intel_ddi.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x80009010, 0x000000C0, 0x1 },
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x80007011, 0x000000C0, 0x1 },
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x80005012, 0x000000C0, 0x1 },
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x80007011, 0x000000CD, 0x0 },
  138. { 0x80009010, 0x000000C0, 0x1 },
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x80005012, 0x000000C0, 0x1 },
  141. { 0x80007011, 0x000000C0, 0x1 },
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 },
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x80007011, 0x000000CD, 0x0 },
  150. { 0x80009010, 0x000000C0, 0x3 },
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x3 },
  153. { 0x80007011, 0x000000C0, 0x3 },
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x3 },
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x80006012, 0x000000CD, 0x1 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  216. { 0x80003015, 0x000000C0, 0x1 },
  217. { 0x80000018, 0x000000C0, 0x1 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x80007011, 0x000000CB, 0x3 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x80006013, 0x000000C0, 0x3 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  230. { 0x80003015, 0x000000C0, 0x3 },
  231. { 0x80000018, 0x000000C0, 0x3 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  241. /* Idx NT mV diff db */
  242. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  243. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  244. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  245. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  246. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  247. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  248. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  249. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  250. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  251. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  252. };
  253. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  254. /* Idx NT mV diff db */
  255. { 26, 0, 0, 128, false }, /* 0: 200 0 */
  256. { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
  257. { 48, 0, 0, 96, false }, /* 2: 200 4 */
  258. { 54, 0, 0, 69, false }, /* 3: 200 6 */
  259. { 32, 0, 0, 128, false }, /* 4: 250 0 */
  260. { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
  261. { 54, 0, 0, 85, false }, /* 6: 250 4 */
  262. { 43, 0, 0, 128, false }, /* 7: 300 0 */
  263. { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
  264. { 48, 0, 0, 128, false }, /* 9: 300 0 */
  265. };
  266. /* BSpec has 2 recommended values - entries 0 and 8.
  267. * Using the entry with higher vswing.
  268. */
  269. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  270. /* Idx NT mV diff db */
  271. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  272. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  273. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  274. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  275. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  276. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  277. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  278. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  279. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  280. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  281. };
  282. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  283. u32 level, enum port port, int type);
  284. static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
  285. struct intel_digital_port **dig_port,
  286. enum port *port)
  287. {
  288. struct drm_encoder *encoder = &intel_encoder->base;
  289. switch (intel_encoder->type) {
  290. case INTEL_OUTPUT_DP_MST:
  291. *dig_port = enc_to_mst(encoder)->primary;
  292. *port = (*dig_port)->port;
  293. break;
  294. case INTEL_OUTPUT_DISPLAYPORT:
  295. case INTEL_OUTPUT_EDP:
  296. case INTEL_OUTPUT_HDMI:
  297. case INTEL_OUTPUT_UNKNOWN:
  298. *dig_port = enc_to_dig_port(encoder);
  299. *port = (*dig_port)->port;
  300. break;
  301. case INTEL_OUTPUT_ANALOG:
  302. *dig_port = NULL;
  303. *port = PORT_E;
  304. break;
  305. default:
  306. WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
  307. break;
  308. }
  309. }
  310. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  311. {
  312. struct intel_digital_port *dig_port;
  313. enum port port;
  314. ddi_get_encoder_port(intel_encoder, &dig_port, &port);
  315. return port;
  316. }
  317. static const struct ddi_buf_trans *
  318. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  319. {
  320. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  321. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  322. return skl_y_ddi_translations_dp;
  323. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  324. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  325. return skl_u_ddi_translations_dp;
  326. } else {
  327. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  328. return skl_ddi_translations_dp;
  329. }
  330. }
  331. static const struct ddi_buf_trans *
  332. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  333. {
  334. if (dev_priv->edp_low_vswing) {
  335. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  336. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  337. return skl_y_ddi_translations_edp;
  338. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  339. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  340. return skl_u_ddi_translations_edp;
  341. } else {
  342. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  343. return skl_ddi_translations_edp;
  344. }
  345. }
  346. return skl_get_buf_trans_dp(dev_priv, n_entries);
  347. }
  348. static const struct ddi_buf_trans *
  349. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  350. {
  351. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  352. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  353. return skl_y_ddi_translations_hdmi;
  354. } else {
  355. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  356. return skl_ddi_translations_hdmi;
  357. }
  358. }
  359. /*
  360. * Starting with Haswell, DDI port buffers must be programmed with correct
  361. * values in advance. The buffer values are different for FDI and DP modes,
  362. * but the HDMI/DVI fields are shared among those. So we program the DDI
  363. * in either FDI or DP modes only, as HDMI connections will work with both
  364. * of those
  365. */
  366. void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
  367. {
  368. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  369. u32 iboost_bit = 0;
  370. int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
  371. size;
  372. int hdmi_level;
  373. enum port port;
  374. const struct ddi_buf_trans *ddi_translations_fdi;
  375. const struct ddi_buf_trans *ddi_translations_dp;
  376. const struct ddi_buf_trans *ddi_translations_edp;
  377. const struct ddi_buf_trans *ddi_translations_hdmi;
  378. const struct ddi_buf_trans *ddi_translations;
  379. port = intel_ddi_get_encoder_port(encoder);
  380. hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  381. if (IS_BROXTON(dev_priv)) {
  382. if (encoder->type != INTEL_OUTPUT_HDMI)
  383. return;
  384. /* Vswing programming for HDMI */
  385. bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
  386. INTEL_OUTPUT_HDMI);
  387. return;
  388. }
  389. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  390. ddi_translations_fdi = NULL;
  391. ddi_translations_dp =
  392. skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
  393. ddi_translations_edp =
  394. skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
  395. ddi_translations_hdmi =
  396. skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
  397. hdmi_default_entry = 8;
  398. /* If we're boosting the current, set bit 31 of trans1 */
  399. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
  400. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  401. iboost_bit = 1<<31;
  402. if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
  403. port != PORT_A && port != PORT_E &&
  404. n_edp_entries > 9))
  405. n_edp_entries = 9;
  406. } else if (IS_BROADWELL(dev_priv)) {
  407. ddi_translations_fdi = bdw_ddi_translations_fdi;
  408. ddi_translations_dp = bdw_ddi_translations_dp;
  409. ddi_translations_edp = bdw_ddi_translations_edp;
  410. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  411. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  412. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  413. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  414. hdmi_default_entry = 7;
  415. } else if (IS_HASWELL(dev_priv)) {
  416. ddi_translations_fdi = hsw_ddi_translations_fdi;
  417. ddi_translations_dp = hsw_ddi_translations_dp;
  418. ddi_translations_edp = hsw_ddi_translations_dp;
  419. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  420. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  421. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  422. hdmi_default_entry = 6;
  423. } else {
  424. WARN(1, "ddi translation table missing\n");
  425. ddi_translations_edp = bdw_ddi_translations_dp;
  426. ddi_translations_fdi = bdw_ddi_translations_fdi;
  427. ddi_translations_dp = bdw_ddi_translations_dp;
  428. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  429. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  430. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  431. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  432. hdmi_default_entry = 7;
  433. }
  434. switch (encoder->type) {
  435. case INTEL_OUTPUT_EDP:
  436. ddi_translations = ddi_translations_edp;
  437. size = n_edp_entries;
  438. break;
  439. case INTEL_OUTPUT_DISPLAYPORT:
  440. case INTEL_OUTPUT_HDMI:
  441. ddi_translations = ddi_translations_dp;
  442. size = n_dp_entries;
  443. break;
  444. case INTEL_OUTPUT_ANALOG:
  445. ddi_translations = ddi_translations_fdi;
  446. size = n_dp_entries;
  447. break;
  448. default:
  449. BUG();
  450. }
  451. for (i = 0; i < size; i++) {
  452. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  453. ddi_translations[i].trans1 | iboost_bit);
  454. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  455. ddi_translations[i].trans2);
  456. }
  457. if (encoder->type != INTEL_OUTPUT_HDMI)
  458. return;
  459. /* Choose a good default if VBT is badly populated */
  460. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  461. hdmi_level >= n_hdmi_entries)
  462. hdmi_level = hdmi_default_entry;
  463. /* Entry 9 is for HDMI: */
  464. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  465. ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  466. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  467. ddi_translations_hdmi[hdmi_level].trans2);
  468. }
  469. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  470. enum port port)
  471. {
  472. i915_reg_t reg = DDI_BUF_CTL(port);
  473. int i;
  474. for (i = 0; i < 16; i++) {
  475. udelay(1);
  476. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  477. return;
  478. }
  479. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  480. }
  481. /* Starting with Haswell, different DDI ports can work in FDI mode for
  482. * connection to the PCH-located connectors. For this, it is necessary to train
  483. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  484. *
  485. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  486. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  487. * DDI A (which is used for eDP)
  488. */
  489. void hsw_fdi_link_train(struct drm_crtc *crtc)
  490. {
  491. struct drm_device *dev = crtc->dev;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  494. struct intel_encoder *encoder;
  495. u32 temp, i, rx_ctl_val;
  496. for_each_encoder_on_crtc(dev, crtc, encoder) {
  497. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  498. intel_prepare_ddi_buffer(encoder);
  499. }
  500. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  501. * mode set "sequence for CRT port" document:
  502. * - TP1 to TP2 time with the default value
  503. * - FDI delay to 90h
  504. *
  505. * WaFDIAutoLinkSetTimingOverrride:hsw
  506. */
  507. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  508. FDI_RX_PWRDN_LANE0_VAL(2) |
  509. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  510. /* Enable the PCH Receiver FDI PLL */
  511. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  512. FDI_RX_PLL_ENABLE |
  513. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  514. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  515. POSTING_READ(FDI_RX_CTL(PIPE_A));
  516. udelay(220);
  517. /* Switch from Rawclk to PCDclk */
  518. rx_ctl_val |= FDI_PCDCLK;
  519. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  520. /* Configure Port Clock Select */
  521. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
  522. WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
  523. /* Start the training iterating through available voltages and emphasis,
  524. * testing each value twice. */
  525. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  526. /* Configure DP_TP_CTL with auto-training */
  527. I915_WRITE(DP_TP_CTL(PORT_E),
  528. DP_TP_CTL_FDI_AUTOTRAIN |
  529. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  530. DP_TP_CTL_LINK_TRAIN_PAT1 |
  531. DP_TP_CTL_ENABLE);
  532. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  533. * DDI E does not support port reversal, the functionality is
  534. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  535. * port reversal bit */
  536. I915_WRITE(DDI_BUF_CTL(PORT_E),
  537. DDI_BUF_CTL_ENABLE |
  538. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  539. DDI_BUF_TRANS_SELECT(i / 2));
  540. POSTING_READ(DDI_BUF_CTL(PORT_E));
  541. udelay(600);
  542. /* Program PCH FDI Receiver TU */
  543. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  544. /* Enable PCH FDI Receiver with auto-training */
  545. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  546. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  547. POSTING_READ(FDI_RX_CTL(PIPE_A));
  548. /* Wait for FDI receiver lane calibration */
  549. udelay(30);
  550. /* Unset FDI_RX_MISC pwrdn lanes */
  551. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  552. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  553. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  554. POSTING_READ(FDI_RX_MISC(PIPE_A));
  555. /* Wait for FDI auto training time */
  556. udelay(5);
  557. temp = I915_READ(DP_TP_STATUS(PORT_E));
  558. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  559. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  560. break;
  561. }
  562. /*
  563. * Leave things enabled even if we failed to train FDI.
  564. * Results in less fireworks from the state checker.
  565. */
  566. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  567. DRM_ERROR("FDI link training failed!\n");
  568. break;
  569. }
  570. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  571. temp &= ~DDI_BUF_CTL_ENABLE;
  572. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  573. POSTING_READ(DDI_BUF_CTL(PORT_E));
  574. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  575. temp = I915_READ(DP_TP_CTL(PORT_E));
  576. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  577. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  578. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  579. POSTING_READ(DP_TP_CTL(PORT_E));
  580. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  581. rx_ctl_val &= ~FDI_RX_ENABLE;
  582. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  583. POSTING_READ(FDI_RX_CTL(PIPE_A));
  584. /* Reset FDI_RX_MISC pwrdn lanes */
  585. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  586. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  587. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  588. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  589. POSTING_READ(FDI_RX_MISC(PIPE_A));
  590. }
  591. /* Enable normal pixel sending for FDI */
  592. I915_WRITE(DP_TP_CTL(PORT_E),
  593. DP_TP_CTL_FDI_AUTOTRAIN |
  594. DP_TP_CTL_LINK_TRAIN_NORMAL |
  595. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  596. DP_TP_CTL_ENABLE);
  597. }
  598. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  599. {
  600. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  601. struct intel_digital_port *intel_dig_port =
  602. enc_to_dig_port(&encoder->base);
  603. intel_dp->DP = intel_dig_port->saved_port_bits |
  604. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  605. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  606. }
  607. static struct intel_encoder *
  608. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  609. {
  610. struct drm_device *dev = crtc->dev;
  611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  612. struct intel_encoder *intel_encoder, *ret = NULL;
  613. int num_encoders = 0;
  614. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  615. ret = intel_encoder;
  616. num_encoders++;
  617. }
  618. if (num_encoders != 1)
  619. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  620. pipe_name(intel_crtc->pipe));
  621. BUG_ON(ret == NULL);
  622. return ret;
  623. }
  624. struct intel_encoder *
  625. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  626. {
  627. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  628. struct intel_encoder *ret = NULL;
  629. struct drm_atomic_state *state;
  630. struct drm_connector *connector;
  631. struct drm_connector_state *connector_state;
  632. int num_encoders = 0;
  633. int i;
  634. state = crtc_state->base.state;
  635. for_each_connector_in_state(state, connector, connector_state, i) {
  636. if (connector_state->crtc != crtc_state->base.crtc)
  637. continue;
  638. ret = to_intel_encoder(connector_state->best_encoder);
  639. num_encoders++;
  640. }
  641. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  642. pipe_name(crtc->pipe));
  643. BUG_ON(ret == NULL);
  644. return ret;
  645. }
  646. #define LC_FREQ 2700
  647. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  648. #define P_MIN 2
  649. #define P_MAX 64
  650. #define P_INC 2
  651. /* Constraints for PLL good behavior */
  652. #define REF_MIN 48
  653. #define REF_MAX 400
  654. #define VCO_MIN 2400
  655. #define VCO_MAX 4800
  656. #define abs_diff(a, b) ({ \
  657. typeof(a) __a = (a); \
  658. typeof(b) __b = (b); \
  659. (void) (&__a == &__b); \
  660. __a > __b ? (__a - __b) : (__b - __a); })
  661. struct hsw_wrpll_rnp {
  662. unsigned p, n2, r2;
  663. };
  664. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  665. {
  666. unsigned budget;
  667. switch (clock) {
  668. case 25175000:
  669. case 25200000:
  670. case 27000000:
  671. case 27027000:
  672. case 37762500:
  673. case 37800000:
  674. case 40500000:
  675. case 40541000:
  676. case 54000000:
  677. case 54054000:
  678. case 59341000:
  679. case 59400000:
  680. case 72000000:
  681. case 74176000:
  682. case 74250000:
  683. case 81000000:
  684. case 81081000:
  685. case 89012000:
  686. case 89100000:
  687. case 108000000:
  688. case 108108000:
  689. case 111264000:
  690. case 111375000:
  691. case 148352000:
  692. case 148500000:
  693. case 162000000:
  694. case 162162000:
  695. case 222525000:
  696. case 222750000:
  697. case 296703000:
  698. case 297000000:
  699. budget = 0;
  700. break;
  701. case 233500000:
  702. case 245250000:
  703. case 247750000:
  704. case 253250000:
  705. case 298000000:
  706. budget = 1500;
  707. break;
  708. case 169128000:
  709. case 169500000:
  710. case 179500000:
  711. case 202000000:
  712. budget = 2000;
  713. break;
  714. case 256250000:
  715. case 262500000:
  716. case 270000000:
  717. case 272500000:
  718. case 273750000:
  719. case 280750000:
  720. case 281250000:
  721. case 286000000:
  722. case 291750000:
  723. budget = 4000;
  724. break;
  725. case 267250000:
  726. case 268500000:
  727. budget = 5000;
  728. break;
  729. default:
  730. budget = 1000;
  731. break;
  732. }
  733. return budget;
  734. }
  735. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  736. unsigned r2, unsigned n2, unsigned p,
  737. struct hsw_wrpll_rnp *best)
  738. {
  739. uint64_t a, b, c, d, diff, diff_best;
  740. /* No best (r,n,p) yet */
  741. if (best->p == 0) {
  742. best->p = p;
  743. best->n2 = n2;
  744. best->r2 = r2;
  745. return;
  746. }
  747. /*
  748. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  749. * freq2k.
  750. *
  751. * delta = 1e6 *
  752. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  753. * freq2k;
  754. *
  755. * and we would like delta <= budget.
  756. *
  757. * If the discrepancy is above the PPM-based budget, always prefer to
  758. * improve upon the previous solution. However, if you're within the
  759. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  760. */
  761. a = freq2k * budget * p * r2;
  762. b = freq2k * budget * best->p * best->r2;
  763. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  764. diff_best = abs_diff(freq2k * best->p * best->r2,
  765. LC_FREQ_2K * best->n2);
  766. c = 1000000 * diff;
  767. d = 1000000 * diff_best;
  768. if (a < c && b < d) {
  769. /* If both are above the budget, pick the closer */
  770. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  771. best->p = p;
  772. best->n2 = n2;
  773. best->r2 = r2;
  774. }
  775. } else if (a >= c && b < d) {
  776. /* If A is below the threshold but B is above it? Update. */
  777. best->p = p;
  778. best->n2 = n2;
  779. best->r2 = r2;
  780. } else if (a >= c && b >= d) {
  781. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  782. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  783. best->p = p;
  784. best->n2 = n2;
  785. best->r2 = r2;
  786. }
  787. }
  788. /* Otherwise a < c && b >= d, do nothing */
  789. }
  790. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  791. i915_reg_t reg)
  792. {
  793. int refclk = LC_FREQ;
  794. int n, p, r;
  795. u32 wrpll;
  796. wrpll = I915_READ(reg);
  797. switch (wrpll & WRPLL_PLL_REF_MASK) {
  798. case WRPLL_PLL_SSC:
  799. case WRPLL_PLL_NON_SSC:
  800. /*
  801. * We could calculate spread here, but our checking
  802. * code only cares about 5% accuracy, and spread is a max of
  803. * 0.5% downspread.
  804. */
  805. refclk = 135;
  806. break;
  807. case WRPLL_PLL_LCPLL:
  808. refclk = LC_FREQ;
  809. break;
  810. default:
  811. WARN(1, "bad wrpll refclk\n");
  812. return 0;
  813. }
  814. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  815. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  816. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  817. /* Convert to KHz, p & r have a fixed point portion */
  818. return (refclk * n * 100) / (p * r);
  819. }
  820. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  821. uint32_t dpll)
  822. {
  823. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  824. uint32_t cfgcr1_val, cfgcr2_val;
  825. uint32_t p0, p1, p2, dco_freq;
  826. cfgcr1_reg = DPLL_CFGCR1(dpll);
  827. cfgcr2_reg = DPLL_CFGCR2(dpll);
  828. cfgcr1_val = I915_READ(cfgcr1_reg);
  829. cfgcr2_val = I915_READ(cfgcr2_reg);
  830. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  831. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  832. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  833. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  834. else
  835. p1 = 1;
  836. switch (p0) {
  837. case DPLL_CFGCR2_PDIV_1:
  838. p0 = 1;
  839. break;
  840. case DPLL_CFGCR2_PDIV_2:
  841. p0 = 2;
  842. break;
  843. case DPLL_CFGCR2_PDIV_3:
  844. p0 = 3;
  845. break;
  846. case DPLL_CFGCR2_PDIV_7:
  847. p0 = 7;
  848. break;
  849. }
  850. switch (p2) {
  851. case DPLL_CFGCR2_KDIV_5:
  852. p2 = 5;
  853. break;
  854. case DPLL_CFGCR2_KDIV_2:
  855. p2 = 2;
  856. break;
  857. case DPLL_CFGCR2_KDIV_3:
  858. p2 = 3;
  859. break;
  860. case DPLL_CFGCR2_KDIV_1:
  861. p2 = 1;
  862. break;
  863. }
  864. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  865. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  866. 1000) / 0x8000;
  867. return dco_freq / (p0 * p1 * p2 * 5);
  868. }
  869. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  870. {
  871. int dotclock;
  872. if (pipe_config->has_pch_encoder)
  873. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  874. &pipe_config->fdi_m_n);
  875. else if (pipe_config->has_dp_encoder)
  876. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  877. &pipe_config->dp_m_n);
  878. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  879. dotclock = pipe_config->port_clock * 2 / 3;
  880. else
  881. dotclock = pipe_config->port_clock;
  882. if (pipe_config->pixel_multiplier)
  883. dotclock /= pipe_config->pixel_multiplier;
  884. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  885. }
  886. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  887. struct intel_crtc_state *pipe_config)
  888. {
  889. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  890. int link_clock = 0;
  891. uint32_t dpll_ctl1, dpll;
  892. dpll = pipe_config->ddi_pll_sel;
  893. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  894. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  895. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  896. } else {
  897. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  898. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  899. switch (link_clock) {
  900. case DPLL_CTRL1_LINK_RATE_810:
  901. link_clock = 81000;
  902. break;
  903. case DPLL_CTRL1_LINK_RATE_1080:
  904. link_clock = 108000;
  905. break;
  906. case DPLL_CTRL1_LINK_RATE_1350:
  907. link_clock = 135000;
  908. break;
  909. case DPLL_CTRL1_LINK_RATE_1620:
  910. link_clock = 162000;
  911. break;
  912. case DPLL_CTRL1_LINK_RATE_2160:
  913. link_clock = 216000;
  914. break;
  915. case DPLL_CTRL1_LINK_RATE_2700:
  916. link_clock = 270000;
  917. break;
  918. default:
  919. WARN(1, "Unsupported link rate\n");
  920. break;
  921. }
  922. link_clock *= 2;
  923. }
  924. pipe_config->port_clock = link_clock;
  925. ddi_dotclock_get(pipe_config);
  926. }
  927. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  928. struct intel_crtc_state *pipe_config)
  929. {
  930. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  931. int link_clock = 0;
  932. u32 val, pll;
  933. val = pipe_config->ddi_pll_sel;
  934. switch (val & PORT_CLK_SEL_MASK) {
  935. case PORT_CLK_SEL_LCPLL_810:
  936. link_clock = 81000;
  937. break;
  938. case PORT_CLK_SEL_LCPLL_1350:
  939. link_clock = 135000;
  940. break;
  941. case PORT_CLK_SEL_LCPLL_2700:
  942. link_clock = 270000;
  943. break;
  944. case PORT_CLK_SEL_WRPLL1:
  945. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  946. break;
  947. case PORT_CLK_SEL_WRPLL2:
  948. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  949. break;
  950. case PORT_CLK_SEL_SPLL:
  951. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  952. if (pll == SPLL_PLL_FREQ_810MHz)
  953. link_clock = 81000;
  954. else if (pll == SPLL_PLL_FREQ_1350MHz)
  955. link_clock = 135000;
  956. else if (pll == SPLL_PLL_FREQ_2700MHz)
  957. link_clock = 270000;
  958. else {
  959. WARN(1, "bad spll freq\n");
  960. return;
  961. }
  962. break;
  963. default:
  964. WARN(1, "bad port clock sel\n");
  965. return;
  966. }
  967. pipe_config->port_clock = link_clock * 2;
  968. ddi_dotclock_get(pipe_config);
  969. }
  970. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  971. enum intel_dpll_id dpll)
  972. {
  973. struct intel_shared_dpll *pll;
  974. struct intel_dpll_hw_state *state;
  975. intel_clock_t clock;
  976. /* For DDI ports we always use a shared PLL. */
  977. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  978. return 0;
  979. pll = &dev_priv->shared_dplls[dpll];
  980. state = &pll->config.hw_state;
  981. clock.m1 = 2;
  982. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  983. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  984. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  985. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  986. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  987. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  988. return chv_calc_dpll_params(100000, &clock);
  989. }
  990. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  991. struct intel_crtc_state *pipe_config)
  992. {
  993. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  994. enum port port = intel_ddi_get_encoder_port(encoder);
  995. uint32_t dpll = port;
  996. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  997. ddi_dotclock_get(pipe_config);
  998. }
  999. void intel_ddi_clock_get(struct intel_encoder *encoder,
  1000. struct intel_crtc_state *pipe_config)
  1001. {
  1002. struct drm_device *dev = encoder->base.dev;
  1003. if (INTEL_INFO(dev)->gen <= 8)
  1004. hsw_ddi_clock_get(encoder, pipe_config);
  1005. else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1006. skl_ddi_clock_get(encoder, pipe_config);
  1007. else if (IS_BROXTON(dev))
  1008. bxt_ddi_clock_get(encoder, pipe_config);
  1009. }
  1010. static void
  1011. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  1012. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  1013. {
  1014. uint64_t freq2k;
  1015. unsigned p, n2, r2;
  1016. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  1017. unsigned budget;
  1018. freq2k = clock / 100;
  1019. budget = hsw_wrpll_get_budget_for_freq(clock);
  1020. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  1021. * and directly pass the LC PLL to it. */
  1022. if (freq2k == 5400000) {
  1023. *n2_out = 2;
  1024. *p_out = 1;
  1025. *r2_out = 2;
  1026. return;
  1027. }
  1028. /*
  1029. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  1030. * the WR PLL.
  1031. *
  1032. * We want R so that REF_MIN <= Ref <= REF_MAX.
  1033. * Injecting R2 = 2 * R gives:
  1034. * REF_MAX * r2 > LC_FREQ * 2 and
  1035. * REF_MIN * r2 < LC_FREQ * 2
  1036. *
  1037. * Which means the desired boundaries for r2 are:
  1038. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  1039. *
  1040. */
  1041. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  1042. r2 <= LC_FREQ * 2 / REF_MIN;
  1043. r2++) {
  1044. /*
  1045. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  1046. *
  1047. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  1048. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  1049. * VCO_MAX * r2 > n2 * LC_FREQ and
  1050. * VCO_MIN * r2 < n2 * LC_FREQ)
  1051. *
  1052. * Which means the desired boundaries for n2 are:
  1053. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  1054. */
  1055. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  1056. n2 <= VCO_MAX * r2 / LC_FREQ;
  1057. n2++) {
  1058. for (p = P_MIN; p <= P_MAX; p += P_INC)
  1059. hsw_wrpll_update_rnp(freq2k, budget,
  1060. r2, n2, p, &best);
  1061. }
  1062. }
  1063. *n2_out = best.n2;
  1064. *p_out = best.p;
  1065. *r2_out = best.r2;
  1066. }
  1067. static bool
  1068. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  1069. struct intel_crtc_state *crtc_state,
  1070. struct intel_encoder *intel_encoder)
  1071. {
  1072. int clock = crtc_state->port_clock;
  1073. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1074. struct intel_shared_dpll *pll;
  1075. uint32_t val;
  1076. unsigned p, n2, r2;
  1077. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  1078. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  1079. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  1080. WRPLL_DIVIDER_POST(p);
  1081. memset(&crtc_state->dpll_hw_state, 0,
  1082. sizeof(crtc_state->dpll_hw_state));
  1083. crtc_state->dpll_hw_state.wrpll = val;
  1084. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1085. if (pll == NULL) {
  1086. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1087. pipe_name(intel_crtc->pipe));
  1088. return false;
  1089. }
  1090. crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  1091. } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
  1092. struct drm_atomic_state *state = crtc_state->base.state;
  1093. struct intel_shared_dpll_config *spll =
  1094. &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
  1095. if (spll->crtc_mask &&
  1096. WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
  1097. return false;
  1098. crtc_state->shared_dpll = DPLL_ID_SPLL;
  1099. spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
  1100. spll->crtc_mask |= 1 << intel_crtc->pipe;
  1101. }
  1102. return true;
  1103. }
  1104. struct skl_wrpll_context {
  1105. uint64_t min_deviation; /* current minimal deviation */
  1106. uint64_t central_freq; /* chosen central freq */
  1107. uint64_t dco_freq; /* chosen dco freq */
  1108. unsigned int p; /* chosen divider */
  1109. };
  1110. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  1111. {
  1112. memset(ctx, 0, sizeof(*ctx));
  1113. ctx->min_deviation = U64_MAX;
  1114. }
  1115. /* DCO freq must be within +1%/-6% of the DCO central freq */
  1116. #define SKL_DCO_MAX_PDEVIATION 100
  1117. #define SKL_DCO_MAX_NDEVIATION 600
  1118. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  1119. uint64_t central_freq,
  1120. uint64_t dco_freq,
  1121. unsigned int divider)
  1122. {
  1123. uint64_t deviation;
  1124. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  1125. central_freq);
  1126. /* positive deviation */
  1127. if (dco_freq >= central_freq) {
  1128. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  1129. deviation < ctx->min_deviation) {
  1130. ctx->min_deviation = deviation;
  1131. ctx->central_freq = central_freq;
  1132. ctx->dco_freq = dco_freq;
  1133. ctx->p = divider;
  1134. }
  1135. /* negative deviation */
  1136. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  1137. deviation < ctx->min_deviation) {
  1138. ctx->min_deviation = deviation;
  1139. ctx->central_freq = central_freq;
  1140. ctx->dco_freq = dco_freq;
  1141. ctx->p = divider;
  1142. }
  1143. }
  1144. static void skl_wrpll_get_multipliers(unsigned int p,
  1145. unsigned int *p0 /* out */,
  1146. unsigned int *p1 /* out */,
  1147. unsigned int *p2 /* out */)
  1148. {
  1149. /* even dividers */
  1150. if (p % 2 == 0) {
  1151. unsigned int half = p / 2;
  1152. if (half == 1 || half == 2 || half == 3 || half == 5) {
  1153. *p0 = 2;
  1154. *p1 = 1;
  1155. *p2 = half;
  1156. } else if (half % 2 == 0) {
  1157. *p0 = 2;
  1158. *p1 = half / 2;
  1159. *p2 = 2;
  1160. } else if (half % 3 == 0) {
  1161. *p0 = 3;
  1162. *p1 = half / 3;
  1163. *p2 = 2;
  1164. } else if (half % 7 == 0) {
  1165. *p0 = 7;
  1166. *p1 = half / 7;
  1167. *p2 = 2;
  1168. }
  1169. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  1170. *p0 = 3;
  1171. *p1 = 1;
  1172. *p2 = p / 3;
  1173. } else if (p == 5 || p == 7) {
  1174. *p0 = p;
  1175. *p1 = 1;
  1176. *p2 = 1;
  1177. } else if (p == 15) {
  1178. *p0 = 3;
  1179. *p1 = 1;
  1180. *p2 = 5;
  1181. } else if (p == 21) {
  1182. *p0 = 7;
  1183. *p1 = 1;
  1184. *p2 = 3;
  1185. } else if (p == 35) {
  1186. *p0 = 7;
  1187. *p1 = 1;
  1188. *p2 = 5;
  1189. }
  1190. }
  1191. struct skl_wrpll_params {
  1192. uint32_t dco_fraction;
  1193. uint32_t dco_integer;
  1194. uint32_t qdiv_ratio;
  1195. uint32_t qdiv_mode;
  1196. uint32_t kdiv;
  1197. uint32_t pdiv;
  1198. uint32_t central_freq;
  1199. };
  1200. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  1201. uint64_t afe_clock,
  1202. uint64_t central_freq,
  1203. uint32_t p0, uint32_t p1, uint32_t p2)
  1204. {
  1205. uint64_t dco_freq;
  1206. switch (central_freq) {
  1207. case 9600000000ULL:
  1208. params->central_freq = 0;
  1209. break;
  1210. case 9000000000ULL:
  1211. params->central_freq = 1;
  1212. break;
  1213. case 8400000000ULL:
  1214. params->central_freq = 3;
  1215. }
  1216. switch (p0) {
  1217. case 1:
  1218. params->pdiv = 0;
  1219. break;
  1220. case 2:
  1221. params->pdiv = 1;
  1222. break;
  1223. case 3:
  1224. params->pdiv = 2;
  1225. break;
  1226. case 7:
  1227. params->pdiv = 4;
  1228. break;
  1229. default:
  1230. WARN(1, "Incorrect PDiv\n");
  1231. }
  1232. switch (p2) {
  1233. case 5:
  1234. params->kdiv = 0;
  1235. break;
  1236. case 2:
  1237. params->kdiv = 1;
  1238. break;
  1239. case 3:
  1240. params->kdiv = 2;
  1241. break;
  1242. case 1:
  1243. params->kdiv = 3;
  1244. break;
  1245. default:
  1246. WARN(1, "Incorrect KDiv\n");
  1247. }
  1248. params->qdiv_ratio = p1;
  1249. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1250. dco_freq = p0 * p1 * p2 * afe_clock;
  1251. /*
  1252. * Intermediate values are in Hz.
  1253. * Divide by MHz to match bsepc
  1254. */
  1255. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1256. params->dco_fraction =
  1257. div_u64((div_u64(dco_freq, 24) -
  1258. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1259. }
  1260. static bool
  1261. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1262. struct skl_wrpll_params *wrpll_params)
  1263. {
  1264. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1265. uint64_t dco_central_freq[3] = {8400000000ULL,
  1266. 9000000000ULL,
  1267. 9600000000ULL};
  1268. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1269. 24, 28, 30, 32, 36, 40, 42, 44,
  1270. 48, 52, 54, 56, 60, 64, 66, 68,
  1271. 70, 72, 76, 78, 80, 84, 88, 90,
  1272. 92, 96, 98 };
  1273. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1274. static const struct {
  1275. const int *list;
  1276. int n_dividers;
  1277. } dividers[] = {
  1278. { even_dividers, ARRAY_SIZE(even_dividers) },
  1279. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1280. };
  1281. struct skl_wrpll_context ctx;
  1282. unsigned int dco, d, i;
  1283. unsigned int p0, p1, p2;
  1284. skl_wrpll_context_init(&ctx);
  1285. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1286. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1287. for (i = 0; i < dividers[d].n_dividers; i++) {
  1288. unsigned int p = dividers[d].list[i];
  1289. uint64_t dco_freq = p * afe_clock;
  1290. skl_wrpll_try_divider(&ctx,
  1291. dco_central_freq[dco],
  1292. dco_freq,
  1293. p);
  1294. /*
  1295. * Skip the remaining dividers if we're sure to
  1296. * have found the definitive divider, we can't
  1297. * improve a 0 deviation.
  1298. */
  1299. if (ctx.min_deviation == 0)
  1300. goto skip_remaining_dividers;
  1301. }
  1302. }
  1303. skip_remaining_dividers:
  1304. /*
  1305. * If a solution is found with an even divider, prefer
  1306. * this one.
  1307. */
  1308. if (d == 0 && ctx.p)
  1309. break;
  1310. }
  1311. if (!ctx.p) {
  1312. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1313. return false;
  1314. }
  1315. /*
  1316. * gcc incorrectly analyses that these can be used without being
  1317. * initialized. To be fair, it's hard to guess.
  1318. */
  1319. p0 = p1 = p2 = 0;
  1320. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1321. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1322. p0, p1, p2);
  1323. return true;
  1324. }
  1325. static bool
  1326. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  1327. struct intel_crtc_state *crtc_state,
  1328. struct intel_encoder *intel_encoder)
  1329. {
  1330. struct intel_shared_dpll *pll;
  1331. uint32_t ctrl1, cfgcr1, cfgcr2;
  1332. int clock = crtc_state->port_clock;
  1333. /*
  1334. * See comment in intel_dpll_hw_state to understand why we always use 0
  1335. * as the DPLL id in this function.
  1336. */
  1337. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1338. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1339. struct skl_wrpll_params wrpll_params = { 0, };
  1340. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1341. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1342. return false;
  1343. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1344. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1345. wrpll_params.dco_integer;
  1346. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1347. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1348. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1349. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1350. wrpll_params.central_freq;
  1351. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1352. intel_encoder->type == INTEL_OUTPUT_DP_MST) {
  1353. switch (crtc_state->port_clock / 2) {
  1354. case 81000:
  1355. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1356. break;
  1357. case 135000:
  1358. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1359. break;
  1360. case 270000:
  1361. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1362. break;
  1363. }
  1364. cfgcr1 = cfgcr2 = 0;
  1365. } else if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  1366. return true;
  1367. } else
  1368. return false;
  1369. memset(&crtc_state->dpll_hw_state, 0,
  1370. sizeof(crtc_state->dpll_hw_state));
  1371. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1372. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1373. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1374. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1375. if (pll == NULL) {
  1376. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1377. pipe_name(intel_crtc->pipe));
  1378. return false;
  1379. }
  1380. /* shared DPLL id 0 is DPLL 1 */
  1381. crtc_state->ddi_pll_sel = pll->id + 1;
  1382. return true;
  1383. }
  1384. /* bxt clock parameters */
  1385. struct bxt_clk_div {
  1386. int clock;
  1387. uint32_t p1;
  1388. uint32_t p2;
  1389. uint32_t m2_int;
  1390. uint32_t m2_frac;
  1391. bool m2_frac_en;
  1392. uint32_t n;
  1393. };
  1394. /* pre-calculated values for DP linkrates */
  1395. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1396. {162000, 4, 2, 32, 1677722, 1, 1},
  1397. {270000, 4, 1, 27, 0, 0, 1},
  1398. {540000, 2, 1, 27, 0, 0, 1},
  1399. {216000, 3, 2, 32, 1677722, 1, 1},
  1400. {243000, 4, 1, 24, 1258291, 1, 1},
  1401. {324000, 4, 1, 32, 1677722, 1, 1},
  1402. {432000, 3, 1, 32, 1677722, 1, 1}
  1403. };
  1404. static bool
  1405. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  1406. struct intel_crtc_state *crtc_state,
  1407. struct intel_encoder *intel_encoder)
  1408. {
  1409. struct intel_shared_dpll *pll;
  1410. struct bxt_clk_div clk_div = {0};
  1411. int vco = 0;
  1412. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1413. uint32_t lanestagger;
  1414. int clock = crtc_state->port_clock;
  1415. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1416. intel_clock_t best_clock;
  1417. /* Calculate HDMI div */
  1418. /*
  1419. * FIXME: tie the following calculation into
  1420. * i9xx_crtc_compute_clock
  1421. */
  1422. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1423. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1424. clock, pipe_name(intel_crtc->pipe));
  1425. return false;
  1426. }
  1427. clk_div.p1 = best_clock.p1;
  1428. clk_div.p2 = best_clock.p2;
  1429. WARN_ON(best_clock.m1 != 2);
  1430. clk_div.n = best_clock.n;
  1431. clk_div.m2_int = best_clock.m2 >> 22;
  1432. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1433. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1434. vco = best_clock.vco;
  1435. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1436. intel_encoder->type == INTEL_OUTPUT_EDP) {
  1437. int i;
  1438. clk_div = bxt_dp_clk_val[0];
  1439. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1440. if (bxt_dp_clk_val[i].clock == clock) {
  1441. clk_div = bxt_dp_clk_val[i];
  1442. break;
  1443. }
  1444. }
  1445. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1446. }
  1447. if (vco >= 6200000 && vco <= 6700000) {
  1448. prop_coef = 4;
  1449. int_coef = 9;
  1450. gain_ctl = 3;
  1451. targ_cnt = 8;
  1452. } else if ((vco > 5400000 && vco < 6200000) ||
  1453. (vco >= 4800000 && vco < 5400000)) {
  1454. prop_coef = 5;
  1455. int_coef = 11;
  1456. gain_ctl = 3;
  1457. targ_cnt = 9;
  1458. } else if (vco == 5400000) {
  1459. prop_coef = 3;
  1460. int_coef = 8;
  1461. gain_ctl = 1;
  1462. targ_cnt = 9;
  1463. } else {
  1464. DRM_ERROR("Invalid VCO\n");
  1465. return false;
  1466. }
  1467. memset(&crtc_state->dpll_hw_state, 0,
  1468. sizeof(crtc_state->dpll_hw_state));
  1469. if (clock > 270000)
  1470. lanestagger = 0x18;
  1471. else if (clock > 135000)
  1472. lanestagger = 0x0d;
  1473. else if (clock > 67000)
  1474. lanestagger = 0x07;
  1475. else if (clock > 33000)
  1476. lanestagger = 0x04;
  1477. else
  1478. lanestagger = 0x02;
  1479. crtc_state->dpll_hw_state.ebb0 =
  1480. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1481. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1482. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1483. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1484. if (clk_div.m2_frac_en)
  1485. crtc_state->dpll_hw_state.pll3 =
  1486. PORT_PLL_M2_FRAC_ENABLE;
  1487. crtc_state->dpll_hw_state.pll6 =
  1488. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1489. crtc_state->dpll_hw_state.pll6 |=
  1490. PORT_PLL_GAIN_CTL(gain_ctl);
  1491. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1492. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1493. crtc_state->dpll_hw_state.pll10 =
  1494. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1495. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1496. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1497. crtc_state->dpll_hw_state.pcsdw12 =
  1498. LANESTAGGER_STRAP_OVRD | lanestagger;
  1499. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1500. if (pll == NULL) {
  1501. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1502. pipe_name(intel_crtc->pipe));
  1503. return false;
  1504. }
  1505. /* shared DPLL id 0 is DPLL A */
  1506. crtc_state->ddi_pll_sel = pll->id;
  1507. return true;
  1508. }
  1509. /*
  1510. * Tries to find a *shared* PLL for the CRTC and store it in
  1511. * intel_crtc->ddi_pll_sel.
  1512. *
  1513. * For private DPLLs, compute_config() should do the selection for us. This
  1514. * function should be folded into compute_config() eventually.
  1515. */
  1516. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  1517. struct intel_crtc_state *crtc_state)
  1518. {
  1519. struct drm_device *dev = intel_crtc->base.dev;
  1520. struct intel_encoder *intel_encoder =
  1521. intel_ddi_get_crtc_new_encoder(crtc_state);
  1522. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1523. return skl_ddi_pll_select(intel_crtc, crtc_state,
  1524. intel_encoder);
  1525. else if (IS_BROXTON(dev))
  1526. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  1527. intel_encoder);
  1528. else
  1529. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  1530. intel_encoder);
  1531. }
  1532. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1533. {
  1534. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1535. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1536. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1537. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1538. int type = intel_encoder->type;
  1539. uint32_t temp;
  1540. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1541. temp = TRANS_MSA_SYNC_CLK;
  1542. switch (intel_crtc->config->pipe_bpp) {
  1543. case 18:
  1544. temp |= TRANS_MSA_6_BPC;
  1545. break;
  1546. case 24:
  1547. temp |= TRANS_MSA_8_BPC;
  1548. break;
  1549. case 30:
  1550. temp |= TRANS_MSA_10_BPC;
  1551. break;
  1552. case 36:
  1553. temp |= TRANS_MSA_12_BPC;
  1554. break;
  1555. default:
  1556. BUG();
  1557. }
  1558. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1559. }
  1560. }
  1561. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1562. {
  1563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1564. struct drm_device *dev = crtc->dev;
  1565. struct drm_i915_private *dev_priv = dev->dev_private;
  1566. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1567. uint32_t temp;
  1568. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1569. if (state == true)
  1570. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1571. else
  1572. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1573. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1574. }
  1575. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1576. {
  1577. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1578. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1579. struct drm_encoder *encoder = &intel_encoder->base;
  1580. struct drm_device *dev = crtc->dev;
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. enum pipe pipe = intel_crtc->pipe;
  1583. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1584. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1585. int type = intel_encoder->type;
  1586. uint32_t temp;
  1587. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1588. temp = TRANS_DDI_FUNC_ENABLE;
  1589. temp |= TRANS_DDI_SELECT_PORT(port);
  1590. switch (intel_crtc->config->pipe_bpp) {
  1591. case 18:
  1592. temp |= TRANS_DDI_BPC_6;
  1593. break;
  1594. case 24:
  1595. temp |= TRANS_DDI_BPC_8;
  1596. break;
  1597. case 30:
  1598. temp |= TRANS_DDI_BPC_10;
  1599. break;
  1600. case 36:
  1601. temp |= TRANS_DDI_BPC_12;
  1602. break;
  1603. default:
  1604. BUG();
  1605. }
  1606. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1607. temp |= TRANS_DDI_PVSYNC;
  1608. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1609. temp |= TRANS_DDI_PHSYNC;
  1610. if (cpu_transcoder == TRANSCODER_EDP) {
  1611. switch (pipe) {
  1612. case PIPE_A:
  1613. /* On Haswell, can only use the always-on power well for
  1614. * eDP when not using the panel fitter, and when not
  1615. * using motion blur mitigation (which we don't
  1616. * support). */
  1617. if (IS_HASWELL(dev) &&
  1618. (intel_crtc->config->pch_pfit.enabled ||
  1619. intel_crtc->config->pch_pfit.force_thru))
  1620. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1621. else
  1622. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1623. break;
  1624. case PIPE_B:
  1625. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1626. break;
  1627. case PIPE_C:
  1628. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1629. break;
  1630. default:
  1631. BUG();
  1632. break;
  1633. }
  1634. }
  1635. if (type == INTEL_OUTPUT_HDMI) {
  1636. if (intel_crtc->config->has_hdmi_sink)
  1637. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1638. else
  1639. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1640. } else if (type == INTEL_OUTPUT_ANALOG) {
  1641. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1642. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1643. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1644. type == INTEL_OUTPUT_EDP) {
  1645. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1646. if (intel_dp->is_mst) {
  1647. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1648. } else
  1649. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1650. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1651. } else if (type == INTEL_OUTPUT_DP_MST) {
  1652. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1653. if (intel_dp->is_mst) {
  1654. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1655. } else
  1656. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1657. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1658. } else {
  1659. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1660. intel_encoder->type, pipe_name(pipe));
  1661. }
  1662. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1663. }
  1664. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1665. enum transcoder cpu_transcoder)
  1666. {
  1667. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1668. uint32_t val = I915_READ(reg);
  1669. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1670. val |= TRANS_DDI_PORT_NONE;
  1671. I915_WRITE(reg, val);
  1672. }
  1673. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1674. {
  1675. struct drm_device *dev = intel_connector->base.dev;
  1676. struct drm_i915_private *dev_priv = dev->dev_private;
  1677. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1678. int type = intel_connector->base.connector_type;
  1679. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1680. enum pipe pipe = 0;
  1681. enum transcoder cpu_transcoder;
  1682. enum intel_display_power_domain power_domain;
  1683. uint32_t tmp;
  1684. bool ret;
  1685. power_domain = intel_display_port_power_domain(intel_encoder);
  1686. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1687. return false;
  1688. if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
  1689. ret = false;
  1690. goto out;
  1691. }
  1692. if (port == PORT_A)
  1693. cpu_transcoder = TRANSCODER_EDP;
  1694. else
  1695. cpu_transcoder = (enum transcoder) pipe;
  1696. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1697. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1698. case TRANS_DDI_MODE_SELECT_HDMI:
  1699. case TRANS_DDI_MODE_SELECT_DVI:
  1700. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1701. break;
  1702. case TRANS_DDI_MODE_SELECT_DP_SST:
  1703. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1704. type == DRM_MODE_CONNECTOR_DisplayPort;
  1705. break;
  1706. case TRANS_DDI_MODE_SELECT_DP_MST:
  1707. /* if the transcoder is in MST state then
  1708. * connector isn't connected */
  1709. ret = false;
  1710. break;
  1711. case TRANS_DDI_MODE_SELECT_FDI:
  1712. ret = type == DRM_MODE_CONNECTOR_VGA;
  1713. break;
  1714. default:
  1715. ret = false;
  1716. break;
  1717. }
  1718. out:
  1719. intel_display_power_put(dev_priv, power_domain);
  1720. return ret;
  1721. }
  1722. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1723. enum pipe *pipe)
  1724. {
  1725. struct drm_device *dev = encoder->base.dev;
  1726. struct drm_i915_private *dev_priv = dev->dev_private;
  1727. enum port port = intel_ddi_get_encoder_port(encoder);
  1728. enum intel_display_power_domain power_domain;
  1729. u32 tmp;
  1730. int i;
  1731. bool ret;
  1732. power_domain = intel_display_port_power_domain(encoder);
  1733. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1734. return false;
  1735. ret = false;
  1736. tmp = I915_READ(DDI_BUF_CTL(port));
  1737. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1738. goto out;
  1739. if (port == PORT_A) {
  1740. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1741. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1742. case TRANS_DDI_EDP_INPUT_A_ON:
  1743. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1744. *pipe = PIPE_A;
  1745. break;
  1746. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1747. *pipe = PIPE_B;
  1748. break;
  1749. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1750. *pipe = PIPE_C;
  1751. break;
  1752. }
  1753. ret = true;
  1754. goto out;
  1755. }
  1756. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1757. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1758. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1759. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1760. TRANS_DDI_MODE_SELECT_DP_MST)
  1761. goto out;
  1762. *pipe = i;
  1763. ret = true;
  1764. goto out;
  1765. }
  1766. }
  1767. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1768. out:
  1769. intel_display_power_put(dev_priv, power_domain);
  1770. return ret;
  1771. }
  1772. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1773. {
  1774. struct drm_crtc *crtc = &intel_crtc->base;
  1775. struct drm_device *dev = crtc->dev;
  1776. struct drm_i915_private *dev_priv = dev->dev_private;
  1777. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1778. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1779. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1780. if (cpu_transcoder != TRANSCODER_EDP)
  1781. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1782. TRANS_CLK_SEL_PORT(port));
  1783. }
  1784. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1785. {
  1786. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1787. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1788. if (cpu_transcoder != TRANSCODER_EDP)
  1789. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1790. TRANS_CLK_SEL_DISABLED);
  1791. }
  1792. static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1793. u32 level, enum port port, int type)
  1794. {
  1795. const struct ddi_buf_trans *ddi_translations;
  1796. uint8_t iboost;
  1797. uint8_t dp_iboost, hdmi_iboost;
  1798. int n_entries;
  1799. u32 reg;
  1800. /* VBT may override standard boost values */
  1801. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1802. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1803. if (type == INTEL_OUTPUT_DISPLAYPORT) {
  1804. if (dp_iboost) {
  1805. iboost = dp_iboost;
  1806. } else {
  1807. ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
  1808. iboost = ddi_translations[level].i_boost;
  1809. }
  1810. } else if (type == INTEL_OUTPUT_EDP) {
  1811. if (dp_iboost) {
  1812. iboost = dp_iboost;
  1813. } else {
  1814. ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
  1815. if (WARN_ON(port != PORT_A &&
  1816. port != PORT_E && n_entries > 9))
  1817. n_entries = 9;
  1818. iboost = ddi_translations[level].i_boost;
  1819. }
  1820. } else if (type == INTEL_OUTPUT_HDMI) {
  1821. if (hdmi_iboost) {
  1822. iboost = hdmi_iboost;
  1823. } else {
  1824. ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1825. iboost = ddi_translations[level].i_boost;
  1826. }
  1827. } else {
  1828. return;
  1829. }
  1830. /* Make sure that the requested I_boost is valid */
  1831. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1832. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1833. return;
  1834. }
  1835. reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1836. reg &= ~BALANCE_LEG_MASK(port);
  1837. reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
  1838. if (iboost)
  1839. reg |= iboost << BALANCE_LEG_SHIFT(port);
  1840. else
  1841. reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
  1842. I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
  1843. }
  1844. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  1845. u32 level, enum port port, int type)
  1846. {
  1847. const struct bxt_ddi_buf_trans *ddi_translations;
  1848. u32 n_entries, i;
  1849. uint32_t val;
  1850. if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
  1851. n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  1852. ddi_translations = bxt_ddi_translations_edp;
  1853. } else if (type == INTEL_OUTPUT_DISPLAYPORT
  1854. || type == INTEL_OUTPUT_EDP) {
  1855. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1856. ddi_translations = bxt_ddi_translations_dp;
  1857. } else if (type == INTEL_OUTPUT_HDMI) {
  1858. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1859. ddi_translations = bxt_ddi_translations_hdmi;
  1860. } else {
  1861. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1862. type);
  1863. return;
  1864. }
  1865. /* Check if default value has to be used */
  1866. if (level >= n_entries ||
  1867. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1868. for (i = 0; i < n_entries; i++) {
  1869. if (ddi_translations[i].default_index) {
  1870. level = i;
  1871. break;
  1872. }
  1873. }
  1874. }
  1875. /*
  1876. * While we write to the group register to program all lanes at once we
  1877. * can read only lane registers and we pick lanes 0/1 for that.
  1878. */
  1879. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1880. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1881. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1882. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1883. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1884. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1885. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1886. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1887. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1888. val &= ~SCALE_DCOMP_METHOD;
  1889. if (ddi_translations[level].enable)
  1890. val |= SCALE_DCOMP_METHOD;
  1891. if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
  1892. DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
  1893. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1894. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1895. val &= ~DE_EMPHASIS;
  1896. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1897. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1898. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1899. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1900. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1901. }
  1902. static uint32_t translate_signal_level(int signal_levels)
  1903. {
  1904. uint32_t level;
  1905. switch (signal_levels) {
  1906. default:
  1907. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1908. signal_levels);
  1909. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1910. level = 0;
  1911. break;
  1912. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1913. level = 1;
  1914. break;
  1915. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1916. level = 2;
  1917. break;
  1918. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1919. level = 3;
  1920. break;
  1921. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1922. level = 4;
  1923. break;
  1924. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1925. level = 5;
  1926. break;
  1927. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1928. level = 6;
  1929. break;
  1930. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1931. level = 7;
  1932. break;
  1933. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1934. level = 8;
  1935. break;
  1936. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1937. level = 9;
  1938. break;
  1939. }
  1940. return level;
  1941. }
  1942. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1943. {
  1944. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1945. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1946. struct intel_encoder *encoder = &dport->base;
  1947. uint8_t train_set = intel_dp->train_set[0];
  1948. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1949. DP_TRAIN_PRE_EMPHASIS_MASK);
  1950. enum port port = dport->port;
  1951. uint32_t level;
  1952. level = translate_signal_level(signal_levels);
  1953. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1954. skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
  1955. else if (IS_BROXTON(dev_priv))
  1956. bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
  1957. return DDI_BUF_TRANS_SELECT(level);
  1958. }
  1959. void intel_ddi_clk_select(struct intel_encoder *encoder,
  1960. const struct intel_crtc_state *pipe_config)
  1961. {
  1962. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1963. enum port port = intel_ddi_get_encoder_port(encoder);
  1964. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1965. uint32_t dpll = pipe_config->ddi_pll_sel;
  1966. uint32_t val;
  1967. /*
  1968. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1969. * opposed to shared) on SKL
  1970. */
  1971. if (encoder->type == INTEL_OUTPUT_EDP) {
  1972. WARN_ON(dpll != SKL_DPLL0);
  1973. val = I915_READ(DPLL_CTRL1);
  1974. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1975. DPLL_CTRL1_SSC(dpll) |
  1976. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  1977. val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
  1978. I915_WRITE(DPLL_CTRL1, val);
  1979. POSTING_READ(DPLL_CTRL1);
  1980. }
  1981. /* DDI -> PLL mapping */
  1982. val = I915_READ(DPLL_CTRL2);
  1983. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1984. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1985. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1986. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1987. I915_WRITE(DPLL_CTRL2, val);
  1988. } else if (INTEL_INFO(dev_priv)->gen < 9) {
  1989. WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
  1990. I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
  1991. }
  1992. }
  1993. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1994. {
  1995. struct drm_encoder *encoder = &intel_encoder->base;
  1996. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  1997. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1998. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1999. int type = intel_encoder->type;
  2000. intel_prepare_ddi_buffer(intel_encoder);
  2001. if (type == INTEL_OUTPUT_EDP) {
  2002. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2003. intel_edp_panel_on(intel_dp);
  2004. }
  2005. intel_ddi_clk_select(intel_encoder, crtc->config);
  2006. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2007. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2008. intel_dp_set_link_params(intel_dp, crtc->config);
  2009. intel_ddi_init_dp_buf_reg(intel_encoder);
  2010. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  2011. intel_dp_start_link_train(intel_dp);
  2012. if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
  2013. intel_dp_stop_link_train(intel_dp);
  2014. } else if (type == INTEL_OUTPUT_HDMI) {
  2015. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  2016. intel_hdmi->set_infoframes(encoder,
  2017. crtc->config->has_hdmi_sink,
  2018. &crtc->config->base.adjusted_mode);
  2019. }
  2020. }
  2021. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  2022. {
  2023. struct drm_encoder *encoder = &intel_encoder->base;
  2024. struct drm_device *dev = encoder->dev;
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2027. int type = intel_encoder->type;
  2028. uint32_t val;
  2029. bool wait = false;
  2030. val = I915_READ(DDI_BUF_CTL(port));
  2031. if (val & DDI_BUF_CTL_ENABLE) {
  2032. val &= ~DDI_BUF_CTL_ENABLE;
  2033. I915_WRITE(DDI_BUF_CTL(port), val);
  2034. wait = true;
  2035. }
  2036. val = I915_READ(DP_TP_CTL(port));
  2037. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2038. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2039. I915_WRITE(DP_TP_CTL(port), val);
  2040. if (wait)
  2041. intel_wait_ddi_buf_idle(dev_priv, port);
  2042. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2043. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2044. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2045. intel_edp_panel_vdd_on(intel_dp);
  2046. intel_edp_panel_off(intel_dp);
  2047. }
  2048. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2049. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  2050. DPLL_CTRL2_DDI_CLK_OFF(port)));
  2051. else if (INTEL_INFO(dev)->gen < 9)
  2052. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2053. }
  2054. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  2055. {
  2056. struct drm_encoder *encoder = &intel_encoder->base;
  2057. struct drm_crtc *crtc = encoder->crtc;
  2058. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2059. struct drm_device *dev = encoder->dev;
  2060. struct drm_i915_private *dev_priv = dev->dev_private;
  2061. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2062. int type = intel_encoder->type;
  2063. if (type == INTEL_OUTPUT_HDMI) {
  2064. struct intel_digital_port *intel_dig_port =
  2065. enc_to_dig_port(encoder);
  2066. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2067. * are ignored so nothing special needs to be done besides
  2068. * enabling the port.
  2069. */
  2070. I915_WRITE(DDI_BUF_CTL(port),
  2071. intel_dig_port->saved_port_bits |
  2072. DDI_BUF_CTL_ENABLE);
  2073. } else if (type == INTEL_OUTPUT_EDP) {
  2074. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2075. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  2076. intel_dp_stop_link_train(intel_dp);
  2077. intel_edp_backlight_on(intel_dp);
  2078. intel_psr_enable(intel_dp);
  2079. intel_edp_drrs_enable(intel_dp);
  2080. }
  2081. if (intel_crtc->config->has_audio) {
  2082. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  2083. intel_audio_codec_enable(intel_encoder);
  2084. }
  2085. }
  2086. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  2087. {
  2088. struct drm_encoder *encoder = &intel_encoder->base;
  2089. struct drm_crtc *crtc = encoder->crtc;
  2090. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2091. int type = intel_encoder->type;
  2092. struct drm_device *dev = encoder->dev;
  2093. struct drm_i915_private *dev_priv = dev->dev_private;
  2094. if (intel_crtc->config->has_audio) {
  2095. intel_audio_codec_disable(intel_encoder);
  2096. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2097. }
  2098. if (type == INTEL_OUTPUT_EDP) {
  2099. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2100. intel_edp_drrs_disable(intel_dp);
  2101. intel_psr_disable(intel_dp);
  2102. intel_edp_backlight_off(intel_dp);
  2103. }
  2104. }
  2105. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  2106. struct intel_shared_dpll *pll)
  2107. {
  2108. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  2109. POSTING_READ(WRPLL_CTL(pll->id));
  2110. udelay(20);
  2111. }
  2112. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  2113. struct intel_shared_dpll *pll)
  2114. {
  2115. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  2116. POSTING_READ(SPLL_CTL);
  2117. udelay(20);
  2118. }
  2119. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  2120. struct intel_shared_dpll *pll)
  2121. {
  2122. uint32_t val;
  2123. val = I915_READ(WRPLL_CTL(pll->id));
  2124. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  2125. POSTING_READ(WRPLL_CTL(pll->id));
  2126. }
  2127. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  2128. struct intel_shared_dpll *pll)
  2129. {
  2130. uint32_t val;
  2131. val = I915_READ(SPLL_CTL);
  2132. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  2133. POSTING_READ(SPLL_CTL);
  2134. }
  2135. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  2136. struct intel_shared_dpll *pll,
  2137. struct intel_dpll_hw_state *hw_state)
  2138. {
  2139. uint32_t val;
  2140. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2141. return false;
  2142. val = I915_READ(WRPLL_CTL(pll->id));
  2143. hw_state->wrpll = val;
  2144. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2145. return val & WRPLL_PLL_ENABLE;
  2146. }
  2147. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  2148. struct intel_shared_dpll *pll,
  2149. struct intel_dpll_hw_state *hw_state)
  2150. {
  2151. uint32_t val;
  2152. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2153. return false;
  2154. val = I915_READ(SPLL_CTL);
  2155. hw_state->spll = val;
  2156. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2157. return val & SPLL_PLL_ENABLE;
  2158. }
  2159. static const char * const hsw_ddi_pll_names[] = {
  2160. "WRPLL 1",
  2161. "WRPLL 2",
  2162. "SPLL"
  2163. };
  2164. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  2165. {
  2166. int i;
  2167. dev_priv->num_shared_dpll = 3;
  2168. for (i = 0; i < 2; i++) {
  2169. dev_priv->shared_dplls[i].id = i;
  2170. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2171. dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
  2172. dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
  2173. dev_priv->shared_dplls[i].get_hw_state =
  2174. hsw_ddi_wrpll_get_hw_state;
  2175. }
  2176. /* SPLL is special, but needs to be initialized anyway.. */
  2177. dev_priv->shared_dplls[i].id = i;
  2178. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2179. dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
  2180. dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
  2181. dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
  2182. }
  2183. static const char * const skl_ddi_pll_names[] = {
  2184. "DPLL 1",
  2185. "DPLL 2",
  2186. "DPLL 3",
  2187. };
  2188. struct skl_dpll_regs {
  2189. i915_reg_t ctl, cfgcr1, cfgcr2;
  2190. };
  2191. /* this array is indexed by the *shared* pll id */
  2192. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  2193. {
  2194. /* DPLL 1 */
  2195. .ctl = LCPLL2_CTL,
  2196. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  2197. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  2198. },
  2199. {
  2200. /* DPLL 2 */
  2201. .ctl = WRPLL_CTL(0),
  2202. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  2203. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  2204. },
  2205. {
  2206. /* DPLL 3 */
  2207. .ctl = WRPLL_CTL(1),
  2208. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  2209. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  2210. },
  2211. };
  2212. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2213. struct intel_shared_dpll *pll)
  2214. {
  2215. uint32_t val;
  2216. unsigned int dpll;
  2217. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2218. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2219. dpll = pll->id + 1;
  2220. val = I915_READ(DPLL_CTRL1);
  2221. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  2222. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  2223. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  2224. I915_WRITE(DPLL_CTRL1, val);
  2225. POSTING_READ(DPLL_CTRL1);
  2226. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  2227. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  2228. POSTING_READ(regs[pll->id].cfgcr1);
  2229. POSTING_READ(regs[pll->id].cfgcr2);
  2230. /* the enable bit is always bit 31 */
  2231. I915_WRITE(regs[pll->id].ctl,
  2232. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  2233. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  2234. DRM_ERROR("DPLL %d not locked\n", dpll);
  2235. }
  2236. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2237. struct intel_shared_dpll *pll)
  2238. {
  2239. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2240. /* the enable bit is always bit 31 */
  2241. I915_WRITE(regs[pll->id].ctl,
  2242. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  2243. POSTING_READ(regs[pll->id].ctl);
  2244. }
  2245. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2246. struct intel_shared_dpll *pll,
  2247. struct intel_dpll_hw_state *hw_state)
  2248. {
  2249. uint32_t val;
  2250. unsigned int dpll;
  2251. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2252. bool ret;
  2253. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2254. return false;
  2255. ret = false;
  2256. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2257. dpll = pll->id + 1;
  2258. val = I915_READ(regs[pll->id].ctl);
  2259. if (!(val & LCPLL_PLL_ENABLE))
  2260. goto out;
  2261. val = I915_READ(DPLL_CTRL1);
  2262. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  2263. /* avoid reading back stale values if HDMI mode is not enabled */
  2264. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  2265. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  2266. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  2267. }
  2268. ret = true;
  2269. out:
  2270. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2271. return ret;
  2272. }
  2273. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  2274. {
  2275. int i;
  2276. dev_priv->num_shared_dpll = 3;
  2277. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2278. dev_priv->shared_dplls[i].id = i;
  2279. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  2280. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  2281. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  2282. dev_priv->shared_dplls[i].get_hw_state =
  2283. skl_ddi_pll_get_hw_state;
  2284. }
  2285. }
  2286. static void broxton_phy_init(struct drm_i915_private *dev_priv,
  2287. enum dpio_phy phy)
  2288. {
  2289. enum port port;
  2290. uint32_t val;
  2291. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  2292. val |= GT_DISPLAY_POWER_ON(phy);
  2293. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  2294. /* Considering 10ms timeout until BSpec is updated */
  2295. if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
  2296. DRM_ERROR("timeout during PHY%d power on\n", phy);
  2297. for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
  2298. port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
  2299. int lane;
  2300. for (lane = 0; lane < 4; lane++) {
  2301. val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  2302. /*
  2303. * Note that on CHV this flag is called UPAR, but has
  2304. * the same function.
  2305. */
  2306. val &= ~LATENCY_OPTIM;
  2307. if (lane != 1)
  2308. val |= LATENCY_OPTIM;
  2309. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  2310. }
  2311. }
  2312. /* Program PLL Rcomp code offset */
  2313. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  2314. val &= ~IREF0RC_OFFSET_MASK;
  2315. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  2316. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  2317. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  2318. val &= ~IREF1RC_OFFSET_MASK;
  2319. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  2320. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  2321. /* Program power gating */
  2322. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  2323. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  2324. SUS_CLK_CONFIG;
  2325. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  2326. if (phy == DPIO_PHY0) {
  2327. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  2328. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  2329. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  2330. }
  2331. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  2332. val &= ~OCL2_LDOFUSE_PWR_DIS;
  2333. /*
  2334. * On PHY1 disable power on the second channel, since no port is
  2335. * connected there. On PHY0 both channels have a port, so leave it
  2336. * enabled.
  2337. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  2338. * power down the second channel on PHY0 as well.
  2339. */
  2340. if (phy == DPIO_PHY1)
  2341. val |= OCL2_LDOFUSE_PWR_DIS;
  2342. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  2343. if (phy == DPIO_PHY0) {
  2344. uint32_t grc_code;
  2345. /*
  2346. * PHY0 isn't connected to an RCOMP resistor so copy over
  2347. * the corresponding calibrated value from PHY1, and disable
  2348. * the automatic calibration on PHY0.
  2349. */
  2350. if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
  2351. 10))
  2352. DRM_ERROR("timeout waiting for PHY1 GRC\n");
  2353. val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
  2354. val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  2355. grc_code = val << GRC_CODE_FAST_SHIFT |
  2356. val << GRC_CODE_SLOW_SHIFT |
  2357. val;
  2358. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  2359. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  2360. val |= GRC_DIS | GRC_RDY_OVRD;
  2361. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  2362. }
  2363. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2364. val |= COMMON_RESET_DIS;
  2365. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2366. }
  2367. void broxton_ddi_phy_init(struct drm_device *dev)
  2368. {
  2369. /* Enable PHY1 first since it provides Rcomp for PHY0 */
  2370. broxton_phy_init(dev->dev_private, DPIO_PHY1);
  2371. broxton_phy_init(dev->dev_private, DPIO_PHY0);
  2372. }
  2373. static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
  2374. enum dpio_phy phy)
  2375. {
  2376. uint32_t val;
  2377. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2378. val &= ~COMMON_RESET_DIS;
  2379. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2380. }
  2381. void broxton_ddi_phy_uninit(struct drm_device *dev)
  2382. {
  2383. struct drm_i915_private *dev_priv = dev->dev_private;
  2384. broxton_phy_uninit(dev_priv, DPIO_PHY1);
  2385. broxton_phy_uninit(dev_priv, DPIO_PHY0);
  2386. /* FIXME: do this in broxton_phy_uninit per phy */
  2387. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
  2388. }
  2389. static const char * const bxt_ddi_pll_names[] = {
  2390. "PORT PLL A",
  2391. "PORT PLL B",
  2392. "PORT PLL C",
  2393. };
  2394. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2395. struct intel_shared_dpll *pll)
  2396. {
  2397. uint32_t temp;
  2398. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2399. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2400. temp &= ~PORT_PLL_REF_SEL;
  2401. /* Non-SSC reference */
  2402. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2403. /* Disable 10 bit clock */
  2404. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2405. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2406. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2407. /* Write P1 & P2 */
  2408. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2409. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  2410. temp |= pll->config.hw_state.ebb0;
  2411. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  2412. /* Write M2 integer */
  2413. temp = I915_READ(BXT_PORT_PLL(port, 0));
  2414. temp &= ~PORT_PLL_M2_MASK;
  2415. temp |= pll->config.hw_state.pll0;
  2416. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  2417. /* Write N */
  2418. temp = I915_READ(BXT_PORT_PLL(port, 1));
  2419. temp &= ~PORT_PLL_N_MASK;
  2420. temp |= pll->config.hw_state.pll1;
  2421. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  2422. /* Write M2 fraction */
  2423. temp = I915_READ(BXT_PORT_PLL(port, 2));
  2424. temp &= ~PORT_PLL_M2_FRAC_MASK;
  2425. temp |= pll->config.hw_state.pll2;
  2426. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  2427. /* Write M2 fraction enable */
  2428. temp = I915_READ(BXT_PORT_PLL(port, 3));
  2429. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  2430. temp |= pll->config.hw_state.pll3;
  2431. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  2432. /* Write coeff */
  2433. temp = I915_READ(BXT_PORT_PLL(port, 6));
  2434. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  2435. temp &= ~PORT_PLL_INT_COEFF_MASK;
  2436. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  2437. temp |= pll->config.hw_state.pll6;
  2438. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  2439. /* Write calibration val */
  2440. temp = I915_READ(BXT_PORT_PLL(port, 8));
  2441. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  2442. temp |= pll->config.hw_state.pll8;
  2443. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  2444. temp = I915_READ(BXT_PORT_PLL(port, 9));
  2445. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  2446. temp |= pll->config.hw_state.pll9;
  2447. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  2448. temp = I915_READ(BXT_PORT_PLL(port, 10));
  2449. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  2450. temp &= ~PORT_PLL_DCO_AMP_MASK;
  2451. temp |= pll->config.hw_state.pll10;
  2452. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  2453. /* Recalibrate with new settings */
  2454. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2455. temp |= PORT_PLL_RECALIBRATE;
  2456. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2457. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2458. temp |= pll->config.hw_state.ebb4;
  2459. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2460. /* Enable PLL */
  2461. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2462. temp |= PORT_PLL_ENABLE;
  2463. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2464. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2465. if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  2466. PORT_PLL_LOCK), 200))
  2467. DRM_ERROR("PLL %d not locked\n", port);
  2468. /*
  2469. * While we write to the group register to program all lanes at once we
  2470. * can read only lane registers and we pick lanes 0/1 for that.
  2471. */
  2472. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2473. temp &= ~LANE_STAGGER_MASK;
  2474. temp &= ~LANESTAGGER_STRAP_OVRD;
  2475. temp |= pll->config.hw_state.pcsdw12;
  2476. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  2477. }
  2478. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2479. struct intel_shared_dpll *pll)
  2480. {
  2481. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2482. uint32_t temp;
  2483. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2484. temp &= ~PORT_PLL_ENABLE;
  2485. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2486. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2487. }
  2488. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2489. struct intel_shared_dpll *pll,
  2490. struct intel_dpll_hw_state *hw_state)
  2491. {
  2492. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2493. uint32_t val;
  2494. bool ret;
  2495. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2496. return false;
  2497. ret = false;
  2498. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2499. if (!(val & PORT_PLL_ENABLE))
  2500. goto out;
  2501. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2502. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  2503. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2504. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  2505. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  2506. hw_state->pll0 &= PORT_PLL_M2_MASK;
  2507. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  2508. hw_state->pll1 &= PORT_PLL_N_MASK;
  2509. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  2510. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  2511. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  2512. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  2513. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  2514. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  2515. PORT_PLL_INT_COEFF_MASK |
  2516. PORT_PLL_GAIN_CTL_MASK;
  2517. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  2518. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  2519. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  2520. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  2521. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  2522. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  2523. PORT_PLL_DCO_AMP_MASK;
  2524. /*
  2525. * While we write to the group register to program all lanes at once we
  2526. * can read only lane registers. We configure all lanes the same way, so
  2527. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  2528. */
  2529. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2530. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  2531. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  2532. hw_state->pcsdw12,
  2533. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  2534. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  2535. ret = true;
  2536. out:
  2537. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2538. return ret;
  2539. }
  2540. static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
  2541. {
  2542. int i;
  2543. dev_priv->num_shared_dpll = 3;
  2544. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2545. dev_priv->shared_dplls[i].id = i;
  2546. dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
  2547. dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
  2548. dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
  2549. dev_priv->shared_dplls[i].get_hw_state =
  2550. bxt_ddi_pll_get_hw_state;
  2551. }
  2552. }
  2553. void intel_ddi_pll_init(struct drm_device *dev)
  2554. {
  2555. struct drm_i915_private *dev_priv = dev->dev_private;
  2556. uint32_t val = I915_READ(LCPLL_CTL);
  2557. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2558. skl_shared_dplls_init(dev_priv);
  2559. else if (IS_BROXTON(dev))
  2560. bxt_shared_dplls_init(dev_priv);
  2561. else
  2562. hsw_shared_dplls_init(dev_priv);
  2563. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  2564. int cdclk_freq;
  2565. cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  2566. dev_priv->skl_boot_cdclk = cdclk_freq;
  2567. if (skl_sanitize_cdclk(dev_priv))
  2568. DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
  2569. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  2570. DRM_ERROR("LCPLL1 is disabled\n");
  2571. } else if (IS_BROXTON(dev)) {
  2572. broxton_init_cdclk(dev);
  2573. broxton_ddi_phy_init(dev);
  2574. } else {
  2575. /*
  2576. * The LCPLL register should be turned on by the BIOS. For now
  2577. * let's just check its state and print errors in case
  2578. * something is wrong. Don't even try to turn it on.
  2579. */
  2580. if (val & LCPLL_CD_SOURCE_FCLK)
  2581. DRM_ERROR("CDCLK source is not LCPLL\n");
  2582. if (val & LCPLL_PLL_DISABLE)
  2583. DRM_ERROR("LCPLL is disabled\n");
  2584. }
  2585. }
  2586. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2587. {
  2588. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2589. struct drm_i915_private *dev_priv =
  2590. to_i915(intel_dig_port->base.base.dev);
  2591. enum port port = intel_dig_port->port;
  2592. uint32_t val;
  2593. bool wait = false;
  2594. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2595. val = I915_READ(DDI_BUF_CTL(port));
  2596. if (val & DDI_BUF_CTL_ENABLE) {
  2597. val &= ~DDI_BUF_CTL_ENABLE;
  2598. I915_WRITE(DDI_BUF_CTL(port), val);
  2599. wait = true;
  2600. }
  2601. val = I915_READ(DP_TP_CTL(port));
  2602. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2603. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2604. I915_WRITE(DP_TP_CTL(port), val);
  2605. POSTING_READ(DP_TP_CTL(port));
  2606. if (wait)
  2607. intel_wait_ddi_buf_idle(dev_priv, port);
  2608. }
  2609. val = DP_TP_CTL_ENABLE |
  2610. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2611. if (intel_dp->is_mst)
  2612. val |= DP_TP_CTL_MODE_MST;
  2613. else {
  2614. val |= DP_TP_CTL_MODE_SST;
  2615. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2616. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2617. }
  2618. I915_WRITE(DP_TP_CTL(port), val);
  2619. POSTING_READ(DP_TP_CTL(port));
  2620. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2621. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2622. POSTING_READ(DDI_BUF_CTL(port));
  2623. udelay(600);
  2624. }
  2625. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  2626. {
  2627. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2628. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  2629. uint32_t val;
  2630. intel_ddi_post_disable(intel_encoder);
  2631. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2632. val &= ~FDI_RX_ENABLE;
  2633. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2634. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2635. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2636. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2637. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2638. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2639. val &= ~FDI_PCDCLK;
  2640. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2641. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2642. val &= ~FDI_RX_PLL_ENABLE;
  2643. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2644. }
  2645. bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2646. struct intel_crtc *intel_crtc)
  2647. {
  2648. u32 temp;
  2649. if (intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  2650. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  2651. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2652. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  2653. return true;
  2654. }
  2655. return false;
  2656. }
  2657. void intel_ddi_get_config(struct intel_encoder *encoder,
  2658. struct intel_crtc_state *pipe_config)
  2659. {
  2660. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  2661. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  2662. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2663. struct intel_hdmi *intel_hdmi;
  2664. u32 temp, flags = 0;
  2665. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2666. if (temp & TRANS_DDI_PHSYNC)
  2667. flags |= DRM_MODE_FLAG_PHSYNC;
  2668. else
  2669. flags |= DRM_MODE_FLAG_NHSYNC;
  2670. if (temp & TRANS_DDI_PVSYNC)
  2671. flags |= DRM_MODE_FLAG_PVSYNC;
  2672. else
  2673. flags |= DRM_MODE_FLAG_NVSYNC;
  2674. pipe_config->base.adjusted_mode.flags |= flags;
  2675. switch (temp & TRANS_DDI_BPC_MASK) {
  2676. case TRANS_DDI_BPC_6:
  2677. pipe_config->pipe_bpp = 18;
  2678. break;
  2679. case TRANS_DDI_BPC_8:
  2680. pipe_config->pipe_bpp = 24;
  2681. break;
  2682. case TRANS_DDI_BPC_10:
  2683. pipe_config->pipe_bpp = 30;
  2684. break;
  2685. case TRANS_DDI_BPC_12:
  2686. pipe_config->pipe_bpp = 36;
  2687. break;
  2688. default:
  2689. break;
  2690. }
  2691. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2692. case TRANS_DDI_MODE_SELECT_HDMI:
  2693. pipe_config->has_hdmi_sink = true;
  2694. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  2695. if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
  2696. pipe_config->has_infoframe = true;
  2697. break;
  2698. case TRANS_DDI_MODE_SELECT_DVI:
  2699. case TRANS_DDI_MODE_SELECT_FDI:
  2700. break;
  2701. case TRANS_DDI_MODE_SELECT_DP_SST:
  2702. case TRANS_DDI_MODE_SELECT_DP_MST:
  2703. pipe_config->has_dp_encoder = true;
  2704. pipe_config->lane_count =
  2705. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2706. intel_dp_get_m_n(intel_crtc, pipe_config);
  2707. break;
  2708. default:
  2709. break;
  2710. }
  2711. pipe_config->has_audio =
  2712. intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
  2713. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  2714. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  2715. /*
  2716. * This is a big fat ugly hack.
  2717. *
  2718. * Some machines in UEFI boot mode provide us a VBT that has 18
  2719. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2720. * unknown we fail to light up. Yet the same BIOS boots up with
  2721. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2722. * max, not what it tells us to use.
  2723. *
  2724. * Note: This will still be broken if the eDP panel is not lit
  2725. * up by the BIOS, and thus we can't get the mode at module
  2726. * load.
  2727. */
  2728. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2729. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  2730. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  2731. }
  2732. intel_ddi_clock_get(encoder, pipe_config);
  2733. }
  2734. static void intel_ddi_destroy(struct drm_encoder *encoder)
  2735. {
  2736. /* HDMI has nothing special to destroy, so we can go with this. */
  2737. intel_dp_encoder_destroy(encoder);
  2738. }
  2739. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2740. struct intel_crtc_state *pipe_config)
  2741. {
  2742. int type = encoder->type;
  2743. int port = intel_ddi_get_encoder_port(encoder);
  2744. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  2745. if (port == PORT_A)
  2746. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2747. if (type == INTEL_OUTPUT_HDMI)
  2748. return intel_hdmi_compute_config(encoder, pipe_config);
  2749. else
  2750. return intel_dp_compute_config(encoder, pipe_config);
  2751. }
  2752. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2753. .destroy = intel_ddi_destroy,
  2754. };
  2755. static struct intel_connector *
  2756. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2757. {
  2758. struct intel_connector *connector;
  2759. enum port port = intel_dig_port->port;
  2760. connector = intel_connector_alloc();
  2761. if (!connector)
  2762. return NULL;
  2763. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2764. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2765. kfree(connector);
  2766. return NULL;
  2767. }
  2768. return connector;
  2769. }
  2770. static struct intel_connector *
  2771. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2772. {
  2773. struct intel_connector *connector;
  2774. enum port port = intel_dig_port->port;
  2775. connector = intel_connector_alloc();
  2776. if (!connector)
  2777. return NULL;
  2778. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2779. intel_hdmi_init_connector(intel_dig_port, connector);
  2780. return connector;
  2781. }
  2782. void intel_ddi_init(struct drm_device *dev, enum port port)
  2783. {
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. struct intel_digital_port *intel_dig_port;
  2786. struct intel_encoder *intel_encoder;
  2787. struct drm_encoder *encoder;
  2788. bool init_hdmi, init_dp;
  2789. int max_lanes;
  2790. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
  2791. switch (port) {
  2792. case PORT_A:
  2793. max_lanes = 4;
  2794. break;
  2795. case PORT_E:
  2796. max_lanes = 0;
  2797. break;
  2798. default:
  2799. max_lanes = 4;
  2800. break;
  2801. }
  2802. } else {
  2803. switch (port) {
  2804. case PORT_A:
  2805. max_lanes = 2;
  2806. break;
  2807. case PORT_E:
  2808. max_lanes = 2;
  2809. break;
  2810. default:
  2811. max_lanes = 4;
  2812. break;
  2813. }
  2814. }
  2815. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2816. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2817. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2818. if (!init_dp && !init_hdmi) {
  2819. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2820. port_name(port));
  2821. return;
  2822. }
  2823. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2824. if (!intel_dig_port)
  2825. return;
  2826. intel_encoder = &intel_dig_port->base;
  2827. encoder = &intel_encoder->base;
  2828. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2829. DRM_MODE_ENCODER_TMDS, NULL);
  2830. intel_encoder->compute_config = intel_ddi_compute_config;
  2831. intel_encoder->enable = intel_enable_ddi;
  2832. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2833. intel_encoder->disable = intel_disable_ddi;
  2834. intel_encoder->post_disable = intel_ddi_post_disable;
  2835. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2836. intel_encoder->get_config = intel_ddi_get_config;
  2837. intel_dig_port->port = port;
  2838. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2839. (DDI_BUF_PORT_REVERSAL |
  2840. DDI_A_4_LANES);
  2841. /*
  2842. * Bspec says that DDI_A_4_LANES is the only supported configuration
  2843. * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
  2844. * wasn't lit up at boot. Force this bit on in our internal
  2845. * configuration so that we use the proper lane count for our
  2846. * calculations.
  2847. */
  2848. if (IS_BROXTON(dev) && port == PORT_A) {
  2849. if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
  2850. DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
  2851. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2852. max_lanes = 4;
  2853. }
  2854. }
  2855. intel_dig_port->max_lanes = max_lanes;
  2856. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2857. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2858. intel_encoder->cloneable = 0;
  2859. if (init_dp) {
  2860. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2861. goto err;
  2862. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2863. /*
  2864. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  2865. * interrupts to check the external panel connection.
  2866. */
  2867. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
  2868. dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
  2869. else
  2870. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2871. }
  2872. /* In theory we don't need the encoder->type check, but leave it just in
  2873. * case we have some really bad VBTs... */
  2874. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2875. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2876. goto err;
  2877. }
  2878. return;
  2879. err:
  2880. drm_encoder_cleanup(encoder);
  2881. kfree(intel_dig_port);
  2882. }