intel_hdmi.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_atomic_helper.h>
  34. #include <drm/drm_crtc.h>
  35. #include <drm/drm_edid.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  40. {
  41. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  42. }
  43. static void
  44. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  45. {
  46. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  47. struct drm_i915_private *dev_priv = dev->dev_private;
  48. uint32_t enabled_bits;
  49. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  50. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  51. "HDMI port enabled, expecting disabled\n");
  52. }
  53. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  54. {
  55. struct intel_digital_port *intel_dig_port =
  56. container_of(encoder, struct intel_digital_port, base.base);
  57. return &intel_dig_port->hdmi;
  58. }
  59. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  60. {
  61. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  62. }
  63. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  64. {
  65. switch (type) {
  66. case HDMI_INFOFRAME_TYPE_AVI:
  67. return VIDEO_DIP_SELECT_AVI;
  68. case HDMI_INFOFRAME_TYPE_SPD:
  69. return VIDEO_DIP_SELECT_SPD;
  70. case HDMI_INFOFRAME_TYPE_VENDOR:
  71. return VIDEO_DIP_SELECT_VENDOR;
  72. default:
  73. MISSING_CASE(type);
  74. return 0;
  75. }
  76. }
  77. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  78. {
  79. switch (type) {
  80. case HDMI_INFOFRAME_TYPE_AVI:
  81. return VIDEO_DIP_ENABLE_AVI;
  82. case HDMI_INFOFRAME_TYPE_SPD:
  83. return VIDEO_DIP_ENABLE_SPD;
  84. case HDMI_INFOFRAME_TYPE_VENDOR:
  85. return VIDEO_DIP_ENABLE_VENDOR;
  86. default:
  87. MISSING_CASE(type);
  88. return 0;
  89. }
  90. }
  91. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  92. {
  93. switch (type) {
  94. case HDMI_INFOFRAME_TYPE_AVI:
  95. return VIDEO_DIP_ENABLE_AVI_HSW;
  96. case HDMI_INFOFRAME_TYPE_SPD:
  97. return VIDEO_DIP_ENABLE_SPD_HSW;
  98. case HDMI_INFOFRAME_TYPE_VENDOR:
  99. return VIDEO_DIP_ENABLE_VS_HSW;
  100. default:
  101. MISSING_CASE(type);
  102. return 0;
  103. }
  104. }
  105. static i915_reg_t
  106. hsw_dip_data_reg(struct drm_i915_private *dev_priv,
  107. enum transcoder cpu_transcoder,
  108. enum hdmi_infoframe_type type,
  109. int i)
  110. {
  111. switch (type) {
  112. case HDMI_INFOFRAME_TYPE_AVI:
  113. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
  114. case HDMI_INFOFRAME_TYPE_SPD:
  115. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
  116. case HDMI_INFOFRAME_TYPE_VENDOR:
  117. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
  118. default:
  119. MISSING_CASE(type);
  120. return INVALID_MMIO_REG;
  121. }
  122. }
  123. static void g4x_write_infoframe(struct drm_encoder *encoder,
  124. enum hdmi_infoframe_type type,
  125. const void *frame, ssize_t len)
  126. {
  127. const uint32_t *data = frame;
  128. struct drm_device *dev = encoder->dev;
  129. struct drm_i915_private *dev_priv = dev->dev_private;
  130. u32 val = I915_READ(VIDEO_DIP_CTL);
  131. int i;
  132. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  133. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  134. val |= g4x_infoframe_index(type);
  135. val &= ~g4x_infoframe_enable(type);
  136. I915_WRITE(VIDEO_DIP_CTL, val);
  137. mmiowb();
  138. for (i = 0; i < len; i += 4) {
  139. I915_WRITE(VIDEO_DIP_DATA, *data);
  140. data++;
  141. }
  142. /* Write every possible data byte to force correct ECC calculation. */
  143. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  144. I915_WRITE(VIDEO_DIP_DATA, 0);
  145. mmiowb();
  146. val |= g4x_infoframe_enable(type);
  147. val &= ~VIDEO_DIP_FREQ_MASK;
  148. val |= VIDEO_DIP_FREQ_VSYNC;
  149. I915_WRITE(VIDEO_DIP_CTL, val);
  150. POSTING_READ(VIDEO_DIP_CTL);
  151. }
  152. static bool g4x_infoframe_enabled(struct drm_encoder *encoder,
  153. const struct intel_crtc_state *pipe_config)
  154. {
  155. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  156. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  157. u32 val = I915_READ(VIDEO_DIP_CTL);
  158. if ((val & VIDEO_DIP_ENABLE) == 0)
  159. return false;
  160. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
  161. return false;
  162. return val & (VIDEO_DIP_ENABLE_AVI |
  163. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  164. }
  165. static void ibx_write_infoframe(struct drm_encoder *encoder,
  166. enum hdmi_infoframe_type type,
  167. const void *frame, ssize_t len)
  168. {
  169. const uint32_t *data = frame;
  170. struct drm_device *dev = encoder->dev;
  171. struct drm_i915_private *dev_priv = dev->dev_private;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  173. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  174. u32 val = I915_READ(reg);
  175. int i;
  176. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  177. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  178. val |= g4x_infoframe_index(type);
  179. val &= ~g4x_infoframe_enable(type);
  180. I915_WRITE(reg, val);
  181. mmiowb();
  182. for (i = 0; i < len; i += 4) {
  183. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  184. data++;
  185. }
  186. /* Write every possible data byte to force correct ECC calculation. */
  187. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  188. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  189. mmiowb();
  190. val |= g4x_infoframe_enable(type);
  191. val &= ~VIDEO_DIP_FREQ_MASK;
  192. val |= VIDEO_DIP_FREQ_VSYNC;
  193. I915_WRITE(reg, val);
  194. POSTING_READ(reg);
  195. }
  196. static bool ibx_infoframe_enabled(struct drm_encoder *encoder,
  197. const struct intel_crtc_state *pipe_config)
  198. {
  199. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  200. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  201. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  202. i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
  203. u32 val = I915_READ(reg);
  204. if ((val & VIDEO_DIP_ENABLE) == 0)
  205. return false;
  206. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
  207. return false;
  208. return val & (VIDEO_DIP_ENABLE_AVI |
  209. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  210. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  211. }
  212. static void cpt_write_infoframe(struct drm_encoder *encoder,
  213. enum hdmi_infoframe_type type,
  214. const void *frame, ssize_t len)
  215. {
  216. const uint32_t *data = frame;
  217. struct drm_device *dev = encoder->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  220. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  221. u32 val = I915_READ(reg);
  222. int i;
  223. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  224. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  225. val |= g4x_infoframe_index(type);
  226. /* The DIP control register spec says that we need to update the AVI
  227. * infoframe without clearing its enable bit */
  228. if (type != HDMI_INFOFRAME_TYPE_AVI)
  229. val &= ~g4x_infoframe_enable(type);
  230. I915_WRITE(reg, val);
  231. mmiowb();
  232. for (i = 0; i < len; i += 4) {
  233. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  234. data++;
  235. }
  236. /* Write every possible data byte to force correct ECC calculation. */
  237. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  238. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  239. mmiowb();
  240. val |= g4x_infoframe_enable(type);
  241. val &= ~VIDEO_DIP_FREQ_MASK;
  242. val |= VIDEO_DIP_FREQ_VSYNC;
  243. I915_WRITE(reg, val);
  244. POSTING_READ(reg);
  245. }
  246. static bool cpt_infoframe_enabled(struct drm_encoder *encoder,
  247. const struct intel_crtc_state *pipe_config)
  248. {
  249. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  250. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  251. u32 val = I915_READ(TVIDEO_DIP_CTL(pipe));
  252. if ((val & VIDEO_DIP_ENABLE) == 0)
  253. return false;
  254. return val & (VIDEO_DIP_ENABLE_AVI |
  255. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  256. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  257. }
  258. static void vlv_write_infoframe(struct drm_encoder *encoder,
  259. enum hdmi_infoframe_type type,
  260. const void *frame, ssize_t len)
  261. {
  262. const uint32_t *data = frame;
  263. struct drm_device *dev = encoder->dev;
  264. struct drm_i915_private *dev_priv = dev->dev_private;
  265. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  266. i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  267. u32 val = I915_READ(reg);
  268. int i;
  269. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  270. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  271. val |= g4x_infoframe_index(type);
  272. val &= ~g4x_infoframe_enable(type);
  273. I915_WRITE(reg, val);
  274. mmiowb();
  275. for (i = 0; i < len; i += 4) {
  276. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  277. data++;
  278. }
  279. /* Write every possible data byte to force correct ECC calculation. */
  280. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  281. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  282. mmiowb();
  283. val |= g4x_infoframe_enable(type);
  284. val &= ~VIDEO_DIP_FREQ_MASK;
  285. val |= VIDEO_DIP_FREQ_VSYNC;
  286. I915_WRITE(reg, val);
  287. POSTING_READ(reg);
  288. }
  289. static bool vlv_infoframe_enabled(struct drm_encoder *encoder,
  290. const struct intel_crtc_state *pipe_config)
  291. {
  292. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  293. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  294. enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe;
  295. u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe));
  296. if ((val & VIDEO_DIP_ENABLE) == 0)
  297. return false;
  298. if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
  299. return false;
  300. return val & (VIDEO_DIP_ENABLE_AVI |
  301. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  302. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  303. }
  304. static void hsw_write_infoframe(struct drm_encoder *encoder,
  305. enum hdmi_infoframe_type type,
  306. const void *frame, ssize_t len)
  307. {
  308. const uint32_t *data = frame;
  309. struct drm_device *dev = encoder->dev;
  310. struct drm_i915_private *dev_priv = dev->dev_private;
  311. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  312. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  313. i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
  314. i915_reg_t data_reg;
  315. int i;
  316. u32 val = I915_READ(ctl_reg);
  317. data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
  318. val &= ~hsw_infoframe_enable(type);
  319. I915_WRITE(ctl_reg, val);
  320. mmiowb();
  321. for (i = 0; i < len; i += 4) {
  322. I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
  323. type, i >> 2), *data);
  324. data++;
  325. }
  326. /* Write every possible data byte to force correct ECC calculation. */
  327. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  328. I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
  329. type, i >> 2), 0);
  330. mmiowb();
  331. val |= hsw_infoframe_enable(type);
  332. I915_WRITE(ctl_reg, val);
  333. POSTING_READ(ctl_reg);
  334. }
  335. static bool hsw_infoframe_enabled(struct drm_encoder *encoder,
  336. const struct intel_crtc_state *pipe_config)
  337. {
  338. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  339. u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
  340. return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
  341. VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
  342. VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
  343. }
  344. /*
  345. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  346. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  347. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  348. * used for both technologies.
  349. *
  350. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  351. * DW1: DB3 | DB2 | DB1 | DB0
  352. * DW2: DB7 | DB6 | DB5 | DB4
  353. * DW3: ...
  354. *
  355. * (HB is Header Byte, DB is Data Byte)
  356. *
  357. * The hdmi pack() functions don't know about that hardware specific hole so we
  358. * trick them by giving an offset into the buffer and moving back the header
  359. * bytes by one.
  360. */
  361. static void intel_write_infoframe(struct drm_encoder *encoder,
  362. union hdmi_infoframe *frame)
  363. {
  364. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  365. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  366. ssize_t len;
  367. /* see comment above for the reason for this offset */
  368. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  369. if (len < 0)
  370. return;
  371. /* Insert the 'hole' (see big comment above) at position 3 */
  372. buffer[0] = buffer[1];
  373. buffer[1] = buffer[2];
  374. buffer[2] = buffer[3];
  375. buffer[3] = 0;
  376. len++;
  377. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  378. }
  379. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  380. const struct drm_display_mode *adjusted_mode)
  381. {
  382. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  383. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  384. union hdmi_infoframe frame;
  385. int ret;
  386. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  387. adjusted_mode);
  388. if (ret < 0) {
  389. DRM_ERROR("couldn't fill AVI infoframe\n");
  390. return;
  391. }
  392. if (intel_hdmi->rgb_quant_range_selectable) {
  393. if (intel_crtc->config->limited_color_range)
  394. frame.avi.quantization_range =
  395. HDMI_QUANTIZATION_RANGE_LIMITED;
  396. else
  397. frame.avi.quantization_range =
  398. HDMI_QUANTIZATION_RANGE_FULL;
  399. }
  400. intel_write_infoframe(encoder, &frame);
  401. }
  402. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  403. {
  404. union hdmi_infoframe frame;
  405. int ret;
  406. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  407. if (ret < 0) {
  408. DRM_ERROR("couldn't fill SPD infoframe\n");
  409. return;
  410. }
  411. frame.spd.sdi = HDMI_SPD_SDI_PC;
  412. intel_write_infoframe(encoder, &frame);
  413. }
  414. static void
  415. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  416. const struct drm_display_mode *adjusted_mode)
  417. {
  418. union hdmi_infoframe frame;
  419. int ret;
  420. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  421. adjusted_mode);
  422. if (ret < 0)
  423. return;
  424. intel_write_infoframe(encoder, &frame);
  425. }
  426. static void g4x_set_infoframes(struct drm_encoder *encoder,
  427. bool enable,
  428. const struct drm_display_mode *adjusted_mode)
  429. {
  430. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  431. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  432. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  433. i915_reg_t reg = VIDEO_DIP_CTL;
  434. u32 val = I915_READ(reg);
  435. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  436. assert_hdmi_port_disabled(intel_hdmi);
  437. /* If the registers were not initialized yet, they might be zeroes,
  438. * which means we're selecting the AVI DIP and we're setting its
  439. * frequency to once. This seems to really confuse the HW and make
  440. * things stop working (the register spec says the AVI always needs to
  441. * be sent every VSync). So here we avoid writing to the register more
  442. * than we need and also explicitly select the AVI DIP and explicitly
  443. * set its frequency to every VSync. Avoiding to write it twice seems to
  444. * be enough to solve the problem, but being defensive shouldn't hurt us
  445. * either. */
  446. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  447. if (!enable) {
  448. if (!(val & VIDEO_DIP_ENABLE))
  449. return;
  450. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  451. DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
  452. (val & VIDEO_DIP_PORT_MASK) >> 29);
  453. return;
  454. }
  455. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  456. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  457. I915_WRITE(reg, val);
  458. POSTING_READ(reg);
  459. return;
  460. }
  461. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  462. if (val & VIDEO_DIP_ENABLE) {
  463. DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
  464. (val & VIDEO_DIP_PORT_MASK) >> 29);
  465. return;
  466. }
  467. val &= ~VIDEO_DIP_PORT_MASK;
  468. val |= port;
  469. }
  470. val |= VIDEO_DIP_ENABLE;
  471. val &= ~(VIDEO_DIP_ENABLE_AVI |
  472. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
  473. I915_WRITE(reg, val);
  474. POSTING_READ(reg);
  475. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  476. intel_hdmi_set_spd_infoframe(encoder);
  477. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  478. }
  479. static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
  480. {
  481. struct drm_device *dev = encoder->dev;
  482. struct drm_connector *connector;
  483. WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  484. /*
  485. * HDMI cloning is only supported on g4x which doesn't
  486. * support deep color or GCP infoframes anyway so no
  487. * need to worry about multiple HDMI sinks here.
  488. */
  489. list_for_each_entry(connector, &dev->mode_config.connector_list, head)
  490. if (connector->encoder == encoder)
  491. return connector->display_info.bpc > 8;
  492. return false;
  493. }
  494. /*
  495. * Determine if default_phase=1 can be indicated in the GCP infoframe.
  496. *
  497. * From HDMI specification 1.4a:
  498. * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
  499. * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
  500. * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
  501. * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
  502. * phase of 0
  503. */
  504. static bool gcp_default_phase_possible(int pipe_bpp,
  505. const struct drm_display_mode *mode)
  506. {
  507. unsigned int pixels_per_group;
  508. switch (pipe_bpp) {
  509. case 30:
  510. /* 4 pixels in 5 clocks */
  511. pixels_per_group = 4;
  512. break;
  513. case 36:
  514. /* 2 pixels in 3 clocks */
  515. pixels_per_group = 2;
  516. break;
  517. case 48:
  518. /* 1 pixel in 2 clocks */
  519. pixels_per_group = 1;
  520. break;
  521. default:
  522. /* phase information not relevant for 8bpc */
  523. return false;
  524. }
  525. return mode->crtc_hdisplay % pixels_per_group == 0 &&
  526. mode->crtc_htotal % pixels_per_group == 0 &&
  527. mode->crtc_hblank_start % pixels_per_group == 0 &&
  528. mode->crtc_hblank_end % pixels_per_group == 0 &&
  529. mode->crtc_hsync_start % pixels_per_group == 0 &&
  530. mode->crtc_hsync_end % pixels_per_group == 0 &&
  531. ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
  532. mode->crtc_htotal/2 % pixels_per_group == 0);
  533. }
  534. static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
  535. {
  536. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  537. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  538. i915_reg_t reg;
  539. u32 val = 0;
  540. if (HAS_DDI(dev_priv))
  541. reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
  542. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  543. reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
  544. else if (HAS_PCH_SPLIT(dev_priv->dev))
  545. reg = TVIDEO_DIP_GCP(crtc->pipe);
  546. else
  547. return false;
  548. /* Indicate color depth whenever the sink supports deep color */
  549. if (hdmi_sink_is_deep_color(encoder))
  550. val |= GCP_COLOR_INDICATION;
  551. /* Enable default_phase whenever the display mode is suitably aligned */
  552. if (gcp_default_phase_possible(crtc->config->pipe_bpp,
  553. &crtc->config->base.adjusted_mode))
  554. val |= GCP_DEFAULT_PHASE_ENABLE;
  555. I915_WRITE(reg, val);
  556. return val != 0;
  557. }
  558. static void ibx_set_infoframes(struct drm_encoder *encoder,
  559. bool enable,
  560. const struct drm_display_mode *adjusted_mode)
  561. {
  562. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  563. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  564. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  565. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  566. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  567. u32 val = I915_READ(reg);
  568. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  569. assert_hdmi_port_disabled(intel_hdmi);
  570. /* See the big comment in g4x_set_infoframes() */
  571. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  572. if (!enable) {
  573. if (!(val & VIDEO_DIP_ENABLE))
  574. return;
  575. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  576. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  577. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  578. I915_WRITE(reg, val);
  579. POSTING_READ(reg);
  580. return;
  581. }
  582. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  583. WARN(val & VIDEO_DIP_ENABLE,
  584. "DIP already enabled on port %c\n",
  585. (val & VIDEO_DIP_PORT_MASK) >> 29);
  586. val &= ~VIDEO_DIP_PORT_MASK;
  587. val |= port;
  588. }
  589. val |= VIDEO_DIP_ENABLE;
  590. val &= ~(VIDEO_DIP_ENABLE_AVI |
  591. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  592. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  593. if (intel_hdmi_set_gcp_infoframe(encoder))
  594. val |= VIDEO_DIP_ENABLE_GCP;
  595. I915_WRITE(reg, val);
  596. POSTING_READ(reg);
  597. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  598. intel_hdmi_set_spd_infoframe(encoder);
  599. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  600. }
  601. static void cpt_set_infoframes(struct drm_encoder *encoder,
  602. bool enable,
  603. const struct drm_display_mode *adjusted_mode)
  604. {
  605. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  606. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  607. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  608. i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  609. u32 val = I915_READ(reg);
  610. assert_hdmi_port_disabled(intel_hdmi);
  611. /* See the big comment in g4x_set_infoframes() */
  612. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  613. if (!enable) {
  614. if (!(val & VIDEO_DIP_ENABLE))
  615. return;
  616. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  617. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  618. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  619. I915_WRITE(reg, val);
  620. POSTING_READ(reg);
  621. return;
  622. }
  623. /* Set both together, unset both together: see the spec. */
  624. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  625. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  626. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  627. if (intel_hdmi_set_gcp_infoframe(encoder))
  628. val |= VIDEO_DIP_ENABLE_GCP;
  629. I915_WRITE(reg, val);
  630. POSTING_READ(reg);
  631. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  632. intel_hdmi_set_spd_infoframe(encoder);
  633. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  634. }
  635. static void vlv_set_infoframes(struct drm_encoder *encoder,
  636. bool enable,
  637. const struct drm_display_mode *adjusted_mode)
  638. {
  639. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  640. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  641. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  642. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  643. i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  644. u32 val = I915_READ(reg);
  645. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  646. assert_hdmi_port_disabled(intel_hdmi);
  647. /* See the big comment in g4x_set_infoframes() */
  648. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  649. if (!enable) {
  650. if (!(val & VIDEO_DIP_ENABLE))
  651. return;
  652. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
  653. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  654. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  655. I915_WRITE(reg, val);
  656. POSTING_READ(reg);
  657. return;
  658. }
  659. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  660. WARN(val & VIDEO_DIP_ENABLE,
  661. "DIP already enabled on port %c\n",
  662. (val & VIDEO_DIP_PORT_MASK) >> 29);
  663. val &= ~VIDEO_DIP_PORT_MASK;
  664. val |= port;
  665. }
  666. val |= VIDEO_DIP_ENABLE;
  667. val &= ~(VIDEO_DIP_ENABLE_AVI |
  668. VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  669. VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
  670. if (intel_hdmi_set_gcp_infoframe(encoder))
  671. val |= VIDEO_DIP_ENABLE_GCP;
  672. I915_WRITE(reg, val);
  673. POSTING_READ(reg);
  674. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  675. intel_hdmi_set_spd_infoframe(encoder);
  676. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  677. }
  678. static void hsw_set_infoframes(struct drm_encoder *encoder,
  679. bool enable,
  680. const struct drm_display_mode *adjusted_mode)
  681. {
  682. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  683. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  684. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  685. i915_reg_t reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
  686. u32 val = I915_READ(reg);
  687. assert_hdmi_port_disabled(intel_hdmi);
  688. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
  689. VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
  690. VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
  691. if (!enable) {
  692. I915_WRITE(reg, val);
  693. POSTING_READ(reg);
  694. return;
  695. }
  696. if (intel_hdmi_set_gcp_infoframe(encoder))
  697. val |= VIDEO_DIP_ENABLE_GCP_HSW;
  698. I915_WRITE(reg, val);
  699. POSTING_READ(reg);
  700. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  701. intel_hdmi_set_spd_infoframe(encoder);
  702. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  703. }
  704. static void intel_hdmi_prepare(struct intel_encoder *encoder)
  705. {
  706. struct drm_device *dev = encoder->base.dev;
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  709. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  710. const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  711. u32 hdmi_val;
  712. hdmi_val = SDVO_ENCODING_HDMI;
  713. if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
  714. hdmi_val |= HDMI_COLOR_RANGE_16_235;
  715. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  716. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  717. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  718. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  719. if (crtc->config->pipe_bpp > 24)
  720. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  721. else
  722. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  723. if (crtc->config->has_hdmi_sink)
  724. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  725. if (HAS_PCH_CPT(dev))
  726. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  727. else if (IS_CHERRYVIEW(dev))
  728. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  729. else
  730. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  731. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  732. POSTING_READ(intel_hdmi->hdmi_reg);
  733. }
  734. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  735. enum pipe *pipe)
  736. {
  737. struct drm_device *dev = encoder->base.dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  740. enum intel_display_power_domain power_domain;
  741. u32 tmp;
  742. bool ret;
  743. power_domain = intel_display_port_power_domain(encoder);
  744. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  745. return false;
  746. ret = false;
  747. tmp = I915_READ(intel_hdmi->hdmi_reg);
  748. if (!(tmp & SDVO_ENABLE))
  749. goto out;
  750. if (HAS_PCH_CPT(dev))
  751. *pipe = PORT_TO_PIPE_CPT(tmp);
  752. else if (IS_CHERRYVIEW(dev))
  753. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  754. else
  755. *pipe = PORT_TO_PIPE(tmp);
  756. ret = true;
  757. out:
  758. intel_display_power_put(dev_priv, power_domain);
  759. return ret;
  760. }
  761. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  762. struct intel_crtc_state *pipe_config)
  763. {
  764. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  765. struct drm_device *dev = encoder->base.dev;
  766. struct drm_i915_private *dev_priv = dev->dev_private;
  767. u32 tmp, flags = 0;
  768. int dotclock;
  769. tmp = I915_READ(intel_hdmi->hdmi_reg);
  770. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  771. flags |= DRM_MODE_FLAG_PHSYNC;
  772. else
  773. flags |= DRM_MODE_FLAG_NHSYNC;
  774. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  775. flags |= DRM_MODE_FLAG_PVSYNC;
  776. else
  777. flags |= DRM_MODE_FLAG_NVSYNC;
  778. if (tmp & HDMI_MODE_SELECT_HDMI)
  779. pipe_config->has_hdmi_sink = true;
  780. if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
  781. pipe_config->has_infoframe = true;
  782. if (tmp & SDVO_AUDIO_ENABLE)
  783. pipe_config->has_audio = true;
  784. if (!HAS_PCH_SPLIT(dev) &&
  785. tmp & HDMI_COLOR_RANGE_16_235)
  786. pipe_config->limited_color_range = true;
  787. pipe_config->base.adjusted_mode.flags |= flags;
  788. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  789. dotclock = pipe_config->port_clock * 2 / 3;
  790. else
  791. dotclock = pipe_config->port_clock;
  792. if (pipe_config->pixel_multiplier)
  793. dotclock /= pipe_config->pixel_multiplier;
  794. if (HAS_PCH_SPLIT(dev_priv->dev))
  795. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  796. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  797. }
  798. static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
  799. {
  800. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  801. WARN_ON(!crtc->config->has_hdmi_sink);
  802. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  803. pipe_name(crtc->pipe));
  804. intel_audio_codec_enable(encoder);
  805. }
  806. static void g4x_enable_hdmi(struct intel_encoder *encoder)
  807. {
  808. struct drm_device *dev = encoder->base.dev;
  809. struct drm_i915_private *dev_priv = dev->dev_private;
  810. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  811. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  812. u32 temp;
  813. temp = I915_READ(intel_hdmi->hdmi_reg);
  814. temp |= SDVO_ENABLE;
  815. if (crtc->config->has_audio)
  816. temp |= SDVO_AUDIO_ENABLE;
  817. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  818. POSTING_READ(intel_hdmi->hdmi_reg);
  819. if (crtc->config->has_audio)
  820. intel_enable_hdmi_audio(encoder);
  821. }
  822. static void ibx_enable_hdmi(struct intel_encoder *encoder)
  823. {
  824. struct drm_device *dev = encoder->base.dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  827. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  828. u32 temp;
  829. temp = I915_READ(intel_hdmi->hdmi_reg);
  830. temp |= SDVO_ENABLE;
  831. if (crtc->config->has_audio)
  832. temp |= SDVO_AUDIO_ENABLE;
  833. /*
  834. * HW workaround, need to write this twice for issue
  835. * that may result in first write getting masked.
  836. */
  837. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  838. POSTING_READ(intel_hdmi->hdmi_reg);
  839. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  840. POSTING_READ(intel_hdmi->hdmi_reg);
  841. /*
  842. * HW workaround, need to toggle enable bit off and on
  843. * for 12bpc with pixel repeat.
  844. *
  845. * FIXME: BSpec says this should be done at the end of
  846. * of the modeset sequence, so not sure if this isn't too soon.
  847. */
  848. if (crtc->config->pipe_bpp > 24 &&
  849. crtc->config->pixel_multiplier > 1) {
  850. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  851. POSTING_READ(intel_hdmi->hdmi_reg);
  852. /*
  853. * HW workaround, need to write this twice for issue
  854. * that may result in first write getting masked.
  855. */
  856. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  857. POSTING_READ(intel_hdmi->hdmi_reg);
  858. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  859. POSTING_READ(intel_hdmi->hdmi_reg);
  860. }
  861. if (crtc->config->has_audio)
  862. intel_enable_hdmi_audio(encoder);
  863. }
  864. static void cpt_enable_hdmi(struct intel_encoder *encoder)
  865. {
  866. struct drm_device *dev = encoder->base.dev;
  867. struct drm_i915_private *dev_priv = dev->dev_private;
  868. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  869. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  870. enum pipe pipe = crtc->pipe;
  871. u32 temp;
  872. temp = I915_READ(intel_hdmi->hdmi_reg);
  873. temp |= SDVO_ENABLE;
  874. if (crtc->config->has_audio)
  875. temp |= SDVO_AUDIO_ENABLE;
  876. /*
  877. * WaEnableHDMI8bpcBefore12bpc:snb,ivb
  878. *
  879. * The procedure for 12bpc is as follows:
  880. * 1. disable HDMI clock gating
  881. * 2. enable HDMI with 8bpc
  882. * 3. enable HDMI with 12bpc
  883. * 4. enable HDMI clock gating
  884. */
  885. if (crtc->config->pipe_bpp > 24) {
  886. I915_WRITE(TRANS_CHICKEN1(pipe),
  887. I915_READ(TRANS_CHICKEN1(pipe)) |
  888. TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  889. temp &= ~SDVO_COLOR_FORMAT_MASK;
  890. temp |= SDVO_COLOR_FORMAT_8bpc;
  891. }
  892. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  893. POSTING_READ(intel_hdmi->hdmi_reg);
  894. if (crtc->config->pipe_bpp > 24) {
  895. temp &= ~SDVO_COLOR_FORMAT_MASK;
  896. temp |= HDMI_COLOR_FORMAT_12bpc;
  897. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  898. POSTING_READ(intel_hdmi->hdmi_reg);
  899. I915_WRITE(TRANS_CHICKEN1(pipe),
  900. I915_READ(TRANS_CHICKEN1(pipe)) &
  901. ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  902. }
  903. if (crtc->config->has_audio)
  904. intel_enable_hdmi_audio(encoder);
  905. }
  906. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  907. {
  908. }
  909. static void intel_disable_hdmi(struct intel_encoder *encoder)
  910. {
  911. struct drm_device *dev = encoder->base.dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  914. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  915. u32 temp;
  916. temp = I915_READ(intel_hdmi->hdmi_reg);
  917. temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
  918. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  919. POSTING_READ(intel_hdmi->hdmi_reg);
  920. /*
  921. * HW workaround for IBX, we need to move the port
  922. * to transcoder A after disabling it to allow the
  923. * matching DP port to be enabled on transcoder A.
  924. */
  925. if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
  926. /*
  927. * We get CPU/PCH FIFO underruns on the other pipe when
  928. * doing the workaround. Sweep them under the rug.
  929. */
  930. intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
  931. intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
  932. temp &= ~SDVO_PIPE_B_SELECT;
  933. temp |= SDVO_ENABLE;
  934. /*
  935. * HW workaround, need to write this twice for issue
  936. * that may result in first write getting masked.
  937. */
  938. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  939. POSTING_READ(intel_hdmi->hdmi_reg);
  940. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  941. POSTING_READ(intel_hdmi->hdmi_reg);
  942. temp &= ~SDVO_ENABLE;
  943. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  944. POSTING_READ(intel_hdmi->hdmi_reg);
  945. intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
  946. intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
  947. intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
  948. }
  949. intel_hdmi->set_infoframes(&encoder->base, false, NULL);
  950. }
  951. static void g4x_disable_hdmi(struct intel_encoder *encoder)
  952. {
  953. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  954. if (crtc->config->has_audio)
  955. intel_audio_codec_disable(encoder);
  956. intel_disable_hdmi(encoder);
  957. }
  958. static void pch_disable_hdmi(struct intel_encoder *encoder)
  959. {
  960. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  961. if (crtc->config->has_audio)
  962. intel_audio_codec_disable(encoder);
  963. }
  964. static void pch_post_disable_hdmi(struct intel_encoder *encoder)
  965. {
  966. intel_disable_hdmi(encoder);
  967. }
  968. static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
  969. {
  970. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  971. if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
  972. return 165000;
  973. else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
  974. return 300000;
  975. else
  976. return 225000;
  977. }
  978. static enum drm_mode_status
  979. hdmi_port_clock_valid(struct intel_hdmi *hdmi,
  980. int clock, bool respect_dvi_limit)
  981. {
  982. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  983. if (clock < 25000)
  984. return MODE_CLOCK_LOW;
  985. if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
  986. return MODE_CLOCK_HIGH;
  987. /* BXT DPLL can't generate 223-240 MHz */
  988. if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
  989. return MODE_CLOCK_RANGE;
  990. /* CHV DPLL can't generate 216-240 MHz */
  991. if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
  992. return MODE_CLOCK_RANGE;
  993. return MODE_OK;
  994. }
  995. static enum drm_mode_status
  996. intel_hdmi_mode_valid(struct drm_connector *connector,
  997. struct drm_display_mode *mode)
  998. {
  999. struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
  1000. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  1001. enum drm_mode_status status;
  1002. int clock;
  1003. int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
  1004. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  1005. return MODE_NO_DBLESCAN;
  1006. clock = mode->clock;
  1007. if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
  1008. clock *= 2;
  1009. if (clock > max_dotclk)
  1010. return MODE_CLOCK_HIGH;
  1011. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  1012. clock *= 2;
  1013. /* check if we can do 8bpc */
  1014. status = hdmi_port_clock_valid(hdmi, clock, true);
  1015. /* if we can't do 8bpc we may still be able to do 12bpc */
  1016. if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
  1017. status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
  1018. return status;
  1019. }
  1020. static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
  1021. {
  1022. struct drm_device *dev = crtc_state->base.crtc->dev;
  1023. struct drm_atomic_state *state;
  1024. struct intel_encoder *encoder;
  1025. struct drm_connector *connector;
  1026. struct drm_connector_state *connector_state;
  1027. int count = 0, count_hdmi = 0;
  1028. int i;
  1029. if (HAS_GMCH_DISPLAY(dev))
  1030. return false;
  1031. state = crtc_state->base.state;
  1032. for_each_connector_in_state(state, connector, connector_state, i) {
  1033. if (connector_state->crtc != crtc_state->base.crtc)
  1034. continue;
  1035. encoder = to_intel_encoder(connector_state->best_encoder);
  1036. count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
  1037. count++;
  1038. }
  1039. /*
  1040. * HDMI 12bpc affects the clocks, so it's only possible
  1041. * when not cloning with other encoder types.
  1042. */
  1043. return count_hdmi > 0 && count_hdmi == count;
  1044. }
  1045. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  1046. struct intel_crtc_state *pipe_config)
  1047. {
  1048. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1049. struct drm_device *dev = encoder->base.dev;
  1050. struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  1051. int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
  1052. int clock_12bpc = clock_8bpc * 3 / 2;
  1053. int desired_bpp;
  1054. pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
  1055. if (pipe_config->has_hdmi_sink)
  1056. pipe_config->has_infoframe = true;
  1057. if (intel_hdmi->color_range_auto) {
  1058. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  1059. pipe_config->limited_color_range =
  1060. pipe_config->has_hdmi_sink &&
  1061. drm_match_cea_mode(adjusted_mode) > 1;
  1062. } else {
  1063. pipe_config->limited_color_range =
  1064. intel_hdmi->limited_color_range;
  1065. }
  1066. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
  1067. pipe_config->pixel_multiplier = 2;
  1068. clock_8bpc *= 2;
  1069. clock_12bpc *= 2;
  1070. }
  1071. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  1072. pipe_config->has_pch_encoder = true;
  1073. if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
  1074. pipe_config->has_audio = true;
  1075. /*
  1076. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  1077. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  1078. * outputs. We also need to check that the higher clock still fits
  1079. * within limits.
  1080. */
  1081. if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
  1082. hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
  1083. hdmi_12bpc_possible(pipe_config)) {
  1084. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  1085. desired_bpp = 12*3;
  1086. /* Need to adjust the port link by 1.5x for 12bpc. */
  1087. pipe_config->port_clock = clock_12bpc;
  1088. } else {
  1089. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  1090. desired_bpp = 8*3;
  1091. pipe_config->port_clock = clock_8bpc;
  1092. }
  1093. if (!pipe_config->bw_constrained) {
  1094. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  1095. pipe_config->pipe_bpp = desired_bpp;
  1096. }
  1097. if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
  1098. false) != MODE_OK) {
  1099. DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
  1100. return false;
  1101. }
  1102. /* Set user selected PAR to incoming mode's member */
  1103. adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
  1104. return true;
  1105. }
  1106. static void
  1107. intel_hdmi_unset_edid(struct drm_connector *connector)
  1108. {
  1109. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1110. intel_hdmi->has_hdmi_sink = false;
  1111. intel_hdmi->has_audio = false;
  1112. intel_hdmi->rgb_quant_range_selectable = false;
  1113. kfree(to_intel_connector(connector)->detect_edid);
  1114. to_intel_connector(connector)->detect_edid = NULL;
  1115. }
  1116. static bool
  1117. intel_hdmi_set_edid(struct drm_connector *connector, bool force)
  1118. {
  1119. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  1120. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1121. struct edid *edid = NULL;
  1122. bool connected = false;
  1123. if (force) {
  1124. intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
  1125. edid = drm_get_edid(connector,
  1126. intel_gmbus_get_adapter(dev_priv,
  1127. intel_hdmi->ddc_bus));
  1128. intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
  1129. }
  1130. to_intel_connector(connector)->detect_edid = edid;
  1131. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
  1132. intel_hdmi->rgb_quant_range_selectable =
  1133. drm_rgb_quant_range_selectable(edid);
  1134. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  1135. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  1136. intel_hdmi->has_audio =
  1137. intel_hdmi->force_audio == HDMI_AUDIO_ON;
  1138. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  1139. intel_hdmi->has_hdmi_sink =
  1140. drm_detect_hdmi_monitor(edid);
  1141. connected = true;
  1142. }
  1143. return connected;
  1144. }
  1145. static enum drm_connector_status
  1146. intel_hdmi_detect(struct drm_connector *connector, bool force)
  1147. {
  1148. enum drm_connector_status status;
  1149. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1150. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  1151. bool live_status = false;
  1152. unsigned int try;
  1153. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  1154. connector->base.id, connector->name);
  1155. intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
  1156. for (try = 0; !live_status && try < 9; try++) {
  1157. if (try)
  1158. msleep(10);
  1159. live_status = intel_digital_port_connected(dev_priv,
  1160. hdmi_to_dig_port(intel_hdmi));
  1161. }
  1162. if (!live_status)
  1163. DRM_DEBUG_KMS("Live status not up!");
  1164. intel_hdmi_unset_edid(connector);
  1165. if (intel_hdmi_set_edid(connector, live_status)) {
  1166. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1167. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  1168. status = connector_status_connected;
  1169. } else
  1170. status = connector_status_disconnected;
  1171. intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
  1172. return status;
  1173. }
  1174. static void
  1175. intel_hdmi_force(struct drm_connector *connector)
  1176. {
  1177. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1178. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  1179. connector->base.id, connector->name);
  1180. intel_hdmi_unset_edid(connector);
  1181. if (connector->status != connector_status_connected)
  1182. return;
  1183. intel_hdmi_set_edid(connector, true);
  1184. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  1185. }
  1186. static int intel_hdmi_get_modes(struct drm_connector *connector)
  1187. {
  1188. struct edid *edid;
  1189. edid = to_intel_connector(connector)->detect_edid;
  1190. if (edid == NULL)
  1191. return 0;
  1192. return intel_connector_update_modes(connector, edid);
  1193. }
  1194. static bool
  1195. intel_hdmi_detect_audio(struct drm_connector *connector)
  1196. {
  1197. bool has_audio = false;
  1198. struct edid *edid;
  1199. edid = to_intel_connector(connector)->detect_edid;
  1200. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
  1201. has_audio = drm_detect_monitor_audio(edid);
  1202. return has_audio;
  1203. }
  1204. static int
  1205. intel_hdmi_set_property(struct drm_connector *connector,
  1206. struct drm_property *property,
  1207. uint64_t val)
  1208. {
  1209. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1210. struct intel_digital_port *intel_dig_port =
  1211. hdmi_to_dig_port(intel_hdmi);
  1212. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1213. int ret;
  1214. ret = drm_object_property_set_value(&connector->base, property, val);
  1215. if (ret)
  1216. return ret;
  1217. if (property == dev_priv->force_audio_property) {
  1218. enum hdmi_force_audio i = val;
  1219. bool has_audio;
  1220. if (i == intel_hdmi->force_audio)
  1221. return 0;
  1222. intel_hdmi->force_audio = i;
  1223. if (i == HDMI_AUDIO_AUTO)
  1224. has_audio = intel_hdmi_detect_audio(connector);
  1225. else
  1226. has_audio = (i == HDMI_AUDIO_ON);
  1227. if (i == HDMI_AUDIO_OFF_DVI)
  1228. intel_hdmi->has_hdmi_sink = 0;
  1229. intel_hdmi->has_audio = has_audio;
  1230. goto done;
  1231. }
  1232. if (property == dev_priv->broadcast_rgb_property) {
  1233. bool old_auto = intel_hdmi->color_range_auto;
  1234. bool old_range = intel_hdmi->limited_color_range;
  1235. switch (val) {
  1236. case INTEL_BROADCAST_RGB_AUTO:
  1237. intel_hdmi->color_range_auto = true;
  1238. break;
  1239. case INTEL_BROADCAST_RGB_FULL:
  1240. intel_hdmi->color_range_auto = false;
  1241. intel_hdmi->limited_color_range = false;
  1242. break;
  1243. case INTEL_BROADCAST_RGB_LIMITED:
  1244. intel_hdmi->color_range_auto = false;
  1245. intel_hdmi->limited_color_range = true;
  1246. break;
  1247. default:
  1248. return -EINVAL;
  1249. }
  1250. if (old_auto == intel_hdmi->color_range_auto &&
  1251. old_range == intel_hdmi->limited_color_range)
  1252. return 0;
  1253. goto done;
  1254. }
  1255. if (property == connector->dev->mode_config.aspect_ratio_property) {
  1256. switch (val) {
  1257. case DRM_MODE_PICTURE_ASPECT_NONE:
  1258. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1259. break;
  1260. case DRM_MODE_PICTURE_ASPECT_4_3:
  1261. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
  1262. break;
  1263. case DRM_MODE_PICTURE_ASPECT_16_9:
  1264. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
  1265. break;
  1266. default:
  1267. return -EINVAL;
  1268. }
  1269. goto done;
  1270. }
  1271. return -EINVAL;
  1272. done:
  1273. if (intel_dig_port->base.base.crtc)
  1274. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  1275. return 0;
  1276. }
  1277. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  1278. {
  1279. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1280. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1281. const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  1282. intel_hdmi_prepare(encoder);
  1283. intel_hdmi->set_infoframes(&encoder->base,
  1284. intel_crtc->config->has_hdmi_sink,
  1285. adjusted_mode);
  1286. }
  1287. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
  1288. {
  1289. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1290. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  1291. struct drm_device *dev = encoder->base.dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. struct intel_crtc *intel_crtc =
  1294. to_intel_crtc(encoder->base.crtc);
  1295. const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  1296. enum dpio_channel port = vlv_dport_to_channel(dport);
  1297. int pipe = intel_crtc->pipe;
  1298. u32 val;
  1299. /* Enable clock channels for this port */
  1300. mutex_lock(&dev_priv->sb_lock);
  1301. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  1302. val = 0;
  1303. if (pipe)
  1304. val |= (1<<21);
  1305. else
  1306. val &= ~(1<<21);
  1307. val |= 0x001000c4;
  1308. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1309. /* HDMI 1.0V-2dB */
  1310. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
  1311. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
  1312. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
  1313. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
  1314. vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
  1315. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  1316. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1317. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1318. /* Program lane clock */
  1319. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1320. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1321. mutex_unlock(&dev_priv->sb_lock);
  1322. intel_hdmi->set_infoframes(&encoder->base,
  1323. intel_crtc->config->has_hdmi_sink,
  1324. adjusted_mode);
  1325. g4x_enable_hdmi(encoder);
  1326. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1327. }
  1328. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1329. {
  1330. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1331. struct drm_device *dev = encoder->base.dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. struct intel_crtc *intel_crtc =
  1334. to_intel_crtc(encoder->base.crtc);
  1335. enum dpio_channel port = vlv_dport_to_channel(dport);
  1336. int pipe = intel_crtc->pipe;
  1337. intel_hdmi_prepare(encoder);
  1338. /* Program Tx lane resets to default */
  1339. mutex_lock(&dev_priv->sb_lock);
  1340. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1341. DPIO_PCS_TX_LANE2_RESET |
  1342. DPIO_PCS_TX_LANE1_RESET);
  1343. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1344. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1345. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1346. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1347. DPIO_PCS_CLK_SOFT_RESET);
  1348. /* Fix up inter-pair skew failure */
  1349. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1350. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1351. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1352. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1353. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1354. mutex_unlock(&dev_priv->sb_lock);
  1355. }
  1356. static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
  1357. bool reset)
  1358. {
  1359. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1360. enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
  1361. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1362. enum pipe pipe = crtc->pipe;
  1363. uint32_t val;
  1364. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1365. if (reset)
  1366. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1367. else
  1368. val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
  1369. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1370. if (crtc->config->lane_count > 2) {
  1371. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1372. if (reset)
  1373. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1374. else
  1375. val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
  1376. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1377. }
  1378. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1379. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1380. if (reset)
  1381. val &= ~DPIO_PCS_CLK_SOFT_RESET;
  1382. else
  1383. val |= DPIO_PCS_CLK_SOFT_RESET;
  1384. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1385. if (crtc->config->lane_count > 2) {
  1386. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1387. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1388. if (reset)
  1389. val &= ~DPIO_PCS_CLK_SOFT_RESET;
  1390. else
  1391. val |= DPIO_PCS_CLK_SOFT_RESET;
  1392. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1393. }
  1394. }
  1395. static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1396. {
  1397. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1398. struct drm_device *dev = encoder->base.dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. struct intel_crtc *intel_crtc =
  1401. to_intel_crtc(encoder->base.crtc);
  1402. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1403. enum pipe pipe = intel_crtc->pipe;
  1404. u32 val;
  1405. intel_hdmi_prepare(encoder);
  1406. /*
  1407. * Must trick the second common lane into life.
  1408. * Otherwise we can't even access the PLL.
  1409. */
  1410. if (ch == DPIO_CH0 && pipe == PIPE_B)
  1411. dport->release_cl2_override =
  1412. !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
  1413. chv_phy_powergate_lanes(encoder, true, 0x0);
  1414. mutex_lock(&dev_priv->sb_lock);
  1415. /* Assert data lane reset */
  1416. chv_data_lane_soft_reset(encoder, true);
  1417. /* program left/right clock distribution */
  1418. if (pipe != PIPE_B) {
  1419. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1420. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1421. if (ch == DPIO_CH0)
  1422. val |= CHV_BUFLEFTENA1_FORCE;
  1423. if (ch == DPIO_CH1)
  1424. val |= CHV_BUFRIGHTENA1_FORCE;
  1425. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1426. } else {
  1427. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1428. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1429. if (ch == DPIO_CH0)
  1430. val |= CHV_BUFLEFTENA2_FORCE;
  1431. if (ch == DPIO_CH1)
  1432. val |= CHV_BUFRIGHTENA2_FORCE;
  1433. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1434. }
  1435. /* program clock channel usage */
  1436. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
  1437. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1438. if (pipe != PIPE_B)
  1439. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1440. else
  1441. val |= CHV_PCS_USEDCLKCHANNEL;
  1442. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
  1443. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
  1444. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1445. if (pipe != PIPE_B)
  1446. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1447. else
  1448. val |= CHV_PCS_USEDCLKCHANNEL;
  1449. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
  1450. /*
  1451. * This a a bit weird since generally CL
  1452. * matches the pipe, but here we need to
  1453. * pick the CL based on the port.
  1454. */
  1455. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
  1456. if (pipe != PIPE_B)
  1457. val &= ~CHV_CMN_USEDCLKCHANNEL;
  1458. else
  1459. val |= CHV_CMN_USEDCLKCHANNEL;
  1460. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
  1461. mutex_unlock(&dev_priv->sb_lock);
  1462. }
  1463. static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
  1464. {
  1465. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1466. enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  1467. u32 val;
  1468. mutex_lock(&dev_priv->sb_lock);
  1469. /* disable left/right clock distribution */
  1470. if (pipe != PIPE_B) {
  1471. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1472. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1473. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1474. } else {
  1475. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1476. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1477. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1478. }
  1479. mutex_unlock(&dev_priv->sb_lock);
  1480. /*
  1481. * Leave the power down bit cleared for at least one
  1482. * lane so that chv_powergate_phy_ch() will power
  1483. * on something when the channel is otherwise unused.
  1484. * When the port is off and the override is removed
  1485. * the lanes power down anyway, so otherwise it doesn't
  1486. * really matter what the state of power down bits is
  1487. * after this.
  1488. */
  1489. chv_phy_powergate_lanes(encoder, false, 0x0);
  1490. }
  1491. static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
  1492. {
  1493. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1494. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1495. struct intel_crtc *intel_crtc =
  1496. to_intel_crtc(encoder->base.crtc);
  1497. enum dpio_channel port = vlv_dport_to_channel(dport);
  1498. int pipe = intel_crtc->pipe;
  1499. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1500. mutex_lock(&dev_priv->sb_lock);
  1501. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
  1502. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
  1503. mutex_unlock(&dev_priv->sb_lock);
  1504. }
  1505. static void chv_hdmi_post_disable(struct intel_encoder *encoder)
  1506. {
  1507. struct drm_device *dev = encoder->base.dev;
  1508. struct drm_i915_private *dev_priv = dev->dev_private;
  1509. mutex_lock(&dev_priv->sb_lock);
  1510. /* Assert data lane reset */
  1511. chv_data_lane_soft_reset(encoder, true);
  1512. mutex_unlock(&dev_priv->sb_lock);
  1513. }
  1514. static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
  1515. {
  1516. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1517. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  1518. struct drm_device *dev = encoder->base.dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. struct intel_crtc *intel_crtc =
  1521. to_intel_crtc(encoder->base.crtc);
  1522. const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
  1523. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1524. int pipe = intel_crtc->pipe;
  1525. int data, i, stagger;
  1526. u32 val;
  1527. mutex_lock(&dev_priv->sb_lock);
  1528. /* allow hardware to manage TX FIFO reset source */
  1529. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
  1530. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1531. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
  1532. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
  1533. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1534. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
  1535. /* Program Tx latency optimal setting */
  1536. for (i = 0; i < 4; i++) {
  1537. /* Set the upar bit */
  1538. data = (i == 1) ? 0x0 : 0x1;
  1539. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1540. data << DPIO_UPAR_SHIFT);
  1541. }
  1542. /* Data lane stagger programming */
  1543. if (intel_crtc->config->port_clock > 270000)
  1544. stagger = 0x18;
  1545. else if (intel_crtc->config->port_clock > 135000)
  1546. stagger = 0xd;
  1547. else if (intel_crtc->config->port_clock > 67500)
  1548. stagger = 0x7;
  1549. else if (intel_crtc->config->port_clock > 33750)
  1550. stagger = 0x4;
  1551. else
  1552. stagger = 0x2;
  1553. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
  1554. val |= DPIO_TX2_STAGGER_MASK(0x1f);
  1555. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
  1556. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
  1557. val |= DPIO_TX2_STAGGER_MASK(0x1f);
  1558. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
  1559. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
  1560. DPIO_LANESTAGGER_STRAP(stagger) |
  1561. DPIO_LANESTAGGER_STRAP_OVRD |
  1562. DPIO_TX1_STAGGER_MASK(0x1f) |
  1563. DPIO_TX1_STAGGER_MULT(6) |
  1564. DPIO_TX2_STAGGER_MULT(0));
  1565. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
  1566. DPIO_LANESTAGGER_STRAP(stagger) |
  1567. DPIO_LANESTAGGER_STRAP_OVRD |
  1568. DPIO_TX1_STAGGER_MASK(0x1f) |
  1569. DPIO_TX1_STAGGER_MULT(7) |
  1570. DPIO_TX2_STAGGER_MULT(5));
  1571. /* Deassert data lane reset */
  1572. chv_data_lane_soft_reset(encoder, false);
  1573. /* Clear calc init */
  1574. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1575. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1576. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1577. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1578. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1579. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1580. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1581. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1582. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1583. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1584. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
  1585. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1586. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1587. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
  1588. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
  1589. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1590. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1591. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
  1592. /* FIXME: Program the support xxx V-dB */
  1593. /* Use 800mV-0dB */
  1594. for (i = 0; i < 4; i++) {
  1595. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  1596. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  1597. val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
  1598. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  1599. }
  1600. for (i = 0; i < 4; i++) {
  1601. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  1602. val &= ~DPIO_SWING_MARGIN000_MASK;
  1603. val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
  1604. /*
  1605. * Supposedly this value shouldn't matter when unique transition
  1606. * scale is disabled, but in fact it does matter. Let's just
  1607. * always program the same value and hope it's OK.
  1608. */
  1609. val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
  1610. val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
  1611. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  1612. }
  1613. /*
  1614. * The document said it needs to set bit 27 for ch0 and bit 26
  1615. * for ch1. Might be a typo in the doc.
  1616. * For now, for this unique transition scale selection, set bit
  1617. * 27 for ch0 and ch1.
  1618. */
  1619. for (i = 0; i < 4; i++) {
  1620. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  1621. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  1622. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  1623. }
  1624. /* Start swing calculation */
  1625. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1626. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1627. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1628. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1629. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1630. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1631. mutex_unlock(&dev_priv->sb_lock);
  1632. intel_hdmi->set_infoframes(&encoder->base,
  1633. intel_crtc->config->has_hdmi_sink,
  1634. adjusted_mode);
  1635. g4x_enable_hdmi(encoder);
  1636. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1637. /* Second common lane will stay alive on its own now */
  1638. if (dport->release_cl2_override) {
  1639. chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
  1640. dport->release_cl2_override = false;
  1641. }
  1642. }
  1643. static void intel_hdmi_destroy(struct drm_connector *connector)
  1644. {
  1645. kfree(to_intel_connector(connector)->detect_edid);
  1646. drm_connector_cleanup(connector);
  1647. kfree(connector);
  1648. }
  1649. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1650. .dpms = drm_atomic_helper_connector_dpms,
  1651. .detect = intel_hdmi_detect,
  1652. .force = intel_hdmi_force,
  1653. .fill_modes = drm_helper_probe_single_connector_modes,
  1654. .set_property = intel_hdmi_set_property,
  1655. .atomic_get_property = intel_connector_atomic_get_property,
  1656. .destroy = intel_hdmi_destroy,
  1657. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  1658. .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
  1659. };
  1660. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1661. .get_modes = intel_hdmi_get_modes,
  1662. .mode_valid = intel_hdmi_mode_valid,
  1663. .best_encoder = intel_best_encoder,
  1664. };
  1665. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1666. .destroy = intel_encoder_destroy,
  1667. };
  1668. static void
  1669. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1670. {
  1671. intel_attach_force_audio_property(connector);
  1672. intel_attach_broadcast_rgb_property(connector);
  1673. intel_hdmi->color_range_auto = true;
  1674. intel_attach_aspect_ratio_property(connector);
  1675. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1676. }
  1677. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1678. struct intel_connector *intel_connector)
  1679. {
  1680. struct drm_connector *connector = &intel_connector->base;
  1681. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1682. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1683. struct drm_device *dev = intel_encoder->base.dev;
  1684. struct drm_i915_private *dev_priv = dev->dev_private;
  1685. enum port port = intel_dig_port->port;
  1686. uint8_t alternate_ddc_pin;
  1687. if (WARN(intel_dig_port->max_lanes < 4,
  1688. "Not enough lanes (%d) for HDMI on port %c\n",
  1689. intel_dig_port->max_lanes, port_name(port)))
  1690. return;
  1691. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1692. DRM_MODE_CONNECTOR_HDMIA);
  1693. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1694. connector->interlace_allowed = 1;
  1695. connector->doublescan_allowed = 0;
  1696. connector->stereo_allowed = 1;
  1697. switch (port) {
  1698. case PORT_B:
  1699. if (IS_BROXTON(dev_priv))
  1700. intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
  1701. else
  1702. intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
  1703. /*
  1704. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  1705. * interrupts to check the external panel connection.
  1706. */
  1707. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  1708. intel_encoder->hpd_pin = HPD_PORT_A;
  1709. else
  1710. intel_encoder->hpd_pin = HPD_PORT_B;
  1711. break;
  1712. case PORT_C:
  1713. if (IS_BROXTON(dev_priv))
  1714. intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
  1715. else
  1716. intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
  1717. intel_encoder->hpd_pin = HPD_PORT_C;
  1718. break;
  1719. case PORT_D:
  1720. if (WARN_ON(IS_BROXTON(dev_priv)))
  1721. intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
  1722. else if (IS_CHERRYVIEW(dev_priv))
  1723. intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
  1724. else
  1725. intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
  1726. intel_encoder->hpd_pin = HPD_PORT_D;
  1727. break;
  1728. case PORT_E:
  1729. /* On SKL PORT E doesn't have seperate GMBUS pin
  1730. * We rely on VBT to set a proper alternate GMBUS pin. */
  1731. alternate_ddc_pin =
  1732. dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
  1733. switch (alternate_ddc_pin) {
  1734. case DDC_PIN_B:
  1735. intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
  1736. break;
  1737. case DDC_PIN_C:
  1738. intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
  1739. break;
  1740. case DDC_PIN_D:
  1741. intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
  1742. break;
  1743. default:
  1744. MISSING_CASE(alternate_ddc_pin);
  1745. }
  1746. intel_encoder->hpd_pin = HPD_PORT_E;
  1747. break;
  1748. case PORT_A:
  1749. intel_encoder->hpd_pin = HPD_PORT_A;
  1750. /* Internal port only for eDP. */
  1751. default:
  1752. BUG();
  1753. }
  1754. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1755. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1756. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1757. intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
  1758. } else if (IS_G4X(dev)) {
  1759. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1760. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1761. intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
  1762. } else if (HAS_DDI(dev)) {
  1763. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1764. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1765. intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
  1766. } else if (HAS_PCH_IBX(dev)) {
  1767. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1768. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1769. intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
  1770. } else {
  1771. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1772. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1773. intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
  1774. }
  1775. if (HAS_DDI(dev))
  1776. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1777. else
  1778. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1779. intel_connector->unregister = intel_connector_unregister;
  1780. intel_hdmi_add_properties(intel_hdmi, connector);
  1781. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1782. drm_connector_register(connector);
  1783. intel_hdmi->attached_connector = intel_connector;
  1784. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1785. * 0xd. Failure to do so will result in spurious interrupts being
  1786. * generated on the port when a cable is not attached.
  1787. */
  1788. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1789. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1790. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1791. }
  1792. }
  1793. void intel_hdmi_init(struct drm_device *dev,
  1794. i915_reg_t hdmi_reg, enum port port)
  1795. {
  1796. struct intel_digital_port *intel_dig_port;
  1797. struct intel_encoder *intel_encoder;
  1798. struct intel_connector *intel_connector;
  1799. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1800. if (!intel_dig_port)
  1801. return;
  1802. intel_connector = intel_connector_alloc();
  1803. if (!intel_connector) {
  1804. kfree(intel_dig_port);
  1805. return;
  1806. }
  1807. intel_encoder = &intel_dig_port->base;
  1808. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1809. DRM_MODE_ENCODER_TMDS, NULL);
  1810. intel_encoder->compute_config = intel_hdmi_compute_config;
  1811. if (HAS_PCH_SPLIT(dev)) {
  1812. intel_encoder->disable = pch_disable_hdmi;
  1813. intel_encoder->post_disable = pch_post_disable_hdmi;
  1814. } else {
  1815. intel_encoder->disable = g4x_disable_hdmi;
  1816. }
  1817. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1818. intel_encoder->get_config = intel_hdmi_get_config;
  1819. if (IS_CHERRYVIEW(dev)) {
  1820. intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
  1821. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1822. intel_encoder->enable = vlv_enable_hdmi;
  1823. intel_encoder->post_disable = chv_hdmi_post_disable;
  1824. intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
  1825. } else if (IS_VALLEYVIEW(dev)) {
  1826. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1827. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1828. intel_encoder->enable = vlv_enable_hdmi;
  1829. intel_encoder->post_disable = vlv_hdmi_post_disable;
  1830. } else {
  1831. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1832. if (HAS_PCH_CPT(dev))
  1833. intel_encoder->enable = cpt_enable_hdmi;
  1834. else if (HAS_PCH_IBX(dev))
  1835. intel_encoder->enable = ibx_enable_hdmi;
  1836. else
  1837. intel_encoder->enable = g4x_enable_hdmi;
  1838. }
  1839. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1840. if (IS_CHERRYVIEW(dev)) {
  1841. if (port == PORT_D)
  1842. intel_encoder->crtc_mask = 1 << 2;
  1843. else
  1844. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1845. } else {
  1846. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1847. }
  1848. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  1849. /*
  1850. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  1851. * to work on real hardware. And since g4x can send infoframes to
  1852. * only one port anyway, nothing is lost by allowing it.
  1853. */
  1854. if (IS_G4X(dev))
  1855. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  1856. intel_dig_port->port = port;
  1857. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1858. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  1859. intel_dig_port->max_lanes = 4;
  1860. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1861. }