i915_debugfs.c 148 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. if (obj->pin_display)
  84. return "p";
  85. else
  86. return " ";
  87. }
  88. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  89. {
  90. switch (obj->tiling_mode) {
  91. default:
  92. case I915_TILING_NONE: return " ";
  93. case I915_TILING_X: return "X";
  94. case I915_TILING_Y: return "Y";
  95. }
  96. }
  97. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  98. {
  99. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  100. }
  101. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  102. {
  103. u64 size = 0;
  104. struct i915_vma *vma;
  105. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  106. if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
  107. size += vma->node.size;
  108. }
  109. return size;
  110. }
  111. static void
  112. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  113. {
  114. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  115. struct intel_engine_cs *ring;
  116. struct i915_vma *vma;
  117. int pin_count = 0;
  118. int i;
  119. seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
  120. &obj->base,
  121. obj->active ? "*" : " ",
  122. get_pin_flag(obj),
  123. get_tiling_flag(obj),
  124. get_global_flag(obj),
  125. obj->base.size / 1024,
  126. obj->base.read_domains,
  127. obj->base.write_domain);
  128. for_each_ring(ring, dev_priv, i)
  129. seq_printf(m, "%x ",
  130. i915_gem_request_get_seqno(obj->last_read_req[i]));
  131. seq_printf(m, "] %x %x%s%s%s",
  132. i915_gem_request_get_seqno(obj->last_write_req),
  133. i915_gem_request_get_seqno(obj->last_fenced_req),
  134. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  135. obj->dirty ? " dirty" : "",
  136. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  137. if (obj->base.name)
  138. seq_printf(m, " (name: %d)", obj->base.name);
  139. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  140. if (vma->pin_count > 0)
  141. pin_count++;
  142. }
  143. seq_printf(m, " (pinned x %d)", pin_count);
  144. if (obj->pin_display)
  145. seq_printf(m, " (display)");
  146. if (obj->fence_reg != I915_FENCE_REG_NONE)
  147. seq_printf(m, " (fence: %d)", obj->fence_reg);
  148. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  149. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  150. vma->is_ggtt ? "g" : "pp",
  151. vma->node.start, vma->node.size);
  152. if (vma->is_ggtt)
  153. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  154. seq_puts(m, ")");
  155. }
  156. if (obj->stolen)
  157. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  158. if (obj->pin_display || obj->fault_mappable) {
  159. char s[3], *t = s;
  160. if (obj->pin_display)
  161. *t++ = 'p';
  162. if (obj->fault_mappable)
  163. *t++ = 'f';
  164. *t = '\0';
  165. seq_printf(m, " (%s mappable)", s);
  166. }
  167. if (obj->last_write_req != NULL)
  168. seq_printf(m, " (%s)",
  169. i915_gem_request_get_ring(obj->last_write_req)->name);
  170. if (obj->frontbuffer_bits)
  171. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  172. }
  173. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  174. {
  175. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  176. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  177. seq_putc(m, ' ');
  178. }
  179. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  180. {
  181. struct drm_info_node *node = m->private;
  182. uintptr_t list = (uintptr_t) node->info_ent->data;
  183. struct list_head *head;
  184. struct drm_device *dev = node->minor->dev;
  185. struct drm_i915_private *dev_priv = dev->dev_private;
  186. struct i915_address_space *vm = &dev_priv->gtt.base;
  187. struct i915_vma *vma;
  188. u64 total_obj_size, total_gtt_size;
  189. int count, ret;
  190. ret = mutex_lock_interruptible(&dev->struct_mutex);
  191. if (ret)
  192. return ret;
  193. /* FIXME: the user of this interface might want more than just GGTT */
  194. switch (list) {
  195. case ACTIVE_LIST:
  196. seq_puts(m, "Active:\n");
  197. head = &vm->active_list;
  198. break;
  199. case INACTIVE_LIST:
  200. seq_puts(m, "Inactive:\n");
  201. head = &vm->inactive_list;
  202. break;
  203. default:
  204. mutex_unlock(&dev->struct_mutex);
  205. return -EINVAL;
  206. }
  207. total_obj_size = total_gtt_size = count = 0;
  208. list_for_each_entry(vma, head, vm_link) {
  209. seq_printf(m, " ");
  210. describe_obj(m, vma->obj);
  211. seq_printf(m, "\n");
  212. total_obj_size += vma->obj->base.size;
  213. total_gtt_size += vma->node.size;
  214. count++;
  215. }
  216. mutex_unlock(&dev->struct_mutex);
  217. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  218. count, total_obj_size, total_gtt_size);
  219. return 0;
  220. }
  221. static int obj_rank_by_stolen(void *priv,
  222. struct list_head *A, struct list_head *B)
  223. {
  224. struct drm_i915_gem_object *a =
  225. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  226. struct drm_i915_gem_object *b =
  227. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  228. if (a->stolen->start < b->stolen->start)
  229. return -1;
  230. if (a->stolen->start > b->stolen->start)
  231. return 1;
  232. return 0;
  233. }
  234. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  235. {
  236. struct drm_info_node *node = m->private;
  237. struct drm_device *dev = node->minor->dev;
  238. struct drm_i915_private *dev_priv = dev->dev_private;
  239. struct drm_i915_gem_object *obj;
  240. u64 total_obj_size, total_gtt_size;
  241. LIST_HEAD(stolen);
  242. int count, ret;
  243. ret = mutex_lock_interruptible(&dev->struct_mutex);
  244. if (ret)
  245. return ret;
  246. total_obj_size = total_gtt_size = count = 0;
  247. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  248. if (obj->stolen == NULL)
  249. continue;
  250. list_add(&obj->obj_exec_link, &stolen);
  251. total_obj_size += obj->base.size;
  252. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  253. count++;
  254. }
  255. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  256. if (obj->stolen == NULL)
  257. continue;
  258. list_add(&obj->obj_exec_link, &stolen);
  259. total_obj_size += obj->base.size;
  260. count++;
  261. }
  262. list_sort(NULL, &stolen, obj_rank_by_stolen);
  263. seq_puts(m, "Stolen:\n");
  264. while (!list_empty(&stolen)) {
  265. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  266. seq_puts(m, " ");
  267. describe_obj(m, obj);
  268. seq_putc(m, '\n');
  269. list_del_init(&obj->obj_exec_link);
  270. }
  271. mutex_unlock(&dev->struct_mutex);
  272. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  273. count, total_obj_size, total_gtt_size);
  274. return 0;
  275. }
  276. #define count_objects(list, member) do { \
  277. list_for_each_entry(obj, list, member) { \
  278. size += i915_gem_obj_total_ggtt_size(obj); \
  279. ++count; \
  280. if (obj->map_and_fenceable) { \
  281. mappable_size += i915_gem_obj_ggtt_size(obj); \
  282. ++mappable_count; \
  283. } \
  284. } \
  285. } while (0)
  286. struct file_stats {
  287. struct drm_i915_file_private *file_priv;
  288. unsigned long count;
  289. u64 total, unbound;
  290. u64 global, shared;
  291. u64 active, inactive;
  292. };
  293. static int per_file_stats(int id, void *ptr, void *data)
  294. {
  295. struct drm_i915_gem_object *obj = ptr;
  296. struct file_stats *stats = data;
  297. struct i915_vma *vma;
  298. stats->count++;
  299. stats->total += obj->base.size;
  300. if (obj->base.name || obj->base.dma_buf)
  301. stats->shared += obj->base.size;
  302. if (USES_FULL_PPGTT(obj->base.dev)) {
  303. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  304. struct i915_hw_ppgtt *ppgtt;
  305. if (!drm_mm_node_allocated(&vma->node))
  306. continue;
  307. if (vma->is_ggtt) {
  308. stats->global += obj->base.size;
  309. continue;
  310. }
  311. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  312. if (ppgtt->file_priv != stats->file_priv)
  313. continue;
  314. if (obj->active) /* XXX per-vma statistic */
  315. stats->active += obj->base.size;
  316. else
  317. stats->inactive += obj->base.size;
  318. return 0;
  319. }
  320. } else {
  321. if (i915_gem_obj_ggtt_bound(obj)) {
  322. stats->global += obj->base.size;
  323. if (obj->active)
  324. stats->active += obj->base.size;
  325. else
  326. stats->inactive += obj->base.size;
  327. return 0;
  328. }
  329. }
  330. if (!list_empty(&obj->global_list))
  331. stats->unbound += obj->base.size;
  332. return 0;
  333. }
  334. #define print_file_stats(m, name, stats) do { \
  335. if (stats.count) \
  336. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  337. name, \
  338. stats.count, \
  339. stats.total, \
  340. stats.active, \
  341. stats.inactive, \
  342. stats.global, \
  343. stats.shared, \
  344. stats.unbound); \
  345. } while (0)
  346. static void print_batch_pool_stats(struct seq_file *m,
  347. struct drm_i915_private *dev_priv)
  348. {
  349. struct drm_i915_gem_object *obj;
  350. struct file_stats stats;
  351. struct intel_engine_cs *ring;
  352. int i, j;
  353. memset(&stats, 0, sizeof(stats));
  354. for_each_ring(ring, dev_priv, i) {
  355. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  356. list_for_each_entry(obj,
  357. &ring->batch_pool.cache_list[j],
  358. batch_pool_link)
  359. per_file_stats(0, obj, &stats);
  360. }
  361. }
  362. print_file_stats(m, "[k]batch pool", stats);
  363. }
  364. #define count_vmas(list, member) do { \
  365. list_for_each_entry(vma, list, member) { \
  366. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  367. ++count; \
  368. if (vma->obj->map_and_fenceable) { \
  369. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  370. ++mappable_count; \
  371. } \
  372. } \
  373. } while (0)
  374. static int i915_gem_object_info(struct seq_file *m, void* data)
  375. {
  376. struct drm_info_node *node = m->private;
  377. struct drm_device *dev = node->minor->dev;
  378. struct drm_i915_private *dev_priv = dev->dev_private;
  379. u32 count, mappable_count, purgeable_count;
  380. u64 size, mappable_size, purgeable_size;
  381. struct drm_i915_gem_object *obj;
  382. struct i915_address_space *vm = &dev_priv->gtt.base;
  383. struct drm_file *file;
  384. struct i915_vma *vma;
  385. int ret;
  386. ret = mutex_lock_interruptible(&dev->struct_mutex);
  387. if (ret)
  388. return ret;
  389. seq_printf(m, "%u objects, %zu bytes\n",
  390. dev_priv->mm.object_count,
  391. dev_priv->mm.object_memory);
  392. size = count = mappable_size = mappable_count = 0;
  393. count_objects(&dev_priv->mm.bound_list, global_list);
  394. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  395. count, mappable_count, size, mappable_size);
  396. size = count = mappable_size = mappable_count = 0;
  397. count_vmas(&vm->active_list, vm_link);
  398. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  399. count, mappable_count, size, mappable_size);
  400. size = count = mappable_size = mappable_count = 0;
  401. count_vmas(&vm->inactive_list, vm_link);
  402. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  403. count, mappable_count, size, mappable_size);
  404. size = count = purgeable_size = purgeable_count = 0;
  405. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  406. size += obj->base.size, ++count;
  407. if (obj->madv == I915_MADV_DONTNEED)
  408. purgeable_size += obj->base.size, ++purgeable_count;
  409. }
  410. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  411. size = count = mappable_size = mappable_count = 0;
  412. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  413. if (obj->fault_mappable) {
  414. size += i915_gem_obj_ggtt_size(obj);
  415. ++count;
  416. }
  417. if (obj->pin_display) {
  418. mappable_size += i915_gem_obj_ggtt_size(obj);
  419. ++mappable_count;
  420. }
  421. if (obj->madv == I915_MADV_DONTNEED) {
  422. purgeable_size += obj->base.size;
  423. ++purgeable_count;
  424. }
  425. }
  426. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  427. purgeable_count, purgeable_size);
  428. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  429. mappable_count, mappable_size);
  430. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  431. count, size);
  432. seq_printf(m, "%llu [%llu] gtt total\n",
  433. dev_priv->gtt.base.total,
  434. (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  435. seq_putc(m, '\n');
  436. print_batch_pool_stats(m, dev_priv);
  437. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  438. struct file_stats stats;
  439. struct task_struct *task;
  440. memset(&stats, 0, sizeof(stats));
  441. stats.file_priv = file->driver_priv;
  442. spin_lock(&file->table_lock);
  443. idr_for_each(&file->object_idr, per_file_stats, &stats);
  444. spin_unlock(&file->table_lock);
  445. /*
  446. * Although we have a valid reference on file->pid, that does
  447. * not guarantee that the task_struct who called get_pid() is
  448. * still alive (e.g. get_pid(current) => fork() => exit()).
  449. * Therefore, we need to protect this ->comm access using RCU.
  450. */
  451. rcu_read_lock();
  452. task = pid_task(file->pid, PIDTYPE_PID);
  453. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  454. rcu_read_unlock();
  455. }
  456. mutex_unlock(&dev->struct_mutex);
  457. return 0;
  458. }
  459. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  460. {
  461. struct drm_info_node *node = m->private;
  462. struct drm_device *dev = node->minor->dev;
  463. uintptr_t list = (uintptr_t) node->info_ent->data;
  464. struct drm_i915_private *dev_priv = dev->dev_private;
  465. struct drm_i915_gem_object *obj;
  466. u64 total_obj_size, total_gtt_size;
  467. int count, ret;
  468. ret = mutex_lock_interruptible(&dev->struct_mutex);
  469. if (ret)
  470. return ret;
  471. total_obj_size = total_gtt_size = count = 0;
  472. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  473. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  474. continue;
  475. seq_puts(m, " ");
  476. describe_obj(m, obj);
  477. seq_putc(m, '\n');
  478. total_obj_size += obj->base.size;
  479. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  480. count++;
  481. }
  482. mutex_unlock(&dev->struct_mutex);
  483. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  484. count, total_obj_size, total_gtt_size);
  485. return 0;
  486. }
  487. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  488. {
  489. struct drm_info_node *node = m->private;
  490. struct drm_device *dev = node->minor->dev;
  491. struct drm_i915_private *dev_priv = dev->dev_private;
  492. struct intel_crtc *crtc;
  493. int ret;
  494. ret = mutex_lock_interruptible(&dev->struct_mutex);
  495. if (ret)
  496. return ret;
  497. for_each_intel_crtc(dev, crtc) {
  498. const char pipe = pipe_name(crtc->pipe);
  499. const char plane = plane_name(crtc->plane);
  500. struct intel_unpin_work *work;
  501. spin_lock_irq(&dev->event_lock);
  502. work = crtc->unpin_work;
  503. if (work == NULL) {
  504. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  505. pipe, plane);
  506. } else {
  507. u32 addr;
  508. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  509. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  510. pipe, plane);
  511. } else {
  512. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  513. pipe, plane);
  514. }
  515. if (work->flip_queued_req) {
  516. struct intel_engine_cs *ring =
  517. i915_gem_request_get_ring(work->flip_queued_req);
  518. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  519. ring->name,
  520. i915_gem_request_get_seqno(work->flip_queued_req),
  521. dev_priv->next_seqno,
  522. ring->get_seqno(ring, true),
  523. i915_gem_request_completed(work->flip_queued_req, true));
  524. } else
  525. seq_printf(m, "Flip not associated with any ring\n");
  526. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  527. work->flip_queued_vblank,
  528. work->flip_ready_vblank,
  529. drm_crtc_vblank_count(&crtc->base));
  530. if (work->enable_stall_check)
  531. seq_puts(m, "Stall check enabled, ");
  532. else
  533. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  534. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  535. if (INTEL_INFO(dev)->gen >= 4)
  536. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  537. else
  538. addr = I915_READ(DSPADDR(crtc->plane));
  539. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  540. if (work->pending_flip_obj) {
  541. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  542. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  543. }
  544. }
  545. spin_unlock_irq(&dev->event_lock);
  546. }
  547. mutex_unlock(&dev->struct_mutex);
  548. return 0;
  549. }
  550. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  551. {
  552. struct drm_info_node *node = m->private;
  553. struct drm_device *dev = node->minor->dev;
  554. struct drm_i915_private *dev_priv = dev->dev_private;
  555. struct drm_i915_gem_object *obj;
  556. struct intel_engine_cs *ring;
  557. int total = 0;
  558. int ret, i, j;
  559. ret = mutex_lock_interruptible(&dev->struct_mutex);
  560. if (ret)
  561. return ret;
  562. for_each_ring(ring, dev_priv, i) {
  563. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  564. int count;
  565. count = 0;
  566. list_for_each_entry(obj,
  567. &ring->batch_pool.cache_list[j],
  568. batch_pool_link)
  569. count++;
  570. seq_printf(m, "%s cache[%d]: %d objects\n",
  571. ring->name, j, count);
  572. list_for_each_entry(obj,
  573. &ring->batch_pool.cache_list[j],
  574. batch_pool_link) {
  575. seq_puts(m, " ");
  576. describe_obj(m, obj);
  577. seq_putc(m, '\n');
  578. }
  579. total += count;
  580. }
  581. }
  582. seq_printf(m, "total: %d\n", total);
  583. mutex_unlock(&dev->struct_mutex);
  584. return 0;
  585. }
  586. static int i915_gem_request_info(struct seq_file *m, void *data)
  587. {
  588. struct drm_info_node *node = m->private;
  589. struct drm_device *dev = node->minor->dev;
  590. struct drm_i915_private *dev_priv = dev->dev_private;
  591. struct intel_engine_cs *ring;
  592. struct drm_i915_gem_request *req;
  593. int ret, any, i;
  594. ret = mutex_lock_interruptible(&dev->struct_mutex);
  595. if (ret)
  596. return ret;
  597. any = 0;
  598. for_each_ring(ring, dev_priv, i) {
  599. int count;
  600. count = 0;
  601. list_for_each_entry(req, &ring->request_list, list)
  602. count++;
  603. if (count == 0)
  604. continue;
  605. seq_printf(m, "%s requests: %d\n", ring->name, count);
  606. list_for_each_entry(req, &ring->request_list, list) {
  607. struct task_struct *task;
  608. rcu_read_lock();
  609. task = NULL;
  610. if (req->pid)
  611. task = pid_task(req->pid, PIDTYPE_PID);
  612. seq_printf(m, " %x @ %d: %s [%d]\n",
  613. req->seqno,
  614. (int) (jiffies - req->emitted_jiffies),
  615. task ? task->comm : "<unknown>",
  616. task ? task->pid : -1);
  617. rcu_read_unlock();
  618. }
  619. any++;
  620. }
  621. mutex_unlock(&dev->struct_mutex);
  622. if (any == 0)
  623. seq_puts(m, "No requests\n");
  624. return 0;
  625. }
  626. static void i915_ring_seqno_info(struct seq_file *m,
  627. struct intel_engine_cs *ring)
  628. {
  629. if (ring->get_seqno) {
  630. seq_printf(m, "Current sequence (%s): %x\n",
  631. ring->name, ring->get_seqno(ring, false));
  632. }
  633. }
  634. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  635. {
  636. struct drm_info_node *node = m->private;
  637. struct drm_device *dev = node->minor->dev;
  638. struct drm_i915_private *dev_priv = dev->dev_private;
  639. struct intel_engine_cs *ring;
  640. int ret, i;
  641. ret = mutex_lock_interruptible(&dev->struct_mutex);
  642. if (ret)
  643. return ret;
  644. intel_runtime_pm_get(dev_priv);
  645. for_each_ring(ring, dev_priv, i)
  646. i915_ring_seqno_info(m, ring);
  647. intel_runtime_pm_put(dev_priv);
  648. mutex_unlock(&dev->struct_mutex);
  649. return 0;
  650. }
  651. static int i915_interrupt_info(struct seq_file *m, void *data)
  652. {
  653. struct drm_info_node *node = m->private;
  654. struct drm_device *dev = node->minor->dev;
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. struct intel_engine_cs *ring;
  657. int ret, i, pipe;
  658. ret = mutex_lock_interruptible(&dev->struct_mutex);
  659. if (ret)
  660. return ret;
  661. intel_runtime_pm_get(dev_priv);
  662. if (IS_CHERRYVIEW(dev)) {
  663. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  664. I915_READ(GEN8_MASTER_IRQ));
  665. seq_printf(m, "Display IER:\t%08x\n",
  666. I915_READ(VLV_IER));
  667. seq_printf(m, "Display IIR:\t%08x\n",
  668. I915_READ(VLV_IIR));
  669. seq_printf(m, "Display IIR_RW:\t%08x\n",
  670. I915_READ(VLV_IIR_RW));
  671. seq_printf(m, "Display IMR:\t%08x\n",
  672. I915_READ(VLV_IMR));
  673. for_each_pipe(dev_priv, pipe)
  674. seq_printf(m, "Pipe %c stat:\t%08x\n",
  675. pipe_name(pipe),
  676. I915_READ(PIPESTAT(pipe)));
  677. seq_printf(m, "Port hotplug:\t%08x\n",
  678. I915_READ(PORT_HOTPLUG_EN));
  679. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  680. I915_READ(VLV_DPFLIPSTAT));
  681. seq_printf(m, "DPINVGTT:\t%08x\n",
  682. I915_READ(DPINVGTT));
  683. for (i = 0; i < 4; i++) {
  684. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  685. i, I915_READ(GEN8_GT_IMR(i)));
  686. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  687. i, I915_READ(GEN8_GT_IIR(i)));
  688. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  689. i, I915_READ(GEN8_GT_IER(i)));
  690. }
  691. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  692. I915_READ(GEN8_PCU_IMR));
  693. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  694. I915_READ(GEN8_PCU_IIR));
  695. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  696. I915_READ(GEN8_PCU_IER));
  697. } else if (INTEL_INFO(dev)->gen >= 8) {
  698. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  699. I915_READ(GEN8_MASTER_IRQ));
  700. for (i = 0; i < 4; i++) {
  701. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  702. i, I915_READ(GEN8_GT_IMR(i)));
  703. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  704. i, I915_READ(GEN8_GT_IIR(i)));
  705. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  706. i, I915_READ(GEN8_GT_IER(i)));
  707. }
  708. for_each_pipe(dev_priv, pipe) {
  709. enum intel_display_power_domain power_domain;
  710. power_domain = POWER_DOMAIN_PIPE(pipe);
  711. if (!intel_display_power_get_if_enabled(dev_priv,
  712. power_domain)) {
  713. seq_printf(m, "Pipe %c power disabled\n",
  714. pipe_name(pipe));
  715. continue;
  716. }
  717. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  718. pipe_name(pipe),
  719. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  720. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  721. pipe_name(pipe),
  722. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  723. seq_printf(m, "Pipe %c IER:\t%08x\n",
  724. pipe_name(pipe),
  725. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  726. intel_display_power_put(dev_priv, power_domain);
  727. }
  728. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  729. I915_READ(GEN8_DE_PORT_IMR));
  730. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  731. I915_READ(GEN8_DE_PORT_IIR));
  732. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  733. I915_READ(GEN8_DE_PORT_IER));
  734. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  735. I915_READ(GEN8_DE_MISC_IMR));
  736. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  737. I915_READ(GEN8_DE_MISC_IIR));
  738. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  739. I915_READ(GEN8_DE_MISC_IER));
  740. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  741. I915_READ(GEN8_PCU_IMR));
  742. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  743. I915_READ(GEN8_PCU_IIR));
  744. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  745. I915_READ(GEN8_PCU_IER));
  746. } else if (IS_VALLEYVIEW(dev)) {
  747. seq_printf(m, "Display IER:\t%08x\n",
  748. I915_READ(VLV_IER));
  749. seq_printf(m, "Display IIR:\t%08x\n",
  750. I915_READ(VLV_IIR));
  751. seq_printf(m, "Display IIR_RW:\t%08x\n",
  752. I915_READ(VLV_IIR_RW));
  753. seq_printf(m, "Display IMR:\t%08x\n",
  754. I915_READ(VLV_IMR));
  755. for_each_pipe(dev_priv, pipe)
  756. seq_printf(m, "Pipe %c stat:\t%08x\n",
  757. pipe_name(pipe),
  758. I915_READ(PIPESTAT(pipe)));
  759. seq_printf(m, "Master IER:\t%08x\n",
  760. I915_READ(VLV_MASTER_IER));
  761. seq_printf(m, "Render IER:\t%08x\n",
  762. I915_READ(GTIER));
  763. seq_printf(m, "Render IIR:\t%08x\n",
  764. I915_READ(GTIIR));
  765. seq_printf(m, "Render IMR:\t%08x\n",
  766. I915_READ(GTIMR));
  767. seq_printf(m, "PM IER:\t\t%08x\n",
  768. I915_READ(GEN6_PMIER));
  769. seq_printf(m, "PM IIR:\t\t%08x\n",
  770. I915_READ(GEN6_PMIIR));
  771. seq_printf(m, "PM IMR:\t\t%08x\n",
  772. I915_READ(GEN6_PMIMR));
  773. seq_printf(m, "Port hotplug:\t%08x\n",
  774. I915_READ(PORT_HOTPLUG_EN));
  775. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  776. I915_READ(VLV_DPFLIPSTAT));
  777. seq_printf(m, "DPINVGTT:\t%08x\n",
  778. I915_READ(DPINVGTT));
  779. } else if (!HAS_PCH_SPLIT(dev)) {
  780. seq_printf(m, "Interrupt enable: %08x\n",
  781. I915_READ(IER));
  782. seq_printf(m, "Interrupt identity: %08x\n",
  783. I915_READ(IIR));
  784. seq_printf(m, "Interrupt mask: %08x\n",
  785. I915_READ(IMR));
  786. for_each_pipe(dev_priv, pipe)
  787. seq_printf(m, "Pipe %c stat: %08x\n",
  788. pipe_name(pipe),
  789. I915_READ(PIPESTAT(pipe)));
  790. } else {
  791. seq_printf(m, "North Display Interrupt enable: %08x\n",
  792. I915_READ(DEIER));
  793. seq_printf(m, "North Display Interrupt identity: %08x\n",
  794. I915_READ(DEIIR));
  795. seq_printf(m, "North Display Interrupt mask: %08x\n",
  796. I915_READ(DEIMR));
  797. seq_printf(m, "South Display Interrupt enable: %08x\n",
  798. I915_READ(SDEIER));
  799. seq_printf(m, "South Display Interrupt identity: %08x\n",
  800. I915_READ(SDEIIR));
  801. seq_printf(m, "South Display Interrupt mask: %08x\n",
  802. I915_READ(SDEIMR));
  803. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  804. I915_READ(GTIER));
  805. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  806. I915_READ(GTIIR));
  807. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  808. I915_READ(GTIMR));
  809. }
  810. for_each_ring(ring, dev_priv, i) {
  811. if (INTEL_INFO(dev)->gen >= 6) {
  812. seq_printf(m,
  813. "Graphics Interrupt mask (%s): %08x\n",
  814. ring->name, I915_READ_IMR(ring));
  815. }
  816. i915_ring_seqno_info(m, ring);
  817. }
  818. intel_runtime_pm_put(dev_priv);
  819. mutex_unlock(&dev->struct_mutex);
  820. return 0;
  821. }
  822. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  823. {
  824. struct drm_info_node *node = m->private;
  825. struct drm_device *dev = node->minor->dev;
  826. struct drm_i915_private *dev_priv = dev->dev_private;
  827. int i, ret;
  828. ret = mutex_lock_interruptible(&dev->struct_mutex);
  829. if (ret)
  830. return ret;
  831. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  832. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  833. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  834. seq_printf(m, "Fence %d, pin count = %d, object = ",
  835. i, dev_priv->fence_regs[i].pin_count);
  836. if (obj == NULL)
  837. seq_puts(m, "unused");
  838. else
  839. describe_obj(m, obj);
  840. seq_putc(m, '\n');
  841. }
  842. mutex_unlock(&dev->struct_mutex);
  843. return 0;
  844. }
  845. static int i915_hws_info(struct seq_file *m, void *data)
  846. {
  847. struct drm_info_node *node = m->private;
  848. struct drm_device *dev = node->minor->dev;
  849. struct drm_i915_private *dev_priv = dev->dev_private;
  850. struct intel_engine_cs *ring;
  851. const u32 *hws;
  852. int i;
  853. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  854. hws = ring->status_page.page_addr;
  855. if (hws == NULL)
  856. return 0;
  857. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  858. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  859. i * 4,
  860. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  861. }
  862. return 0;
  863. }
  864. static ssize_t
  865. i915_error_state_write(struct file *filp,
  866. const char __user *ubuf,
  867. size_t cnt,
  868. loff_t *ppos)
  869. {
  870. struct i915_error_state_file_priv *error_priv = filp->private_data;
  871. struct drm_device *dev = error_priv->dev;
  872. int ret;
  873. DRM_DEBUG_DRIVER("Resetting error state\n");
  874. ret = mutex_lock_interruptible(&dev->struct_mutex);
  875. if (ret)
  876. return ret;
  877. i915_destroy_error_state(dev);
  878. mutex_unlock(&dev->struct_mutex);
  879. return cnt;
  880. }
  881. static int i915_error_state_open(struct inode *inode, struct file *file)
  882. {
  883. struct drm_device *dev = inode->i_private;
  884. struct i915_error_state_file_priv *error_priv;
  885. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  886. if (!error_priv)
  887. return -ENOMEM;
  888. error_priv->dev = dev;
  889. i915_error_state_get(dev, error_priv);
  890. file->private_data = error_priv;
  891. return 0;
  892. }
  893. static int i915_error_state_release(struct inode *inode, struct file *file)
  894. {
  895. struct i915_error_state_file_priv *error_priv = file->private_data;
  896. i915_error_state_put(error_priv);
  897. kfree(error_priv);
  898. return 0;
  899. }
  900. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  901. size_t count, loff_t *pos)
  902. {
  903. struct i915_error_state_file_priv *error_priv = file->private_data;
  904. struct drm_i915_error_state_buf error_str;
  905. loff_t tmp_pos = 0;
  906. ssize_t ret_count = 0;
  907. int ret;
  908. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  909. if (ret)
  910. return ret;
  911. ret = i915_error_state_to_str(&error_str, error_priv);
  912. if (ret)
  913. goto out;
  914. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  915. error_str.buf,
  916. error_str.bytes);
  917. if (ret_count < 0)
  918. ret = ret_count;
  919. else
  920. *pos = error_str.start + ret_count;
  921. out:
  922. i915_error_state_buf_release(&error_str);
  923. return ret ?: ret_count;
  924. }
  925. static const struct file_operations i915_error_state_fops = {
  926. .owner = THIS_MODULE,
  927. .open = i915_error_state_open,
  928. .read = i915_error_state_read,
  929. .write = i915_error_state_write,
  930. .llseek = default_llseek,
  931. .release = i915_error_state_release,
  932. };
  933. static int
  934. i915_next_seqno_get(void *data, u64 *val)
  935. {
  936. struct drm_device *dev = data;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. int ret;
  939. ret = mutex_lock_interruptible(&dev->struct_mutex);
  940. if (ret)
  941. return ret;
  942. *val = dev_priv->next_seqno;
  943. mutex_unlock(&dev->struct_mutex);
  944. return 0;
  945. }
  946. static int
  947. i915_next_seqno_set(void *data, u64 val)
  948. {
  949. struct drm_device *dev = data;
  950. int ret;
  951. ret = mutex_lock_interruptible(&dev->struct_mutex);
  952. if (ret)
  953. return ret;
  954. ret = i915_gem_set_seqno(dev, val);
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  959. i915_next_seqno_get, i915_next_seqno_set,
  960. "0x%llx\n");
  961. static int i915_frequency_info(struct seq_file *m, void *unused)
  962. {
  963. struct drm_info_node *node = m->private;
  964. struct drm_device *dev = node->minor->dev;
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. int ret = 0;
  967. intel_runtime_pm_get(dev_priv);
  968. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  969. if (IS_GEN5(dev)) {
  970. u16 rgvswctl = I915_READ16(MEMSWCTL);
  971. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  972. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  973. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  974. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  975. MEMSTAT_VID_SHIFT);
  976. seq_printf(m, "Current P-state: %d\n",
  977. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  978. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  979. u32 freq_sts;
  980. mutex_lock(&dev_priv->rps.hw_lock);
  981. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  982. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  983. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  984. seq_printf(m, "actual GPU freq: %d MHz\n",
  985. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  986. seq_printf(m, "current GPU freq: %d MHz\n",
  987. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  988. seq_printf(m, "max GPU freq: %d MHz\n",
  989. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  990. seq_printf(m, "min GPU freq: %d MHz\n",
  991. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  992. seq_printf(m, "idle GPU freq: %d MHz\n",
  993. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  994. seq_printf(m,
  995. "efficient (RPe) frequency: %d MHz\n",
  996. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  997. mutex_unlock(&dev_priv->rps.hw_lock);
  998. } else if (INTEL_INFO(dev)->gen >= 6) {
  999. u32 rp_state_limits;
  1000. u32 gt_perf_status;
  1001. u32 rp_state_cap;
  1002. u32 rpmodectl, rpinclimit, rpdeclimit;
  1003. u32 rpstat, cagf, reqf;
  1004. u32 rpupei, rpcurup, rpprevup;
  1005. u32 rpdownei, rpcurdown, rpprevdown;
  1006. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1007. int max_freq;
  1008. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1009. if (IS_BROXTON(dev)) {
  1010. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1011. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1012. } else {
  1013. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1014. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1015. }
  1016. /* RPSTAT1 is in the GT power well */
  1017. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1018. if (ret)
  1019. goto out;
  1020. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1021. reqf = I915_READ(GEN6_RPNSWREQ);
  1022. if (IS_GEN9(dev))
  1023. reqf >>= 23;
  1024. else {
  1025. reqf &= ~GEN6_TURBO_DISABLE;
  1026. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1027. reqf >>= 24;
  1028. else
  1029. reqf >>= 25;
  1030. }
  1031. reqf = intel_gpu_freq(dev_priv, reqf);
  1032. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1033. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1034. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1035. rpstat = I915_READ(GEN6_RPSTAT1);
  1036. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  1037. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  1038. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  1039. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  1040. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  1041. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  1042. if (IS_GEN9(dev))
  1043. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1044. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1045. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1046. else
  1047. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1048. cagf = intel_gpu_freq(dev_priv, cagf);
  1049. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1050. mutex_unlock(&dev->struct_mutex);
  1051. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1052. pm_ier = I915_READ(GEN6_PMIER);
  1053. pm_imr = I915_READ(GEN6_PMIMR);
  1054. pm_isr = I915_READ(GEN6_PMISR);
  1055. pm_iir = I915_READ(GEN6_PMIIR);
  1056. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1057. } else {
  1058. pm_ier = I915_READ(GEN8_GT_IER(2));
  1059. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1060. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1061. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1062. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1063. }
  1064. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1065. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1066. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1067. seq_printf(m, "Render p-state ratio: %d\n",
  1068. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1069. seq_printf(m, "Render p-state VID: %d\n",
  1070. gt_perf_status & 0xff);
  1071. seq_printf(m, "Render p-state limit: %d\n",
  1072. rp_state_limits & 0xff);
  1073. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1074. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1075. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1076. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1077. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1078. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1079. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  1080. GEN6_CURICONT_MASK);
  1081. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  1082. GEN6_CURBSYTAVG_MASK);
  1083. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  1084. GEN6_CURBSYTAVG_MASK);
  1085. seq_printf(m, "Up threshold: %d%%\n",
  1086. dev_priv->rps.up_threshold);
  1087. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  1088. GEN6_CURIAVG_MASK);
  1089. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  1090. GEN6_CURBSYTAVG_MASK);
  1091. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  1092. GEN6_CURBSYTAVG_MASK);
  1093. seq_printf(m, "Down threshold: %d%%\n",
  1094. dev_priv->rps.down_threshold);
  1095. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1096. rp_state_cap >> 16) & 0xff;
  1097. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1098. GEN9_FREQ_SCALER : 1);
  1099. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1100. intel_gpu_freq(dev_priv, max_freq));
  1101. max_freq = (rp_state_cap & 0xff00) >> 8;
  1102. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1103. GEN9_FREQ_SCALER : 1);
  1104. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1105. intel_gpu_freq(dev_priv, max_freq));
  1106. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1107. rp_state_cap >> 0) & 0xff;
  1108. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1109. GEN9_FREQ_SCALER : 1);
  1110. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1111. intel_gpu_freq(dev_priv, max_freq));
  1112. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1113. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1114. seq_printf(m, "Current freq: %d MHz\n",
  1115. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1116. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1117. seq_printf(m, "Idle freq: %d MHz\n",
  1118. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1119. seq_printf(m, "Min freq: %d MHz\n",
  1120. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1121. seq_printf(m, "Max freq: %d MHz\n",
  1122. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1123. seq_printf(m,
  1124. "efficient (RPe) frequency: %d MHz\n",
  1125. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1126. } else {
  1127. seq_puts(m, "no P-state info available\n");
  1128. }
  1129. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1130. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1131. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1132. out:
  1133. intel_runtime_pm_put(dev_priv);
  1134. return ret;
  1135. }
  1136. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1137. {
  1138. struct drm_info_node *node = m->private;
  1139. struct drm_device *dev = node->minor->dev;
  1140. struct drm_i915_private *dev_priv = dev->dev_private;
  1141. struct intel_engine_cs *ring;
  1142. u64 acthd[I915_NUM_RINGS];
  1143. u32 seqno[I915_NUM_RINGS];
  1144. u32 instdone[I915_NUM_INSTDONE_REG];
  1145. int i, j;
  1146. if (!i915.enable_hangcheck) {
  1147. seq_printf(m, "Hangcheck disabled\n");
  1148. return 0;
  1149. }
  1150. intel_runtime_pm_get(dev_priv);
  1151. for_each_ring(ring, dev_priv, i) {
  1152. seqno[i] = ring->get_seqno(ring, false);
  1153. acthd[i] = intel_ring_get_active_head(ring);
  1154. }
  1155. i915_get_extra_instdone(dev, instdone);
  1156. intel_runtime_pm_put(dev_priv);
  1157. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1158. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1159. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1160. jiffies));
  1161. } else
  1162. seq_printf(m, "Hangcheck inactive\n");
  1163. for_each_ring(ring, dev_priv, i) {
  1164. seq_printf(m, "%s:\n", ring->name);
  1165. seq_printf(m, "\tseqno = %x [current %x]\n",
  1166. ring->hangcheck.seqno, seqno[i]);
  1167. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1168. (long long)ring->hangcheck.acthd,
  1169. (long long)acthd[i]);
  1170. seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
  1171. (long long)ring->hangcheck.max_acthd);
  1172. seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
  1173. seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
  1174. if (ring->id == RCS) {
  1175. seq_puts(m, "\tinstdone read =");
  1176. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1177. seq_printf(m, " 0x%08x", instdone[j]);
  1178. seq_puts(m, "\n\tinstdone accu =");
  1179. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1180. seq_printf(m, " 0x%08x",
  1181. ring->hangcheck.instdone[j]);
  1182. seq_puts(m, "\n");
  1183. }
  1184. }
  1185. return 0;
  1186. }
  1187. static int ironlake_drpc_info(struct seq_file *m)
  1188. {
  1189. struct drm_info_node *node = m->private;
  1190. struct drm_device *dev = node->minor->dev;
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. u32 rgvmodectl, rstdbyctl;
  1193. u16 crstandvid;
  1194. int ret;
  1195. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1196. if (ret)
  1197. return ret;
  1198. intel_runtime_pm_get(dev_priv);
  1199. rgvmodectl = I915_READ(MEMMODECTL);
  1200. rstdbyctl = I915_READ(RSTDBYCTL);
  1201. crstandvid = I915_READ16(CRSTANDVID);
  1202. intel_runtime_pm_put(dev_priv);
  1203. mutex_unlock(&dev->struct_mutex);
  1204. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1205. seq_printf(m, "Boost freq: %d\n",
  1206. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1207. MEMMODE_BOOST_FREQ_SHIFT);
  1208. seq_printf(m, "HW control enabled: %s\n",
  1209. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1210. seq_printf(m, "SW control enabled: %s\n",
  1211. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1212. seq_printf(m, "Gated voltage change: %s\n",
  1213. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1214. seq_printf(m, "Starting frequency: P%d\n",
  1215. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1216. seq_printf(m, "Max P-state: P%d\n",
  1217. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1218. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1219. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1220. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1221. seq_printf(m, "Render standby enabled: %s\n",
  1222. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1223. seq_puts(m, "Current RS state: ");
  1224. switch (rstdbyctl & RSX_STATUS_MASK) {
  1225. case RSX_STATUS_ON:
  1226. seq_puts(m, "on\n");
  1227. break;
  1228. case RSX_STATUS_RC1:
  1229. seq_puts(m, "RC1\n");
  1230. break;
  1231. case RSX_STATUS_RC1E:
  1232. seq_puts(m, "RC1E\n");
  1233. break;
  1234. case RSX_STATUS_RS1:
  1235. seq_puts(m, "RS1\n");
  1236. break;
  1237. case RSX_STATUS_RS2:
  1238. seq_puts(m, "RS2 (RC6)\n");
  1239. break;
  1240. case RSX_STATUS_RS3:
  1241. seq_puts(m, "RC3 (RC6+)\n");
  1242. break;
  1243. default:
  1244. seq_puts(m, "unknown\n");
  1245. break;
  1246. }
  1247. return 0;
  1248. }
  1249. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1250. {
  1251. struct drm_info_node *node = m->private;
  1252. struct drm_device *dev = node->minor->dev;
  1253. struct drm_i915_private *dev_priv = dev->dev_private;
  1254. struct intel_uncore_forcewake_domain *fw_domain;
  1255. int i;
  1256. spin_lock_irq(&dev_priv->uncore.lock);
  1257. for_each_fw_domain(fw_domain, dev_priv, i) {
  1258. seq_printf(m, "%s.wake_count = %u\n",
  1259. intel_uncore_forcewake_domain_to_str(i),
  1260. fw_domain->wake_count);
  1261. }
  1262. spin_unlock_irq(&dev_priv->uncore.lock);
  1263. return 0;
  1264. }
  1265. static int vlv_drpc_info(struct seq_file *m)
  1266. {
  1267. struct drm_info_node *node = m->private;
  1268. struct drm_device *dev = node->minor->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. u32 rpmodectl1, rcctl1, pw_status;
  1271. intel_runtime_pm_get(dev_priv);
  1272. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1273. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1274. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1275. intel_runtime_pm_put(dev_priv);
  1276. seq_printf(m, "Video Turbo Mode: %s\n",
  1277. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1278. seq_printf(m, "Turbo enabled: %s\n",
  1279. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1280. seq_printf(m, "HW control enabled: %s\n",
  1281. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1282. seq_printf(m, "SW control enabled: %s\n",
  1283. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1284. GEN6_RP_MEDIA_SW_MODE));
  1285. seq_printf(m, "RC6 Enabled: %s\n",
  1286. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1287. GEN6_RC_CTL_EI_MODE(1))));
  1288. seq_printf(m, "Render Power Well: %s\n",
  1289. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1290. seq_printf(m, "Media Power Well: %s\n",
  1291. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1292. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1293. I915_READ(VLV_GT_RENDER_RC6));
  1294. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1295. I915_READ(VLV_GT_MEDIA_RC6));
  1296. return i915_forcewake_domains(m, NULL);
  1297. }
  1298. static int gen6_drpc_info(struct seq_file *m)
  1299. {
  1300. struct drm_info_node *node = m->private;
  1301. struct drm_device *dev = node->minor->dev;
  1302. struct drm_i915_private *dev_priv = dev->dev_private;
  1303. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1304. unsigned forcewake_count;
  1305. int count = 0, ret;
  1306. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1307. if (ret)
  1308. return ret;
  1309. intel_runtime_pm_get(dev_priv);
  1310. spin_lock_irq(&dev_priv->uncore.lock);
  1311. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1312. spin_unlock_irq(&dev_priv->uncore.lock);
  1313. if (forcewake_count) {
  1314. seq_puts(m, "RC information inaccurate because somebody "
  1315. "holds a forcewake reference \n");
  1316. } else {
  1317. /* NB: we cannot use forcewake, else we read the wrong values */
  1318. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1319. udelay(10);
  1320. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1321. }
  1322. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1323. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1324. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1325. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1326. mutex_unlock(&dev->struct_mutex);
  1327. mutex_lock(&dev_priv->rps.hw_lock);
  1328. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1329. mutex_unlock(&dev_priv->rps.hw_lock);
  1330. intel_runtime_pm_put(dev_priv);
  1331. seq_printf(m, "Video Turbo Mode: %s\n",
  1332. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1333. seq_printf(m, "HW control enabled: %s\n",
  1334. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1335. seq_printf(m, "SW control enabled: %s\n",
  1336. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1337. GEN6_RP_MEDIA_SW_MODE));
  1338. seq_printf(m, "RC1e Enabled: %s\n",
  1339. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1340. seq_printf(m, "RC6 Enabled: %s\n",
  1341. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1342. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1343. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1344. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1345. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1346. seq_puts(m, "Current RC state: ");
  1347. switch (gt_core_status & GEN6_RCn_MASK) {
  1348. case GEN6_RC0:
  1349. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1350. seq_puts(m, "Core Power Down\n");
  1351. else
  1352. seq_puts(m, "on\n");
  1353. break;
  1354. case GEN6_RC3:
  1355. seq_puts(m, "RC3\n");
  1356. break;
  1357. case GEN6_RC6:
  1358. seq_puts(m, "RC6\n");
  1359. break;
  1360. case GEN6_RC7:
  1361. seq_puts(m, "RC7\n");
  1362. break;
  1363. default:
  1364. seq_puts(m, "Unknown\n");
  1365. break;
  1366. }
  1367. seq_printf(m, "Core Power Down: %s\n",
  1368. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1369. /* Not exactly sure what this is */
  1370. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1371. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1372. seq_printf(m, "RC6 residency since boot: %u\n",
  1373. I915_READ(GEN6_GT_GFX_RC6));
  1374. seq_printf(m, "RC6+ residency since boot: %u\n",
  1375. I915_READ(GEN6_GT_GFX_RC6p));
  1376. seq_printf(m, "RC6++ residency since boot: %u\n",
  1377. I915_READ(GEN6_GT_GFX_RC6pp));
  1378. seq_printf(m, "RC6 voltage: %dmV\n",
  1379. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1380. seq_printf(m, "RC6+ voltage: %dmV\n",
  1381. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1382. seq_printf(m, "RC6++ voltage: %dmV\n",
  1383. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1384. return 0;
  1385. }
  1386. static int i915_drpc_info(struct seq_file *m, void *unused)
  1387. {
  1388. struct drm_info_node *node = m->private;
  1389. struct drm_device *dev = node->minor->dev;
  1390. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1391. return vlv_drpc_info(m);
  1392. else if (INTEL_INFO(dev)->gen >= 6)
  1393. return gen6_drpc_info(m);
  1394. else
  1395. return ironlake_drpc_info(m);
  1396. }
  1397. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1398. {
  1399. struct drm_info_node *node = m->private;
  1400. struct drm_device *dev = node->minor->dev;
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1403. dev_priv->fb_tracking.busy_bits);
  1404. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1405. dev_priv->fb_tracking.flip_bits);
  1406. return 0;
  1407. }
  1408. static int i915_fbc_status(struct seq_file *m, void *unused)
  1409. {
  1410. struct drm_info_node *node = m->private;
  1411. struct drm_device *dev = node->minor->dev;
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. if (!HAS_FBC(dev)) {
  1414. seq_puts(m, "FBC unsupported on this chipset\n");
  1415. return 0;
  1416. }
  1417. intel_runtime_pm_get(dev_priv);
  1418. mutex_lock(&dev_priv->fbc.lock);
  1419. if (intel_fbc_is_active(dev_priv))
  1420. seq_puts(m, "FBC enabled\n");
  1421. else
  1422. seq_printf(m, "FBC disabled: %s\n",
  1423. dev_priv->fbc.no_fbc_reason);
  1424. if (INTEL_INFO(dev_priv)->gen >= 7)
  1425. seq_printf(m, "Compressing: %s\n",
  1426. yesno(I915_READ(FBC_STATUS2) &
  1427. FBC_COMPRESSION_MASK));
  1428. mutex_unlock(&dev_priv->fbc.lock);
  1429. intel_runtime_pm_put(dev_priv);
  1430. return 0;
  1431. }
  1432. static int i915_fbc_fc_get(void *data, u64 *val)
  1433. {
  1434. struct drm_device *dev = data;
  1435. struct drm_i915_private *dev_priv = dev->dev_private;
  1436. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1437. return -ENODEV;
  1438. *val = dev_priv->fbc.false_color;
  1439. return 0;
  1440. }
  1441. static int i915_fbc_fc_set(void *data, u64 val)
  1442. {
  1443. struct drm_device *dev = data;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. u32 reg;
  1446. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1447. return -ENODEV;
  1448. mutex_lock(&dev_priv->fbc.lock);
  1449. reg = I915_READ(ILK_DPFC_CONTROL);
  1450. dev_priv->fbc.false_color = val;
  1451. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1452. (reg | FBC_CTL_FALSE_COLOR) :
  1453. (reg & ~FBC_CTL_FALSE_COLOR));
  1454. mutex_unlock(&dev_priv->fbc.lock);
  1455. return 0;
  1456. }
  1457. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1458. i915_fbc_fc_get, i915_fbc_fc_set,
  1459. "%llu\n");
  1460. static int i915_ips_status(struct seq_file *m, void *unused)
  1461. {
  1462. struct drm_info_node *node = m->private;
  1463. struct drm_device *dev = node->minor->dev;
  1464. struct drm_i915_private *dev_priv = dev->dev_private;
  1465. if (!HAS_IPS(dev)) {
  1466. seq_puts(m, "not supported\n");
  1467. return 0;
  1468. }
  1469. intel_runtime_pm_get(dev_priv);
  1470. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1471. yesno(i915.enable_ips));
  1472. if (INTEL_INFO(dev)->gen >= 8) {
  1473. seq_puts(m, "Currently: unknown\n");
  1474. } else {
  1475. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1476. seq_puts(m, "Currently: enabled\n");
  1477. else
  1478. seq_puts(m, "Currently: disabled\n");
  1479. }
  1480. intel_runtime_pm_put(dev_priv);
  1481. return 0;
  1482. }
  1483. static int i915_sr_status(struct seq_file *m, void *unused)
  1484. {
  1485. struct drm_info_node *node = m->private;
  1486. struct drm_device *dev = node->minor->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. bool sr_enabled = false;
  1489. intel_runtime_pm_get(dev_priv);
  1490. if (HAS_PCH_SPLIT(dev))
  1491. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1492. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1493. IS_I945G(dev) || IS_I945GM(dev))
  1494. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1495. else if (IS_I915GM(dev))
  1496. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1497. else if (IS_PINEVIEW(dev))
  1498. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1499. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1500. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1501. intel_runtime_pm_put(dev_priv);
  1502. seq_printf(m, "self-refresh: %s\n",
  1503. sr_enabled ? "enabled" : "disabled");
  1504. return 0;
  1505. }
  1506. static int i915_emon_status(struct seq_file *m, void *unused)
  1507. {
  1508. struct drm_info_node *node = m->private;
  1509. struct drm_device *dev = node->minor->dev;
  1510. struct drm_i915_private *dev_priv = dev->dev_private;
  1511. unsigned long temp, chipset, gfx;
  1512. int ret;
  1513. if (!IS_GEN5(dev))
  1514. return -ENODEV;
  1515. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1516. if (ret)
  1517. return ret;
  1518. temp = i915_mch_val(dev_priv);
  1519. chipset = i915_chipset_val(dev_priv);
  1520. gfx = i915_gfx_val(dev_priv);
  1521. mutex_unlock(&dev->struct_mutex);
  1522. seq_printf(m, "GMCH temp: %ld\n", temp);
  1523. seq_printf(m, "Chipset power: %ld\n", chipset);
  1524. seq_printf(m, "GFX power: %ld\n", gfx);
  1525. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1526. return 0;
  1527. }
  1528. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1529. {
  1530. struct drm_info_node *node = m->private;
  1531. struct drm_device *dev = node->minor->dev;
  1532. struct drm_i915_private *dev_priv = dev->dev_private;
  1533. int ret = 0;
  1534. int gpu_freq, ia_freq;
  1535. unsigned int max_gpu_freq, min_gpu_freq;
  1536. if (!HAS_CORE_RING_FREQ(dev)) {
  1537. seq_puts(m, "unsupported on this chipset\n");
  1538. return 0;
  1539. }
  1540. intel_runtime_pm_get(dev_priv);
  1541. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1542. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1543. if (ret)
  1544. goto out;
  1545. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1546. /* Convert GT frequency to 50 HZ units */
  1547. min_gpu_freq =
  1548. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1549. max_gpu_freq =
  1550. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1551. } else {
  1552. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1553. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1554. }
  1555. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1556. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1557. ia_freq = gpu_freq;
  1558. sandybridge_pcode_read(dev_priv,
  1559. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1560. &ia_freq);
  1561. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1562. intel_gpu_freq(dev_priv, (gpu_freq *
  1563. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1564. GEN9_FREQ_SCALER : 1))),
  1565. ((ia_freq >> 0) & 0xff) * 100,
  1566. ((ia_freq >> 8) & 0xff) * 100);
  1567. }
  1568. mutex_unlock(&dev_priv->rps.hw_lock);
  1569. out:
  1570. intel_runtime_pm_put(dev_priv);
  1571. return ret;
  1572. }
  1573. static int i915_opregion(struct seq_file *m, void *unused)
  1574. {
  1575. struct drm_info_node *node = m->private;
  1576. struct drm_device *dev = node->minor->dev;
  1577. struct drm_i915_private *dev_priv = dev->dev_private;
  1578. struct intel_opregion *opregion = &dev_priv->opregion;
  1579. int ret;
  1580. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1581. if (ret)
  1582. goto out;
  1583. if (opregion->header)
  1584. seq_write(m, opregion->header, OPREGION_SIZE);
  1585. mutex_unlock(&dev->struct_mutex);
  1586. out:
  1587. return 0;
  1588. }
  1589. static int i915_vbt(struct seq_file *m, void *unused)
  1590. {
  1591. struct drm_info_node *node = m->private;
  1592. struct drm_device *dev = node->minor->dev;
  1593. struct drm_i915_private *dev_priv = dev->dev_private;
  1594. struct intel_opregion *opregion = &dev_priv->opregion;
  1595. if (opregion->vbt)
  1596. seq_write(m, opregion->vbt, opregion->vbt_size);
  1597. return 0;
  1598. }
  1599. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1600. {
  1601. struct drm_info_node *node = m->private;
  1602. struct drm_device *dev = node->minor->dev;
  1603. struct intel_framebuffer *fbdev_fb = NULL;
  1604. struct drm_framebuffer *drm_fb;
  1605. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1606. if (to_i915(dev)->fbdev) {
  1607. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1608. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1609. fbdev_fb->base.width,
  1610. fbdev_fb->base.height,
  1611. fbdev_fb->base.depth,
  1612. fbdev_fb->base.bits_per_pixel,
  1613. fbdev_fb->base.modifier[0],
  1614. atomic_read(&fbdev_fb->base.refcount.refcount));
  1615. describe_obj(m, fbdev_fb->obj);
  1616. seq_putc(m, '\n');
  1617. }
  1618. #endif
  1619. mutex_lock(&dev->mode_config.fb_lock);
  1620. drm_for_each_fb(drm_fb, dev) {
  1621. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1622. if (fb == fbdev_fb)
  1623. continue;
  1624. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1625. fb->base.width,
  1626. fb->base.height,
  1627. fb->base.depth,
  1628. fb->base.bits_per_pixel,
  1629. fb->base.modifier[0],
  1630. atomic_read(&fb->base.refcount.refcount));
  1631. describe_obj(m, fb->obj);
  1632. seq_putc(m, '\n');
  1633. }
  1634. mutex_unlock(&dev->mode_config.fb_lock);
  1635. return 0;
  1636. }
  1637. static void describe_ctx_ringbuf(struct seq_file *m,
  1638. struct intel_ringbuffer *ringbuf)
  1639. {
  1640. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1641. ringbuf->space, ringbuf->head, ringbuf->tail,
  1642. ringbuf->last_retired_head);
  1643. }
  1644. static int i915_context_status(struct seq_file *m, void *unused)
  1645. {
  1646. struct drm_info_node *node = m->private;
  1647. struct drm_device *dev = node->minor->dev;
  1648. struct drm_i915_private *dev_priv = dev->dev_private;
  1649. struct intel_engine_cs *ring;
  1650. struct intel_context *ctx;
  1651. int ret, i;
  1652. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1653. if (ret)
  1654. return ret;
  1655. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1656. if (!i915.enable_execlists &&
  1657. ctx->legacy_hw_ctx.rcs_state == NULL)
  1658. continue;
  1659. seq_puts(m, "HW context ");
  1660. describe_ctx(m, ctx);
  1661. if (ctx == dev_priv->kernel_context)
  1662. seq_printf(m, "(kernel context) ");
  1663. if (i915.enable_execlists) {
  1664. seq_putc(m, '\n');
  1665. for_each_ring(ring, dev_priv, i) {
  1666. struct drm_i915_gem_object *ctx_obj =
  1667. ctx->engine[i].state;
  1668. struct intel_ringbuffer *ringbuf =
  1669. ctx->engine[i].ringbuf;
  1670. seq_printf(m, "%s: ", ring->name);
  1671. if (ctx_obj)
  1672. describe_obj(m, ctx_obj);
  1673. if (ringbuf)
  1674. describe_ctx_ringbuf(m, ringbuf);
  1675. seq_putc(m, '\n');
  1676. }
  1677. } else {
  1678. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1679. }
  1680. seq_putc(m, '\n');
  1681. }
  1682. mutex_unlock(&dev->struct_mutex);
  1683. return 0;
  1684. }
  1685. static void i915_dump_lrc_obj(struct seq_file *m,
  1686. struct intel_context *ctx,
  1687. struct intel_engine_cs *ring)
  1688. {
  1689. struct page *page;
  1690. uint32_t *reg_state;
  1691. int j;
  1692. struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
  1693. unsigned long ggtt_offset = 0;
  1694. if (ctx_obj == NULL) {
  1695. seq_printf(m, "Context on %s with no gem object\n",
  1696. ring->name);
  1697. return;
  1698. }
  1699. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1700. intel_execlists_ctx_id(ctx, ring));
  1701. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1702. seq_puts(m, "\tNot bound in GGTT\n");
  1703. else
  1704. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1705. if (i915_gem_object_get_pages(ctx_obj)) {
  1706. seq_puts(m, "\tFailed to get pages for context object\n");
  1707. return;
  1708. }
  1709. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1710. if (!WARN_ON(page == NULL)) {
  1711. reg_state = kmap_atomic(page);
  1712. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1713. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1714. ggtt_offset + 4096 + (j * 4),
  1715. reg_state[j], reg_state[j + 1],
  1716. reg_state[j + 2], reg_state[j + 3]);
  1717. }
  1718. kunmap_atomic(reg_state);
  1719. }
  1720. seq_putc(m, '\n');
  1721. }
  1722. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1723. {
  1724. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1725. struct drm_device *dev = node->minor->dev;
  1726. struct drm_i915_private *dev_priv = dev->dev_private;
  1727. struct intel_engine_cs *ring;
  1728. struct intel_context *ctx;
  1729. int ret, i;
  1730. if (!i915.enable_execlists) {
  1731. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1732. return 0;
  1733. }
  1734. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1735. if (ret)
  1736. return ret;
  1737. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1738. if (ctx != dev_priv->kernel_context)
  1739. for_each_ring(ring, dev_priv, i)
  1740. i915_dump_lrc_obj(m, ctx, ring);
  1741. mutex_unlock(&dev->struct_mutex);
  1742. return 0;
  1743. }
  1744. static int i915_execlists(struct seq_file *m, void *data)
  1745. {
  1746. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1747. struct drm_device *dev = node->minor->dev;
  1748. struct drm_i915_private *dev_priv = dev->dev_private;
  1749. struct intel_engine_cs *ring;
  1750. u32 status_pointer;
  1751. u8 read_pointer;
  1752. u8 write_pointer;
  1753. u32 status;
  1754. u32 ctx_id;
  1755. struct list_head *cursor;
  1756. int ring_id, i;
  1757. int ret;
  1758. if (!i915.enable_execlists) {
  1759. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1760. return 0;
  1761. }
  1762. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1763. if (ret)
  1764. return ret;
  1765. intel_runtime_pm_get(dev_priv);
  1766. for_each_ring(ring, dev_priv, ring_id) {
  1767. struct drm_i915_gem_request *head_req = NULL;
  1768. int count = 0;
  1769. unsigned long flags;
  1770. seq_printf(m, "%s\n", ring->name);
  1771. status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
  1772. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
  1773. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1774. status, ctx_id);
  1775. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1776. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1777. read_pointer = ring->next_context_status_buffer;
  1778. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1779. if (read_pointer > write_pointer)
  1780. write_pointer += GEN8_CSB_ENTRIES;
  1781. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1782. read_pointer, write_pointer);
  1783. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1784. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
  1785. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
  1786. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1787. i, status, ctx_id);
  1788. }
  1789. spin_lock_irqsave(&ring->execlist_lock, flags);
  1790. list_for_each(cursor, &ring->execlist_queue)
  1791. count++;
  1792. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1793. struct drm_i915_gem_request, execlist_link);
  1794. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1795. seq_printf(m, "\t%d requests in queue\n", count);
  1796. if (head_req) {
  1797. seq_printf(m, "\tHead request id: %u\n",
  1798. intel_execlists_ctx_id(head_req->ctx, ring));
  1799. seq_printf(m, "\tHead request tail: %u\n",
  1800. head_req->tail);
  1801. }
  1802. seq_putc(m, '\n');
  1803. }
  1804. intel_runtime_pm_put(dev_priv);
  1805. mutex_unlock(&dev->struct_mutex);
  1806. return 0;
  1807. }
  1808. static const char *swizzle_string(unsigned swizzle)
  1809. {
  1810. switch (swizzle) {
  1811. case I915_BIT_6_SWIZZLE_NONE:
  1812. return "none";
  1813. case I915_BIT_6_SWIZZLE_9:
  1814. return "bit9";
  1815. case I915_BIT_6_SWIZZLE_9_10:
  1816. return "bit9/bit10";
  1817. case I915_BIT_6_SWIZZLE_9_11:
  1818. return "bit9/bit11";
  1819. case I915_BIT_6_SWIZZLE_9_10_11:
  1820. return "bit9/bit10/bit11";
  1821. case I915_BIT_6_SWIZZLE_9_17:
  1822. return "bit9/bit17";
  1823. case I915_BIT_6_SWIZZLE_9_10_17:
  1824. return "bit9/bit10/bit17";
  1825. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1826. return "unknown";
  1827. }
  1828. return "bug";
  1829. }
  1830. static int i915_swizzle_info(struct seq_file *m, void *data)
  1831. {
  1832. struct drm_info_node *node = m->private;
  1833. struct drm_device *dev = node->minor->dev;
  1834. struct drm_i915_private *dev_priv = dev->dev_private;
  1835. int ret;
  1836. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1837. if (ret)
  1838. return ret;
  1839. intel_runtime_pm_get(dev_priv);
  1840. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1841. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1842. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1843. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1844. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1845. seq_printf(m, "DDC = 0x%08x\n",
  1846. I915_READ(DCC));
  1847. seq_printf(m, "DDC2 = 0x%08x\n",
  1848. I915_READ(DCC2));
  1849. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1850. I915_READ16(C0DRB3));
  1851. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1852. I915_READ16(C1DRB3));
  1853. } else if (INTEL_INFO(dev)->gen >= 6) {
  1854. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1855. I915_READ(MAD_DIMM_C0));
  1856. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1857. I915_READ(MAD_DIMM_C1));
  1858. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1859. I915_READ(MAD_DIMM_C2));
  1860. seq_printf(m, "TILECTL = 0x%08x\n",
  1861. I915_READ(TILECTL));
  1862. if (INTEL_INFO(dev)->gen >= 8)
  1863. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1864. I915_READ(GAMTARBMODE));
  1865. else
  1866. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1867. I915_READ(ARB_MODE));
  1868. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1869. I915_READ(DISP_ARB_CTL));
  1870. }
  1871. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1872. seq_puts(m, "L-shaped memory detected\n");
  1873. intel_runtime_pm_put(dev_priv);
  1874. mutex_unlock(&dev->struct_mutex);
  1875. return 0;
  1876. }
  1877. static int per_file_ctx(int id, void *ptr, void *data)
  1878. {
  1879. struct intel_context *ctx = ptr;
  1880. struct seq_file *m = data;
  1881. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1882. if (!ppgtt) {
  1883. seq_printf(m, " no ppgtt for context %d\n",
  1884. ctx->user_handle);
  1885. return 0;
  1886. }
  1887. if (i915_gem_context_is_default(ctx))
  1888. seq_puts(m, " default context:\n");
  1889. else
  1890. seq_printf(m, " context %d:\n", ctx->user_handle);
  1891. ppgtt->debug_dump(ppgtt, m);
  1892. return 0;
  1893. }
  1894. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1895. {
  1896. struct drm_i915_private *dev_priv = dev->dev_private;
  1897. struct intel_engine_cs *ring;
  1898. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1899. int unused, i;
  1900. if (!ppgtt)
  1901. return;
  1902. for_each_ring(ring, dev_priv, unused) {
  1903. seq_printf(m, "%s\n", ring->name);
  1904. for (i = 0; i < 4; i++) {
  1905. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
  1906. pdp <<= 32;
  1907. pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
  1908. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1909. }
  1910. }
  1911. }
  1912. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1913. {
  1914. struct drm_i915_private *dev_priv = dev->dev_private;
  1915. struct intel_engine_cs *ring;
  1916. int i;
  1917. if (INTEL_INFO(dev)->gen == 6)
  1918. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1919. for_each_ring(ring, dev_priv, i) {
  1920. seq_printf(m, "%s\n", ring->name);
  1921. if (INTEL_INFO(dev)->gen == 7)
  1922. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1923. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1924. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1925. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1926. }
  1927. if (dev_priv->mm.aliasing_ppgtt) {
  1928. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1929. seq_puts(m, "aliasing PPGTT:\n");
  1930. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1931. ppgtt->debug_dump(ppgtt, m);
  1932. }
  1933. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1934. }
  1935. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1936. {
  1937. struct drm_info_node *node = m->private;
  1938. struct drm_device *dev = node->minor->dev;
  1939. struct drm_i915_private *dev_priv = dev->dev_private;
  1940. struct drm_file *file;
  1941. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1942. if (ret)
  1943. return ret;
  1944. intel_runtime_pm_get(dev_priv);
  1945. if (INTEL_INFO(dev)->gen >= 8)
  1946. gen8_ppgtt_info(m, dev);
  1947. else if (INTEL_INFO(dev)->gen >= 6)
  1948. gen6_ppgtt_info(m, dev);
  1949. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1950. struct drm_i915_file_private *file_priv = file->driver_priv;
  1951. struct task_struct *task;
  1952. task = get_pid_task(file->pid, PIDTYPE_PID);
  1953. if (!task) {
  1954. ret = -ESRCH;
  1955. goto out_put;
  1956. }
  1957. seq_printf(m, "\nproc: %s\n", task->comm);
  1958. put_task_struct(task);
  1959. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1960. (void *)(unsigned long)m);
  1961. }
  1962. out_put:
  1963. intel_runtime_pm_put(dev_priv);
  1964. mutex_unlock(&dev->struct_mutex);
  1965. return ret;
  1966. }
  1967. static int count_irq_waiters(struct drm_i915_private *i915)
  1968. {
  1969. struct intel_engine_cs *ring;
  1970. int count = 0;
  1971. int i;
  1972. for_each_ring(ring, i915, i)
  1973. count += ring->irq_refcount;
  1974. return count;
  1975. }
  1976. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1977. {
  1978. struct drm_info_node *node = m->private;
  1979. struct drm_device *dev = node->minor->dev;
  1980. struct drm_i915_private *dev_priv = dev->dev_private;
  1981. struct drm_file *file;
  1982. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1983. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  1984. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1985. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1986. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  1987. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1988. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1989. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1990. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1991. spin_lock(&dev_priv->rps.client_lock);
  1992. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1993. struct drm_i915_file_private *file_priv = file->driver_priv;
  1994. struct task_struct *task;
  1995. rcu_read_lock();
  1996. task = pid_task(file->pid, PIDTYPE_PID);
  1997. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1998. task ? task->comm : "<unknown>",
  1999. task ? task->pid : -1,
  2000. file_priv->rps.boosts,
  2001. list_empty(&file_priv->rps.link) ? "" : ", active");
  2002. rcu_read_unlock();
  2003. }
  2004. seq_printf(m, "Semaphore boosts: %d%s\n",
  2005. dev_priv->rps.semaphores.boosts,
  2006. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2007. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2008. dev_priv->rps.mmioflips.boosts,
  2009. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2010. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2011. spin_unlock(&dev_priv->rps.client_lock);
  2012. return 0;
  2013. }
  2014. static int i915_llc(struct seq_file *m, void *data)
  2015. {
  2016. struct drm_info_node *node = m->private;
  2017. struct drm_device *dev = node->minor->dev;
  2018. struct drm_i915_private *dev_priv = dev->dev_private;
  2019. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  2020. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2021. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  2022. return 0;
  2023. }
  2024. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2025. {
  2026. struct drm_info_node *node = m->private;
  2027. struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
  2028. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2029. u32 tmp, i;
  2030. if (!HAS_GUC_UCODE(dev_priv->dev))
  2031. return 0;
  2032. seq_printf(m, "GuC firmware status:\n");
  2033. seq_printf(m, "\tpath: %s\n",
  2034. guc_fw->guc_fw_path);
  2035. seq_printf(m, "\tfetch: %s\n",
  2036. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2037. seq_printf(m, "\tload: %s\n",
  2038. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2039. seq_printf(m, "\tversion wanted: %d.%d\n",
  2040. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2041. seq_printf(m, "\tversion found: %d.%d\n",
  2042. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2043. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2044. guc_fw->header_offset, guc_fw->header_size);
  2045. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2046. guc_fw->ucode_offset, guc_fw->ucode_size);
  2047. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2048. guc_fw->rsa_offset, guc_fw->rsa_size);
  2049. tmp = I915_READ(GUC_STATUS);
  2050. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2051. seq_printf(m, "\tBootrom status = 0x%x\n",
  2052. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2053. seq_printf(m, "\tuKernel status = 0x%x\n",
  2054. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2055. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2056. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2057. seq_puts(m, "\nScratch registers:\n");
  2058. for (i = 0; i < 16; i++)
  2059. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2060. return 0;
  2061. }
  2062. static void i915_guc_client_info(struct seq_file *m,
  2063. struct drm_i915_private *dev_priv,
  2064. struct i915_guc_client *client)
  2065. {
  2066. struct intel_engine_cs *ring;
  2067. uint64_t tot = 0;
  2068. uint32_t i;
  2069. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2070. client->priority, client->ctx_index, client->proc_desc_offset);
  2071. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2072. client->doorbell_id, client->doorbell_offset, client->cookie);
  2073. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2074. client->wq_size, client->wq_offset, client->wq_tail);
  2075. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2076. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2077. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2078. for_each_ring(ring, dev_priv, i) {
  2079. seq_printf(m, "\tSubmissions: %llu %s\n",
  2080. client->submissions[ring->guc_id],
  2081. ring->name);
  2082. tot += client->submissions[ring->guc_id];
  2083. }
  2084. seq_printf(m, "\tTotal: %llu\n", tot);
  2085. }
  2086. static int i915_guc_info(struct seq_file *m, void *data)
  2087. {
  2088. struct drm_info_node *node = m->private;
  2089. struct drm_device *dev = node->minor->dev;
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. struct intel_guc guc;
  2092. struct i915_guc_client client = {};
  2093. struct intel_engine_cs *ring;
  2094. enum intel_ring_id i;
  2095. u64 total = 0;
  2096. if (!HAS_GUC_SCHED(dev_priv->dev))
  2097. return 0;
  2098. if (mutex_lock_interruptible(&dev->struct_mutex))
  2099. return 0;
  2100. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2101. guc = dev_priv->guc;
  2102. if (guc.execbuf_client)
  2103. client = *guc.execbuf_client;
  2104. mutex_unlock(&dev->struct_mutex);
  2105. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2106. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2107. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2108. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2109. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2110. seq_printf(m, "\nGuC submissions:\n");
  2111. for_each_ring(ring, dev_priv, i) {
  2112. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2113. ring->name, guc.submissions[ring->guc_id],
  2114. guc.last_seqno[ring->guc_id]);
  2115. total += guc.submissions[ring->guc_id];
  2116. }
  2117. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2118. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2119. i915_guc_client_info(m, dev_priv, &client);
  2120. /* Add more as required ... */
  2121. return 0;
  2122. }
  2123. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2124. {
  2125. struct drm_info_node *node = m->private;
  2126. struct drm_device *dev = node->minor->dev;
  2127. struct drm_i915_private *dev_priv = dev->dev_private;
  2128. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2129. u32 *log;
  2130. int i = 0, pg;
  2131. if (!log_obj)
  2132. return 0;
  2133. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2134. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2135. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2136. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2137. *(log + i), *(log + i + 1),
  2138. *(log + i + 2), *(log + i + 3));
  2139. kunmap_atomic(log);
  2140. }
  2141. seq_putc(m, '\n');
  2142. return 0;
  2143. }
  2144. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2145. {
  2146. struct drm_info_node *node = m->private;
  2147. struct drm_device *dev = node->minor->dev;
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. u32 psrperf = 0;
  2150. u32 stat[3];
  2151. enum pipe pipe;
  2152. bool enabled = false;
  2153. if (!HAS_PSR(dev)) {
  2154. seq_puts(m, "PSR not supported\n");
  2155. return 0;
  2156. }
  2157. intel_runtime_pm_get(dev_priv);
  2158. mutex_lock(&dev_priv->psr.lock);
  2159. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2160. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2161. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2162. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2163. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2164. dev_priv->psr.busy_frontbuffer_bits);
  2165. seq_printf(m, "Re-enable work scheduled: %s\n",
  2166. yesno(work_busy(&dev_priv->psr.work.work)));
  2167. if (HAS_DDI(dev))
  2168. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2169. else {
  2170. for_each_pipe(dev_priv, pipe) {
  2171. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2172. VLV_EDP_PSR_CURR_STATE_MASK;
  2173. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2174. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2175. enabled = true;
  2176. }
  2177. }
  2178. seq_printf(m, "Main link in standby mode: %s\n",
  2179. yesno(dev_priv->psr.link_standby));
  2180. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2181. if (!HAS_DDI(dev))
  2182. for_each_pipe(dev_priv, pipe) {
  2183. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2184. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2185. seq_printf(m, " pipe %c", pipe_name(pipe));
  2186. }
  2187. seq_puts(m, "\n");
  2188. /*
  2189. * VLV/CHV PSR has no kind of performance counter
  2190. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2191. */
  2192. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2193. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2194. EDP_PSR_PERF_CNT_MASK;
  2195. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2196. }
  2197. mutex_unlock(&dev_priv->psr.lock);
  2198. intel_runtime_pm_put(dev_priv);
  2199. return 0;
  2200. }
  2201. static int i915_sink_crc(struct seq_file *m, void *data)
  2202. {
  2203. struct drm_info_node *node = m->private;
  2204. struct drm_device *dev = node->minor->dev;
  2205. struct intel_encoder *encoder;
  2206. struct intel_connector *connector;
  2207. struct intel_dp *intel_dp = NULL;
  2208. int ret;
  2209. u8 crc[6];
  2210. drm_modeset_lock_all(dev);
  2211. for_each_intel_connector(dev, connector) {
  2212. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2213. continue;
  2214. if (!connector->base.encoder)
  2215. continue;
  2216. encoder = to_intel_encoder(connector->base.encoder);
  2217. if (encoder->type != INTEL_OUTPUT_EDP)
  2218. continue;
  2219. intel_dp = enc_to_intel_dp(&encoder->base);
  2220. ret = intel_dp_sink_crc(intel_dp, crc);
  2221. if (ret)
  2222. goto out;
  2223. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2224. crc[0], crc[1], crc[2],
  2225. crc[3], crc[4], crc[5]);
  2226. goto out;
  2227. }
  2228. ret = -ENODEV;
  2229. out:
  2230. drm_modeset_unlock_all(dev);
  2231. return ret;
  2232. }
  2233. static int i915_energy_uJ(struct seq_file *m, void *data)
  2234. {
  2235. struct drm_info_node *node = m->private;
  2236. struct drm_device *dev = node->minor->dev;
  2237. struct drm_i915_private *dev_priv = dev->dev_private;
  2238. u64 power;
  2239. u32 units;
  2240. if (INTEL_INFO(dev)->gen < 6)
  2241. return -ENODEV;
  2242. intel_runtime_pm_get(dev_priv);
  2243. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2244. power = (power & 0x1f00) >> 8;
  2245. units = 1000000 / (1 << power); /* convert to uJ */
  2246. power = I915_READ(MCH_SECP_NRG_STTS);
  2247. power *= units;
  2248. intel_runtime_pm_put(dev_priv);
  2249. seq_printf(m, "%llu", (long long unsigned)power);
  2250. return 0;
  2251. }
  2252. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2253. {
  2254. struct drm_info_node *node = m->private;
  2255. struct drm_device *dev = node->minor->dev;
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. if (!HAS_RUNTIME_PM(dev)) {
  2258. seq_puts(m, "not supported\n");
  2259. return 0;
  2260. }
  2261. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2262. seq_printf(m, "IRQs disabled: %s\n",
  2263. yesno(!intel_irqs_enabled(dev_priv)));
  2264. #ifdef CONFIG_PM
  2265. seq_printf(m, "Usage count: %d\n",
  2266. atomic_read(&dev->dev->power.usage_count));
  2267. #else
  2268. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2269. #endif
  2270. return 0;
  2271. }
  2272. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2273. {
  2274. struct drm_info_node *node = m->private;
  2275. struct drm_device *dev = node->minor->dev;
  2276. struct drm_i915_private *dev_priv = dev->dev_private;
  2277. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2278. int i;
  2279. mutex_lock(&power_domains->lock);
  2280. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2281. for (i = 0; i < power_domains->power_well_count; i++) {
  2282. struct i915_power_well *power_well;
  2283. enum intel_display_power_domain power_domain;
  2284. power_well = &power_domains->power_wells[i];
  2285. seq_printf(m, "%-25s %d\n", power_well->name,
  2286. power_well->count);
  2287. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2288. power_domain++) {
  2289. if (!(BIT(power_domain) & power_well->domains))
  2290. continue;
  2291. seq_printf(m, " %-23s %d\n",
  2292. intel_display_power_domain_str(power_domain),
  2293. power_domains->domain_use_count[power_domain]);
  2294. }
  2295. }
  2296. mutex_unlock(&power_domains->lock);
  2297. return 0;
  2298. }
  2299. static int i915_dmc_info(struct seq_file *m, void *unused)
  2300. {
  2301. struct drm_info_node *node = m->private;
  2302. struct drm_device *dev = node->minor->dev;
  2303. struct drm_i915_private *dev_priv = dev->dev_private;
  2304. struct intel_csr *csr;
  2305. if (!HAS_CSR(dev)) {
  2306. seq_puts(m, "not supported\n");
  2307. return 0;
  2308. }
  2309. csr = &dev_priv->csr;
  2310. intel_runtime_pm_get(dev_priv);
  2311. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2312. seq_printf(m, "path: %s\n", csr->fw_path);
  2313. if (!csr->dmc_payload)
  2314. goto out;
  2315. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2316. CSR_VERSION_MINOR(csr->version));
  2317. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2318. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2319. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2320. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2321. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2322. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2323. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2324. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2325. }
  2326. out:
  2327. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2328. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2329. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2330. intel_runtime_pm_put(dev_priv);
  2331. return 0;
  2332. }
  2333. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2334. struct drm_display_mode *mode)
  2335. {
  2336. int i;
  2337. for (i = 0; i < tabs; i++)
  2338. seq_putc(m, '\t');
  2339. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2340. mode->base.id, mode->name,
  2341. mode->vrefresh, mode->clock,
  2342. mode->hdisplay, mode->hsync_start,
  2343. mode->hsync_end, mode->htotal,
  2344. mode->vdisplay, mode->vsync_start,
  2345. mode->vsync_end, mode->vtotal,
  2346. mode->type, mode->flags);
  2347. }
  2348. static void intel_encoder_info(struct seq_file *m,
  2349. struct intel_crtc *intel_crtc,
  2350. struct intel_encoder *intel_encoder)
  2351. {
  2352. struct drm_info_node *node = m->private;
  2353. struct drm_device *dev = node->minor->dev;
  2354. struct drm_crtc *crtc = &intel_crtc->base;
  2355. struct intel_connector *intel_connector;
  2356. struct drm_encoder *encoder;
  2357. encoder = &intel_encoder->base;
  2358. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2359. encoder->base.id, encoder->name);
  2360. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2361. struct drm_connector *connector = &intel_connector->base;
  2362. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2363. connector->base.id,
  2364. connector->name,
  2365. drm_get_connector_status_name(connector->status));
  2366. if (connector->status == connector_status_connected) {
  2367. struct drm_display_mode *mode = &crtc->mode;
  2368. seq_printf(m, ", mode:\n");
  2369. intel_seq_print_mode(m, 2, mode);
  2370. } else {
  2371. seq_putc(m, '\n');
  2372. }
  2373. }
  2374. }
  2375. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2376. {
  2377. struct drm_info_node *node = m->private;
  2378. struct drm_device *dev = node->minor->dev;
  2379. struct drm_crtc *crtc = &intel_crtc->base;
  2380. struct intel_encoder *intel_encoder;
  2381. struct drm_plane_state *plane_state = crtc->primary->state;
  2382. struct drm_framebuffer *fb = plane_state->fb;
  2383. if (fb)
  2384. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2385. fb->base.id, plane_state->src_x >> 16,
  2386. plane_state->src_y >> 16, fb->width, fb->height);
  2387. else
  2388. seq_puts(m, "\tprimary plane disabled\n");
  2389. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2390. intel_encoder_info(m, intel_crtc, intel_encoder);
  2391. }
  2392. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2393. {
  2394. struct drm_display_mode *mode = panel->fixed_mode;
  2395. seq_printf(m, "\tfixed mode:\n");
  2396. intel_seq_print_mode(m, 2, mode);
  2397. }
  2398. static void intel_dp_info(struct seq_file *m,
  2399. struct intel_connector *intel_connector)
  2400. {
  2401. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2402. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2403. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2404. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2405. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2406. intel_panel_info(m, &intel_connector->panel);
  2407. }
  2408. static void intel_dp_mst_info(struct seq_file *m,
  2409. struct intel_connector *intel_connector)
  2410. {
  2411. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2412. struct intel_dp_mst_encoder *intel_mst =
  2413. enc_to_mst(&intel_encoder->base);
  2414. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2415. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2416. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2417. intel_connector->port);
  2418. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2419. }
  2420. static void intel_hdmi_info(struct seq_file *m,
  2421. struct intel_connector *intel_connector)
  2422. {
  2423. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2424. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2425. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2426. }
  2427. static void intel_lvds_info(struct seq_file *m,
  2428. struct intel_connector *intel_connector)
  2429. {
  2430. intel_panel_info(m, &intel_connector->panel);
  2431. }
  2432. static void intel_connector_info(struct seq_file *m,
  2433. struct drm_connector *connector)
  2434. {
  2435. struct intel_connector *intel_connector = to_intel_connector(connector);
  2436. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2437. struct drm_display_mode *mode;
  2438. seq_printf(m, "connector %d: type %s, status: %s\n",
  2439. connector->base.id, connector->name,
  2440. drm_get_connector_status_name(connector->status));
  2441. if (connector->status == connector_status_connected) {
  2442. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2443. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2444. connector->display_info.width_mm,
  2445. connector->display_info.height_mm);
  2446. seq_printf(m, "\tsubpixel order: %s\n",
  2447. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2448. seq_printf(m, "\tCEA rev: %d\n",
  2449. connector->display_info.cea_rev);
  2450. }
  2451. if (intel_encoder) {
  2452. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2453. intel_encoder->type == INTEL_OUTPUT_EDP)
  2454. intel_dp_info(m, intel_connector);
  2455. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2456. intel_hdmi_info(m, intel_connector);
  2457. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2458. intel_lvds_info(m, intel_connector);
  2459. else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2460. intel_dp_mst_info(m, intel_connector);
  2461. }
  2462. seq_printf(m, "\tmodes:\n");
  2463. list_for_each_entry(mode, &connector->modes, head)
  2464. intel_seq_print_mode(m, 2, mode);
  2465. }
  2466. static bool cursor_active(struct drm_device *dev, int pipe)
  2467. {
  2468. struct drm_i915_private *dev_priv = dev->dev_private;
  2469. u32 state;
  2470. if (IS_845G(dev) || IS_I865G(dev))
  2471. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2472. else
  2473. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2474. return state;
  2475. }
  2476. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2477. {
  2478. struct drm_i915_private *dev_priv = dev->dev_private;
  2479. u32 pos;
  2480. pos = I915_READ(CURPOS(pipe));
  2481. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2482. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2483. *x = -*x;
  2484. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2485. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2486. *y = -*y;
  2487. return cursor_active(dev, pipe);
  2488. }
  2489. static const char *plane_type(enum drm_plane_type type)
  2490. {
  2491. switch (type) {
  2492. case DRM_PLANE_TYPE_OVERLAY:
  2493. return "OVL";
  2494. case DRM_PLANE_TYPE_PRIMARY:
  2495. return "PRI";
  2496. case DRM_PLANE_TYPE_CURSOR:
  2497. return "CUR";
  2498. /*
  2499. * Deliberately omitting default: to generate compiler warnings
  2500. * when a new drm_plane_type gets added.
  2501. */
  2502. }
  2503. return "unknown";
  2504. }
  2505. static const char *plane_rotation(unsigned int rotation)
  2506. {
  2507. static char buf[48];
  2508. /*
  2509. * According to doc only one DRM_ROTATE_ is allowed but this
  2510. * will print them all to visualize if the values are misused
  2511. */
  2512. snprintf(buf, sizeof(buf),
  2513. "%s%s%s%s%s%s(0x%08x)",
  2514. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2515. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2516. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2517. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2518. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2519. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2520. rotation);
  2521. return buf;
  2522. }
  2523. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2524. {
  2525. struct drm_info_node *node = m->private;
  2526. struct drm_device *dev = node->minor->dev;
  2527. struct intel_plane *intel_plane;
  2528. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2529. struct drm_plane_state *state;
  2530. struct drm_plane *plane = &intel_plane->base;
  2531. if (!plane->state) {
  2532. seq_puts(m, "plane->state is NULL!\n");
  2533. continue;
  2534. }
  2535. state = plane->state;
  2536. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2537. plane->base.id,
  2538. plane_type(intel_plane->base.type),
  2539. state->crtc_x, state->crtc_y,
  2540. state->crtc_w, state->crtc_h,
  2541. (state->src_x >> 16),
  2542. ((state->src_x & 0xffff) * 15625) >> 10,
  2543. (state->src_y >> 16),
  2544. ((state->src_y & 0xffff) * 15625) >> 10,
  2545. (state->src_w >> 16),
  2546. ((state->src_w & 0xffff) * 15625) >> 10,
  2547. (state->src_h >> 16),
  2548. ((state->src_h & 0xffff) * 15625) >> 10,
  2549. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2550. plane_rotation(state->rotation));
  2551. }
  2552. }
  2553. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2554. {
  2555. struct intel_crtc_state *pipe_config;
  2556. int num_scalers = intel_crtc->num_scalers;
  2557. int i;
  2558. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2559. /* Not all platformas have a scaler */
  2560. if (num_scalers) {
  2561. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2562. num_scalers,
  2563. pipe_config->scaler_state.scaler_users,
  2564. pipe_config->scaler_state.scaler_id);
  2565. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2566. struct intel_scaler *sc =
  2567. &pipe_config->scaler_state.scalers[i];
  2568. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2569. i, yesno(sc->in_use), sc->mode);
  2570. }
  2571. seq_puts(m, "\n");
  2572. } else {
  2573. seq_puts(m, "\tNo scalers available on this platform\n");
  2574. }
  2575. }
  2576. static int i915_display_info(struct seq_file *m, void *unused)
  2577. {
  2578. struct drm_info_node *node = m->private;
  2579. struct drm_device *dev = node->minor->dev;
  2580. struct drm_i915_private *dev_priv = dev->dev_private;
  2581. struct intel_crtc *crtc;
  2582. struct drm_connector *connector;
  2583. intel_runtime_pm_get(dev_priv);
  2584. drm_modeset_lock_all(dev);
  2585. seq_printf(m, "CRTC info\n");
  2586. seq_printf(m, "---------\n");
  2587. for_each_intel_crtc(dev, crtc) {
  2588. bool active;
  2589. struct intel_crtc_state *pipe_config;
  2590. int x, y;
  2591. pipe_config = to_intel_crtc_state(crtc->base.state);
  2592. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2593. crtc->base.base.id, pipe_name(crtc->pipe),
  2594. yesno(pipe_config->base.active),
  2595. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2596. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2597. if (pipe_config->base.active) {
  2598. intel_crtc_info(m, crtc);
  2599. active = cursor_position(dev, crtc->pipe, &x, &y);
  2600. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2601. yesno(crtc->cursor_base),
  2602. x, y, crtc->base.cursor->state->crtc_w,
  2603. crtc->base.cursor->state->crtc_h,
  2604. crtc->cursor_addr, yesno(active));
  2605. intel_scaler_info(m, crtc);
  2606. intel_plane_info(m, crtc);
  2607. }
  2608. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2609. yesno(!crtc->cpu_fifo_underrun_disabled),
  2610. yesno(!crtc->pch_fifo_underrun_disabled));
  2611. }
  2612. seq_printf(m, "\n");
  2613. seq_printf(m, "Connector info\n");
  2614. seq_printf(m, "--------------\n");
  2615. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2616. intel_connector_info(m, connector);
  2617. }
  2618. drm_modeset_unlock_all(dev);
  2619. intel_runtime_pm_put(dev_priv);
  2620. return 0;
  2621. }
  2622. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2623. {
  2624. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2625. struct drm_device *dev = node->minor->dev;
  2626. struct drm_i915_private *dev_priv = dev->dev_private;
  2627. struct intel_engine_cs *ring;
  2628. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2629. int i, j, ret;
  2630. if (!i915_semaphore_is_enabled(dev)) {
  2631. seq_puts(m, "Semaphores are disabled\n");
  2632. return 0;
  2633. }
  2634. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2635. if (ret)
  2636. return ret;
  2637. intel_runtime_pm_get(dev_priv);
  2638. if (IS_BROADWELL(dev)) {
  2639. struct page *page;
  2640. uint64_t *seqno;
  2641. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2642. seqno = (uint64_t *)kmap_atomic(page);
  2643. for_each_ring(ring, dev_priv, i) {
  2644. uint64_t offset;
  2645. seq_printf(m, "%s\n", ring->name);
  2646. seq_puts(m, " Last signal:");
  2647. for (j = 0; j < num_rings; j++) {
  2648. offset = i * I915_NUM_RINGS + j;
  2649. seq_printf(m, "0x%08llx (0x%02llx) ",
  2650. seqno[offset], offset * 8);
  2651. }
  2652. seq_putc(m, '\n');
  2653. seq_puts(m, " Last wait: ");
  2654. for (j = 0; j < num_rings; j++) {
  2655. offset = i + (j * I915_NUM_RINGS);
  2656. seq_printf(m, "0x%08llx (0x%02llx) ",
  2657. seqno[offset], offset * 8);
  2658. }
  2659. seq_putc(m, '\n');
  2660. }
  2661. kunmap_atomic(seqno);
  2662. } else {
  2663. seq_puts(m, " Last signal:");
  2664. for_each_ring(ring, dev_priv, i)
  2665. for (j = 0; j < num_rings; j++)
  2666. seq_printf(m, "0x%08x\n",
  2667. I915_READ(ring->semaphore.mbox.signal[j]));
  2668. seq_putc(m, '\n');
  2669. }
  2670. seq_puts(m, "\nSync seqno:\n");
  2671. for_each_ring(ring, dev_priv, i) {
  2672. for (j = 0; j < num_rings; j++) {
  2673. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2674. }
  2675. seq_putc(m, '\n');
  2676. }
  2677. seq_putc(m, '\n');
  2678. intel_runtime_pm_put(dev_priv);
  2679. mutex_unlock(&dev->struct_mutex);
  2680. return 0;
  2681. }
  2682. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2683. {
  2684. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2685. struct drm_device *dev = node->minor->dev;
  2686. struct drm_i915_private *dev_priv = dev->dev_private;
  2687. int i;
  2688. drm_modeset_lock_all(dev);
  2689. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2690. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2691. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2692. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2693. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2694. seq_printf(m, " tracked hardware state:\n");
  2695. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2696. seq_printf(m, " dpll_md: 0x%08x\n",
  2697. pll->config.hw_state.dpll_md);
  2698. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2699. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2700. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2701. }
  2702. drm_modeset_unlock_all(dev);
  2703. return 0;
  2704. }
  2705. static int i915_wa_registers(struct seq_file *m, void *unused)
  2706. {
  2707. int i;
  2708. int ret;
  2709. struct intel_engine_cs *ring;
  2710. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2711. struct drm_device *dev = node->minor->dev;
  2712. struct drm_i915_private *dev_priv = dev->dev_private;
  2713. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2714. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2715. if (ret)
  2716. return ret;
  2717. intel_runtime_pm_get(dev_priv);
  2718. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2719. for_each_ring(ring, dev_priv, i)
  2720. seq_printf(m, "HW whitelist count for %s: %d\n",
  2721. ring->name, workarounds->hw_whitelist_count[i]);
  2722. for (i = 0; i < workarounds->count; ++i) {
  2723. i915_reg_t addr;
  2724. u32 mask, value, read;
  2725. bool ok;
  2726. addr = workarounds->reg[i].addr;
  2727. mask = workarounds->reg[i].mask;
  2728. value = workarounds->reg[i].value;
  2729. read = I915_READ(addr);
  2730. ok = (value & mask) == (read & mask);
  2731. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2732. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2733. }
  2734. intel_runtime_pm_put(dev_priv);
  2735. mutex_unlock(&dev->struct_mutex);
  2736. return 0;
  2737. }
  2738. static int i915_ddb_info(struct seq_file *m, void *unused)
  2739. {
  2740. struct drm_info_node *node = m->private;
  2741. struct drm_device *dev = node->minor->dev;
  2742. struct drm_i915_private *dev_priv = dev->dev_private;
  2743. struct skl_ddb_allocation *ddb;
  2744. struct skl_ddb_entry *entry;
  2745. enum pipe pipe;
  2746. int plane;
  2747. if (INTEL_INFO(dev)->gen < 9)
  2748. return 0;
  2749. drm_modeset_lock_all(dev);
  2750. ddb = &dev_priv->wm.skl_hw.ddb;
  2751. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2752. for_each_pipe(dev_priv, pipe) {
  2753. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2754. for_each_plane(dev_priv, pipe, plane) {
  2755. entry = &ddb->plane[pipe][plane];
  2756. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2757. entry->start, entry->end,
  2758. skl_ddb_entry_size(entry));
  2759. }
  2760. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2761. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2762. entry->end, skl_ddb_entry_size(entry));
  2763. }
  2764. drm_modeset_unlock_all(dev);
  2765. return 0;
  2766. }
  2767. static void drrs_status_per_crtc(struct seq_file *m,
  2768. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2769. {
  2770. struct intel_encoder *intel_encoder;
  2771. struct drm_i915_private *dev_priv = dev->dev_private;
  2772. struct i915_drrs *drrs = &dev_priv->drrs;
  2773. int vrefresh = 0;
  2774. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2775. /* Encoder connected on this CRTC */
  2776. switch (intel_encoder->type) {
  2777. case INTEL_OUTPUT_EDP:
  2778. seq_puts(m, "eDP:\n");
  2779. break;
  2780. case INTEL_OUTPUT_DSI:
  2781. seq_puts(m, "DSI:\n");
  2782. break;
  2783. case INTEL_OUTPUT_HDMI:
  2784. seq_puts(m, "HDMI:\n");
  2785. break;
  2786. case INTEL_OUTPUT_DISPLAYPORT:
  2787. seq_puts(m, "DP:\n");
  2788. break;
  2789. default:
  2790. seq_printf(m, "Other encoder (id=%d).\n",
  2791. intel_encoder->type);
  2792. return;
  2793. }
  2794. }
  2795. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2796. seq_puts(m, "\tVBT: DRRS_type: Static");
  2797. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2798. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2799. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2800. seq_puts(m, "\tVBT: DRRS_type: None");
  2801. else
  2802. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2803. seq_puts(m, "\n\n");
  2804. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2805. struct intel_panel *panel;
  2806. mutex_lock(&drrs->mutex);
  2807. /* DRRS Supported */
  2808. seq_puts(m, "\tDRRS Supported: Yes\n");
  2809. /* disable_drrs() will make drrs->dp NULL */
  2810. if (!drrs->dp) {
  2811. seq_puts(m, "Idleness DRRS: Disabled");
  2812. mutex_unlock(&drrs->mutex);
  2813. return;
  2814. }
  2815. panel = &drrs->dp->attached_connector->panel;
  2816. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2817. drrs->busy_frontbuffer_bits);
  2818. seq_puts(m, "\n\t\t");
  2819. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2820. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2821. vrefresh = panel->fixed_mode->vrefresh;
  2822. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2823. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2824. vrefresh = panel->downclock_mode->vrefresh;
  2825. } else {
  2826. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2827. drrs->refresh_rate_type);
  2828. mutex_unlock(&drrs->mutex);
  2829. return;
  2830. }
  2831. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2832. seq_puts(m, "\n\t\t");
  2833. mutex_unlock(&drrs->mutex);
  2834. } else {
  2835. /* DRRS not supported. Print the VBT parameter*/
  2836. seq_puts(m, "\tDRRS Supported : No");
  2837. }
  2838. seq_puts(m, "\n");
  2839. }
  2840. static int i915_drrs_status(struct seq_file *m, void *unused)
  2841. {
  2842. struct drm_info_node *node = m->private;
  2843. struct drm_device *dev = node->minor->dev;
  2844. struct intel_crtc *intel_crtc;
  2845. int active_crtc_cnt = 0;
  2846. for_each_intel_crtc(dev, intel_crtc) {
  2847. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2848. if (intel_crtc->base.state->active) {
  2849. active_crtc_cnt++;
  2850. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2851. drrs_status_per_crtc(m, dev, intel_crtc);
  2852. }
  2853. drm_modeset_unlock(&intel_crtc->base.mutex);
  2854. }
  2855. if (!active_crtc_cnt)
  2856. seq_puts(m, "No active crtc found\n");
  2857. return 0;
  2858. }
  2859. struct pipe_crc_info {
  2860. const char *name;
  2861. struct drm_device *dev;
  2862. enum pipe pipe;
  2863. };
  2864. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2865. {
  2866. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2867. struct drm_device *dev = node->minor->dev;
  2868. struct drm_encoder *encoder;
  2869. struct intel_encoder *intel_encoder;
  2870. struct intel_digital_port *intel_dig_port;
  2871. drm_modeset_lock_all(dev);
  2872. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2873. intel_encoder = to_intel_encoder(encoder);
  2874. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2875. continue;
  2876. intel_dig_port = enc_to_dig_port(encoder);
  2877. if (!intel_dig_port->dp.can_mst)
  2878. continue;
  2879. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2880. }
  2881. drm_modeset_unlock_all(dev);
  2882. return 0;
  2883. }
  2884. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2885. {
  2886. struct pipe_crc_info *info = inode->i_private;
  2887. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2888. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2889. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2890. return -ENODEV;
  2891. spin_lock_irq(&pipe_crc->lock);
  2892. if (pipe_crc->opened) {
  2893. spin_unlock_irq(&pipe_crc->lock);
  2894. return -EBUSY; /* already open */
  2895. }
  2896. pipe_crc->opened = true;
  2897. filep->private_data = inode->i_private;
  2898. spin_unlock_irq(&pipe_crc->lock);
  2899. return 0;
  2900. }
  2901. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2902. {
  2903. struct pipe_crc_info *info = inode->i_private;
  2904. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2905. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2906. spin_lock_irq(&pipe_crc->lock);
  2907. pipe_crc->opened = false;
  2908. spin_unlock_irq(&pipe_crc->lock);
  2909. return 0;
  2910. }
  2911. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2912. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2913. /* account for \'0' */
  2914. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2915. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2916. {
  2917. assert_spin_locked(&pipe_crc->lock);
  2918. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2919. INTEL_PIPE_CRC_ENTRIES_NR);
  2920. }
  2921. static ssize_t
  2922. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2923. loff_t *pos)
  2924. {
  2925. struct pipe_crc_info *info = filep->private_data;
  2926. struct drm_device *dev = info->dev;
  2927. struct drm_i915_private *dev_priv = dev->dev_private;
  2928. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2929. char buf[PIPE_CRC_BUFFER_LEN];
  2930. int n_entries;
  2931. ssize_t bytes_read;
  2932. /*
  2933. * Don't allow user space to provide buffers not big enough to hold
  2934. * a line of data.
  2935. */
  2936. if (count < PIPE_CRC_LINE_LEN)
  2937. return -EINVAL;
  2938. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2939. return 0;
  2940. /* nothing to read */
  2941. spin_lock_irq(&pipe_crc->lock);
  2942. while (pipe_crc_data_count(pipe_crc) == 0) {
  2943. int ret;
  2944. if (filep->f_flags & O_NONBLOCK) {
  2945. spin_unlock_irq(&pipe_crc->lock);
  2946. return -EAGAIN;
  2947. }
  2948. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2949. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2950. if (ret) {
  2951. spin_unlock_irq(&pipe_crc->lock);
  2952. return ret;
  2953. }
  2954. }
  2955. /* We now have one or more entries to read */
  2956. n_entries = count / PIPE_CRC_LINE_LEN;
  2957. bytes_read = 0;
  2958. while (n_entries > 0) {
  2959. struct intel_pipe_crc_entry *entry =
  2960. &pipe_crc->entries[pipe_crc->tail];
  2961. int ret;
  2962. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2963. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2964. break;
  2965. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2966. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2967. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2968. "%8u %8x %8x %8x %8x %8x\n",
  2969. entry->frame, entry->crc[0],
  2970. entry->crc[1], entry->crc[2],
  2971. entry->crc[3], entry->crc[4]);
  2972. spin_unlock_irq(&pipe_crc->lock);
  2973. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2974. if (ret == PIPE_CRC_LINE_LEN)
  2975. return -EFAULT;
  2976. user_buf += PIPE_CRC_LINE_LEN;
  2977. n_entries--;
  2978. spin_lock_irq(&pipe_crc->lock);
  2979. }
  2980. spin_unlock_irq(&pipe_crc->lock);
  2981. return bytes_read;
  2982. }
  2983. static const struct file_operations i915_pipe_crc_fops = {
  2984. .owner = THIS_MODULE,
  2985. .open = i915_pipe_crc_open,
  2986. .read = i915_pipe_crc_read,
  2987. .release = i915_pipe_crc_release,
  2988. };
  2989. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2990. {
  2991. .name = "i915_pipe_A_crc",
  2992. .pipe = PIPE_A,
  2993. },
  2994. {
  2995. .name = "i915_pipe_B_crc",
  2996. .pipe = PIPE_B,
  2997. },
  2998. {
  2999. .name = "i915_pipe_C_crc",
  3000. .pipe = PIPE_C,
  3001. },
  3002. };
  3003. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3004. enum pipe pipe)
  3005. {
  3006. struct drm_device *dev = minor->dev;
  3007. struct dentry *ent;
  3008. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3009. info->dev = dev;
  3010. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3011. &i915_pipe_crc_fops);
  3012. if (!ent)
  3013. return -ENOMEM;
  3014. return drm_add_fake_info_node(minor, ent, info);
  3015. }
  3016. static const char * const pipe_crc_sources[] = {
  3017. "none",
  3018. "plane1",
  3019. "plane2",
  3020. "pf",
  3021. "pipe",
  3022. "TV",
  3023. "DP-B",
  3024. "DP-C",
  3025. "DP-D",
  3026. "auto",
  3027. };
  3028. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3029. {
  3030. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3031. return pipe_crc_sources[source];
  3032. }
  3033. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3034. {
  3035. struct drm_device *dev = m->private;
  3036. struct drm_i915_private *dev_priv = dev->dev_private;
  3037. int i;
  3038. for (i = 0; i < I915_MAX_PIPES; i++)
  3039. seq_printf(m, "%c %s\n", pipe_name(i),
  3040. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3041. return 0;
  3042. }
  3043. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3044. {
  3045. struct drm_device *dev = inode->i_private;
  3046. return single_open(file, display_crc_ctl_show, dev);
  3047. }
  3048. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3049. uint32_t *val)
  3050. {
  3051. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3052. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3053. switch (*source) {
  3054. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3055. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3056. break;
  3057. case INTEL_PIPE_CRC_SOURCE_NONE:
  3058. *val = 0;
  3059. break;
  3060. default:
  3061. return -EINVAL;
  3062. }
  3063. return 0;
  3064. }
  3065. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3066. enum intel_pipe_crc_source *source)
  3067. {
  3068. struct intel_encoder *encoder;
  3069. struct intel_crtc *crtc;
  3070. struct intel_digital_port *dig_port;
  3071. int ret = 0;
  3072. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3073. drm_modeset_lock_all(dev);
  3074. for_each_intel_encoder(dev, encoder) {
  3075. if (!encoder->base.crtc)
  3076. continue;
  3077. crtc = to_intel_crtc(encoder->base.crtc);
  3078. if (crtc->pipe != pipe)
  3079. continue;
  3080. switch (encoder->type) {
  3081. case INTEL_OUTPUT_TVOUT:
  3082. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3083. break;
  3084. case INTEL_OUTPUT_DISPLAYPORT:
  3085. case INTEL_OUTPUT_EDP:
  3086. dig_port = enc_to_dig_port(&encoder->base);
  3087. switch (dig_port->port) {
  3088. case PORT_B:
  3089. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3090. break;
  3091. case PORT_C:
  3092. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3093. break;
  3094. case PORT_D:
  3095. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3096. break;
  3097. default:
  3098. WARN(1, "nonexisting DP port %c\n",
  3099. port_name(dig_port->port));
  3100. break;
  3101. }
  3102. break;
  3103. default:
  3104. break;
  3105. }
  3106. }
  3107. drm_modeset_unlock_all(dev);
  3108. return ret;
  3109. }
  3110. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3111. enum pipe pipe,
  3112. enum intel_pipe_crc_source *source,
  3113. uint32_t *val)
  3114. {
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. bool need_stable_symbols = false;
  3117. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3118. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3119. if (ret)
  3120. return ret;
  3121. }
  3122. switch (*source) {
  3123. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3124. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3125. break;
  3126. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3127. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3128. need_stable_symbols = true;
  3129. break;
  3130. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3131. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3132. need_stable_symbols = true;
  3133. break;
  3134. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3135. if (!IS_CHERRYVIEW(dev))
  3136. return -EINVAL;
  3137. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3138. need_stable_symbols = true;
  3139. break;
  3140. case INTEL_PIPE_CRC_SOURCE_NONE:
  3141. *val = 0;
  3142. break;
  3143. default:
  3144. return -EINVAL;
  3145. }
  3146. /*
  3147. * When the pipe CRC tap point is after the transcoders we need
  3148. * to tweak symbol-level features to produce a deterministic series of
  3149. * symbols for a given frame. We need to reset those features only once
  3150. * a frame (instead of every nth symbol):
  3151. * - DC-balance: used to ensure a better clock recovery from the data
  3152. * link (SDVO)
  3153. * - DisplayPort scrambling: used for EMI reduction
  3154. */
  3155. if (need_stable_symbols) {
  3156. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3157. tmp |= DC_BALANCE_RESET_VLV;
  3158. switch (pipe) {
  3159. case PIPE_A:
  3160. tmp |= PIPE_A_SCRAMBLE_RESET;
  3161. break;
  3162. case PIPE_B:
  3163. tmp |= PIPE_B_SCRAMBLE_RESET;
  3164. break;
  3165. case PIPE_C:
  3166. tmp |= PIPE_C_SCRAMBLE_RESET;
  3167. break;
  3168. default:
  3169. return -EINVAL;
  3170. }
  3171. I915_WRITE(PORT_DFT2_G4X, tmp);
  3172. }
  3173. return 0;
  3174. }
  3175. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3176. enum pipe pipe,
  3177. enum intel_pipe_crc_source *source,
  3178. uint32_t *val)
  3179. {
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. bool need_stable_symbols = false;
  3182. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3183. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3184. if (ret)
  3185. return ret;
  3186. }
  3187. switch (*source) {
  3188. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3189. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3190. break;
  3191. case INTEL_PIPE_CRC_SOURCE_TV:
  3192. if (!SUPPORTS_TV(dev))
  3193. return -EINVAL;
  3194. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3195. break;
  3196. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3197. if (!IS_G4X(dev))
  3198. return -EINVAL;
  3199. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3200. need_stable_symbols = true;
  3201. break;
  3202. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3203. if (!IS_G4X(dev))
  3204. return -EINVAL;
  3205. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3206. need_stable_symbols = true;
  3207. break;
  3208. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3209. if (!IS_G4X(dev))
  3210. return -EINVAL;
  3211. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3212. need_stable_symbols = true;
  3213. break;
  3214. case INTEL_PIPE_CRC_SOURCE_NONE:
  3215. *val = 0;
  3216. break;
  3217. default:
  3218. return -EINVAL;
  3219. }
  3220. /*
  3221. * When the pipe CRC tap point is after the transcoders we need
  3222. * to tweak symbol-level features to produce a deterministic series of
  3223. * symbols for a given frame. We need to reset those features only once
  3224. * a frame (instead of every nth symbol):
  3225. * - DC-balance: used to ensure a better clock recovery from the data
  3226. * link (SDVO)
  3227. * - DisplayPort scrambling: used for EMI reduction
  3228. */
  3229. if (need_stable_symbols) {
  3230. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3231. WARN_ON(!IS_G4X(dev));
  3232. I915_WRITE(PORT_DFT_I9XX,
  3233. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3234. if (pipe == PIPE_A)
  3235. tmp |= PIPE_A_SCRAMBLE_RESET;
  3236. else
  3237. tmp |= PIPE_B_SCRAMBLE_RESET;
  3238. I915_WRITE(PORT_DFT2_G4X, tmp);
  3239. }
  3240. return 0;
  3241. }
  3242. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3243. enum pipe pipe)
  3244. {
  3245. struct drm_i915_private *dev_priv = dev->dev_private;
  3246. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3247. switch (pipe) {
  3248. case PIPE_A:
  3249. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3250. break;
  3251. case PIPE_B:
  3252. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3253. break;
  3254. case PIPE_C:
  3255. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3256. break;
  3257. default:
  3258. return;
  3259. }
  3260. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3261. tmp &= ~DC_BALANCE_RESET_VLV;
  3262. I915_WRITE(PORT_DFT2_G4X, tmp);
  3263. }
  3264. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3265. enum pipe pipe)
  3266. {
  3267. struct drm_i915_private *dev_priv = dev->dev_private;
  3268. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3269. if (pipe == PIPE_A)
  3270. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3271. else
  3272. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3273. I915_WRITE(PORT_DFT2_G4X, tmp);
  3274. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3275. I915_WRITE(PORT_DFT_I9XX,
  3276. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3277. }
  3278. }
  3279. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3280. uint32_t *val)
  3281. {
  3282. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3283. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3284. switch (*source) {
  3285. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3286. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3287. break;
  3288. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3289. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3290. break;
  3291. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3292. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3293. break;
  3294. case INTEL_PIPE_CRC_SOURCE_NONE:
  3295. *val = 0;
  3296. break;
  3297. default:
  3298. return -EINVAL;
  3299. }
  3300. return 0;
  3301. }
  3302. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3303. {
  3304. struct drm_i915_private *dev_priv = dev->dev_private;
  3305. struct intel_crtc *crtc =
  3306. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3307. struct intel_crtc_state *pipe_config;
  3308. struct drm_atomic_state *state;
  3309. int ret = 0;
  3310. drm_modeset_lock_all(dev);
  3311. state = drm_atomic_state_alloc(dev);
  3312. if (!state) {
  3313. ret = -ENOMEM;
  3314. goto out;
  3315. }
  3316. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3317. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3318. if (IS_ERR(pipe_config)) {
  3319. ret = PTR_ERR(pipe_config);
  3320. goto out;
  3321. }
  3322. pipe_config->pch_pfit.force_thru = enable;
  3323. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3324. pipe_config->pch_pfit.enabled != enable)
  3325. pipe_config->base.connectors_changed = true;
  3326. ret = drm_atomic_commit(state);
  3327. out:
  3328. drm_modeset_unlock_all(dev);
  3329. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3330. if (ret)
  3331. drm_atomic_state_free(state);
  3332. }
  3333. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3334. enum pipe pipe,
  3335. enum intel_pipe_crc_source *source,
  3336. uint32_t *val)
  3337. {
  3338. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3339. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3340. switch (*source) {
  3341. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3342. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3343. break;
  3344. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3345. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3346. break;
  3347. case INTEL_PIPE_CRC_SOURCE_PF:
  3348. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3349. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3350. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3351. break;
  3352. case INTEL_PIPE_CRC_SOURCE_NONE:
  3353. *val = 0;
  3354. break;
  3355. default:
  3356. return -EINVAL;
  3357. }
  3358. return 0;
  3359. }
  3360. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3361. enum intel_pipe_crc_source source)
  3362. {
  3363. struct drm_i915_private *dev_priv = dev->dev_private;
  3364. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3365. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3366. pipe));
  3367. enum intel_display_power_domain power_domain;
  3368. u32 val = 0; /* shut up gcc */
  3369. int ret;
  3370. if (pipe_crc->source == source)
  3371. return 0;
  3372. /* forbid changing the source without going back to 'none' */
  3373. if (pipe_crc->source && source)
  3374. return -EINVAL;
  3375. power_domain = POWER_DOMAIN_PIPE(pipe);
  3376. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3377. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3378. return -EIO;
  3379. }
  3380. if (IS_GEN2(dev))
  3381. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3382. else if (INTEL_INFO(dev)->gen < 5)
  3383. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3384. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3385. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3386. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3387. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3388. else
  3389. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3390. if (ret != 0)
  3391. goto out;
  3392. /* none -> real source transition */
  3393. if (source) {
  3394. struct intel_pipe_crc_entry *entries;
  3395. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3396. pipe_name(pipe), pipe_crc_source_name(source));
  3397. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3398. sizeof(pipe_crc->entries[0]),
  3399. GFP_KERNEL);
  3400. if (!entries) {
  3401. ret = -ENOMEM;
  3402. goto out;
  3403. }
  3404. /*
  3405. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3406. * enabled and disabled dynamically based on package C states,
  3407. * user space can't make reliable use of the CRCs, so let's just
  3408. * completely disable it.
  3409. */
  3410. hsw_disable_ips(crtc);
  3411. spin_lock_irq(&pipe_crc->lock);
  3412. kfree(pipe_crc->entries);
  3413. pipe_crc->entries = entries;
  3414. pipe_crc->head = 0;
  3415. pipe_crc->tail = 0;
  3416. spin_unlock_irq(&pipe_crc->lock);
  3417. }
  3418. pipe_crc->source = source;
  3419. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3420. POSTING_READ(PIPE_CRC_CTL(pipe));
  3421. /* real source -> none transition */
  3422. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3423. struct intel_pipe_crc_entry *entries;
  3424. struct intel_crtc *crtc =
  3425. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3426. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3427. pipe_name(pipe));
  3428. drm_modeset_lock(&crtc->base.mutex, NULL);
  3429. if (crtc->base.state->active)
  3430. intel_wait_for_vblank(dev, pipe);
  3431. drm_modeset_unlock(&crtc->base.mutex);
  3432. spin_lock_irq(&pipe_crc->lock);
  3433. entries = pipe_crc->entries;
  3434. pipe_crc->entries = NULL;
  3435. pipe_crc->head = 0;
  3436. pipe_crc->tail = 0;
  3437. spin_unlock_irq(&pipe_crc->lock);
  3438. kfree(entries);
  3439. if (IS_G4X(dev))
  3440. g4x_undo_pipe_scramble_reset(dev, pipe);
  3441. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3442. vlv_undo_pipe_scramble_reset(dev, pipe);
  3443. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3444. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3445. hsw_enable_ips(crtc);
  3446. }
  3447. ret = 0;
  3448. out:
  3449. intel_display_power_put(dev_priv, power_domain);
  3450. return ret;
  3451. }
  3452. /*
  3453. * Parse pipe CRC command strings:
  3454. * command: wsp* object wsp+ name wsp+ source wsp*
  3455. * object: 'pipe'
  3456. * name: (A | B | C)
  3457. * source: (none | plane1 | plane2 | pf)
  3458. * wsp: (#0x20 | #0x9 | #0xA)+
  3459. *
  3460. * eg.:
  3461. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3462. * "pipe A none" -> Stop CRC
  3463. */
  3464. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3465. {
  3466. int n_words = 0;
  3467. while (*buf) {
  3468. char *end;
  3469. /* skip leading white space */
  3470. buf = skip_spaces(buf);
  3471. if (!*buf)
  3472. break; /* end of buffer */
  3473. /* find end of word */
  3474. for (end = buf; *end && !isspace(*end); end++)
  3475. ;
  3476. if (n_words == max_words) {
  3477. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3478. max_words);
  3479. return -EINVAL; /* ran out of words[] before bytes */
  3480. }
  3481. if (*end)
  3482. *end++ = '\0';
  3483. words[n_words++] = buf;
  3484. buf = end;
  3485. }
  3486. return n_words;
  3487. }
  3488. enum intel_pipe_crc_object {
  3489. PIPE_CRC_OBJECT_PIPE,
  3490. };
  3491. static const char * const pipe_crc_objects[] = {
  3492. "pipe",
  3493. };
  3494. static int
  3495. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3496. {
  3497. int i;
  3498. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3499. if (!strcmp(buf, pipe_crc_objects[i])) {
  3500. *o = i;
  3501. return 0;
  3502. }
  3503. return -EINVAL;
  3504. }
  3505. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3506. {
  3507. const char name = buf[0];
  3508. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3509. return -EINVAL;
  3510. *pipe = name - 'A';
  3511. return 0;
  3512. }
  3513. static int
  3514. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3515. {
  3516. int i;
  3517. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3518. if (!strcmp(buf, pipe_crc_sources[i])) {
  3519. *s = i;
  3520. return 0;
  3521. }
  3522. return -EINVAL;
  3523. }
  3524. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3525. {
  3526. #define N_WORDS 3
  3527. int n_words;
  3528. char *words[N_WORDS];
  3529. enum pipe pipe;
  3530. enum intel_pipe_crc_object object;
  3531. enum intel_pipe_crc_source source;
  3532. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3533. if (n_words != N_WORDS) {
  3534. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3535. N_WORDS);
  3536. return -EINVAL;
  3537. }
  3538. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3539. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3540. return -EINVAL;
  3541. }
  3542. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3543. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3544. return -EINVAL;
  3545. }
  3546. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3547. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3548. return -EINVAL;
  3549. }
  3550. return pipe_crc_set_source(dev, pipe, source);
  3551. }
  3552. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3553. size_t len, loff_t *offp)
  3554. {
  3555. struct seq_file *m = file->private_data;
  3556. struct drm_device *dev = m->private;
  3557. char *tmpbuf;
  3558. int ret;
  3559. if (len == 0)
  3560. return 0;
  3561. if (len > PAGE_SIZE - 1) {
  3562. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3563. PAGE_SIZE);
  3564. return -E2BIG;
  3565. }
  3566. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3567. if (!tmpbuf)
  3568. return -ENOMEM;
  3569. if (copy_from_user(tmpbuf, ubuf, len)) {
  3570. ret = -EFAULT;
  3571. goto out;
  3572. }
  3573. tmpbuf[len] = '\0';
  3574. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3575. out:
  3576. kfree(tmpbuf);
  3577. if (ret < 0)
  3578. return ret;
  3579. *offp += len;
  3580. return len;
  3581. }
  3582. static const struct file_operations i915_display_crc_ctl_fops = {
  3583. .owner = THIS_MODULE,
  3584. .open = display_crc_ctl_open,
  3585. .read = seq_read,
  3586. .llseek = seq_lseek,
  3587. .release = single_release,
  3588. .write = display_crc_ctl_write
  3589. };
  3590. static ssize_t i915_displayport_test_active_write(struct file *file,
  3591. const char __user *ubuf,
  3592. size_t len, loff_t *offp)
  3593. {
  3594. char *input_buffer;
  3595. int status = 0;
  3596. struct drm_device *dev;
  3597. struct drm_connector *connector;
  3598. struct list_head *connector_list;
  3599. struct intel_dp *intel_dp;
  3600. int val = 0;
  3601. dev = ((struct seq_file *)file->private_data)->private;
  3602. connector_list = &dev->mode_config.connector_list;
  3603. if (len == 0)
  3604. return 0;
  3605. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3606. if (!input_buffer)
  3607. return -ENOMEM;
  3608. if (copy_from_user(input_buffer, ubuf, len)) {
  3609. status = -EFAULT;
  3610. goto out;
  3611. }
  3612. input_buffer[len] = '\0';
  3613. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3614. list_for_each_entry(connector, connector_list, head) {
  3615. if (connector->connector_type !=
  3616. DRM_MODE_CONNECTOR_DisplayPort)
  3617. continue;
  3618. if (connector->status == connector_status_connected &&
  3619. connector->encoder != NULL) {
  3620. intel_dp = enc_to_intel_dp(connector->encoder);
  3621. status = kstrtoint(input_buffer, 10, &val);
  3622. if (status < 0)
  3623. goto out;
  3624. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3625. /* To prevent erroneous activation of the compliance
  3626. * testing code, only accept an actual value of 1 here
  3627. */
  3628. if (val == 1)
  3629. intel_dp->compliance_test_active = 1;
  3630. else
  3631. intel_dp->compliance_test_active = 0;
  3632. }
  3633. }
  3634. out:
  3635. kfree(input_buffer);
  3636. if (status < 0)
  3637. return status;
  3638. *offp += len;
  3639. return len;
  3640. }
  3641. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3642. {
  3643. struct drm_device *dev = m->private;
  3644. struct drm_connector *connector;
  3645. struct list_head *connector_list = &dev->mode_config.connector_list;
  3646. struct intel_dp *intel_dp;
  3647. list_for_each_entry(connector, connector_list, head) {
  3648. if (connector->connector_type !=
  3649. DRM_MODE_CONNECTOR_DisplayPort)
  3650. continue;
  3651. if (connector->status == connector_status_connected &&
  3652. connector->encoder != NULL) {
  3653. intel_dp = enc_to_intel_dp(connector->encoder);
  3654. if (intel_dp->compliance_test_active)
  3655. seq_puts(m, "1");
  3656. else
  3657. seq_puts(m, "0");
  3658. } else
  3659. seq_puts(m, "0");
  3660. }
  3661. return 0;
  3662. }
  3663. static int i915_displayport_test_active_open(struct inode *inode,
  3664. struct file *file)
  3665. {
  3666. struct drm_device *dev = inode->i_private;
  3667. return single_open(file, i915_displayport_test_active_show, dev);
  3668. }
  3669. static const struct file_operations i915_displayport_test_active_fops = {
  3670. .owner = THIS_MODULE,
  3671. .open = i915_displayport_test_active_open,
  3672. .read = seq_read,
  3673. .llseek = seq_lseek,
  3674. .release = single_release,
  3675. .write = i915_displayport_test_active_write
  3676. };
  3677. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3678. {
  3679. struct drm_device *dev = m->private;
  3680. struct drm_connector *connector;
  3681. struct list_head *connector_list = &dev->mode_config.connector_list;
  3682. struct intel_dp *intel_dp;
  3683. list_for_each_entry(connector, connector_list, head) {
  3684. if (connector->connector_type !=
  3685. DRM_MODE_CONNECTOR_DisplayPort)
  3686. continue;
  3687. if (connector->status == connector_status_connected &&
  3688. connector->encoder != NULL) {
  3689. intel_dp = enc_to_intel_dp(connector->encoder);
  3690. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3691. } else
  3692. seq_puts(m, "0");
  3693. }
  3694. return 0;
  3695. }
  3696. static int i915_displayport_test_data_open(struct inode *inode,
  3697. struct file *file)
  3698. {
  3699. struct drm_device *dev = inode->i_private;
  3700. return single_open(file, i915_displayport_test_data_show, dev);
  3701. }
  3702. static const struct file_operations i915_displayport_test_data_fops = {
  3703. .owner = THIS_MODULE,
  3704. .open = i915_displayport_test_data_open,
  3705. .read = seq_read,
  3706. .llseek = seq_lseek,
  3707. .release = single_release
  3708. };
  3709. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3710. {
  3711. struct drm_device *dev = m->private;
  3712. struct drm_connector *connector;
  3713. struct list_head *connector_list = &dev->mode_config.connector_list;
  3714. struct intel_dp *intel_dp;
  3715. list_for_each_entry(connector, connector_list, head) {
  3716. if (connector->connector_type !=
  3717. DRM_MODE_CONNECTOR_DisplayPort)
  3718. continue;
  3719. if (connector->status == connector_status_connected &&
  3720. connector->encoder != NULL) {
  3721. intel_dp = enc_to_intel_dp(connector->encoder);
  3722. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3723. } else
  3724. seq_puts(m, "0");
  3725. }
  3726. return 0;
  3727. }
  3728. static int i915_displayport_test_type_open(struct inode *inode,
  3729. struct file *file)
  3730. {
  3731. struct drm_device *dev = inode->i_private;
  3732. return single_open(file, i915_displayport_test_type_show, dev);
  3733. }
  3734. static const struct file_operations i915_displayport_test_type_fops = {
  3735. .owner = THIS_MODULE,
  3736. .open = i915_displayport_test_type_open,
  3737. .read = seq_read,
  3738. .llseek = seq_lseek,
  3739. .release = single_release
  3740. };
  3741. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3742. {
  3743. struct drm_device *dev = m->private;
  3744. int level;
  3745. int num_levels;
  3746. if (IS_CHERRYVIEW(dev))
  3747. num_levels = 3;
  3748. else if (IS_VALLEYVIEW(dev))
  3749. num_levels = 1;
  3750. else
  3751. num_levels = ilk_wm_max_level(dev) + 1;
  3752. drm_modeset_lock_all(dev);
  3753. for (level = 0; level < num_levels; level++) {
  3754. unsigned int latency = wm[level];
  3755. /*
  3756. * - WM1+ latency values in 0.5us units
  3757. * - latencies are in us on gen9/vlv/chv
  3758. */
  3759. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3760. IS_CHERRYVIEW(dev))
  3761. latency *= 10;
  3762. else if (level > 0)
  3763. latency *= 5;
  3764. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3765. level, wm[level], latency / 10, latency % 10);
  3766. }
  3767. drm_modeset_unlock_all(dev);
  3768. }
  3769. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3770. {
  3771. struct drm_device *dev = m->private;
  3772. struct drm_i915_private *dev_priv = dev->dev_private;
  3773. const uint16_t *latencies;
  3774. if (INTEL_INFO(dev)->gen >= 9)
  3775. latencies = dev_priv->wm.skl_latency;
  3776. else
  3777. latencies = to_i915(dev)->wm.pri_latency;
  3778. wm_latency_show(m, latencies);
  3779. return 0;
  3780. }
  3781. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3782. {
  3783. struct drm_device *dev = m->private;
  3784. struct drm_i915_private *dev_priv = dev->dev_private;
  3785. const uint16_t *latencies;
  3786. if (INTEL_INFO(dev)->gen >= 9)
  3787. latencies = dev_priv->wm.skl_latency;
  3788. else
  3789. latencies = to_i915(dev)->wm.spr_latency;
  3790. wm_latency_show(m, latencies);
  3791. return 0;
  3792. }
  3793. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3794. {
  3795. struct drm_device *dev = m->private;
  3796. struct drm_i915_private *dev_priv = dev->dev_private;
  3797. const uint16_t *latencies;
  3798. if (INTEL_INFO(dev)->gen >= 9)
  3799. latencies = dev_priv->wm.skl_latency;
  3800. else
  3801. latencies = to_i915(dev)->wm.cur_latency;
  3802. wm_latency_show(m, latencies);
  3803. return 0;
  3804. }
  3805. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3806. {
  3807. struct drm_device *dev = inode->i_private;
  3808. if (INTEL_INFO(dev)->gen < 5)
  3809. return -ENODEV;
  3810. return single_open(file, pri_wm_latency_show, dev);
  3811. }
  3812. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3813. {
  3814. struct drm_device *dev = inode->i_private;
  3815. if (HAS_GMCH_DISPLAY(dev))
  3816. return -ENODEV;
  3817. return single_open(file, spr_wm_latency_show, dev);
  3818. }
  3819. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3820. {
  3821. struct drm_device *dev = inode->i_private;
  3822. if (HAS_GMCH_DISPLAY(dev))
  3823. return -ENODEV;
  3824. return single_open(file, cur_wm_latency_show, dev);
  3825. }
  3826. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3827. size_t len, loff_t *offp, uint16_t wm[8])
  3828. {
  3829. struct seq_file *m = file->private_data;
  3830. struct drm_device *dev = m->private;
  3831. uint16_t new[8] = { 0 };
  3832. int num_levels;
  3833. int level;
  3834. int ret;
  3835. char tmp[32];
  3836. if (IS_CHERRYVIEW(dev))
  3837. num_levels = 3;
  3838. else if (IS_VALLEYVIEW(dev))
  3839. num_levels = 1;
  3840. else
  3841. num_levels = ilk_wm_max_level(dev) + 1;
  3842. if (len >= sizeof(tmp))
  3843. return -EINVAL;
  3844. if (copy_from_user(tmp, ubuf, len))
  3845. return -EFAULT;
  3846. tmp[len] = '\0';
  3847. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3848. &new[0], &new[1], &new[2], &new[3],
  3849. &new[4], &new[5], &new[6], &new[7]);
  3850. if (ret != num_levels)
  3851. return -EINVAL;
  3852. drm_modeset_lock_all(dev);
  3853. for (level = 0; level < num_levels; level++)
  3854. wm[level] = new[level];
  3855. drm_modeset_unlock_all(dev);
  3856. return len;
  3857. }
  3858. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3859. size_t len, loff_t *offp)
  3860. {
  3861. struct seq_file *m = file->private_data;
  3862. struct drm_device *dev = m->private;
  3863. struct drm_i915_private *dev_priv = dev->dev_private;
  3864. uint16_t *latencies;
  3865. if (INTEL_INFO(dev)->gen >= 9)
  3866. latencies = dev_priv->wm.skl_latency;
  3867. else
  3868. latencies = to_i915(dev)->wm.pri_latency;
  3869. return wm_latency_write(file, ubuf, len, offp, latencies);
  3870. }
  3871. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3872. size_t len, loff_t *offp)
  3873. {
  3874. struct seq_file *m = file->private_data;
  3875. struct drm_device *dev = m->private;
  3876. struct drm_i915_private *dev_priv = dev->dev_private;
  3877. uint16_t *latencies;
  3878. if (INTEL_INFO(dev)->gen >= 9)
  3879. latencies = dev_priv->wm.skl_latency;
  3880. else
  3881. latencies = to_i915(dev)->wm.spr_latency;
  3882. return wm_latency_write(file, ubuf, len, offp, latencies);
  3883. }
  3884. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3885. size_t len, loff_t *offp)
  3886. {
  3887. struct seq_file *m = file->private_data;
  3888. struct drm_device *dev = m->private;
  3889. struct drm_i915_private *dev_priv = dev->dev_private;
  3890. uint16_t *latencies;
  3891. if (INTEL_INFO(dev)->gen >= 9)
  3892. latencies = dev_priv->wm.skl_latency;
  3893. else
  3894. latencies = to_i915(dev)->wm.cur_latency;
  3895. return wm_latency_write(file, ubuf, len, offp, latencies);
  3896. }
  3897. static const struct file_operations i915_pri_wm_latency_fops = {
  3898. .owner = THIS_MODULE,
  3899. .open = pri_wm_latency_open,
  3900. .read = seq_read,
  3901. .llseek = seq_lseek,
  3902. .release = single_release,
  3903. .write = pri_wm_latency_write
  3904. };
  3905. static const struct file_operations i915_spr_wm_latency_fops = {
  3906. .owner = THIS_MODULE,
  3907. .open = spr_wm_latency_open,
  3908. .read = seq_read,
  3909. .llseek = seq_lseek,
  3910. .release = single_release,
  3911. .write = spr_wm_latency_write
  3912. };
  3913. static const struct file_operations i915_cur_wm_latency_fops = {
  3914. .owner = THIS_MODULE,
  3915. .open = cur_wm_latency_open,
  3916. .read = seq_read,
  3917. .llseek = seq_lseek,
  3918. .release = single_release,
  3919. .write = cur_wm_latency_write
  3920. };
  3921. static int
  3922. i915_wedged_get(void *data, u64 *val)
  3923. {
  3924. struct drm_device *dev = data;
  3925. struct drm_i915_private *dev_priv = dev->dev_private;
  3926. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3927. return 0;
  3928. }
  3929. static int
  3930. i915_wedged_set(void *data, u64 val)
  3931. {
  3932. struct drm_device *dev = data;
  3933. struct drm_i915_private *dev_priv = dev->dev_private;
  3934. /*
  3935. * There is no safeguard against this debugfs entry colliding
  3936. * with the hangcheck calling same i915_handle_error() in
  3937. * parallel, causing an explosion. For now we assume that the
  3938. * test harness is responsible enough not to inject gpu hangs
  3939. * while it is writing to 'i915_wedged'
  3940. */
  3941. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3942. return -EAGAIN;
  3943. intel_runtime_pm_get(dev_priv);
  3944. i915_handle_error(dev, val,
  3945. "Manually setting wedged to %llu", val);
  3946. intel_runtime_pm_put(dev_priv);
  3947. return 0;
  3948. }
  3949. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3950. i915_wedged_get, i915_wedged_set,
  3951. "%llu\n");
  3952. static int
  3953. i915_ring_stop_get(void *data, u64 *val)
  3954. {
  3955. struct drm_device *dev = data;
  3956. struct drm_i915_private *dev_priv = dev->dev_private;
  3957. *val = dev_priv->gpu_error.stop_rings;
  3958. return 0;
  3959. }
  3960. static int
  3961. i915_ring_stop_set(void *data, u64 val)
  3962. {
  3963. struct drm_device *dev = data;
  3964. struct drm_i915_private *dev_priv = dev->dev_private;
  3965. int ret;
  3966. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3967. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3968. if (ret)
  3969. return ret;
  3970. dev_priv->gpu_error.stop_rings = val;
  3971. mutex_unlock(&dev->struct_mutex);
  3972. return 0;
  3973. }
  3974. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3975. i915_ring_stop_get, i915_ring_stop_set,
  3976. "0x%08llx\n");
  3977. static int
  3978. i915_ring_missed_irq_get(void *data, u64 *val)
  3979. {
  3980. struct drm_device *dev = data;
  3981. struct drm_i915_private *dev_priv = dev->dev_private;
  3982. *val = dev_priv->gpu_error.missed_irq_rings;
  3983. return 0;
  3984. }
  3985. static int
  3986. i915_ring_missed_irq_set(void *data, u64 val)
  3987. {
  3988. struct drm_device *dev = data;
  3989. struct drm_i915_private *dev_priv = dev->dev_private;
  3990. int ret;
  3991. /* Lock against concurrent debugfs callers */
  3992. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3993. if (ret)
  3994. return ret;
  3995. dev_priv->gpu_error.missed_irq_rings = val;
  3996. mutex_unlock(&dev->struct_mutex);
  3997. return 0;
  3998. }
  3999. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4000. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4001. "0x%08llx\n");
  4002. static int
  4003. i915_ring_test_irq_get(void *data, u64 *val)
  4004. {
  4005. struct drm_device *dev = data;
  4006. struct drm_i915_private *dev_priv = dev->dev_private;
  4007. *val = dev_priv->gpu_error.test_irq_rings;
  4008. return 0;
  4009. }
  4010. static int
  4011. i915_ring_test_irq_set(void *data, u64 val)
  4012. {
  4013. struct drm_device *dev = data;
  4014. struct drm_i915_private *dev_priv = dev->dev_private;
  4015. int ret;
  4016. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4017. /* Lock against concurrent debugfs callers */
  4018. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4019. if (ret)
  4020. return ret;
  4021. dev_priv->gpu_error.test_irq_rings = val;
  4022. mutex_unlock(&dev->struct_mutex);
  4023. return 0;
  4024. }
  4025. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4026. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4027. "0x%08llx\n");
  4028. #define DROP_UNBOUND 0x1
  4029. #define DROP_BOUND 0x2
  4030. #define DROP_RETIRE 0x4
  4031. #define DROP_ACTIVE 0x8
  4032. #define DROP_ALL (DROP_UNBOUND | \
  4033. DROP_BOUND | \
  4034. DROP_RETIRE | \
  4035. DROP_ACTIVE)
  4036. static int
  4037. i915_drop_caches_get(void *data, u64 *val)
  4038. {
  4039. *val = DROP_ALL;
  4040. return 0;
  4041. }
  4042. static int
  4043. i915_drop_caches_set(void *data, u64 val)
  4044. {
  4045. struct drm_device *dev = data;
  4046. struct drm_i915_private *dev_priv = dev->dev_private;
  4047. int ret;
  4048. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4049. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4050. * on ioctls on -EAGAIN. */
  4051. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4052. if (ret)
  4053. return ret;
  4054. if (val & DROP_ACTIVE) {
  4055. ret = i915_gpu_idle(dev);
  4056. if (ret)
  4057. goto unlock;
  4058. }
  4059. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4060. i915_gem_retire_requests(dev);
  4061. if (val & DROP_BOUND)
  4062. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4063. if (val & DROP_UNBOUND)
  4064. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4065. unlock:
  4066. mutex_unlock(&dev->struct_mutex);
  4067. return ret;
  4068. }
  4069. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4070. i915_drop_caches_get, i915_drop_caches_set,
  4071. "0x%08llx\n");
  4072. static int
  4073. i915_max_freq_get(void *data, u64 *val)
  4074. {
  4075. struct drm_device *dev = data;
  4076. struct drm_i915_private *dev_priv = dev->dev_private;
  4077. int ret;
  4078. if (INTEL_INFO(dev)->gen < 6)
  4079. return -ENODEV;
  4080. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4081. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4082. if (ret)
  4083. return ret;
  4084. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4085. mutex_unlock(&dev_priv->rps.hw_lock);
  4086. return 0;
  4087. }
  4088. static int
  4089. i915_max_freq_set(void *data, u64 val)
  4090. {
  4091. struct drm_device *dev = data;
  4092. struct drm_i915_private *dev_priv = dev->dev_private;
  4093. u32 hw_max, hw_min;
  4094. int ret;
  4095. if (INTEL_INFO(dev)->gen < 6)
  4096. return -ENODEV;
  4097. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4098. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4099. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4100. if (ret)
  4101. return ret;
  4102. /*
  4103. * Turbo will still be enabled, but won't go above the set value.
  4104. */
  4105. val = intel_freq_opcode(dev_priv, val);
  4106. hw_max = dev_priv->rps.max_freq;
  4107. hw_min = dev_priv->rps.min_freq;
  4108. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4109. mutex_unlock(&dev_priv->rps.hw_lock);
  4110. return -EINVAL;
  4111. }
  4112. dev_priv->rps.max_freq_softlimit = val;
  4113. intel_set_rps(dev, val);
  4114. mutex_unlock(&dev_priv->rps.hw_lock);
  4115. return 0;
  4116. }
  4117. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4118. i915_max_freq_get, i915_max_freq_set,
  4119. "%llu\n");
  4120. static int
  4121. i915_min_freq_get(void *data, u64 *val)
  4122. {
  4123. struct drm_device *dev = data;
  4124. struct drm_i915_private *dev_priv = dev->dev_private;
  4125. int ret;
  4126. if (INTEL_INFO(dev)->gen < 6)
  4127. return -ENODEV;
  4128. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4129. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4130. if (ret)
  4131. return ret;
  4132. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4133. mutex_unlock(&dev_priv->rps.hw_lock);
  4134. return 0;
  4135. }
  4136. static int
  4137. i915_min_freq_set(void *data, u64 val)
  4138. {
  4139. struct drm_device *dev = data;
  4140. struct drm_i915_private *dev_priv = dev->dev_private;
  4141. u32 hw_max, hw_min;
  4142. int ret;
  4143. if (INTEL_INFO(dev)->gen < 6)
  4144. return -ENODEV;
  4145. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4146. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4147. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4148. if (ret)
  4149. return ret;
  4150. /*
  4151. * Turbo will still be enabled, but won't go below the set value.
  4152. */
  4153. val = intel_freq_opcode(dev_priv, val);
  4154. hw_max = dev_priv->rps.max_freq;
  4155. hw_min = dev_priv->rps.min_freq;
  4156. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4157. mutex_unlock(&dev_priv->rps.hw_lock);
  4158. return -EINVAL;
  4159. }
  4160. dev_priv->rps.min_freq_softlimit = val;
  4161. intel_set_rps(dev, val);
  4162. mutex_unlock(&dev_priv->rps.hw_lock);
  4163. return 0;
  4164. }
  4165. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4166. i915_min_freq_get, i915_min_freq_set,
  4167. "%llu\n");
  4168. static int
  4169. i915_cache_sharing_get(void *data, u64 *val)
  4170. {
  4171. struct drm_device *dev = data;
  4172. struct drm_i915_private *dev_priv = dev->dev_private;
  4173. u32 snpcr;
  4174. int ret;
  4175. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4176. return -ENODEV;
  4177. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4178. if (ret)
  4179. return ret;
  4180. intel_runtime_pm_get(dev_priv);
  4181. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4182. intel_runtime_pm_put(dev_priv);
  4183. mutex_unlock(&dev_priv->dev->struct_mutex);
  4184. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4185. return 0;
  4186. }
  4187. static int
  4188. i915_cache_sharing_set(void *data, u64 val)
  4189. {
  4190. struct drm_device *dev = data;
  4191. struct drm_i915_private *dev_priv = dev->dev_private;
  4192. u32 snpcr;
  4193. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4194. return -ENODEV;
  4195. if (val > 3)
  4196. return -EINVAL;
  4197. intel_runtime_pm_get(dev_priv);
  4198. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4199. /* Update the cache sharing policy here as well */
  4200. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4201. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4202. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4203. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4204. intel_runtime_pm_put(dev_priv);
  4205. return 0;
  4206. }
  4207. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4208. i915_cache_sharing_get, i915_cache_sharing_set,
  4209. "%llu\n");
  4210. struct sseu_dev_status {
  4211. unsigned int slice_total;
  4212. unsigned int subslice_total;
  4213. unsigned int subslice_per_slice;
  4214. unsigned int eu_total;
  4215. unsigned int eu_per_subslice;
  4216. };
  4217. static void cherryview_sseu_device_status(struct drm_device *dev,
  4218. struct sseu_dev_status *stat)
  4219. {
  4220. struct drm_i915_private *dev_priv = dev->dev_private;
  4221. int ss_max = 2;
  4222. int ss;
  4223. u32 sig1[ss_max], sig2[ss_max];
  4224. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4225. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4226. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4227. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4228. for (ss = 0; ss < ss_max; ss++) {
  4229. unsigned int eu_cnt;
  4230. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4231. /* skip disabled subslice */
  4232. continue;
  4233. stat->slice_total = 1;
  4234. stat->subslice_per_slice++;
  4235. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4236. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4237. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4238. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4239. stat->eu_total += eu_cnt;
  4240. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4241. }
  4242. stat->subslice_total = stat->subslice_per_slice;
  4243. }
  4244. static void gen9_sseu_device_status(struct drm_device *dev,
  4245. struct sseu_dev_status *stat)
  4246. {
  4247. struct drm_i915_private *dev_priv = dev->dev_private;
  4248. int s_max = 3, ss_max = 4;
  4249. int s, ss;
  4250. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4251. /* BXT has a single slice and at most 3 subslices. */
  4252. if (IS_BROXTON(dev)) {
  4253. s_max = 1;
  4254. ss_max = 3;
  4255. }
  4256. for (s = 0; s < s_max; s++) {
  4257. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4258. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4259. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4260. }
  4261. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4262. GEN9_PGCTL_SSA_EU19_ACK |
  4263. GEN9_PGCTL_SSA_EU210_ACK |
  4264. GEN9_PGCTL_SSA_EU311_ACK;
  4265. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4266. GEN9_PGCTL_SSB_EU19_ACK |
  4267. GEN9_PGCTL_SSB_EU210_ACK |
  4268. GEN9_PGCTL_SSB_EU311_ACK;
  4269. for (s = 0; s < s_max; s++) {
  4270. unsigned int ss_cnt = 0;
  4271. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4272. /* skip disabled slice */
  4273. continue;
  4274. stat->slice_total++;
  4275. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4276. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4277. for (ss = 0; ss < ss_max; ss++) {
  4278. unsigned int eu_cnt;
  4279. if (IS_BROXTON(dev) &&
  4280. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4281. /* skip disabled subslice */
  4282. continue;
  4283. if (IS_BROXTON(dev))
  4284. ss_cnt++;
  4285. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4286. eu_mask[ss%2]);
  4287. stat->eu_total += eu_cnt;
  4288. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4289. eu_cnt);
  4290. }
  4291. stat->subslice_total += ss_cnt;
  4292. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4293. ss_cnt);
  4294. }
  4295. }
  4296. static void broadwell_sseu_device_status(struct drm_device *dev,
  4297. struct sseu_dev_status *stat)
  4298. {
  4299. struct drm_i915_private *dev_priv = dev->dev_private;
  4300. int s;
  4301. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4302. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4303. if (stat->slice_total) {
  4304. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4305. stat->subslice_total = stat->slice_total *
  4306. stat->subslice_per_slice;
  4307. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4308. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4309. /* subtract fused off EU(s) from enabled slice(s) */
  4310. for (s = 0; s < stat->slice_total; s++) {
  4311. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4312. stat->eu_total -= hweight8(subslice_7eu);
  4313. }
  4314. }
  4315. }
  4316. static int i915_sseu_status(struct seq_file *m, void *unused)
  4317. {
  4318. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4319. struct drm_device *dev = node->minor->dev;
  4320. struct sseu_dev_status stat;
  4321. if (INTEL_INFO(dev)->gen < 8)
  4322. return -ENODEV;
  4323. seq_puts(m, "SSEU Device Info\n");
  4324. seq_printf(m, " Available Slice Total: %u\n",
  4325. INTEL_INFO(dev)->slice_total);
  4326. seq_printf(m, " Available Subslice Total: %u\n",
  4327. INTEL_INFO(dev)->subslice_total);
  4328. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4329. INTEL_INFO(dev)->subslice_per_slice);
  4330. seq_printf(m, " Available EU Total: %u\n",
  4331. INTEL_INFO(dev)->eu_total);
  4332. seq_printf(m, " Available EU Per Subslice: %u\n",
  4333. INTEL_INFO(dev)->eu_per_subslice);
  4334. seq_printf(m, " Has Slice Power Gating: %s\n",
  4335. yesno(INTEL_INFO(dev)->has_slice_pg));
  4336. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4337. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4338. seq_printf(m, " Has EU Power Gating: %s\n",
  4339. yesno(INTEL_INFO(dev)->has_eu_pg));
  4340. seq_puts(m, "SSEU Device Status\n");
  4341. memset(&stat, 0, sizeof(stat));
  4342. if (IS_CHERRYVIEW(dev)) {
  4343. cherryview_sseu_device_status(dev, &stat);
  4344. } else if (IS_BROADWELL(dev)) {
  4345. broadwell_sseu_device_status(dev, &stat);
  4346. } else if (INTEL_INFO(dev)->gen >= 9) {
  4347. gen9_sseu_device_status(dev, &stat);
  4348. }
  4349. seq_printf(m, " Enabled Slice Total: %u\n",
  4350. stat.slice_total);
  4351. seq_printf(m, " Enabled Subslice Total: %u\n",
  4352. stat.subslice_total);
  4353. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4354. stat.subslice_per_slice);
  4355. seq_printf(m, " Enabled EU Total: %u\n",
  4356. stat.eu_total);
  4357. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4358. stat.eu_per_subslice);
  4359. return 0;
  4360. }
  4361. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4362. {
  4363. struct drm_device *dev = inode->i_private;
  4364. struct drm_i915_private *dev_priv = dev->dev_private;
  4365. if (INTEL_INFO(dev)->gen < 6)
  4366. return 0;
  4367. intel_runtime_pm_get(dev_priv);
  4368. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4369. return 0;
  4370. }
  4371. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4372. {
  4373. struct drm_device *dev = inode->i_private;
  4374. struct drm_i915_private *dev_priv = dev->dev_private;
  4375. if (INTEL_INFO(dev)->gen < 6)
  4376. return 0;
  4377. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4378. intel_runtime_pm_put(dev_priv);
  4379. return 0;
  4380. }
  4381. static const struct file_operations i915_forcewake_fops = {
  4382. .owner = THIS_MODULE,
  4383. .open = i915_forcewake_open,
  4384. .release = i915_forcewake_release,
  4385. };
  4386. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4387. {
  4388. struct drm_device *dev = minor->dev;
  4389. struct dentry *ent;
  4390. ent = debugfs_create_file("i915_forcewake_user",
  4391. S_IRUSR,
  4392. root, dev,
  4393. &i915_forcewake_fops);
  4394. if (!ent)
  4395. return -ENOMEM;
  4396. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4397. }
  4398. static int i915_debugfs_create(struct dentry *root,
  4399. struct drm_minor *minor,
  4400. const char *name,
  4401. const struct file_operations *fops)
  4402. {
  4403. struct drm_device *dev = minor->dev;
  4404. struct dentry *ent;
  4405. ent = debugfs_create_file(name,
  4406. S_IRUGO | S_IWUSR,
  4407. root, dev,
  4408. fops);
  4409. if (!ent)
  4410. return -ENOMEM;
  4411. return drm_add_fake_info_node(minor, ent, fops);
  4412. }
  4413. static const struct drm_info_list i915_debugfs_list[] = {
  4414. {"i915_capabilities", i915_capabilities, 0},
  4415. {"i915_gem_objects", i915_gem_object_info, 0},
  4416. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4417. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4418. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4419. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4420. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4421. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4422. {"i915_gem_request", i915_gem_request_info, 0},
  4423. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4424. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4425. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4426. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4427. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4428. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4429. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4430. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4431. {"i915_guc_info", i915_guc_info, 0},
  4432. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4433. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4434. {"i915_frequency_info", i915_frequency_info, 0},
  4435. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4436. {"i915_drpc_info", i915_drpc_info, 0},
  4437. {"i915_emon_status", i915_emon_status, 0},
  4438. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4439. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4440. {"i915_fbc_status", i915_fbc_status, 0},
  4441. {"i915_ips_status", i915_ips_status, 0},
  4442. {"i915_sr_status", i915_sr_status, 0},
  4443. {"i915_opregion", i915_opregion, 0},
  4444. {"i915_vbt", i915_vbt, 0},
  4445. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4446. {"i915_context_status", i915_context_status, 0},
  4447. {"i915_dump_lrc", i915_dump_lrc, 0},
  4448. {"i915_execlists", i915_execlists, 0},
  4449. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4450. {"i915_swizzle_info", i915_swizzle_info, 0},
  4451. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4452. {"i915_llc", i915_llc, 0},
  4453. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4454. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4455. {"i915_energy_uJ", i915_energy_uJ, 0},
  4456. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4457. {"i915_power_domain_info", i915_power_domain_info, 0},
  4458. {"i915_dmc_info", i915_dmc_info, 0},
  4459. {"i915_display_info", i915_display_info, 0},
  4460. {"i915_semaphore_status", i915_semaphore_status, 0},
  4461. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4462. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4463. {"i915_wa_registers", i915_wa_registers, 0},
  4464. {"i915_ddb_info", i915_ddb_info, 0},
  4465. {"i915_sseu_status", i915_sseu_status, 0},
  4466. {"i915_drrs_status", i915_drrs_status, 0},
  4467. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4468. };
  4469. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4470. static const struct i915_debugfs_files {
  4471. const char *name;
  4472. const struct file_operations *fops;
  4473. } i915_debugfs_files[] = {
  4474. {"i915_wedged", &i915_wedged_fops},
  4475. {"i915_max_freq", &i915_max_freq_fops},
  4476. {"i915_min_freq", &i915_min_freq_fops},
  4477. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4478. {"i915_ring_stop", &i915_ring_stop_fops},
  4479. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4480. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4481. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4482. {"i915_error_state", &i915_error_state_fops},
  4483. {"i915_next_seqno", &i915_next_seqno_fops},
  4484. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4485. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4486. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4487. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4488. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4489. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4490. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4491. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4492. };
  4493. void intel_display_crc_init(struct drm_device *dev)
  4494. {
  4495. struct drm_i915_private *dev_priv = dev->dev_private;
  4496. enum pipe pipe;
  4497. for_each_pipe(dev_priv, pipe) {
  4498. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4499. pipe_crc->opened = false;
  4500. spin_lock_init(&pipe_crc->lock);
  4501. init_waitqueue_head(&pipe_crc->wq);
  4502. }
  4503. }
  4504. int i915_debugfs_init(struct drm_minor *minor)
  4505. {
  4506. int ret, i;
  4507. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4508. if (ret)
  4509. return ret;
  4510. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4511. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4512. if (ret)
  4513. return ret;
  4514. }
  4515. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4516. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4517. i915_debugfs_files[i].name,
  4518. i915_debugfs_files[i].fops);
  4519. if (ret)
  4520. return ret;
  4521. }
  4522. return drm_debugfs_create_files(i915_debugfs_list,
  4523. I915_DEBUGFS_ENTRIES,
  4524. minor->debugfs_root, minor);
  4525. }
  4526. void i915_debugfs_cleanup(struct drm_minor *minor)
  4527. {
  4528. int i;
  4529. drm_debugfs_remove_files(i915_debugfs_list,
  4530. I915_DEBUGFS_ENTRIES, minor);
  4531. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4532. 1, minor);
  4533. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4534. struct drm_info_list *info_list =
  4535. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4536. drm_debugfs_remove_files(info_list, 1, minor);
  4537. }
  4538. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4539. struct drm_info_list *info_list =
  4540. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4541. drm_debugfs_remove_files(info_list, 1, minor);
  4542. }
  4543. }
  4544. struct dpcd_block {
  4545. /* DPCD dump start address. */
  4546. unsigned int offset;
  4547. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4548. unsigned int end;
  4549. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4550. size_t size;
  4551. /* Only valid for eDP. */
  4552. bool edp;
  4553. };
  4554. static const struct dpcd_block i915_dpcd_debug[] = {
  4555. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4556. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4557. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4558. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4559. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4560. { .offset = DP_SET_POWER },
  4561. { .offset = DP_EDP_DPCD_REV },
  4562. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4563. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4564. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4565. };
  4566. static int i915_dpcd_show(struct seq_file *m, void *data)
  4567. {
  4568. struct drm_connector *connector = m->private;
  4569. struct intel_dp *intel_dp =
  4570. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4571. uint8_t buf[16];
  4572. ssize_t err;
  4573. int i;
  4574. if (connector->status != connector_status_connected)
  4575. return -ENODEV;
  4576. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4577. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4578. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4579. if (b->edp &&
  4580. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4581. continue;
  4582. /* low tech for now */
  4583. if (WARN_ON(size > sizeof(buf)))
  4584. continue;
  4585. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4586. if (err <= 0) {
  4587. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4588. size, b->offset, err);
  4589. continue;
  4590. }
  4591. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4592. }
  4593. return 0;
  4594. }
  4595. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4596. {
  4597. return single_open(file, i915_dpcd_show, inode->i_private);
  4598. }
  4599. static const struct file_operations i915_dpcd_fops = {
  4600. .owner = THIS_MODULE,
  4601. .open = i915_dpcd_open,
  4602. .read = seq_read,
  4603. .llseek = seq_lseek,
  4604. .release = single_release,
  4605. };
  4606. /**
  4607. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4608. * @connector: pointer to a registered drm_connector
  4609. *
  4610. * Cleanup will be done by drm_connector_unregister() through a call to
  4611. * drm_debugfs_connector_remove().
  4612. *
  4613. * Returns 0 on success, negative error codes on error.
  4614. */
  4615. int i915_debugfs_connector_add(struct drm_connector *connector)
  4616. {
  4617. struct dentry *root = connector->debugfs_entry;
  4618. /* The connector must have been registered beforehands. */
  4619. if (!root)
  4620. return -ENODEV;
  4621. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4622. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4623. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4624. &i915_dpcd_fops);
  4625. return 0;
  4626. }