
  2477. static void
  2478. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2479. struct skl_ddb_allocation *ddb /* out */)
  2480. {
  2481. struct drm_crtc *crtc = cstate->base.crtc;
  2482. struct drm_device *dev = crtc->dev;
  2483. struct drm_i915_private *dev_priv = to_i915(dev);
  2484. struct intel_wm_config *config = &dev_priv->wm.config;
  2485. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2486. struct intel_plane *intel_plane;
  2487. enum pipe pipe = intel_crtc->pipe;
  2488. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2489. uint16_t alloc_size, start, cursor_blocks;
  2490. uint16_t minimum[I915_MAX_PLANES];
  2491. uint16_t y_minimum[I915_MAX_PLANES];
  2492. unsigned int total_data_rate;
  2493. skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
  2494. alloc_size = skl_ddb_entry_size(alloc);
  2495. if (alloc_size == 0) {
  2496. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2497. memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
  2498. sizeof(ddb->plane[pipe][PLANE_CURSOR]));
  2499. return;
  2500. }
  2501. cursor_blocks = skl_cursor_allocation(config);
  2502. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
  2503. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2504. alloc_size -= cursor_blocks;
  2505. alloc->end -= cursor_blocks;
  2506. /* 1. Allocate the mininum required blocks for each active plane */
  2507. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2508. struct drm_plane *plane = &intel_plane->base;
  2509. struct drm_framebuffer *fb = plane->state->fb;
  2510. int id = skl_wm_plane_id(intel_plane);
  2511. if (fb == NULL)
  2512. continue;
  2513. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2514. continue;
  2515. minimum[id] = 8;
  2516. alloc_size -= minimum[id];
  2517. y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
  2518. alloc_size -= y_minimum[id];
  2519. }
  2520. /*
  2521. * 2. Distribute the remaining space in proportion to the amount of
  2522. * data each plane needs to fetch from memory.
  2523. *
  2524. * FIXME: we may not allocate every single block here.
  2525. */
  2526. total_data_rate = skl_get_total_relative_data_rate(cstate);
  2527. start = alloc->start;
  2528. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2529. struct drm_plane *plane = &intel_plane->base;
  2530. struct drm_plane_state *pstate = intel_plane->base.state;
  2531. unsigned int data_rate, y_data_rate;
  2532. uint16_t plane_blocks, y_plane_blocks = 0;
  2533. int id = skl_wm_plane_id(intel_plane);
  2534. if (pstate->fb == NULL)
  2535. continue;
  2536. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2537. continue;
  2538. data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
  2539. /*
  2540. * allocation for (packed formats) or (uv-plane part of planar format):
  2541. * promote the expression to 64 bits to avoid overflowing, the
  2542. * result is < available as data_rate / total_data_rate < 1
  2543. */
  2544. plane_blocks = minimum[id];
  2545. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2546. total_data_rate);
  2547. ddb->plane[pipe][id].start = start;
  2548. ddb->plane[pipe][id].end = start + plane_blocks;
  2549. start += plane_blocks;
  2550. /*
  2551. * allocation for y_plane part of planar format:
  2552. */
  2553. if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
  2554. y_data_rate = skl_plane_relative_data_rate(cstate,
  2555. pstate,
  2556. 1);
  2557. y_plane_blocks = y_minimum[id];
  2558. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2559. total_data_rate);
  2560. ddb->y_plane[pipe][id].start = start;
  2561. ddb->y_plane[pipe][id].end = start + y_plane_blocks;
  2562. start += y_plane_blocks;
  2563. }
  2564. }
  2565. }
  2566. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2567. {
  2568. /* TODO: Take into account the scalers once we support them */
  2569. return config->base.adjusted_mode.crtc_clock;
  2570. }
  2571. /*
  2572. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2573. * for the read latency) and cpp should always be <= 8, so that
  2574. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2575. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2576. */
  2577. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  2578. {
  2579. uint32_t wm_intermediate_val, ret;
  2580. if (latency == 0)
  2581. return UINT_MAX;
  2582. wm_intermediate_val = latency * pixel_rate * cpp / 512;
  2583. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2584. return ret;
  2585. }
  2586. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2587. uint32_t horiz_pixels, uint8_t cpp,
  2588. uint64_t tiling, uint32_t latency)
  2589. {
  2590. uint32_t ret;
  2591. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2592. uint32_t wm_intermediate_val;
  2593. if (latency == 0)
  2594. return UINT_MAX;
  2595. plane_bytes_per_line = horiz_pixels * cpp;
  2596. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2597. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2598. plane_bytes_per_line *= 4;
  2599. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2600. plane_blocks_per_line /= 4;
  2601. } else {
  2602. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2603. }
  2604. wm_intermediate_val = latency * pixel_rate;
  2605. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2606. plane_blocks_per_line;
  2607. return ret;
  2608. }
  2609. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2610. const struct intel_crtc *intel_crtc)
  2611. {
  2612. struct drm_device *dev = intel_crtc->base.dev;
  2613. struct drm_i915_private *dev_priv = dev->dev_private;
  2614. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2615. /*
  2616. * If ddb allocation of pipes changed, it may require recalculation of
  2617. * watermarks
  2618. */
  2619. if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
  2620. return true;
  2621. return false;
  2622. }
  2623. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2624. struct intel_crtc_state *cstate,
  2625. struct intel_plane *intel_plane,
  2626. uint16_t ddb_allocation,
  2627. int level,
  2628. uint16_t *out_blocks, /* out */
  2629. uint8_t *out_lines /* out */)
  2630. {
  2631. struct drm_plane *plane = &intel_plane->base;
  2632. struct drm_framebuffer *fb = plane->state->fb;
  2633. uint32_t latency = dev_priv->wm.skl_latency[level];
  2634. uint32_t method1, method2;
  2635. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2636. uint32_t res_blocks, res_lines;
  2637. uint32_t selected_result;
  2638. uint8_t cpp;
  2639. if (latency == 0 || !cstate->base.active || !fb)
  2640. return false;
  2641. cpp = drm_format_plane_cpp(fb->pixel_format, 0);
  2642. method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
  2643. cpp, latency);
  2644. method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
  2645. cstate->base.adjusted_mode.crtc_htotal,
  2646. cstate->pipe_src_w,
  2647. cpp, fb->modifier[0],
  2648. latency);
  2649. plane_bytes_per_line = cstate->pipe_src_w * cpp;
  2650. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2651. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2652. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
  2653. uint32_t min_scanlines = 4;
  2654. uint32_t y_tile_minimum;
  2655. if (intel_rotation_90_or_270(plane->state->rotation)) {
  2656. int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
  2657. drm_format_plane_cpp(fb->pixel_format, 1) :
  2658. drm_format_plane_cpp(fb->pixel_format, 0);
  2659. switch (cpp) {
  2660. case 1:
  2661. min_scanlines = 16;
  2662. break;
  2663. case 2:
  2664. min_scanlines = 8;
  2665. break;
  2666. case 8:
  2667. WARN(1, "Unsupported pixel depth for rotation");
  2668. }
  2669. }
  2670. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2671. selected_result = max(method2, y_tile_minimum);
  2672. } else {
  2673. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2674. selected_result = min(method1, method2);
  2675. else
  2676. selected_result = method1;
  2677. }
  2678. res_blocks = selected_result + 1;
  2679. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2680. if (level >= 1 && level <= 7) {
  2681. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2682. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
  2683. res_lines += 4;
  2684. else
  2685. res_blocks++;
  2686. }
  2687. if (res_blocks >= ddb_allocation || res_lines > 31)
  2688. return false;
  2689. *out_blocks = res_blocks;
  2690. *out_lines = res_lines;
  2691. return true;
  2692. }
  2693. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2694. struct skl_ddb_allocation *ddb,
  2695. struct intel_crtc_state *cstate,
  2696. int level,
  2697. struct skl_wm_level *result)
  2698. {
  2699. struct drm_device *dev = dev_priv->dev;
  2700. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2701. struct intel_plane *intel_plane;
  2702. uint16_t ddb_blocks;
  2703. enum pipe pipe = intel_crtc->pipe;
  2704. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2705. int i = skl_wm_plane_id(intel_plane);
  2706. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2707. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2708. cstate,
  2709. intel_plane,
  2710. ddb_blocks,
  2711. level,
  2712. &result->plane_res_b[i],
  2713. &result->plane_res_l[i]);
  2714. }
  2715. }
  2716. static uint32_t
  2717. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  2718. {
  2719. if (!cstate->base.active)
  2720. return 0;
  2721. if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
  2722. return 0;
  2723. return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
  2724. skl_pipe_pixel_rate(cstate));
  2725. }
  2726. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  2727. struct skl_wm_level *trans_wm /* out */)
  2728. {
  2729. struct drm_crtc *crtc = cstate->base.crtc;
  2730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2731. struct intel_plane *intel_plane;
  2732. if (!cstate->base.active)
  2733. return;
  2734. /* Until we know more, just disable transition WMs */
  2735. for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
  2736. int i = skl_wm_plane_id(intel_plane);
  2737. trans_wm->plane_en[i] = false;
  2738. }
  2739. }
  2740. static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
  2741. struct skl_ddb_allocation *ddb,
  2742. struct skl_pipe_wm *pipe_wm)
  2743. {
  2744. struct drm_device *dev = cstate->base.crtc->dev;
  2745. const struct drm_i915_private *dev_priv = dev->dev_private;
  2746. int level, max_level = ilk_wm_max_level(dev);
  2747. for (level = 0; level <= max_level; level++) {
  2748. skl_compute_wm_level(dev_priv, ddb, cstate,
  2749. level, &pipe_wm->wm[level]);
  2750. }
  2751. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  2752. skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
  2753. }
  2754. static void skl_compute_wm_results(struct drm_device *dev,
  2755. struct skl_pipe_wm *p_wm,
  2756. struct skl_wm_values *r,
  2757. struct intel_crtc *intel_crtc)
  2758. {
  2759. int level, max_level = ilk_wm_max_level(dev);
  2760. enum pipe pipe = intel_crtc->pipe;
  2761. uint32_t temp;
  2762. int i;
  2763. for (level = 0; level <= max_level; level++) {
  2764. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2765. temp = 0;
  2766. temp |= p_wm->wm[level].plane_res_l[i] <<
  2767. PLANE_WM_LINES_SHIFT;
  2768. temp |= p_wm->wm[level].plane_res_b[i];
  2769. if (p_wm->wm[level].plane_en[i])
  2770. temp |= PLANE_WM_EN;
  2771. r->plane[pipe][i][level] = temp;
  2772. }
  2773. temp = 0;
  2774. temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2775. temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
  2776. if (p_wm->wm[level].plane_en[PLANE_CURSOR])
  2777. temp |= PLANE_WM_EN;
  2778. r->plane[pipe][PLANE_CURSOR][level] = temp;
  2779. }
  2780. /* transition WMs */
  2781. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2782. temp = 0;
  2783. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2784. temp |= p_wm->trans_wm.plane_res_b[i];
  2785. if (p_wm->trans_wm.plane_en[i])
  2786. temp |= PLANE_WM_EN;
  2787. r->plane_trans[pipe][i] = temp;
  2788. }
  2789. temp = 0;
  2790. temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2791. temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
  2792. if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
  2793. temp |= PLANE_WM_EN;
  2794. r->plane_trans[pipe][PLANE_CURSOR] = temp;
  2795. r->wm_linetime[pipe] = p_wm->linetime;
  2796. }
  2797. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  2798. i915_reg_t reg,
  2799. const struct skl_ddb_entry *entry)
  2800. {
  2801. if (entry->end)
  2802. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2803. else
  2804. I915_WRITE(reg, 0);
  2805. }
  2806. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2807. const struct skl_wm_values *new)
  2808. {
  2809. struct drm_device *dev = dev_priv->dev;
  2810. struct intel_crtc *crtc;
  2811. for_each_intel_crtc(dev, crtc) {
  2812. int i, level, max_level = ilk_wm_max_level(dev);
  2813. enum pipe pipe = crtc->pipe;
  2814. if (!new->dirty[pipe])
  2815. continue;
  2816. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2817. for (level = 0; level <= max_level; level++) {
  2818. for (i = 0; i < intel_num_planes(crtc); i++)
  2819. I915_WRITE(PLANE_WM(pipe, i, level),
  2820. new->plane[pipe][i][level]);
  2821. I915_WRITE(CUR_WM(pipe, level),
  2822. new->plane[pipe][PLANE_CURSOR][level]);
  2823. }
  2824. for (i = 0; i < intel_num_planes(crtc); i++)
  2825. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2826. new->plane_trans[pipe][i]);
  2827. I915_WRITE(CUR_WM_TRANS(pipe),
  2828. new->plane_trans[pipe][PLANE_CURSOR]);
  2829. for (i = 0; i < intel_num_planes(crtc); i++) {
  2830. skl_ddb_entry_write(dev_priv,
  2831. PLANE_BUF_CFG(pipe, i),
  2832. &new->ddb.plane[pipe][i]);
  2833. skl_ddb_entry_write(dev_priv,
  2834. PLANE_NV12_BUF_CFG(pipe, i),
  2835. &new->ddb.y_plane[pipe][i]);
  2836. }
  2837. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2838. &new->ddb.plane[pipe][PLANE_CURSOR]);
  2839. }
  2840. }
  2841. /*
  2842. * When setting up a new DDB allocation arrangement, we need to correctly
  2843. * sequence the times at which the new allocations for the pipes are taken into
  2844. * account or we'll have pipes fetching from space previously allocated to
  2845. * another pipe.
  2846. *
  2847. * Roughly the sequence looks like:
  2848. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2849. * overlapping with a previous light-up pipe (another way to put it is:
  2850. * pipes with their new allocation strickly included into their old ones).
  2851. * 2. re-allocate the other pipes that get their allocation reduced
  2852. * 3. allocate the pipes having their allocation increased
  2853. *
  2854. * Steps 1. and 2. are here to take care of the following case:
  2855. * - Initially DDB looks like this:
  2856. * | B | C |
  2857. * - enable pipe A.
  2858. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2859. * allocation
  2860. * | A | B | C |
  2861. *
  2862. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2863. */
  2864. static void
  2865. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2866. {
  2867. int plane;
  2868. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2869. for_each_plane(dev_priv, pipe, plane) {
  2870. I915_WRITE(PLANE_SURF(pipe, plane),
  2871. I915_READ(PLANE_SURF(pipe, plane)));
  2872. }
  2873. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2874. }
  2875. static bool
  2876. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2877. const struct skl_ddb_allocation *new,
  2878. enum pipe pipe)
  2879. {
  2880. uint16_t old_size, new_size;
  2881. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2882. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2883. return old_size != new_size &&
  2884. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2885. new->pipe[pipe].end <= old->pipe[pipe].end;
  2886. }
  2887. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2888. struct skl_wm_values *new_values)
  2889. {
  2890. struct drm_device *dev = dev_priv->dev;
  2891. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2892. bool reallocated[I915_MAX_PIPES] = {};
  2893. struct intel_crtc *crtc;
  2894. enum pipe pipe;
  2895. new_ddb = &new_values->ddb;
  2896. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2897. /*
  2898. * First pass: flush the pipes with the new allocation contained into
  2899. * the old space.
  2900. *
  2901. * We'll wait for the vblank on those pipes to ensure we can safely
  2902. * re-allocate the freed space without this pipe fetching from it.
  2903. */
  2904. for_each_intel_crtc(dev, crtc) {
  2905. if (!crtc->active)
  2906. continue;
  2907. pipe = crtc->pipe;
  2908. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2909. continue;
  2910. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2911. intel_wait_for_vblank(dev, pipe);
  2912. reallocated[pipe] = true;
  2913. }
  2914. /*
  2915. * Second pass: flush the pipes that are having their allocation
  2916. * reduced, but overlapping with a previous allocation.
  2917. *
  2918. * Here as well we need to wait for the vblank to make sure the freed
  2919. * space is not used anymore.
  2920. */
  2921. for_each_intel_crtc(dev, crtc) {
  2922. if (!crtc->active)
  2923. continue;
  2924. pipe = crtc->pipe;
  2925. if (reallocated[pipe])
  2926. continue;
  2927. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2928. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2929. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2930. intel_wait_for_vblank(dev, pipe);
  2931. reallocated[pipe] = true;
  2932. }
  2933. }
  2934. /*
  2935. * Third pass: flush the pipes that got more space allocated.
  2936. *
  2937. * We don't need to actively wait for the update here, next vblank
  2938. * will just get more DDB space with the correct WM values.
  2939. */
  2940. for_each_intel_crtc(dev, crtc) {
  2941. if (!crtc->active)
  2942. continue;
  2943. pipe = crtc->pipe;
  2944. /*
  2945. * At this point, only the pipes more space than before are
  2946. * left to re-allocate.
  2947. */
  2948. if (reallocated[pipe])
  2949. continue;
  2950. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2951. }
  2952. }
  2953. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2954. struct skl_ddb_allocation *ddb, /* out */
  2955. struct skl_pipe_wm *pipe_wm /* out */)
  2956. {
  2957. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2958. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  2959. skl_allocate_pipe_ddb(cstate, ddb);
  2960. skl_compute_pipe_wm(cstate, ddb, pipe_wm);
  2961. if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
  2962. return false;
  2963. intel_crtc->wm.active.skl = *pipe_wm;
  2964. return true;
  2965. }
  2966. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2967. struct drm_crtc *crtc,
  2968. struct skl_wm_values *r)
  2969. {
  2970. struct intel_crtc *intel_crtc;
  2971. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2972. /*
  2973. * If the WM update hasn't changed the allocation for this_crtc (the
  2974. * crtc we are currently computing the new WM values for), other
  2975. * enabled crtcs will keep the same allocation and we don't need to
  2976. * recompute anything for them.
  2977. */
  2978. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2979. return;
  2980. /*
  2981. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2982. * other active pipes need new DDB allocation and WM values.
  2983. */
  2984. for_each_intel_crtc(dev, intel_crtc) {
  2985. struct skl_pipe_wm pipe_wm = {};
  2986. bool wm_changed;
  2987. if (this_crtc->pipe == intel_crtc->pipe)
  2988. continue;
  2989. if (!intel_crtc->active)
  2990. continue;
  2991. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2992. &r->ddb, &pipe_wm);
  2993. /*
  2994. * If we end up re-computing the other pipe WM values, it's
  2995. * because it was really needed, so we expect the WM values to
  2996. * be different.
  2997. */
  2998. WARN_ON(!wm_changed);
  2999. skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
  3000. r->dirty[intel_crtc->pipe] = true;
  3001. }
  3002. }
  3003. static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
  3004. {
  3005. watermarks->wm_linetime[pipe] = 0;
  3006. memset(watermarks->plane[pipe], 0,
  3007. sizeof(uint32_t) * 8 * I915_MAX_PLANES);
  3008. memset(watermarks->plane_trans[pipe],
  3009. 0, sizeof(uint32_t) * I915_MAX_PLANES);
  3010. watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
  3011. /* Clear ddb entries for pipe */
  3012. memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
  3013. memset(&watermarks->ddb.plane[pipe], 0,
  3014. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3015. memset(&watermarks->ddb.y_plane[pipe], 0,
  3016. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3017. memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
  3018. sizeof(struct skl_ddb_entry));
  3019. }
  3020. static void skl_update_wm(struct drm_crtc *crtc)
  3021. {
  3022. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3023. struct drm_device *dev = crtc->dev;
  3024. struct drm_i915_private *dev_priv = dev->dev_private;
  3025. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  3026. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3027. struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
  3028. /* Clear all dirty flags */
  3029. memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
  3030. skl_clear_wm(results, intel_crtc->pipe);
  3031. if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
  3032. return;
  3033. skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
  3034. results->dirty[intel_crtc->pipe] = true;
  3035. skl_update_other_pipe_wm(dev, crtc, results);
  3036. skl_write_wm_values(dev_priv, results);
  3037. skl_flush_wm_values(dev_priv, results);
  3038. /* store the new configuration */
  3039. dev_priv->wm.skl_hw = *results;
  3040. }
  3041. static void ilk_compute_wm_config(struct drm_device *dev,
  3042. struct intel_wm_config *config)
  3043. {
  3044. struct intel_crtc *crtc;
  3045. /* Compute the currently _active_ config */
  3046. for_each_intel_crtc(dev, crtc) {
  3047. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3048. if (!wm->pipe_enabled)
  3049. continue;
  3050. config->sprites_enabled |= wm->sprites_enabled;
  3051. config->sprites_scaled |= wm->sprites_scaled;
  3052. config->num_pipes_active++;
  3053. }
  3054. }
  3055. static void ilk_program_watermarks(struct intel_crtc_state *cstate)
  3056. {
  3057. struct drm_crtc *crtc = cstate->base.crtc;
  3058. struct drm_device *dev = crtc->dev;
  3059. struct drm_i915_private *dev_priv = to_i915(dev);
  3060. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3061. struct ilk_wm_maximums max;
  3062. struct intel_wm_config config = {};
  3063. struct ilk_wm_values results = {};
  3064. enum intel_ddb_partitioning partitioning;
  3065. ilk_compute_wm_config(dev, &config);
  3066. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3067. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3068. /* 5/6 split only in single pipe config on IVB+ */
  3069. if (INTEL_INFO(dev)->gen >= 7 &&
  3070. config.num_pipes_active == 1 && config.sprites_enabled) {
  3071. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3072. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3073. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3074. } else {
  3075. best_lp_wm = &lp_wm_1_2;
  3076. }
  3077. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3078. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3079. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3080. ilk_write_wm_values(dev_priv, &results);
  3081. }
  3082. static void ilk_update_wm(struct drm_crtc *crtc)
  3083. {
  3084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3085. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3086. WARN_ON(cstate->base.active != intel_crtc->active);
  3087. /*
  3088. * IVB workaround: must disable low power watermarks for at least
  3089. * one frame before enabling scaling. LP watermarks can be re-enabled
  3090. * when scaling is disabled.
  3091. *
  3092. * WaCxSRDisabledForSpriteScaling:ivb
  3093. */
  3094. if (cstate->disable_lp_wm) {
  3095. ilk_disable_lp_wm(crtc->dev);
  3096. intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
  3097. }
  3098. intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
  3099. ilk_program_watermarks(cstate);
  3100. }
  3101. static void skl_pipe_wm_active_state(uint32_t val,
  3102. struct skl_pipe_wm *active,
  3103. bool is_transwm,
  3104. bool is_cursor,
  3105. int i,
  3106. int level)
  3107. {
  3108. bool is_enabled = (val & PLANE_WM_EN) != 0;
  3109. if (!is_transwm) {
  3110. if (!is_cursor) {
  3111. active->wm[level].plane_en[i] = is_enabled;
  3112. active->wm[level].plane_res_b[i] =
  3113. val & PLANE_WM_BLOCKS_MASK;
  3114. active->wm[level].plane_res_l[i] =
  3115. (val >> PLANE_WM_LINES_SHIFT) &
  3116. PLANE_WM_LINES_MASK;
  3117. } else {
  3118. active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
  3119. active->wm[level].plane_res_b[PLANE_CURSOR] =
  3120. val & PLANE_WM_BLOCKS_MASK;
  3121. active->wm[level].plane_res_l[PLANE_CURSOR] =
  3122. (val >> PLANE_WM_LINES_SHIFT) &
  3123. PLANE_WM_LINES_MASK;
  3124. }
  3125. } else {
  3126. if (!is_cursor) {
  3127. active->trans_wm.plane_en[i] = is_enabled;
  3128. active->trans_wm.plane_res_b[i] =
  3129. val & PLANE_WM_BLOCKS_MASK;
  3130. active->trans_wm.plane_res_l[i] =
  3131. (val >> PLANE_WM_LINES_SHIFT) &
  3132. PLANE_WM_LINES_MASK;
  3133. } else {
  3134. active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
  3135. active->trans_wm.plane_res_b[PLANE_CURSOR] =
  3136. val & PLANE_WM_BLOCKS_MASK;
  3137. active->trans_wm.plane_res_l[PLANE_CURSOR] =
  3138. (val >> PLANE_WM_LINES_SHIFT) &
  3139. PLANE_WM_LINES_MASK;
  3140. }
  3141. }
  3142. }
  3143. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3144. {
  3145. struct drm_device *dev = crtc->dev;
  3146. struct drm_i915_private *dev_priv = dev->dev_private;
  3147. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3148. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3149. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3150. struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
  3151. enum pipe pipe = intel_crtc->pipe;
  3152. int level, i, max_level;
  3153. uint32_t temp;
  3154. max_level = ilk_wm_max_level(dev);
  3155. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3156. for (level = 0; level <= max_level; level++) {
  3157. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3158. hw->plane[pipe][i][level] =
  3159. I915_READ(PLANE_WM(pipe, i, level));
  3160. hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
  3161. }
  3162. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3163. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  3164. hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
  3165. if (!intel_crtc->active)
  3166. return;
  3167. hw->dirty[pipe] = true;
  3168. active->linetime = hw->wm_linetime[pipe];
  3169. for (level = 0; level <= max_level; level++) {
  3170. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3171. temp = hw->plane[pipe][i][level];
  3172. skl_pipe_wm_active_state(temp, active, false,
  3173. false, i, level);
  3174. }
  3175. temp = hw->plane[pipe][PLANE_CURSOR][level];
  3176. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  3177. }
  3178. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3179. temp = hw->plane_trans[pipe][i];
  3180. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  3181. }
  3182. temp = hw->plane_trans[pipe][PLANE_CURSOR];
  3183. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  3184. intel_crtc->wm.active.skl = *active;
  3185. }
  3186. void skl_wm_get_hw_state(struct drm_device *dev)
  3187. {
  3188. struct drm_i915_private *dev_priv = dev->dev_private;
  3189. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3190. struct drm_crtc *crtc;
  3191. skl_ddb_get_hw_state(dev_priv, ddb);
  3192. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  3193. skl_pipe_wm_get_hw_state(crtc);
  3194. }
  3195. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3196. {
  3197. struct drm_device *dev = crtc->dev;
  3198. struct drm_i915_private *dev_priv = dev->dev_private;
  3199. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3200. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3201. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3202. struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  3203. enum pipe pipe = intel_crtc->pipe;
  3204. static const i915_reg_t wm0_pipe_reg[] = {
  3205. [PIPE_A] = WM0_PIPEA_ILK,
  3206. [PIPE_B] = WM0_PIPEB_ILK,
  3207. [PIPE_C] = WM0_PIPEC_IVB,
  3208. };
  3209. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3210. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3211. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3212. active->pipe_enabled = intel_crtc->active;
  3213. if (active->pipe_enabled) {
  3214. u32 tmp = hw->wm_pipe[pipe];
  3215. /*
  3216. * For active pipes LP0 watermark is marked as
  3217. * enabled, and LP1+ watermaks as disabled since
  3218. * we can't really reverse compute them in case
  3219. * multiple pipes are active.
  3220. */
  3221. active->wm[0].enable = true;
  3222. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3223. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3224. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3225. active->linetime = hw->wm_linetime[pipe];
  3226. } else {
  3227. int level, max_level = ilk_wm_max_level(dev);
  3228. /*
  3229. * For inactive pipes, all watermark levels
  3230. * should be marked as enabled but zeroed,
  3231. * which is what we'd compute them to.
  3232. */
  3233. for (level = 0; level <= max_level; level++)
  3234. active->wm[level].enable = true;
  3235. }
  3236. intel_crtc->wm.active.ilk = *active;
  3237. }
  3238. #define _FW_WM(value, plane) \
  3239. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3240. #define _FW_WM_VLV(value, plane) \
  3241. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3242. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3243. struct vlv_wm_values *wm)
  3244. {
  3245. enum pipe pipe;
  3246. uint32_t tmp;
  3247. for_each_pipe(dev_priv, pipe) {
  3248. tmp = I915_READ(VLV_DDL(pipe));
  3249. wm->ddl[pipe].primary =
  3250. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3251. wm->ddl[pipe].cursor =
  3252. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3253. wm->ddl[pipe].sprite[0] =
  3254. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3255. wm->ddl[pipe].sprite[1] =
  3256. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3257. }
  3258. tmp = I915_READ(DSPFW1);
  3259. wm->sr.plane = _FW_WM(tmp, SR);
  3260. wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
  3261. wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
  3262. wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
  3263. tmp = I915_READ(DSPFW2);
  3264. wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
  3265. wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
  3266. wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
  3267. tmp = I915_READ(DSPFW3);
  3268. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3269. if (IS_CHERRYVIEW(dev_priv)) {
  3270. tmp = I915_READ(DSPFW7_CHV);
  3271. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3272. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3273. tmp = I915_READ(DSPFW8_CHV);
  3274. wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
  3275. wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
  3276. tmp = I915_READ(DSPFW9_CHV);
  3277. wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
  3278. wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
  3279. tmp = I915_READ(DSPHOWM);
  3280. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3281. wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3282. wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3283. wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
  3284. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3285. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3286. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3287. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3288. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3289. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3290. } else {
  3291. tmp = I915_READ(DSPFW7);
  3292. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3293. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3294. tmp = I915_READ(DSPHOWM);
  3295. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3296. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3297. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3298. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3299. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3300. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3301. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3302. }
  3303. }
  3304. #undef _FW_WM
  3305. #undef _FW_WM_VLV
  3306. void vlv_wm_get_hw_state(struct drm_device *dev)
  3307. {
  3308. struct drm_i915_private *dev_priv = to_i915(dev);
  3309. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3310. struct intel_plane *plane;
  3311. enum pipe pipe;
  3312. u32 val;
  3313. vlv_read_wm_values(dev_priv, wm);
  3314. for_each_intel_plane(dev, plane) {
  3315. switch (plane->base.type) {
  3316. int sprite;
  3317. case DRM_PLANE_TYPE_CURSOR:
  3318. plane->wm.fifo_size = 63;
  3319. break;
  3320. case DRM_PLANE_TYPE_PRIMARY:
  3321. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
  3322. break;
  3323. case DRM_PLANE_TYPE_OVERLAY:
  3324. sprite = plane->plane;
  3325. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
  3326. break;
  3327. }
  3328. }
  3329. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3330. wm->level = VLV_WM_LEVEL_PM2;
  3331. if (IS_CHERRYVIEW(dev_priv)) {
  3332. mutex_lock(&dev_priv->rps.hw_lock);
  3333. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3334. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3335. wm->level = VLV_WM_LEVEL_PM5;
  3336. /*
  3337. * If DDR DVFS is disabled in the BIOS, Punit
  3338. * will never ack the request. So if that happens
  3339. * assume we don't have to enable/disable DDR DVFS
  3340. * dynamically. To test that just set the REQ_ACK
  3341. * bit to poke the Punit, but don't change the
  3342. * HIGH/LOW bits so that we don't actually change
  3343. * the current state.
  3344. */
  3345. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3346. val |= FORCE_DDR_FREQ_REQ_ACK;
  3347. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3348. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3349. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3350. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3351. "assuming DDR DVFS is disabled\n");
  3352. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3353. } else {
  3354. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3355. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3356. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3357. }
  3358. mutex_unlock(&dev_priv->rps.hw_lock);
  3359. }
  3360. for_each_pipe(dev_priv, pipe)
  3361. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3362. pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
  3363. wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
  3364. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3365. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3366. }
  3367. void ilk_wm_get_hw_state(struct drm_device *dev)
  3368. {
  3369. struct drm_i915_private *dev_priv = dev->dev_private;
  3370. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3371. struct drm_crtc *crtc;
  3372. for_each_crtc(dev, crtc)
  3373. ilk_pipe_wm_get_hw_state(crtc);
  3374. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3375. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3376. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3377. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3378. if (INTEL_INFO(dev)->gen >= 7) {
  3379. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3380. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3381. }
  3382. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3383. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3384. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3385. else if (IS_IVYBRIDGE(dev))
  3386. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3387. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3388. hw->enable_fbc_wm =
  3389. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3390. }
  3391. /**
  3392. * intel_update_watermarks - update FIFO watermark values based on current modes
  3393. *
  3394. * Calculate watermark values for the various WM regs based on current mode
  3395. * and plane configuration.
  3396. *
  3397. * There are several cases to deal with here:
  3398. * - normal (i.e. non-self-refresh)
  3399. * - self-refresh (SR) mode
  3400. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3401. * - lines are small relative to FIFO size (buffer can hold more than 2
  3402. * lines), so need to account for TLB latency
  3403. *
  3404. * The normal calculation is:
  3405. * watermark = dotclock * bytes per pixel * latency
  3406. * where latency is platform & configuration dependent (we assume pessimal
  3407. * values here).
  3408. *
  3409. * The SR calculation is:
  3410. * watermark = (trunc(latency/line time)+1) * surface width *
  3411. * bytes per pixel
  3412. * where
  3413. * line time = htotal / dotclock
  3414. * surface width = hdisplay for normal plane and 64 for cursor
  3415. * and latency is assumed to be high, as above.
  3416. *
  3417. * The final value programmed to the register should always be rounded up,
  3418. * and include an extra 2 entries to account for clock crossings.
  3419. *
  3420. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3421. * to set the non-SR watermarks to 8.
  3422. */
  3423. void intel_update_watermarks(struct drm_crtc *crtc)
  3424. {
  3425. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3426. if (dev_priv->display.update_wm)
  3427. dev_priv->display.update_wm(crtc);
  3428. }
  3429. /*
  3430. * Lock protecting IPS related data structures
  3431. */
  3432. DEFINE_SPINLOCK(mchdev_lock);
  3433. /* Global for IPS driver to get at the current i915 device. Protected by
  3434. * mchdev_lock. */
  3435. static struct drm_i915_private *i915_mch_dev;
  3436. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3437. {
  3438. struct drm_i915_private *dev_priv = dev->dev_private;
  3439. u16 rgvswctl;
  3440. assert_spin_locked(&mchdev_lock);
  3441. rgvswctl = I915_READ16(MEMSWCTL);
  3442. if (rgvswctl & MEMCTL_CMD_STS) {
  3443. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3444. return false; /* still busy with another command */
  3445. }
  3446. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3447. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3448. I915_WRITE16(MEMSWCTL, rgvswctl);
  3449. POSTING_READ16(MEMSWCTL);
  3450. rgvswctl |= MEMCTL_CMD_STS;
  3451. I915_WRITE16(MEMSWCTL, rgvswctl);
  3452. return true;
  3453. }
  3454. static void ironlake_enable_drps(struct drm_device *dev)
  3455. {
  3456. struct drm_i915_private *dev_priv = dev->dev_private;
  3457. u32 rgvmodectl;
  3458. u8 fmax, fmin, fstart, vstart;
  3459. spin_lock_irq(&mchdev_lock);
  3460. rgvmodectl = I915_READ(MEMMODECTL);
  3461. /* Enable temp reporting */
  3462. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3463. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3464. /* 100ms RC evaluation intervals */
  3465. I915_WRITE(RCUPEI, 100000);
  3466. I915_WRITE(RCDNEI, 100000);
  3467. /* Set max/min thresholds to 90ms and 80ms respectively */
  3468. I915_WRITE(RCBMAXAVG, 90000);
  3469. I915_WRITE(RCBMINAVG, 80000);
  3470. I915_WRITE(MEMIHYST, 1);
  3471. /* Set up min, max, and cur for interrupt handling */
  3472. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3473. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3474. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3475. MEMMODE_FSTART_SHIFT;
  3476. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3477. PXVFREQ_PX_SHIFT;
  3478. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3479. dev_priv->ips.fstart = fstart;
  3480. dev_priv->ips.max_delay = fstart;
  3481. dev_priv->ips.min_delay = fmin;
  3482. dev_priv->ips.cur_delay = fstart;
  3483. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3484. fmax, fmin, fstart);
  3485. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3486. /*
  3487. * Interrupts will be enabled in ironlake_irq_postinstall
  3488. */
  3489. I915_WRITE(VIDSTART, vstart);
  3490. POSTING_READ(VIDSTART);
  3491. rgvmodectl |= MEMMODE_SWMODE_EN;
  3492. I915_WRITE(MEMMODECTL, rgvmodectl);
  3493. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3494. DRM_ERROR("stuck trying to change perf mode\n");
  3495. mdelay(1);
  3496. ironlake_set_drps(dev, fstart);
  3497. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3498. I915_READ(DDREC) + I915_READ(CSIEC);
  3499. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3500. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3501. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3502. spin_unlock_irq(&mchdev_lock);
  3503. }
  3504. static void ironlake_disable_drps(struct drm_device *dev)
  3505. {
  3506. struct drm_i915_private *dev_priv = dev->dev_private;
  3507. u16 rgvswctl;
  3508. spin_lock_irq(&mchdev_lock);
  3509. rgvswctl = I915_READ16(MEMSWCTL);
  3510. /* Ack interrupts, disable EFC interrupt */
  3511. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3512. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3513. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3514. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3515. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3516. /* Go back to the starting frequency */
  3517. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3518. mdelay(1);
  3519. rgvswctl |= MEMCTL_CMD_STS;
  3520. I915_WRITE(MEMSWCTL, rgvswctl);
  3521. mdelay(1);
  3522. spin_unlock_irq(&mchdev_lock);
  3523. }
  3524. /* There's a funny hw issue where the hw returns all 0 when reading from
  3525. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3526. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3527. * all limits and the gpu stuck at whatever frequency it is at atm).
  3528. */
  3529. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3530. {
  3531. u32 limits;
  3532. /* Only set the down limit when we've reached the lowest level to avoid
  3533. * getting more interrupts, otherwise leave this clear. This prevents a
  3534. * race in the hw when coming out of rc6: There's a tiny window where
  3535. * the hw runs at the minimal clock before selecting the desired
  3536. * frequency, if the down threshold expires in that window we will not
  3537. * receive a down interrupt. */
  3538. if (IS_GEN9(dev_priv->dev)) {
  3539. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3540. if (val <= dev_priv->rps.min_freq_softlimit)
  3541. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3542. } else {
  3543. limits = dev_priv->rps.max_freq_softlimit << 24;
  3544. if (val <= dev_priv->rps.min_freq_softlimit)
  3545. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3546. }
  3547. return limits;
  3548. }
  3549. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3550. {
  3551. int new_power;
  3552. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3553. u32 ei_up = 0, ei_down = 0;
  3554. new_power = dev_priv->rps.power;
  3555. switch (dev_priv->rps.power) {
  3556. case LOW_POWER:
  3557. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3558. new_power = BETWEEN;
  3559. break;
  3560. case BETWEEN:
  3561. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3562. new_power = LOW_POWER;
  3563. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3564. new_power = HIGH_POWER;
  3565. break;
  3566. case HIGH_POWER:
  3567. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3568. new_power = BETWEEN;
  3569. break;
  3570. }
  3571. /* Max/min bins are special */
  3572. if (val <= dev_priv->rps.min_freq_softlimit)
  3573. new_power = LOW_POWER;
  3574. if (val >= dev_priv->rps.max_freq_softlimit)
  3575. new_power = HIGH_POWER;
  3576. if (new_power == dev_priv->rps.power)
  3577. return;
  3578. /* Note the units here are not exactly 1us, but 1280ns. */
  3579. switch (new_power) {
  3580. case LOW_POWER:
  3581. /* Upclock if more than 95% busy over 16ms */
  3582. ei_up = 16000;
  3583. threshold_up = 95;
  3584. /* Downclock if less than 85% busy over 32ms */
  3585. ei_down = 32000;
  3586. threshold_down = 85;
  3587. break;
  3588. case BETWEEN:
  3589. /* Upclock if more than 90% busy over 13ms */
  3590. ei_up = 13000;
  3591. threshold_up = 90;
  3592. /* Downclock if less than 75% busy over 32ms */
  3593. ei_down = 32000;
  3594. threshold_down = 75;
  3595. break;
  3596. case HIGH_POWER:
  3597. /* Upclock if more than 85% busy over 10ms */
  3598. ei_up = 10000;
  3599. threshold_up = 85;
  3600. /* Downclock if less than 60% busy over 32ms */
  3601. ei_down = 32000;
  3602. threshold_down = 60;
  3603. break;
  3604. }
  3605. I915_WRITE(GEN6_RP_UP_EI,
  3606. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3607. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3608. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3609. I915_WRITE(GEN6_RP_DOWN_EI,
  3610. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3611. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3612. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3613. I915_WRITE(GEN6_RP_CONTROL,
  3614. GEN6_RP_MEDIA_TURBO |
  3615. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3616. GEN6_RP_MEDIA_IS_GFX |
  3617. GEN6_RP_ENABLE |
  3618. GEN6_RP_UP_BUSY_AVG |
  3619. GEN6_RP_DOWN_IDLE_AVG);
  3620. dev_priv->rps.power = new_power;
  3621. dev_priv->rps.up_threshold = threshold_up;
  3622. dev_priv->rps.down_threshold = threshold_down;
  3623. dev_priv->rps.last_adj = 0;
  3624. }
  3625. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3626. {
  3627. u32 mask = 0;
  3628. if (val > dev_priv->rps.min_freq_softlimit)
  3629. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3630. if (val < dev_priv->rps.max_freq_softlimit)
  3631. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3632. mask &= dev_priv->pm_rps_events;
  3633. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3634. }
  3635. /* gen6_set_rps is called to update the frequency request, but should also be
  3636. * called when the range (min_delay and max_delay) is modified so that we can
  3637. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3638. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3639. {
  3640. struct drm_i915_private *dev_priv = dev->dev_private;
  3641. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3642. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  3643. return;
  3644. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3645. WARN_ON(val > dev_priv->rps.max_freq);
  3646. WARN_ON(val < dev_priv->rps.min_freq);
  3647. /* min/max delay may still have been modified so be sure to
  3648. * write the limits value.
  3649. */
  3650. if (val != dev_priv->rps.cur_freq) {
  3651. gen6_set_rps_thresholds(dev_priv, val);
  3652. if (IS_GEN9(dev))
  3653. I915_WRITE(GEN6_RPNSWREQ,
  3654. GEN9_FREQUENCY(val));
  3655. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3656. I915_WRITE(GEN6_RPNSWREQ,
  3657. HSW_FREQUENCY(val));
  3658. else
  3659. I915_WRITE(GEN6_RPNSWREQ,
  3660. GEN6_FREQUENCY(val) |
  3661. GEN6_OFFSET(0) |
  3662. GEN6_AGGRESSIVE_TURBO);
  3663. }
  3664. /* Make sure we continue to get interrupts
  3665. * until we hit the minimum or maximum frequencies.
  3666. */
  3667. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3668. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3669. POSTING_READ(GEN6_RPNSWREQ);
  3670. dev_priv->rps.cur_freq = val;
  3671. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3672. }
  3673. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3674. {
  3675. struct drm_i915_private *dev_priv = dev->dev_private;
  3676. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3677. WARN_ON(val > dev_priv->rps.max_freq);
  3678. WARN_ON(val < dev_priv->rps.min_freq);
  3679. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3680. "Odd GPU freq value\n"))
  3681. val &= ~1;
  3682. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3683. if (val != dev_priv->rps.cur_freq) {
  3684. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3685. if (!IS_CHERRYVIEW(dev_priv))
  3686. gen6_set_rps_thresholds(dev_priv, val);
  3687. }
  3688. dev_priv->rps.cur_freq = val;
  3689. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3690. }
  3691. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  3692. *
  3693. * * If Gfx is Idle, then
  3694. * 1. Forcewake Media well.
  3695. * 2. Request idle freq.
  3696. * 3. Release Forcewake of Media well.
  3697. */
  3698. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3699. {
  3700. u32 val = dev_priv->rps.idle_freq;
  3701. if (dev_priv->rps.cur_freq <= val)
  3702. return;
  3703. /* Wake up the media well, as that takes a lot less
  3704. * power than the Render well. */
  3705. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  3706. valleyview_set_rps(dev_priv->dev, val);
  3707. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  3708. }
  3709. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3710. {
  3711. mutex_lock(&dev_priv->rps.hw_lock);
  3712. if (dev_priv->rps.enabled) {
  3713. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3714. gen6_rps_reset_ei(dev_priv);
  3715. I915_WRITE(GEN6_PMINTRMSK,
  3716. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3717. }
  3718. mutex_unlock(&dev_priv->rps.hw_lock);
  3719. }
  3720. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3721. {
  3722. struct drm_device *dev = dev_priv->dev;
  3723. mutex_lock(&dev_priv->rps.hw_lock);
  3724. if (dev_priv->rps.enabled) {
  3725. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3726. vlv_set_rps_idle(dev_priv);
  3727. else
  3728. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3729. dev_priv->rps.last_adj = 0;
  3730. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3731. }
  3732. mutex_unlock(&dev_priv->rps.hw_lock);
  3733. spin_lock(&dev_priv->rps.client_lock);
  3734. while (!list_empty(&dev_priv->rps.clients))
  3735. list_del_init(dev_priv->rps.clients.next);
  3736. spin_unlock(&dev_priv->rps.client_lock);
  3737. }
  3738. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3739. struct intel_rps_client *rps,
  3740. unsigned long submitted)
  3741. {
  3742. /* This is intentionally racy! We peek at the state here, then
  3743. * validate inside the RPS worker.
  3744. */
  3745. if (!(dev_priv->mm.busy &&
  3746. dev_priv->rps.enabled &&
  3747. dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
  3748. return;
  3749. /* Force a RPS boost (and don't count it against the client) if
  3750. * the GPU is severely congested.
  3751. */
  3752. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  3753. rps = NULL;
  3754. spin_lock(&dev_priv->rps.client_lock);
  3755. if (rps == NULL || list_empty(&rps->link)) {
  3756. spin_lock_irq(&dev_priv->irq_lock);
  3757. if (dev_priv->rps.interrupts_enabled) {
  3758. dev_priv->rps.client_boost = true;
  3759. queue_work(dev_priv->wq, &dev_priv->rps.work);
  3760. }
  3761. spin_unlock_irq(&dev_priv->irq_lock);
  3762. if (rps != NULL) {
  3763. list_add(&rps->link, &dev_priv->rps.clients);
  3764. rps->boosts++;
  3765. } else
  3766. dev_priv->rps.boosts++;
  3767. }
  3768. spin_unlock(&dev_priv->rps.client_lock);
  3769. }
  3770. void intel_set_rps(struct drm_device *dev, u8 val)
  3771. {
  3772. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3773. valleyview_set_rps(dev, val);
  3774. else
  3775. gen6_set_rps(dev, val);
  3776. }
  3777. static void gen9_disable_rps(struct drm_device *dev)
  3778. {
  3779. struct drm_i915_private *dev_priv = dev->dev_private;
  3780. I915_WRITE(GEN6_RC_CONTROL, 0);
  3781. I915_WRITE(GEN9_PG_ENABLE, 0);
  3782. }
  3783. static void gen6_disable_rps(struct drm_device *dev)
  3784. {
  3785. struct drm_i915_private *dev_priv = dev->dev_private;
  3786. I915_WRITE(GEN6_RC_CONTROL, 0);
  3787. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3788. }
  3789. static void cherryview_disable_rps(struct drm_device *dev)
  3790. {
  3791. struct drm_i915_private *dev_priv = dev->dev_private;
  3792. I915_WRITE(GEN6_RC_CONTROL, 0);
  3793. }
  3794. static void valleyview_disable_rps(struct drm_device *dev)
  3795. {
  3796. struct drm_i915_private *dev_priv = dev->dev_private;
  3797. /* we're doing forcewake before Disabling RC6,
  3798. * This what the BIOS expects when going into suspend */
  3799. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3800. I915_WRITE(GEN6_RC_CONTROL, 0);
  3801. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3802. }
  3803. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3804. {
  3805. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  3806. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3807. mode = GEN6_RC_CTL_RC6_ENABLE;
  3808. else
  3809. mode = 0;
  3810. }
  3811. if (HAS_RC6p(dev))
  3812. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3813. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  3814. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  3815. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  3816. else
  3817. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3818. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  3819. }
  3820. static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
  3821. {
  3822. struct drm_i915_private *dev_priv = dev->dev_private;
  3823. bool enable_rc6 = true;
  3824. unsigned long rc6_ctx_base;
  3825. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  3826. DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
  3827. enable_rc6 = false;
  3828. }
  3829. /*
  3830. * The exact context size is not known for BXT, so assume a page size
  3831. * for this check.
  3832. */
  3833. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  3834. if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
  3835. (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
  3836. dev_priv->gtt.stolen_reserved_size))) {
  3837. DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
  3838. enable_rc6 = false;
  3839. }
  3840. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  3841. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  3842. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  3843. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  3844. DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
  3845. enable_rc6 = false;
  3846. }
  3847. if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
  3848. GEN6_RC_CTL_HW_ENABLE)) &&
  3849. ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
  3850. !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
  3851. DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
  3852. enable_rc6 = false;
  3853. }
  3854. return enable_rc6;
  3855. }
  3856. int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3857. {
  3858. /* No RC6 before Ironlake and code is gone for ilk. */
  3859. if (INTEL_INFO(dev)->gen < 6)
  3860. return 0;
  3861. if (!enable_rc6)
  3862. return 0;
  3863. if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
  3864. DRM_INFO("RC6 disabled by BIOS\n");
  3865. return 0;
  3866. }
  3867. /* Respect the kernel parameter if it is set */
  3868. if (enable_rc6 >= 0) {
  3869. int mask;
  3870. if (HAS_RC6p(dev))
  3871. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3872. INTEL_RC6pp_ENABLE;
  3873. else
  3874. mask = INTEL_RC6_ENABLE;
  3875. if ((enable_rc6 & mask) != enable_rc6)
  3876. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3877. enable_rc6 & mask, enable_rc6, mask);
  3878. return enable_rc6 & mask;
  3879. }
  3880. if (IS_IVYBRIDGE(dev))
  3881. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3882. return INTEL_RC6_ENABLE;
  3883. }
  3884. int intel_enable_rc6(const struct drm_device *dev)
  3885. {
  3886. return i915.enable_rc6;
  3887. }
  3888. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3889. {
  3890. struct drm_i915_private *dev_priv = dev->dev_private;
  3891. uint32_t rp_state_cap;
  3892. u32 ddcc_status = 0;
  3893. int ret;
  3894. /* All of these values are in units of 50MHz */
  3895. dev_priv->rps.cur_freq = 0;
  3896. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3897. if (IS_BROXTON(dev)) {
  3898. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  3899. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  3900. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3901. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  3902. } else {
  3903. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3904. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3905. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3906. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3907. }
  3908. /* hw_max = RP0 until we check for overclocking */
  3909. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3910. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3911. if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
  3912. IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3913. ret = sandybridge_pcode_read(dev_priv,
  3914. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3915. &ddcc_status);
  3916. if (0 == ret)
  3917. dev_priv->rps.efficient_freq =
  3918. clamp_t(u8,
  3919. ((ddcc_status >> 8) & 0xff),
  3920. dev_priv->rps.min_freq,
  3921. dev_priv->rps.max_freq);
  3922. }
  3923. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3924. /* Store the frequency values in 16.66 MHZ units, which is
  3925. the natural hardware unit for SKL */
  3926. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3927. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3928. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3929. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  3930. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  3931. }
  3932. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3933. /* Preserve min/max settings in case of re-init */
  3934. if (dev_priv->rps.max_freq_softlimit == 0)
  3935. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3936. if (dev_priv->rps.min_freq_softlimit == 0) {
  3937. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3938. dev_priv->rps.min_freq_softlimit =
  3939. max_t(int, dev_priv->rps.efficient_freq,
  3940. intel_freq_opcode(dev_priv, 450));
  3941. else
  3942. dev_priv->rps.min_freq_softlimit =
  3943. dev_priv->rps.min_freq;
  3944. }
  3945. }
  3946. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3947. static void gen9_enable_rps(struct drm_device *dev)
  3948. {
  3949. struct drm_i915_private *dev_priv = dev->dev_private;
  3950. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3951. gen6_init_rps_frequencies(dev);
  3952. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3953. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  3954. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3955. return;
  3956. }
  3957. /* Program defaults and thresholds for RPS*/
  3958. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3959. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3960. /* 1 second timeout*/
  3961. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3962. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3963. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3964. /* Leaning on the below call to gen6_set_rps to program/setup the
  3965. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3966. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3967. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3968. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3969. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3970. }
  3971. static void gen9_enable_rc6(struct drm_device *dev)
  3972. {
  3973. struct drm_i915_private *dev_priv = dev->dev_private;
  3974. struct intel_engine_cs *ring;
  3975. uint32_t rc6_mask = 0;
  3976. int unused;
  3977. /* 1a: Software RC state - RC0 */
  3978. I915_WRITE(GEN6_RC_STATE, 0);
  3979. /* 1b: Get forcewake during program sequence. Although the driver
  3980. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3981. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3982. /* 2a: Disable RC states. */
  3983. I915_WRITE(GEN6_RC_CONTROL, 0);
  3984. /* 2b: Program RC6 thresholds.*/
  3985. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  3986. if (IS_SKYLAKE(dev))
  3987. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  3988. else
  3989. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3990. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3991. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3992. for_each_ring(ring, dev_priv, unused)
  3993. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3994. if (HAS_GUC_UCODE(dev))
  3995. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  3996. I915_WRITE(GEN6_RC_SLEEP, 0);
  3997. /* 2c: Program Coarse Power Gating Policies. */
  3998. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3999. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4000. /* 3a: Enable RC6 */
  4001. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4002. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4003. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  4004. /* WaRsUseTimeoutMode */
  4005. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
  4006. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  4007. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  4008. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4009. GEN7_RC_CTL_TO_MODE |
  4010. rc6_mask);
  4011. } else {
  4012. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4013. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4014. GEN6_RC_CTL_EI_MODE(1) |
  4015. rc6_mask);
  4016. }
  4017. /*
  4018. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4019. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4020. */
  4021. if (NEEDS_WaRsDisableCoarsePowerGating(dev))
  4022. I915_WRITE(GEN9_PG_ENABLE, 0);
  4023. else
  4024. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4025. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4026. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4027. }
  4028. static void gen8_enable_rps(struct drm_device *dev)
  4029. {
  4030. struct drm_i915_private *dev_priv = dev->dev_private;
  4031. struct intel_engine_cs *ring;
  4032. uint32_t rc6_mask = 0;
  4033. int unused;
  4034. /* 1a: Software RC state - RC0 */
  4035. I915_WRITE(GEN6_RC_STATE, 0);
  4036. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4037. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4038. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4039. /* 2a: Disable RC states. */
  4040. I915_WRITE(GEN6_RC_CONTROL, 0);
  4041. /* Initialize rps frequencies */
  4042. gen6_init_rps_frequencies(dev);
  4043. /* 2b: Program RC6 thresholds.*/
  4044. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4045. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4046. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4047. for_each_ring(ring, dev_priv, unused)
  4048. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4049. I915_WRITE(GEN6_RC_SLEEP, 0);
  4050. if (IS_BROADWELL(dev))
  4051. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4052. else
  4053. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4054. /* 3: Enable RC6 */
  4055. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4056. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4057. intel_print_rc6_info(dev, rc6_mask);
  4058. if (IS_BROADWELL(dev))
  4059. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4060. GEN7_RC_CTL_TO_MODE |
  4061. rc6_mask);
  4062. else
  4063. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4064. GEN6_RC_CTL_EI_MODE(1) |
  4065. rc6_mask);
  4066. /* 4 Program defaults and thresholds for RPS*/
  4067. I915_WRITE(GEN6_RPNSWREQ,
  4068. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4069. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4070. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4071. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4072. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4073. /* Docs recommend 900MHz, and 300 MHz respectively */
  4074. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4075. dev_priv->rps.max_freq_softlimit << 24 |
  4076. dev_priv->rps.min_freq_softlimit << 16);
  4077. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4078. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4079. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4080. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4081. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4082. /* 5: Enable RPS */
  4083. I915_WRITE(GEN6_RP_CONTROL,
  4084. GEN6_RP_MEDIA_TURBO |
  4085. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4086. GEN6_RP_MEDIA_IS_GFX |
  4087. GEN6_RP_ENABLE |
  4088. GEN6_RP_UP_BUSY_AVG |
  4089. GEN6_RP_DOWN_IDLE_AVG);
  4090. /* 6: Ring frequency + overclocking (our driver does this later */
  4091. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4092. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4093. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4094. }
  4095. static void gen6_enable_rps(struct drm_device *dev)
  4096. {
  4097. struct drm_i915_private *dev_priv = dev->dev_private;
  4098. struct intel_engine_cs *ring;
  4099. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  4100. u32 gtfifodbg;
  4101. int rc6_mode;
  4102. int i, ret;
  4103. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4104. /* Here begins a magic sequence of register writes to enable
  4105. * auto-downclocking.
  4106. *
  4107. * Perhaps there might be some value in exposing these to
  4108. * userspace...
  4109. */
  4110. I915_WRITE(GEN6_RC_STATE, 0);
  4111. /* Clear the DBG now so we don't confuse earlier errors */
  4112. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4113. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4114. I915_WRITE(GTFIFODBG, gtfifodbg);
  4115. }
  4116. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4117. /* Initialize rps frequencies */
  4118. gen6_init_rps_frequencies(dev);
  4119. /* disable the counters and set deterministic thresholds */
  4120. I915_WRITE(GEN6_RC_CONTROL, 0);
  4121. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4122. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4123. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4124. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4125. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4126. for_each_ring(ring, dev_priv, i)
  4127. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4128. I915_WRITE(GEN6_RC_SLEEP, 0);
  4129. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4130. if (IS_IVYBRIDGE(dev))
  4131. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4132. else
  4133. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4134. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4135. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4136. /* Check if we are enabling RC6 */
  4137. rc6_mode = intel_enable_rc6(dev_priv->dev);
  4138. if (rc6_mode & INTEL_RC6_ENABLE)
  4139. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4140. /* We don't use those on Haswell */
  4141. if (!IS_HASWELL(dev)) {
  4142. if (rc6_mode & INTEL_RC6p_ENABLE)
  4143. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4144. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4145. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4146. }
  4147. intel_print_rc6_info(dev, rc6_mask);
  4148. I915_WRITE(GEN6_RC_CONTROL,
  4149. rc6_mask |
  4150. GEN6_RC_CTL_EI_MODE(1) |
  4151. GEN6_RC_CTL_HW_ENABLE);
  4152. /* Power down if completely idle for over 50ms */
  4153. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4154. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4155. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  4156. if (ret)
  4157. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  4158. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  4159. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  4160. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  4161. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  4162. (pcu_mbox & 0xff) * 50);
  4163. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  4164. }
  4165. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4166. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4167. rc6vids = 0;
  4168. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4169. if (IS_GEN6(dev) && ret) {
  4170. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4171. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4172. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4173. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4174. rc6vids &= 0xffff00;
  4175. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4176. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4177. if (ret)
  4178. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4179. }
  4180. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4181. }
  4182. static void __gen6_update_ring_freq(struct drm_device *dev)
  4183. {
  4184. struct drm_i915_private *dev_priv = dev->dev_private;
  4185. int min_freq = 15;
  4186. unsigned int gpu_freq;
  4187. unsigned int max_ia_freq, min_ring_freq;
  4188. unsigned int max_gpu_freq, min_gpu_freq;
  4189. int scaling_factor = 180;
  4190. struct cpufreq_policy *policy;
  4191. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4192. policy = cpufreq_cpu_get(0);
  4193. if (policy) {
  4194. max_ia_freq = policy->cpuinfo.max_freq;
  4195. cpufreq_cpu_put(policy);
  4196. } else {
  4197. /*
  4198. * Default to measured freq if none found, PCU will ensure we
  4199. * don't go over
  4200. */
  4201. max_ia_freq = tsc_khz;
  4202. }
  4203. /* Convert from kHz to MHz */
  4204. max_ia_freq /= 1000;
  4205. min_ring_freq = I915_READ(DCLK) & 0xf;
  4206. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4207. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4208. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4209. /* Convert GT frequency to 50 HZ units */
  4210. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4211. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4212. } else {
  4213. min_gpu_freq = dev_priv->rps.min_freq;
  4214. max_gpu_freq = dev_priv->rps.max_freq;
  4215. }
  4216. /*
  4217. * For each potential GPU frequency, load a ring frequency we'd like
  4218. * to use for memory access. We do this by specifying the IA frequency
  4219. * the PCU should use as a reference to determine the ring frequency.
  4220. */
  4221. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4222. int diff = max_gpu_freq - gpu_freq;
  4223. unsigned int ia_freq = 0, ring_freq = 0;
  4224. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4225. /*
  4226. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4227. * No floor required for ring frequency on SKL.
  4228. */
  4229. ring_freq = gpu_freq;
  4230. } else if (INTEL_INFO(dev)->gen >= 8) {
  4231. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4232. ring_freq = max(min_ring_freq, gpu_freq);
  4233. } else if (IS_HASWELL(dev)) {
  4234. ring_freq = mult_frac(gpu_freq, 5, 4);
  4235. ring_freq = max(min_ring_freq, ring_freq);
  4236. /* leave ia_freq as the default, chosen by cpufreq */
  4237. } else {
  4238. /* On older processors, there is no separate ring
  4239. * clock domain, so in order to boost the bandwidth
  4240. * of the ring, we need to upclock the CPU (ia_freq).
  4241. *
  4242. * For GPU frequencies less than 750MHz,
  4243. * just use the lowest ring freq.
  4244. */
  4245. if (gpu_freq < min_freq)
  4246. ia_freq = 800;
  4247. else
  4248. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4249. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4250. }
  4251. sandybridge_pcode_write(dev_priv,
  4252. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4253. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4254. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4255. gpu_freq);
  4256. }
  4257. }
  4258. void gen6_update_ring_freq(struct drm_device *dev)
  4259. {
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. if (!HAS_CORE_RING_FREQ(dev))
  4262. return;
  4263. mutex_lock(&dev_priv->rps.hw_lock);
  4264. __gen6_update_ring_freq(dev);
  4265. mutex_unlock(&dev_priv->rps.hw_lock);
  4266. }
  4267. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4268. {
  4269. struct drm_device *dev = dev_priv->dev;
  4270. u32 val, rp0;
  4271. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4272. switch (INTEL_INFO(dev)->eu_total) {
  4273. case 8:
  4274. /* (2 * 4) config */
  4275. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4276. break;
  4277. case 12:
  4278. /* (2 * 6) config */
  4279. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4280. break;
  4281. case 16:
  4282. /* (2 * 8) config */
  4283. default:
  4284. /* Setting (2 * 8) Min RP0 for any other combination */
  4285. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4286. break;
  4287. }
  4288. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4289. return rp0;
  4290. }
  4291. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4292. {
  4293. u32 val, rpe;
  4294. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4295. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4296. return rpe;
  4297. }
  4298. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4299. {
  4300. u32 val, rp1;
  4301. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4302. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4303. return rp1;
  4304. }
  4305. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4306. {
  4307. u32 val, rp1;
  4308. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4309. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4310. return rp1;
  4311. }
  4312. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4313. {
  4314. u32 val, rp0;
  4315. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4316. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4317. /* Clamp to max */
  4318. rp0 = min_t(u32, rp0, 0xea);
  4319. return rp0;
  4320. }
  4321. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4322. {
  4323. u32 val, rpe;
  4324. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4325. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4326. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4327. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4328. return rpe;
  4329. }
  4330. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4331. {
  4332. u32 val;
  4333. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4334. /*
  4335. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  4336. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  4337. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  4338. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  4339. * to make sure it matches what Punit accepts.
  4340. */
  4341. return max_t(u32, val, 0xc0);
  4342. }
  4343. /* Check that the pctx buffer wasn't move under us. */
  4344. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4345. {
  4346. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4347. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4348. dev_priv->vlv_pctx->stolen->start);
  4349. }
  4350. /* Check that the pcbr address is not empty. */
  4351. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4352. {
  4353. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4354. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4355. }
  4356. static void cherryview_setup_pctx(struct drm_device *dev)
  4357. {
  4358. struct drm_i915_private *dev_priv = dev->dev_private;
  4359. unsigned long pctx_paddr, paddr;
  4360. struct i915_gtt *gtt = &dev_priv->gtt;
  4361. u32 pcbr;
  4362. int pctx_size = 32*1024;
  4363. pcbr = I915_READ(VLV_PCBR);
  4364. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4365. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4366. paddr = (dev_priv->mm.stolen_base +
  4367. (gtt->stolen_size - pctx_size));
  4368. pctx_paddr = (paddr & (~4095));
  4369. I915_WRITE(VLV_PCBR, pctx_paddr);
  4370. }
  4371. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4372. }
  4373. static void valleyview_setup_pctx(struct drm_device *dev)
  4374. {
  4375. struct drm_i915_private *dev_priv = dev->dev_private;
  4376. struct drm_i915_gem_object *pctx;
  4377. unsigned long pctx_paddr;
  4378. u32 pcbr;
  4379. int pctx_size = 24*1024;
  4380. mutex_lock(&dev->struct_mutex);
  4381. pcbr = I915_READ(VLV_PCBR);
  4382. if (pcbr) {
  4383. /* BIOS set it up already, grab the pre-alloc'd space */
  4384. int pcbr_offset;
  4385. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4386. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4387. pcbr_offset,
  4388. I915_GTT_OFFSET_NONE,
  4389. pctx_size);
  4390. goto out;
  4391. }
  4392. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4393. /*
  4394. * From the Gunit register HAS:
  4395. * The Gfx driver is expected to program this register and ensure
  4396. * proper allocation within Gfx stolen memory. For example, this
  4397. * register should be programmed such than the PCBR range does not
  4398. * overlap with other ranges, such as the frame buffer, protected
  4399. * memory, or any other relevant ranges.
  4400. */
  4401. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4402. if (!pctx) {
  4403. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4404. goto out;
  4405. }
  4406. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4407. I915_WRITE(VLV_PCBR, pctx_paddr);
  4408. out:
  4409. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4410. dev_priv->vlv_pctx = pctx;
  4411. mutex_unlock(&dev->struct_mutex);
  4412. }
  4413. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4414. {
  4415. struct drm_i915_private *dev_priv = dev->dev_private;
  4416. if (WARN_ON(!dev_priv->vlv_pctx))
  4417. return;
  4418. drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
  4419. dev_priv->vlv_pctx = NULL;
  4420. }
  4421. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4422. {
  4423. struct drm_i915_private *dev_priv = dev->dev_private;
  4424. u32 val;
  4425. valleyview_setup_pctx(dev);
  4426. mutex_lock(&dev_priv->rps.hw_lock);
  4427. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4428. switch ((val >> 6) & 3) {
  4429. case 0:
  4430. case 1:
  4431. dev_priv->mem_freq = 800;
  4432. break;
  4433. case 2:
  4434. dev_priv->mem_freq = 1066;
  4435. break;
  4436. case 3:
  4437. dev_priv->mem_freq = 1333;
  4438. break;
  4439. }
  4440. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4441. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4442. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4443. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4444. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4445. dev_priv->rps.max_freq);
  4446. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4447. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4448. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4449. dev_priv->rps.efficient_freq);
  4450. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4451. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4452. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4453. dev_priv->rps.rp1_freq);
  4454. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4455. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4456. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4457. dev_priv->rps.min_freq);
  4458. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4459. /* Preserve min/max settings in case of re-init */
  4460. if (dev_priv->rps.max_freq_softlimit == 0)
  4461. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4462. if (dev_priv->rps.min_freq_softlimit == 0)
  4463. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4464. mutex_unlock(&dev_priv->rps.hw_lock);
  4465. }
  4466. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4467. {
  4468. struct drm_i915_private *dev_priv = dev->dev_private;
  4469. u32 val;
  4470. cherryview_setup_pctx(dev);
  4471. mutex_lock(&dev_priv->rps.hw_lock);
  4472. mutex_lock(&dev_priv->sb_lock);
  4473. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4474. mutex_unlock(&dev_priv->sb_lock);
  4475. switch ((val >> 2) & 0x7) {
  4476. case 3:
  4477. dev_priv->mem_freq = 2000;
  4478. break;
  4479. default:
  4480. dev_priv->mem_freq = 1600;
  4481. break;
  4482. }
  4483. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4484. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4485. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4486. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4487. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4488. dev_priv->rps.max_freq);
  4489. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4490. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4491. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4492. dev_priv->rps.efficient_freq);
  4493. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4494. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4495. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4496. dev_priv->rps.rp1_freq);
  4497. /* PUnit validated range is only [RPe, RP0] */
  4498. dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  4499. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4500. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4501. dev_priv->rps.min_freq);
  4502. WARN_ONCE((dev_priv->rps.max_freq |
  4503. dev_priv->rps.efficient_freq |
  4504. dev_priv->rps.rp1_freq |
  4505. dev_priv->rps.min_freq) & 1,
  4506. "Odd GPU freq values\n");
  4507. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4508. /* Preserve min/max settings in case of re-init */
  4509. if (dev_priv->rps.max_freq_softlimit == 0)
  4510. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4511. if (dev_priv->rps.min_freq_softlimit == 0)
  4512. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4513. mutex_unlock(&dev_priv->rps.hw_lock);
  4514. }
  4515. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4516. {
  4517. valleyview_cleanup_pctx(dev);
  4518. }
  4519. static void cherryview_enable_rps(struct drm_device *dev)
  4520. {
  4521. struct drm_i915_private *dev_priv = dev->dev_private;
  4522. struct intel_engine_cs *ring;
  4523. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4524. int i;
  4525. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4526. gtfifodbg = I915_READ(GTFIFODBG);
  4527. if (gtfifodbg) {
  4528. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4529. gtfifodbg);
  4530. I915_WRITE(GTFIFODBG, gtfifodbg);
  4531. }
  4532. cherryview_check_pctx(dev_priv);
  4533. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4534. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4535. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4536. /* Disable RC states. */
  4537. I915_WRITE(GEN6_RC_CONTROL, 0);
  4538. /* 2a: Program RC6 thresholds.*/
  4539. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4540. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4541. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4542. for_each_ring(ring, dev_priv, i)
  4543. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4544. I915_WRITE(GEN6_RC_SLEEP, 0);
  4545. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  4546. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  4547. /* allows RC6 residency counter to work */
  4548. I915_WRITE(VLV_COUNTER_CONTROL,
  4549. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4550. VLV_MEDIA_RC6_COUNT_EN |
  4551. VLV_RENDER_RC6_COUNT_EN));
  4552. /* For now we assume BIOS is allocating and populating the PCBR */
  4553. pcbr = I915_READ(VLV_PCBR);
  4554. /* 3: Enable RC6 */
  4555. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4556. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4557. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4558. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4559. /* 4 Program defaults and thresholds for RPS*/
  4560. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4561. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4562. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4563. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4564. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4565. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4566. /* 5: Enable RPS */
  4567. I915_WRITE(GEN6_RP_CONTROL,
  4568. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4569. GEN6_RP_MEDIA_IS_GFX |
  4570. GEN6_RP_ENABLE |
  4571. GEN6_RP_UP_BUSY_AVG |
  4572. GEN6_RP_DOWN_IDLE_AVG);
  4573. /* Setting Fixed Bias */
  4574. val = VLV_OVERRIDE_EN |
  4575. VLV_SOC_TDP_EN |
  4576. CHV_BIAS_CPU_50_SOC_50;
  4577. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4578. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4579. /* RPS code assumes GPLL is used */
  4580. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4581. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4582. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4583. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4584. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4585. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4586. dev_priv->rps.cur_freq);
  4587. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4588. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4589. dev_priv->rps.efficient_freq);
  4590. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4591. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4592. }
  4593. static void valleyview_enable_rps(struct drm_device *dev)
  4594. {
  4595. struct drm_i915_private *dev_priv = dev->dev_private;
  4596. struct intel_engine_cs *ring;
  4597. u32 gtfifodbg, val, rc6_mode = 0;
  4598. int i;
  4599. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4600. valleyview_check_pctx(dev_priv);
  4601. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4602. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4603. gtfifodbg);
  4604. I915_WRITE(GTFIFODBG, gtfifodbg);
  4605. }
  4606. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4607. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4608. /* Disable RC states. */
  4609. I915_WRITE(GEN6_RC_CONTROL, 0);
  4610. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4611. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4612. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4613. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4614. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4615. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4616. I915_WRITE(GEN6_RP_CONTROL,
  4617. GEN6_RP_MEDIA_TURBO |
  4618. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4619. GEN6_RP_MEDIA_IS_GFX |
  4620. GEN6_RP_ENABLE |
  4621. GEN6_RP_UP_BUSY_AVG |
  4622. GEN6_RP_DOWN_IDLE_CONT);
  4623. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4624. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4625. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4626. for_each_ring(ring, dev_priv, i)
  4627. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4628. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4629. /* allows RC6 residency counter to work */
  4630. I915_WRITE(VLV_COUNTER_CONTROL,
  4631. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4632. VLV_RENDER_RC0_COUNT_EN |
  4633. VLV_MEDIA_RC6_COUNT_EN |
  4634. VLV_RENDER_RC6_COUNT_EN));
  4635. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4636. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4637. intel_print_rc6_info(dev, rc6_mode);
  4638. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4639. /* Setting Fixed Bias */
  4640. val = VLV_OVERRIDE_EN |
  4641. VLV_SOC_TDP_EN |
  4642. VLV_BIAS_CPU_125_SOC_875;
  4643. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4644. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4645. /* RPS code assumes GPLL is used */
  4646. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4647. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4648. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4649. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4650. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4651. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4652. dev_priv->rps.cur_freq);
  4653. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4654. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4655. dev_priv->rps.efficient_freq);
  4656. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4657. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4658. }
  4659. static unsigned long intel_pxfreq(u32 vidfreq)
  4660. {
  4661. unsigned long freq;
  4662. int div = (vidfreq & 0x3f0000) >> 16;
  4663. int post = (vidfreq & 0x3000) >> 12;
  4664. int pre = (vidfreq & 0x7);
  4665. if (!pre)
  4666. return 0;
  4667. freq = ((div * 133333) / ((1<<post) * pre));
  4668. return freq;
  4669. }
  4670. static const struct cparams {
  4671. u16 i;
  4672. u16 t;
  4673. u16 m;
  4674. u16 c;
  4675. } cparams[] = {
  4676. { 1, 1333, 301, 28664 },
  4677. { 1, 1066, 294, 24460 },
  4678. { 1, 800, 294, 25192 },
  4679. { 0, 1333, 276, 27605 },
  4680. { 0, 1066, 276, 27605 },
  4681. { 0, 800, 231, 23784 },
  4682. };
  4683. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4684. {
  4685. u64 total_count, diff, ret;
  4686. u32 count1, count2, count3, m = 0, c = 0;
  4687. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4688. int i;
  4689. assert_spin_locked(&mchdev_lock);
  4690. diff1 = now - dev_priv->ips.last_time1;
  4691. /* Prevent division-by-zero if we are asking too fast.
  4692. * Also, we don't get interesting results if we are polling
  4693. * faster than once in 10ms, so just return the saved value
  4694. * in such cases.
  4695. */
  4696. if (diff1 <= 10)
  4697. return dev_priv->ips.chipset_power;
  4698. count1 = I915_READ(DMIEC);
  4699. count2 = I915_READ(DDREC);
  4700. count3 = I915_READ(CSIEC);
  4701. total_count = count1 + count2 + count3;
  4702. /* FIXME: handle per-counter overflow */
  4703. if (total_count < dev_priv->ips.last_count1) {
  4704. diff = ~0UL - dev_priv->ips.last_count1;
  4705. diff += total_count;
  4706. } else {
  4707. diff = total_count - dev_priv->ips.last_count1;
  4708. }
  4709. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4710. if (cparams[i].i == dev_priv->ips.c_m &&
  4711. cparams[i].t == dev_priv->ips.r_t) {
  4712. m = cparams[i].m;
  4713. c = cparams[i].c;
  4714. break;
  4715. }
  4716. }
  4717. diff = div_u64(diff, diff1);
  4718. ret = ((m * diff) + c);
  4719. ret = div_u64(ret, 10);
  4720. dev_priv->ips.last_count1 = total_count;
  4721. dev_priv->ips.last_time1 = now;
  4722. dev_priv->ips.chipset_power = ret;
  4723. return ret;
  4724. }
  4725. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4726. {
  4727. struct drm_device *dev = dev_priv->dev;
  4728. unsigned long val;
  4729. if (INTEL_INFO(dev)->gen != 5)
  4730. return 0;
  4731. spin_lock_irq(&mchdev_lock);
  4732. val = __i915_chipset_val(dev_priv);
  4733. spin_unlock_irq(&mchdev_lock);
  4734. return val;
  4735. }
  4736. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4737. {
  4738. unsigned long m, x, b;
  4739. u32 tsfs;
  4740. tsfs = I915_READ(TSFS);
  4741. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4742. x = I915_READ8(TR1);
  4743. b = tsfs & TSFS_INTR_MASK;
  4744. return ((m * x) / 127) - b;
  4745. }
  4746. static int _pxvid_to_vd(u8 pxvid)
  4747. {
  4748. if (pxvid == 0)
  4749. return 0;
  4750. if (pxvid >= 8 && pxvid < 31)
  4751. pxvid = 31;
  4752. return (pxvid + 2) * 125;
  4753. }
  4754. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4755. {
  4756. struct drm_device *dev = dev_priv->dev;
  4757. const int vd = _pxvid_to_vd(pxvid);
  4758. const int vm = vd - 1125;
  4759. if (INTEL_INFO(dev)->is_mobile)
  4760. return vm > 0 ? vm : 0;
  4761. return vd;
  4762. }
  4763. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4764. {
  4765. u64 now, diff, diffms;
  4766. u32 count;
  4767. assert_spin_locked(&mchdev_lock);
  4768. now = ktime_get_raw_ns();
  4769. diffms = now - dev_priv->ips.last_time2;
  4770. do_div(diffms, NSEC_PER_MSEC);
  4771. /* Don't divide by 0 */
  4772. if (!diffms)
  4773. return;
  4774. count = I915_READ(GFXEC);
  4775. if (count < dev_priv->ips.last_count2) {
  4776. diff = ~0UL - dev_priv->ips.last_count2;
  4777. diff += count;
  4778. } else {
  4779. diff = count - dev_priv->ips.last_count2;
  4780. }
  4781. dev_priv->ips.last_count2 = count;
  4782. dev_priv->ips.last_time2 = now;
  4783. /* More magic constants... */
  4784. diff = diff * 1181;
  4785. diff = div_u64(diff, diffms * 10);
  4786. dev_priv->ips.gfx_power = diff;
  4787. }
  4788. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4789. {
  4790. struct drm_device *dev = dev_priv->dev;
  4791. if (INTEL_INFO(dev)->gen != 5)
  4792. return;
  4793. spin_lock_irq(&mchdev_lock);
  4794. __i915_update_gfx_val(dev_priv);
  4795. spin_unlock_irq(&mchdev_lock);
  4796. }
  4797. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4798. {
  4799. unsigned long t, corr, state1, corr2, state2;
  4800. u32 pxvid, ext_v;
  4801. assert_spin_locked(&mchdev_lock);
  4802. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  4803. pxvid = (pxvid >> 24) & 0x7f;
  4804. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4805. state1 = ext_v;
  4806. t = i915_mch_val(dev_priv);
  4807. /* Revel in the empirically derived constants */
  4808. /* Correction factor in 1/100000 units */
  4809. if (t > 80)
  4810. corr = ((t * 2349) + 135940);
  4811. else if (t >= 50)
  4812. corr = ((t * 964) + 29317);
  4813. else /* < 50 */
  4814. corr = ((t * 301) + 1004);
  4815. corr = corr * ((150142 * state1) / 10000 - 78642);
  4816. corr /= 100000;
  4817. corr2 = (corr * dev_priv->ips.corr);
  4818. state2 = (corr2 * state1) / 10000;
  4819. state2 /= 100; /* convert to mW */
  4820. __i915_update_gfx_val(dev_priv);
  4821. return dev_priv->ips.gfx_power + state2;
  4822. }
  4823. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4824. {
  4825. struct drm_device *dev = dev_priv->dev;
  4826. unsigned long val;
  4827. if (INTEL_INFO(dev)->gen != 5)
  4828. return 0;
  4829. spin_lock_irq(&mchdev_lock);
  4830. val = __i915_gfx_val(dev_priv);
  4831. spin_unlock_irq(&mchdev_lock);
  4832. return val;
  4833. }
  4834. /**
  4835. * i915_read_mch_val - return value for IPS use
  4836. *
  4837. * Calculate and return a value for the IPS driver to use when deciding whether
  4838. * we have thermal and power headroom to increase CPU or GPU power budget.
  4839. */
  4840. unsigned long i915_read_mch_val(void)
  4841. {
  4842. struct drm_i915_private *dev_priv;
  4843. unsigned long chipset_val, graphics_val, ret = 0;
  4844. spin_lock_irq(&mchdev_lock);
  4845. if (!i915_mch_dev)
  4846. goto out_unlock;
  4847. dev_priv = i915_mch_dev;
  4848. chipset_val = __i915_chipset_val(dev_priv);
  4849. graphics_val = __i915_gfx_val(dev_priv);
  4850. ret = chipset_val + graphics_val;
  4851. out_unlock:
  4852. spin_unlock_irq(&mchdev_lock);
  4853. return ret;
  4854. }
  4855. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4856. /**
  4857. * i915_gpu_raise - raise GPU frequency limit
  4858. *
  4859. * Raise the limit; IPS indicates we have thermal headroom.
  4860. */
  4861. bool i915_gpu_raise(void)
  4862. {
  4863. struct drm_i915_private *dev_priv;
  4864. bool ret = true;
  4865. spin_lock_irq(&mchdev_lock);
  4866. if (!i915_mch_dev) {
  4867. ret = false;
  4868. goto out_unlock;
  4869. }
  4870. dev_priv = i915_mch_dev;
  4871. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4872. dev_priv->ips.max_delay--;
  4873. out_unlock:
  4874. spin_unlock_irq(&mchdev_lock);
  4875. return ret;
  4876. }
  4877. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4878. /**
  4879. * i915_gpu_lower - lower GPU frequency limit
  4880. *
  4881. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4882. * frequency maximum.
  4883. */
  4884. bool i915_gpu_lower(void)
  4885. {
  4886. struct drm_i915_private *dev_priv;
  4887. bool ret = true;
  4888. spin_lock_irq(&mchdev_lock);
  4889. if (!i915_mch_dev) {
  4890. ret = false;
  4891. goto out_unlock;
  4892. }
  4893. dev_priv = i915_mch_dev;
  4894. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4895. dev_priv->ips.max_delay++;
  4896. out_unlock:
  4897. spin_unlock_irq(&mchdev_lock);
  4898. return ret;
  4899. }
  4900. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4901. /**
  4902. * i915_gpu_busy - indicate GPU business to IPS
  4903. *
  4904. * Tell the IPS driver whether or not the GPU is busy.
  4905. */
  4906. bool i915_gpu_busy(void)
  4907. {
  4908. struct drm_i915_private *dev_priv;
  4909. struct intel_engine_cs *ring;
  4910. bool ret = false;
  4911. int i;
  4912. spin_lock_irq(&mchdev_lock);
  4913. if (!i915_mch_dev)
  4914. goto out_unlock;
  4915. dev_priv = i915_mch_dev;
  4916. for_each_ring(ring, dev_priv, i)
  4917. ret |= !list_empty(&ring->request_list);
  4918. out_unlock:
  4919. spin_unlock_irq(&mchdev_lock);
  4920. return ret;
  4921. }
  4922. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4923. /**
  4924. * i915_gpu_turbo_disable - disable graphics turbo
  4925. *
  4926. * Disable graphics turbo by resetting the max frequency and setting the
  4927. * current frequency to the default.
  4928. */
  4929. bool i915_gpu_turbo_disable(void)
  4930. {
  4931. struct drm_i915_private *dev_priv;
  4932. bool ret = true;
  4933. spin_lock_irq(&mchdev_lock);
  4934. if (!i915_mch_dev) {
  4935. ret = false;
  4936. goto out_unlock;
  4937. }
  4938. dev_priv = i915_mch_dev;
  4939. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4940. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4941. ret = false;
  4942. out_unlock:
  4943. spin_unlock_irq(&mchdev_lock);
  4944. return ret;
  4945. }
  4946. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4947. /**
  4948. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4949. * IPS got loaded first.
  4950. *
  4951. * This awkward dance is so that neither module has to depend on the
  4952. * other in order for IPS to do the appropriate communication of
  4953. * GPU turbo limits to i915.
  4954. */
  4955. static void
  4956. ips_ping_for_i915_load(void)
  4957. {
  4958. void (*link)(void);
  4959. link = symbol_get(ips_link_to_i915_driver);
  4960. if (link) {
  4961. link();
  4962. symbol_put(ips_link_to_i915_driver);
  4963. }
  4964. }
  4965. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4966. {
  4967. /* We only register the i915 ips part with intel-ips once everything is
  4968. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4969. spin_lock_irq(&mchdev_lock);
  4970. i915_mch_dev = dev_priv;
  4971. spin_unlock_irq(&mchdev_lock);
  4972. ips_ping_for_i915_load();
  4973. }
  4974. void intel_gpu_ips_teardown(void)
  4975. {
  4976. spin_lock_irq(&mchdev_lock);
  4977. i915_mch_dev = NULL;
  4978. spin_unlock_irq(&mchdev_lock);
  4979. }
  4980. static void intel_init_emon(struct drm_device *dev)
  4981. {
  4982. struct drm_i915_private *dev_priv = dev->dev_private;
  4983. u32 lcfuse;
  4984. u8 pxw[16];
  4985. int i;
  4986. /* Disable to program */
  4987. I915_WRITE(ECR, 0);
  4988. POSTING_READ(ECR);
  4989. /* Program energy weights for various events */
  4990. I915_WRITE(SDEW, 0x15040d00);
  4991. I915_WRITE(CSIEW0, 0x007f0000);
  4992. I915_WRITE(CSIEW1, 0x1e220004);
  4993. I915_WRITE(CSIEW2, 0x04000004);
  4994. for (i = 0; i < 5; i++)
  4995. I915_WRITE(PEW(i), 0);
  4996. for (i = 0; i < 3; i++)
  4997. I915_WRITE(DEW(i), 0);
  4998. /* Program P-state weights to account for frequency power adjustment */
  4999. for (i = 0; i < 16; i++) {
  5000. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  5001. unsigned long freq = intel_pxfreq(pxvidfreq);
  5002. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5003. PXVFREQ_PX_SHIFT;
  5004. unsigned long val;
  5005. val = vid * vid;
  5006. val *= (freq / 1000);
  5007. val *= 255;
  5008. val /= (127*127*900);
  5009. if (val > 0xff)
  5010. DRM_ERROR("bad pxval: %ld\n", val);
  5011. pxw[i] = val;
  5012. }
  5013. /* Render standby states get 0 weight */
  5014. pxw[14] = 0;
  5015. pxw[15] = 0;
  5016. for (i = 0; i < 4; i++) {
  5017. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5018. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5019. I915_WRITE(PXW(i), val);
  5020. }
  5021. /* Adjust magic regs to magic values (more experimental results) */
  5022. I915_WRITE(OGW0, 0);
  5023. I915_WRITE(OGW1, 0);
  5024. I915_WRITE(EG0, 0x00007f00);
  5025. I915_WRITE(EG1, 0x0000000e);
  5026. I915_WRITE(EG2, 0x000e0000);
  5027. I915_WRITE(EG3, 0x68000300);
  5028. I915_WRITE(EG4, 0x42000000);
  5029. I915_WRITE(EG5, 0x00140031);
  5030. I915_WRITE(EG6, 0);
  5031. I915_WRITE(EG7, 0);
  5032. for (i = 0; i < 8; i++)
  5033. I915_WRITE(PXWL(i), 0);
  5034. /* Enable PMON + select events */
  5035. I915_WRITE(ECR, 0x80000019);
  5036. lcfuse = I915_READ(LCFUSE02);
  5037. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  5038. }
  5039. void intel_init_gt_powersave(struct drm_device *dev)
  5040. {
  5041. struct drm_i915_private *dev_priv = dev->dev_private;
  5042. /*
  5043. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5044. * requirement.
  5045. */
  5046. if (!i915.enable_rc6) {
  5047. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5048. intel_runtime_pm_get(dev_priv);
  5049. }
  5050. if (IS_CHERRYVIEW(dev))
  5051. cherryview_init_gt_powersave(dev);
  5052. else if (IS_VALLEYVIEW(dev))
  5053. valleyview_init_gt_powersave(dev);
  5054. }
  5055. void intel_cleanup_gt_powersave(struct drm_device *dev)
  5056. {
  5057. struct drm_i915_private *dev_priv = dev->dev_private;
  5058. if (IS_CHERRYVIEW(dev))
  5059. return;
  5060. else if (IS_VALLEYVIEW(dev))
  5061. valleyview_cleanup_gt_powersave(dev);
  5062. if (!i915.enable_rc6)
  5063. intel_runtime_pm_put(dev_priv);
  5064. }
  5065. static void gen6_suspend_rps(struct drm_device *dev)
  5066. {
  5067. struct drm_i915_private *dev_priv = dev->dev_private;
  5068. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  5069. gen6_disable_rps_interrupts(dev);
  5070. }
  5071. /**
  5072. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5073. * @dev: drm device
  5074. *
  5075. * We don't want to disable RC6 or other features here, we just want
  5076. * to make sure any work we've queued has finished and won't bother
  5077. * us while we're suspended.
  5078. */
  5079. void intel_suspend_gt_powersave(struct drm_device *dev)
  5080. {
  5081. struct drm_i915_private *dev_priv = dev->dev_private;
  5082. if (INTEL_INFO(dev)->gen < 6)
  5083. return;
  5084. gen6_suspend_rps(dev);
  5085. /* Force GPU to min freq during suspend */
  5086. gen6_rps_idle(dev_priv);
  5087. }
  5088. void intel_disable_gt_powersave(struct drm_device *dev)
  5089. {
  5090. struct drm_i915_private *dev_priv = dev->dev_private;
  5091. if (IS_IRONLAKE_M(dev)) {
  5092. ironlake_disable_drps(dev);
  5093. } else if (INTEL_INFO(dev)->gen >= 6) {
  5094. intel_suspend_gt_powersave(dev);
  5095. mutex_lock(&dev_priv->rps.hw_lock);
  5096. if (INTEL_INFO(dev)->gen >= 9)
  5097. gen9_disable_rps(dev);
  5098. else if (IS_CHERRYVIEW(dev))
  5099. cherryview_disable_rps(dev);
  5100. else if (IS_VALLEYVIEW(dev))
  5101. valleyview_disable_rps(dev);
  5102. else
  5103. gen6_disable_rps(dev);
  5104. dev_priv->rps.enabled = false;
  5105. mutex_unlock(&dev_priv->rps.hw_lock);
  5106. }
  5107. }
  5108. static void intel_gen6_powersave_work(struct work_struct *work)
  5109. {
  5110. struct drm_i915_private *dev_priv =
  5111. container_of(work, struct drm_i915_private,
  5112. rps.delayed_resume_work.work);
  5113. struct drm_device *dev = dev_priv->dev;
  5114. mutex_lock(&dev_priv->rps.hw_lock);
  5115. gen6_reset_rps_interrupts(dev);
  5116. if (IS_CHERRYVIEW(dev)) {
  5117. cherryview_enable_rps(dev);
  5118. } else if (IS_VALLEYVIEW(dev)) {
  5119. valleyview_enable_rps(dev);
  5120. } else if (INTEL_INFO(dev)->gen >= 9) {
  5121. gen9_enable_rc6(dev);
  5122. gen9_enable_rps(dev);
  5123. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  5124. __gen6_update_ring_freq(dev);
  5125. } else if (IS_BROADWELL(dev)) {
  5126. gen8_enable_rps(dev);
  5127. __gen6_update_ring_freq(dev);
  5128. } else {
  5129. gen6_enable_rps(dev);
  5130. __gen6_update_ring_freq(dev);
  5131. }
  5132. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5133. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5134. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5135. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5136. dev_priv->rps.enabled = true;
  5137. gen6_enable_rps_interrupts(dev);
  5138. mutex_unlock(&dev_priv->rps.hw_lock);
  5139. intel_runtime_pm_put(dev_priv);
  5140. }
  5141. void intel_enable_gt_powersave(struct drm_device *dev)
  5142. {
  5143. struct drm_i915_private *dev_priv = dev->dev_private;
  5144. /* Powersaving is controlled by the host when inside a VM */
  5145. if (intel_vgpu_active(dev))
  5146. return;
  5147. if (IS_IRONLAKE_M(dev)) {
  5148. ironlake_enable_drps(dev);
  5149. mutex_lock(&dev->struct_mutex);
  5150. intel_init_emon(dev);
  5151. mutex_unlock(&dev->struct_mutex);
  5152. } else if (INTEL_INFO(dev)->gen >= 6) {
  5153. /*
  5154. * PCU communication is slow and this doesn't need to be
  5155. * done at any specific time, so do this out of our fast path
  5156. * to make resume and init faster.
  5157. *
  5158. * We depend on the HW RC6 power context save/restore
  5159. * mechanism when entering D3 through runtime PM suspend. So
  5160. * disable RPM until RPS/RC6 is properly setup. We can only
  5161. * get here via the driver load/system resume/runtime resume
  5162. * paths, so the _noresume version is enough (and in case of
  5163. * runtime resume it's necessary).
  5164. */
  5165. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  5166. round_jiffies_up_relative(HZ)))
  5167. intel_runtime_pm_get_noresume(dev_priv);
  5168. }
  5169. }
  5170. void intel_reset_gt_powersave(struct drm_device *dev)
  5171. {
  5172. struct drm_i915_private *dev_priv = dev->dev_private;
  5173. if (INTEL_INFO(dev)->gen < 6)
  5174. return;
  5175. gen6_suspend_rps(dev);
  5176. dev_priv->rps.enabled = false;
  5177. }
  5178. static void ibx_init_clock_gating(struct drm_device *dev)
  5179. {
  5180. struct drm_i915_private *dev_priv = dev->dev_private;
  5181. /*
  5182. * On Ibex Peak and Cougar Point, we need to disable clock
  5183. * gating for the panel power sequencer or it will fail to
  5184. * start up when no ports are active.
  5185. */
  5186. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5187. }
  5188. static void g4x_disable_trickle_feed(struct drm_device *dev)
  5189. {
  5190. struct drm_i915_private *dev_priv = dev->dev_private;
  5191. enum pipe pipe;
  5192. for_each_pipe(dev_priv, pipe) {
  5193. I915_WRITE(DSPCNTR(pipe),
  5194. I915_READ(DSPCNTR(pipe)) |
  5195. DISPPLANE_TRICKLE_FEED_DISABLE);
  5196. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5197. POSTING_READ(DSPSURF(pipe));
  5198. }
  5199. }
  5200. static void ilk_init_lp_watermarks(struct drm_device *dev)
  5201. {
  5202. struct drm_i915_private *dev_priv = dev->dev_private;
  5203. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5204. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5205. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5206. /*
  5207. * Don't touch WM1S_LP_EN here.
  5208. * Doing so could cause underruns.
  5209. */
  5210. }
  5211. static void ironlake_init_clock_gating(struct drm_device *dev)
  5212. {
  5213. struct drm_i915_private *dev_priv = dev->dev_private;
  5214. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5215. /*
  5216. * Required for FBC
  5217. * WaFbcDisableDpfcClockGating:ilk
  5218. */
  5219. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5220. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5221. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5222. I915_WRITE(PCH_3DCGDIS0,
  5223. MARIUNIT_CLOCK_GATE_DISABLE |
  5224. SVSMUNIT_CLOCK_GATE_DISABLE);
  5225. I915_WRITE(PCH_3DCGDIS1,
  5226. VFMUNIT_CLOCK_GATE_DISABLE);
  5227. /*
  5228. * According to the spec the following bits should be set in
  5229. * order to enable memory self-refresh
  5230. * The bit 22/21 of 0x42004
  5231. * The bit 5 of 0x42020
  5232. * The bit 15 of 0x45000
  5233. */
  5234. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5235. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5236. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5237. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5238. I915_WRITE(DISP_ARB_CTL,
  5239. (I915_READ(DISP_ARB_CTL) |
  5240. DISP_FBC_WM_DIS));
  5241. ilk_init_lp_watermarks(dev);
  5242. /*
  5243. * Based on the document from hardware guys the following bits
  5244. * should be set unconditionally in order to enable FBC.
  5245. * The bit 22 of 0x42000
  5246. * The bit 22 of 0x42004
  5247. * The bit 7,8,9 of 0x42020.
  5248. */
  5249. if (IS_IRONLAKE_M(dev)) {
  5250. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5251. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5252. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5253. ILK_FBCQ_DIS);
  5254. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5255. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5256. ILK_DPARB_GATE);
  5257. }
  5258. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5259. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5260. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5261. ILK_ELPIN_409_SELECT);
  5262. I915_WRITE(_3D_CHICKEN2,
  5263. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5264. _3D_CHICKEN2_WM_READ_PIPELINED);
  5265. /* WaDisableRenderCachePipelinedFlush:ilk */
  5266. I915_WRITE(CACHE_MODE_0,
  5267. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5268. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5269. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5270. g4x_disable_trickle_feed(dev);
  5271. ibx_init_clock_gating(dev);
  5272. }
  5273. static void cpt_init_clock_gating(struct drm_device *dev)
  5274. {
  5275. struct drm_i915_private *dev_priv = dev->dev_private;
  5276. int pipe;
  5277. uint32_t val;
  5278. /*
  5279. * On Ibex Peak and Cougar Point, we need to disable clock
  5280. * gating for the panel power sequencer or it will fail to
  5281. * start up when no ports are active.
  5282. */
  5283. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5284. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5285. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5286. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5287. DPLS_EDP_PPS_FIX_DIS);
  5288. /* The below fixes the weird display corruption, a few pixels shifted
  5289. * downward, on (only) LVDS of some HP laptops with IVY.
  5290. */
  5291. for_each_pipe(dev_priv, pipe) {
  5292. val = I915_READ(TRANS_CHICKEN2(pipe));
  5293. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5294. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5295. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5296. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5297. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5298. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5299. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5300. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5301. }
  5302. /* WADP0ClockGatingDisable */
  5303. for_each_pipe(dev_priv, pipe) {
  5304. I915_WRITE(TRANS_CHICKEN1(pipe),
  5305. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5306. }
  5307. }
  5308. static void gen6_check_mch_setup(struct drm_device *dev)
  5309. {
  5310. struct drm_i915_private *dev_priv = dev->dev_private;
  5311. uint32_t tmp;
  5312. tmp = I915_READ(MCH_SSKPD);
  5313. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5314. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5315. tmp);
  5316. }
  5317. static void gen6_init_clock_gating(struct drm_device *dev)
  5318. {
  5319. struct drm_i915_private *dev_priv = dev->dev_private;
  5320. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5321. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5322. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5323. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5324. ILK_ELPIN_409_SELECT);
  5325. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5326. I915_WRITE(_3D_CHICKEN,
  5327. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5328. /* WaDisable_RenderCache_OperationalFlush:snb */
  5329. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5330. /*
  5331. * BSpec recoomends 8x4 when MSAA is used,
  5332. * however in practice 16x4 seems fastest.
  5333. *
  5334. * Note that PS/WM thread counts depend on the WIZ hashing
  5335. * disable bit, which we don't touch here, but it's good
  5336. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5337. */
  5338. I915_WRITE(GEN6_GT_MODE,
  5339. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5340. ilk_init_lp_watermarks(dev);
  5341. I915_WRITE(CACHE_MODE_0,
  5342. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5343. I915_WRITE(GEN6_UCGCTL1,
  5344. I915_READ(GEN6_UCGCTL1) |
  5345. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5346. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5347. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5348. * gating disable must be set. Failure to set it results in
  5349. * flickering pixels due to Z write ordering failures after
  5350. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5351. * Sanctuary and Tropics, and apparently anything else with
  5352. * alpha test or pixel discard.
  5353. *
  5354. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5355. * but we didn't debug actual testcases to find it out.
  5356. *
  5357. * WaDisableRCCUnitClockGating:snb
  5358. * WaDisableRCPBUnitClockGating:snb
  5359. */
  5360. I915_WRITE(GEN6_UCGCTL2,
  5361. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5362. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5363. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5364. I915_WRITE(_3D_CHICKEN3,
  5365. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5366. /*
  5367. * Bspec says:
  5368. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5369. * 3DSTATE_SF number of SF output attributes is more than 16."
  5370. */
  5371. I915_WRITE(_3D_CHICKEN3,
  5372. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5373. /*
  5374. * According to the spec the following bits should be
  5375. * set in order to enable memory self-refresh and fbc:
  5376. * The bit21 and bit22 of 0x42000
  5377. * The bit21 and bit22 of 0x42004
  5378. * The bit5 and bit7 of 0x42020
  5379. * The bit14 of 0x70180
  5380. * The bit14 of 0x71180
  5381. *
  5382. * WaFbcAsynchFlipDisableFbcQueue:snb
  5383. */
  5384. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5385. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5386. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5387. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5388. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5389. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5390. I915_WRITE(ILK_DSPCLK_GATE_D,
  5391. I915_READ(ILK_DSPCLK_GATE_D) |
  5392. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5393. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5394. g4x_disable_trickle_feed(dev);
  5395. cpt_init_clock_gating(dev);
  5396. gen6_check_mch_setup(dev);
  5397. }
  5398. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5399. {
  5400. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5401. /*
  5402. * WaVSThreadDispatchOverride:ivb,vlv
  5403. *
  5404. * This actually overrides the dispatch
  5405. * mode for all thread types.
  5406. */
  5407. reg &= ~GEN7_FF_SCHED_MASK;
  5408. reg |= GEN7_FF_TS_SCHED_HW;
  5409. reg |= GEN7_FF_VS_SCHED_HW;
  5410. reg |= GEN7_FF_DS_SCHED_HW;
  5411. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5412. }
  5413. static void lpt_init_clock_gating(struct drm_device *dev)
  5414. {
  5415. struct drm_i915_private *dev_priv = dev->dev_private;
  5416. /*
  5417. * TODO: this bit should only be enabled when really needed, then
  5418. * disabled when not needed anymore in order to save power.
  5419. */
  5420. if (HAS_PCH_LPT_LP(dev))
  5421. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5422. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5423. PCH_LP_PARTITION_LEVEL_DISABLE);
  5424. /* WADPOClockGatingDisable:hsw */
  5425. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5426. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5427. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5428. }
  5429. static void lpt_suspend_hw(struct drm_device *dev)
  5430. {
  5431. struct drm_i915_private *dev_priv = dev->dev_private;
  5432. if (HAS_PCH_LPT_LP(dev)) {
  5433. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5434. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5435. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5436. }
  5437. }
  5438. static void broadwell_init_clock_gating(struct drm_device *dev)
  5439. {
  5440. struct drm_i915_private *dev_priv = dev->dev_private;
  5441. enum pipe pipe;
  5442. uint32_t misccpctl;
  5443. ilk_init_lp_watermarks(dev);
  5444. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5445. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5446. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5447. I915_WRITE(CHICKEN_PAR1_1,
  5448. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5449. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5450. for_each_pipe(dev_priv, pipe) {
  5451. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5452. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5453. BDW_DPRS_MASK_VBLANK_SRD);
  5454. }
  5455. /* WaVSRefCountFullforceMissDisable:bdw */
  5456. /* WaDSRefCountFullforceMissDisable:bdw */
  5457. I915_WRITE(GEN7_FF_THREAD_MODE,
  5458. I915_READ(GEN7_FF_THREAD_MODE) &
  5459. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5460. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5461. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5462. /* WaDisableSDEUnitClockGating:bdw */
  5463. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5464. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5465. /*
  5466. * WaProgramL3SqcReg1Default:bdw
  5467. * WaTempDisableDOPClkGating:bdw
  5468. */
  5469. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5470. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5471. I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  5472. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5473. /*
  5474. * WaGttCachingOffByDefault:bdw
  5475. * GTT cache may not work with big pages, so if those
  5476. * are ever enabled GTT cache may need to be disabled.
  5477. */
  5478. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5479. lpt_init_clock_gating(dev);
  5480. }
  5481. static void haswell_init_clock_gating(struct drm_device *dev)
  5482. {
  5483. struct drm_i915_private *dev_priv = dev->dev_private;
  5484. ilk_init_lp_watermarks(dev);
  5485. /* L3 caching of data atomics doesn't work -- disable it. */
  5486. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5487. I915_WRITE(HSW_ROW_CHICKEN3,
  5488. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5489. /* This is required by WaCatErrorRejectionIssue:hsw */
  5490. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5491. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5492. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5493. /* WaVSRefCountFullforceMissDisable:hsw */
  5494. I915_WRITE(GEN7_FF_THREAD_MODE,
  5495. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5496. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5497. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5498. /* enable HiZ Raw Stall Optimization */
  5499. I915_WRITE(CACHE_MODE_0_GEN7,
  5500. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5501. /* WaDisable4x2SubspanOptimization:hsw */
  5502. I915_WRITE(CACHE_MODE_1,
  5503. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5504. /*
  5505. * BSpec recommends 8x4 when MSAA is used,
  5506. * however in practice 16x4 seems fastest.
  5507. *
  5508. * Note that PS/WM thread counts depend on the WIZ hashing
  5509. * disable bit, which we don't touch here, but it's good
  5510. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5511. */
  5512. I915_WRITE(GEN7_GT_MODE,
  5513. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5514. /* WaSampleCChickenBitEnable:hsw */
  5515. I915_WRITE(HALF_SLICE_CHICKEN3,
  5516. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5517. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5518. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5519. /* WaRsPkgCStateDisplayPMReq:hsw */
  5520. I915_WRITE(CHICKEN_PAR1_1,
  5521. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5522. lpt_init_clock_gating(dev);
  5523. }
  5524. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5525. {
  5526. struct drm_i915_private *dev_priv = dev->dev_private;
  5527. uint32_t snpcr;
  5528. ilk_init_lp_watermarks(dev);
  5529. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5530. /* WaDisableEarlyCull:ivb */
  5531. I915_WRITE(_3D_CHICKEN3,
  5532. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5533. /* WaDisableBackToBackFlipFix:ivb */
  5534. I915_WRITE(IVB_CHICKEN3,
  5535. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5536. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5537. /* WaDisablePSDDualDispatchEnable:ivb */
  5538. if (IS_IVB_GT1(dev))
  5539. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5540. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5541. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5542. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5543. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5544. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5545. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5546. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5547. I915_WRITE(GEN7_L3CNTLREG1,
  5548. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5549. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5550. GEN7_WA_L3_CHICKEN_MODE);
  5551. if (IS_IVB_GT1(dev))
  5552. I915_WRITE(GEN7_ROW_CHICKEN2,
  5553. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5554. else {
  5555. /* must write both registers */
  5556. I915_WRITE(GEN7_ROW_CHICKEN2,
  5557. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5558. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5559. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5560. }
  5561. /* WaForceL3Serialization:ivb */
  5562. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5563. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5564. /*
  5565. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5566. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5567. */
  5568. I915_WRITE(GEN6_UCGCTL2,
  5569. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5570. /* This is required by WaCatErrorRejectionIssue:ivb */
  5571. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5572. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5573. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5574. g4x_disable_trickle_feed(dev);
  5575. gen7_setup_fixed_func_scheduler(dev_priv);
  5576. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5577. /* enable HiZ Raw Stall Optimization */
  5578. I915_WRITE(CACHE_MODE_0_GEN7,
  5579. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5580. }
  5581. /* WaDisable4x2SubspanOptimization:ivb */
  5582. I915_WRITE(CACHE_MODE_1,
  5583. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5584. /*
  5585. * BSpec recommends 8x4 when MSAA is used,
  5586. * however in practice 16x4 seems fastest.
  5587. *
  5588. * Note that PS/WM thread counts depend on the WIZ hashing
  5589. * disable bit, which we don't touch here, but it's good
  5590. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5591. */
  5592. I915_WRITE(GEN7_GT_MODE,
  5593. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5594. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5595. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5596. snpcr |= GEN6_MBC_SNPCR_MED;
  5597. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5598. if (!HAS_PCH_NOP(dev))
  5599. cpt_init_clock_gating(dev);
  5600. gen6_check_mch_setup(dev);
  5601. }
  5602. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5603. {
  5604. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5605. /*
  5606. * Disable trickle feed and enable pnd deadline calculation
  5607. */
  5608. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5609. I915_WRITE(CBR1_VLV, 0);
  5610. }
  5611. static void valleyview_init_clock_gating(struct drm_device *dev)
  5612. {
  5613. struct drm_i915_private *dev_priv = dev->dev_private;
  5614. vlv_init_display_clock_gating(dev_priv);
  5615. /* WaDisableEarlyCull:vlv */
  5616. I915_WRITE(_3D_CHICKEN3,
  5617. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5618. /* WaDisableBackToBackFlipFix:vlv */
  5619. I915_WRITE(IVB_CHICKEN3,
  5620. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5621. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5622. /* WaPsdDispatchEnable:vlv */
  5623. /* WaDisablePSDDualDispatchEnable:vlv */
  5624. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5625. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5626. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5627. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5628. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5629. /* WaForceL3Serialization:vlv */
  5630. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5631. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5632. /* WaDisableDopClockGating:vlv */
  5633. I915_WRITE(GEN7_ROW_CHICKEN2,
  5634. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5635. /* This is required by WaCatErrorRejectionIssue:vlv */
  5636. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5637. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5638. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5639. gen7_setup_fixed_func_scheduler(dev_priv);
  5640. /*
  5641. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5642. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5643. */
  5644. I915_WRITE(GEN6_UCGCTL2,
  5645. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5646. /* WaDisableL3Bank2xClockGate:vlv
  5647. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5648. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5649. I915_WRITE(GEN7_UCGCTL4,
  5650. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5651. /*
  5652. * BSpec says this must be set, even though
  5653. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5654. */
  5655. I915_WRITE(CACHE_MODE_1,
  5656. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5657. /*
  5658. * BSpec recommends 8x4 when MSAA is used,
  5659. * however in practice 16x4 seems fastest.
  5660. *
  5661. * Note that PS/WM thread counts depend on the WIZ hashing
  5662. * disable bit, which we don't touch here, but it's good
  5663. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5664. */
  5665. I915_WRITE(GEN7_GT_MODE,
  5666. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5667. /*
  5668. * WaIncreaseL3CreditsForVLVB0:vlv
  5669. * This is the hardware default actually.
  5670. */
  5671. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5672. /*
  5673. * WaDisableVLVClockGating_VBIIssue:vlv
  5674. * Disable clock gating on th GCFG unit to prevent a delay
  5675. * in the reporting of vblank events.
  5676. */
  5677. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5678. }
  5679. static void cherryview_init_clock_gating(struct drm_device *dev)
  5680. {
  5681. struct drm_i915_private *dev_priv = dev->dev_private;
  5682. vlv_init_display_clock_gating(dev_priv);
  5683. /* WaVSRefCountFullforceMissDisable:chv */
  5684. /* WaDSRefCountFullforceMissDisable:chv */
  5685. I915_WRITE(GEN7_FF_THREAD_MODE,
  5686. I915_READ(GEN7_FF_THREAD_MODE) &
  5687. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5688. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5689. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5690. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5691. /* WaDisableCSUnitClockGating:chv */
  5692. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5693. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5694. /* WaDisableSDEUnitClockGating:chv */
  5695. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5696. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5697. /*
  5698. * GTT cache may not work with big pages, so if those
  5699. * are ever enabled GTT cache may need to be disabled.
  5700. */
  5701. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5702. }
  5703. static void g4x_init_clock_gating(struct drm_device *dev)
  5704. {
  5705. struct drm_i915_private *dev_priv = dev->dev_private;
  5706. uint32_t dspclk_gate;
  5707. I915_WRITE(RENCLK_GATE_D1, 0);
  5708. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5709. GS_UNIT_CLOCK_GATE_DISABLE |
  5710. CL_UNIT_CLOCK_GATE_DISABLE);
  5711. I915_WRITE(RAMCLK_GATE_D, 0);
  5712. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5713. OVRUNIT_CLOCK_GATE_DISABLE |
  5714. OVCUNIT_CLOCK_GATE_DISABLE;
  5715. if (IS_GM45(dev))
  5716. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5717. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5718. /* WaDisableRenderCachePipelinedFlush */
  5719. I915_WRITE(CACHE_MODE_0,
  5720. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5721. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5722. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5723. g4x_disable_trickle_feed(dev);
  5724. }
  5725. static void crestline_init_clock_gating(struct drm_device *dev)
  5726. {
  5727. struct drm_i915_private *dev_priv = dev->dev_private;
  5728. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5729. I915_WRITE(RENCLK_GATE_D2, 0);
  5730. I915_WRITE(DSPCLK_GATE_D, 0);
  5731. I915_WRITE(RAMCLK_GATE_D, 0);
  5732. I915_WRITE16(DEUC, 0);
  5733. I915_WRITE(MI_ARB_STATE,
  5734. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5735. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5736. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5737. }
  5738. static void broadwater_init_clock_gating(struct drm_device *dev)
  5739. {
  5740. struct drm_i915_private *dev_priv = dev->dev_private;
  5741. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5742. I965_RCC_CLOCK_GATE_DISABLE |
  5743. I965_RCPB_CLOCK_GATE_DISABLE |
  5744. I965_ISC_CLOCK_GATE_DISABLE |
  5745. I965_FBC_CLOCK_GATE_DISABLE);
  5746. I915_WRITE(RENCLK_GATE_D2, 0);
  5747. I915_WRITE(MI_ARB_STATE,
  5748. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5749. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5750. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5751. }
  5752. static void gen3_init_clock_gating(struct drm_device *dev)
  5753. {
  5754. struct drm_i915_private *dev_priv = dev->dev_private;
  5755. u32 dstate = I915_READ(D_STATE);
  5756. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5757. DSTATE_DOT_CLOCK_GATING;
  5758. I915_WRITE(D_STATE, dstate);
  5759. if (IS_PINEVIEW(dev))
  5760. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5761. /* IIR "flip pending" means done if this bit is set */
  5762. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5763. /* interrupts should cause a wake up from C3 */
  5764. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5765. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5766. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5767. I915_WRITE(MI_ARB_STATE,
  5768. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5769. }
  5770. static void i85x_init_clock_gating(struct drm_device *dev)
  5771. {
  5772. struct drm_i915_private *dev_priv = dev->dev_private;
  5773. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5774. /* interrupts should cause a wake up from C3 */
  5775. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5776. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5777. I915_WRITE(MEM_MODE,
  5778. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5779. }
  5780. static void i830_init_clock_gating(struct drm_device *dev)
  5781. {
  5782. struct drm_i915_private *dev_priv = dev->dev_private;
  5783. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5784. I915_WRITE(MEM_MODE,
  5785. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5786. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5787. }
  5788. void intel_init_clock_gating(struct drm_device *dev)
  5789. {
  5790. struct drm_i915_private *dev_priv = dev->dev_private;
  5791. if (dev_priv->display.init_clock_gating)
  5792. dev_priv->display.init_clock_gating(dev);
  5793. }
  5794. void intel_suspend_hw(struct drm_device *dev)
  5795. {
  5796. if (HAS_PCH_LPT(dev))
  5797. lpt_suspend_hw(dev);
  5798. }
  5799. /* Set up chip specific power management-related functions */
  5800. void intel_init_pm(struct drm_device *dev)
  5801. {
  5802. struct drm_i915_private *dev_priv = dev->dev_private;
  5803. intel_fbc_init(dev_priv);
  5804. /* For cxsr */
  5805. if (IS_PINEVIEW(dev))
  5806. i915_pineview_get_mem_freq(dev);
  5807. else if (IS_GEN5(dev))
  5808. i915_ironlake_get_mem_freq(dev);
  5809. /* For FIFO watermark updates */
  5810. if (INTEL_INFO(dev)->gen >= 9) {
  5811. skl_setup_wm_latency(dev);
  5812. if (IS_BROXTON(dev))
  5813. dev_priv->display.init_clock_gating =
  5814. bxt_init_clock_gating;
  5815. dev_priv->display.update_wm = skl_update_wm;
  5816. } else if (HAS_PCH_SPLIT(dev)) {
  5817. ilk_setup_wm_latency(dev);
  5818. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5819. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5820. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5821. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5822. dev_priv->display.update_wm = ilk_update_wm;
  5823. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  5824. dev_priv->display.program_watermarks = ilk_program_watermarks;
  5825. } else {
  5826. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5827. "Disable CxSR\n");
  5828. }
  5829. if (IS_GEN5(dev))
  5830. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5831. else if (IS_GEN6(dev))
  5832. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5833. else if (IS_IVYBRIDGE(dev))
  5834. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5835. else if (IS_HASWELL(dev))
  5836. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5837. else if (INTEL_INFO(dev)->gen == 8)
  5838. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5839. } else if (IS_CHERRYVIEW(dev)) {
  5840. vlv_setup_wm_latency(dev);
  5841. dev_priv->display.update_wm = vlv_update_wm;
  5842. dev_priv->display.init_clock_gating =
  5843. cherryview_init_clock_gating;
  5844. } else if (IS_VALLEYVIEW(dev)) {
  5845. vlv_setup_wm_latency(dev);
  5846. dev_priv->display.update_wm = vlv_update_wm;
  5847. dev_priv->display.init_clock_gating =
  5848. valleyview_init_clock_gating;
  5849. } else if (IS_PINEVIEW(dev)) {
  5850. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5851. dev_priv->is_ddr3,
  5852. dev_priv->fsb_freq,
  5853. dev_priv->mem_freq)) {
  5854. DRM_INFO("failed to find known CxSR latency "
  5855. "(found ddr%s fsb freq %d, mem freq %d), "
  5856. "disabling CxSR\n",
  5857. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5858. dev_priv->fsb_freq, dev_priv->mem_freq);
  5859. /* Disable CxSR and never update its watermark again */
  5860. intel_set_memory_cxsr(dev_priv, false);
  5861. dev_priv->display.update_wm = NULL;
  5862. } else
  5863. dev_priv->display.update_wm = pineview_update_wm;
  5864. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5865. } else if (IS_G4X(dev)) {
  5866. dev_priv->display.update_wm = g4x_update_wm;
  5867. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5868. } else if (IS_GEN4(dev)) {
  5869. dev_priv->display.update_wm = i965_update_wm;
  5870. if (IS_CRESTLINE(dev))
  5871. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5872. else if (IS_BROADWATER(dev))
  5873. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5874. } else if (IS_GEN3(dev)) {
  5875. dev_priv->display.update_wm = i9xx_update_wm;
  5876. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5877. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5878. } else if (IS_GEN2(dev)) {
  5879. if (INTEL_INFO(dev)->num_pipes == 1) {
  5880. dev_priv->display.update_wm = i845_update_wm;
  5881. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5882. } else {
  5883. dev_priv->display.update_wm = i9xx_update_wm;
  5884. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5885. }
  5886. if (IS_I85X(dev) || IS_I865G(dev))
  5887. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5888. else
  5889. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5890. } else {
  5891. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5892. }
  5893. }
  5894. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5895. {
  5896. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5897. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5898. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5899. return -EAGAIN;
  5900. }
  5901. I915_WRITE(GEN6_PCODE_DATA, *val);
  5902. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5903. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5904. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5905. 500)) {
  5906. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5907. return -ETIMEDOUT;
  5908. }
  5909. *val = I915_READ(GEN6_PCODE_DATA);
  5910. I915_WRITE(GEN6_PCODE_DATA, 0);
  5911. return 0;
  5912. }
  5913. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5914. {
  5915. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5916. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5917. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5918. return -EAGAIN;
  5919. }
  5920. I915_WRITE(GEN6_PCODE_DATA, val);
  5921. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5922. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5923. 500)) {
  5924. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5925. return -ETIMEDOUT;
  5926. }
  5927. I915_WRITE(GEN6_PCODE_DATA, 0);
  5928. return 0;
  5929. }
  5930. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5931. {
  5932. switch (czclk_freq) {
  5933. case 200:
  5934. return 10;
  5935. case 267:
  5936. return 12;
  5937. case 320:
  5938. case 333:
  5939. return 16;
  5940. case 400:
  5941. return 20;
  5942. default:
  5943. return -1;
  5944. }
  5945. }
  5946. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5947. {
  5948. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5949. div = vlv_gpu_freq_div(czclk_freq);
  5950. if (div < 0)
  5951. return div;
  5952. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5953. }
  5954. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5955. {
  5956. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5957. mul = vlv_gpu_freq_div(czclk_freq);
  5958. if (mul < 0)
  5959. return mul;
  5960. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5961. }
  5962. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5963. {
  5964. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5965. div = vlv_gpu_freq_div(czclk_freq);
  5966. if (div < 0)
  5967. return div;
  5968. div /= 2;
  5969. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5970. }
  5971. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5972. {
  5973. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5974. mul = vlv_gpu_freq_div(czclk_freq);
  5975. if (mul < 0)
  5976. return mul;
  5977. mul /= 2;
  5978. /* CHV needs even values */
  5979. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5980. }
  5981. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5982. {
  5983. if (IS_GEN9(dev_priv->dev))
  5984. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  5985. GEN9_FREQ_SCALER);
  5986. else if (IS_CHERRYVIEW(dev_priv->dev))
  5987. return chv_gpu_freq(dev_priv, val);
  5988. else if (IS_VALLEYVIEW(dev_priv->dev))
  5989. return byt_gpu_freq(dev_priv, val);
  5990. else
  5991. return val * GT_FREQUENCY_MULTIPLIER;
  5992. }
  5993. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5994. {
  5995. if (IS_GEN9(dev_priv->dev))
  5996. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  5997. GT_FREQUENCY_MULTIPLIER);
  5998. else if (IS_CHERRYVIEW(dev_priv->dev))
  5999. return chv_freq_opcode(dev_priv, val);
  6000. else if (IS_VALLEYVIEW(dev_priv->dev))
  6001. return byt_freq_opcode(dev_priv, val);
  6002. else
  6003. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  6004. }
  6005. struct request_boost {
  6006. struct work_struct work;
  6007. struct drm_i915_gem_request *req;
  6008. };
  6009. static void __intel_rps_boost_work(struct work_struct *work)
  6010. {
  6011. struct request_boost *boost = container_of(work, struct request_boost, work);
  6012. struct drm_i915_gem_request *req = boost->req;
  6013. if (!i915_gem_request_completed(req, true))
  6014. gen6_rps_boost(to_i915(req->ring->dev), NULL,
  6015. req->emitted_jiffies);
  6016. i915_gem_request_unreference__unlocked(req);
  6017. kfree(boost);
  6018. }
  6019. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  6020. struct drm_i915_gem_request *req)
  6021. {
  6022. struct request_boost *boost;
  6023. if (req == NULL || INTEL_INFO(dev)->gen < 6)
  6024. return;
  6025. if (i915_gem_request_completed(req, true))
  6026. return;
  6027. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  6028. if (boost == NULL)
  6029. return;
  6030. i915_gem_request_reference(req);
  6031. boost->req = req;
  6032. INIT_WORK(&boost->work, __intel_rps_boost_work);
  6033. queue_work(to_i915(dev)->wq, &boost->work);
  6034. }
  6035. void intel_pm_setup(struct drm_device *dev)
  6036. {
  6037. struct drm_i915_private *dev_priv = dev->dev_private;
  6038. mutex_init(&dev_priv->rps.hw_lock);
  6039. spin_lock_init(&dev_priv->rps.client_lock);
  6040. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6041. intel_gen6_powersave_work);
  6042. INIT_LIST_HEAD(&dev_priv->rps.clients);
  6043. INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
  6044. INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
  6045. dev_priv->pm.suspended = false;
  6046. atomic_set(&dev_priv->pm.wakeref_count, 0);
  6047. atomic_set(&dev_priv->pm.atomic_seq, 0);
  6048. }