rcar-dmac.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * Renesas R-Car Gen2 DMA Controller Driver
  3. *
  4. * Copyright (C) 2014 Renesas Electronics Inc.
  5. *
  6. * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  7. *
  8. * This is free software; you can redistribute it and/or modify
  9. * it under the terms of version 2 of the GNU General Public License as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/dma-mapping.h>
  13. #include <linux/dmaengine.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/list.h>
  16. #include <linux/module.h>
  17. #include <linux/mutex.h>
  18. #include <linux/of.h>
  19. #include <linux/of_dma.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/pm_runtime.h>
  23. #include <linux/slab.h>
  24. #include <linux/spinlock.h>
  25. #include "../dmaengine.h"
  26. /*
  27. * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  28. * @node: entry in the parent's chunks list
  29. * @src_addr: device source address
  30. * @dst_addr: device destination address
  31. * @size: transfer size in bytes
  32. */
  33. struct rcar_dmac_xfer_chunk {
  34. struct list_head node;
  35. dma_addr_t src_addr;
  36. dma_addr_t dst_addr;
  37. u32 size;
  38. };
  39. /*
  40. * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  41. * @sar: value of the SAR register (source address)
  42. * @dar: value of the DAR register (destination address)
  43. * @tcr: value of the TCR register (transfer count)
  44. */
  45. struct rcar_dmac_hw_desc {
  46. u32 sar;
  47. u32 dar;
  48. u32 tcr;
  49. u32 reserved;
  50. } __attribute__((__packed__));
  51. /*
  52. * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  53. * @async_tx: base DMA asynchronous transaction descriptor
  54. * @direction: direction of the DMA transfer
  55. * @xfer_shift: log2 of the transfer size
  56. * @chcr: value of the channel configuration register for this transfer
  57. * @node: entry in the channel's descriptors lists
  58. * @chunks: list of transfer chunks for this transfer
  59. * @running: the transfer chunk being currently processed
  60. * @nchunks: number of transfer chunks for this transfer
  61. * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  62. * @hwdescs.mem: hardware descriptors memory for the transfer
  63. * @hwdescs.dma: device address of the hardware descriptors memory
  64. * @hwdescs.size: size of the hardware descriptors in bytes
  65. * @size: transfer size in bytes
  66. * @cyclic: when set indicates that the DMA transfer is cyclic
  67. */
  68. struct rcar_dmac_desc {
  69. struct dma_async_tx_descriptor async_tx;
  70. enum dma_transfer_direction direction;
  71. unsigned int xfer_shift;
  72. u32 chcr;
  73. struct list_head node;
  74. struct list_head chunks;
  75. struct rcar_dmac_xfer_chunk *running;
  76. unsigned int nchunks;
  77. struct {
  78. bool use;
  79. struct rcar_dmac_hw_desc *mem;
  80. dma_addr_t dma;
  81. size_t size;
  82. } hwdescs;
  83. unsigned int size;
  84. bool cyclic;
  85. };
  86. #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
  87. /*
  88. * struct rcar_dmac_desc_page - One page worth of descriptors
  89. * @node: entry in the channel's pages list
  90. * @descs: array of DMA descriptors
  91. * @chunks: array of transfer chunk descriptors
  92. */
  93. struct rcar_dmac_desc_page {
  94. struct list_head node;
  95. union {
  96. struct rcar_dmac_desc descs[0];
  97. struct rcar_dmac_xfer_chunk chunks[0];
  98. };
  99. };
  100. #define RCAR_DMAC_DESCS_PER_PAGE \
  101. ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
  102. sizeof(struct rcar_dmac_desc))
  103. #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
  104. ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
  105. sizeof(struct rcar_dmac_xfer_chunk))
  106. /*
  107. * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
  108. * @chan: base DMA channel object
  109. * @iomem: channel I/O memory base
  110. * @index: index of this channel in the controller
  111. * @src_xfer_size: size (in bytes) of hardware transfers on the source side
  112. * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
  113. * @src_slave_addr: slave source memory address
  114. * @dst_slave_addr: slave destination memory address
  115. * @mid_rid: hardware MID/RID for the DMA client using this channel
  116. * @lock: protects the channel CHCR register and the desc members
  117. * @desc.free: list of free descriptors
  118. * @desc.pending: list of pending descriptors (submitted with tx_submit)
  119. * @desc.active: list of active descriptors (activated with issue_pending)
  120. * @desc.done: list of completed descriptors
  121. * @desc.wait: list of descriptors waiting for an ack
  122. * @desc.running: the descriptor being processed (a member of the active list)
  123. * @desc.chunks_free: list of free transfer chunk descriptors
  124. * @desc.pages: list of pages used by allocated descriptors
  125. */
  126. struct rcar_dmac_chan {
  127. struct dma_chan chan;
  128. void __iomem *iomem;
  129. unsigned int index;
  130. unsigned int src_xfer_size;
  131. unsigned int dst_xfer_size;
  132. dma_addr_t src_slave_addr;
  133. dma_addr_t dst_slave_addr;
  134. int mid_rid;
  135. spinlock_t lock;
  136. struct {
  137. struct list_head free;
  138. struct list_head pending;
  139. struct list_head active;
  140. struct list_head done;
  141. struct list_head wait;
  142. struct rcar_dmac_desc *running;
  143. struct list_head chunks_free;
  144. struct list_head pages;
  145. } desc;
  146. };
  147. #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
  148. /*
  149. * struct rcar_dmac - R-Car Gen2 DMA Controller
  150. * @engine: base DMA engine object
  151. * @dev: the hardware device
  152. * @iomem: remapped I/O memory base
  153. * @n_channels: number of available channels
  154. * @channels: array of DMAC channels
  155. * @modules: bitmask of client modules in use
  156. */
  157. struct rcar_dmac {
  158. struct dma_device engine;
  159. struct device *dev;
  160. void __iomem *iomem;
  161. unsigned int n_channels;
  162. struct rcar_dmac_chan *channels;
  163. DECLARE_BITMAP(modules, 256);
  164. };
  165. #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
  166. /* -----------------------------------------------------------------------------
  167. * Registers
  168. */
  169. #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
  170. #define RCAR_DMAISTA 0x0020
  171. #define RCAR_DMASEC 0x0030
  172. #define RCAR_DMAOR 0x0060
  173. #define RCAR_DMAOR_PRI_FIXED (0 << 8)
  174. #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
  175. #define RCAR_DMAOR_AE (1 << 2)
  176. #define RCAR_DMAOR_DME (1 << 0)
  177. #define RCAR_DMACHCLR 0x0080
  178. #define RCAR_DMADPSEC 0x00a0
  179. #define RCAR_DMASAR 0x0000
  180. #define RCAR_DMADAR 0x0004
  181. #define RCAR_DMATCR 0x0008
  182. #define RCAR_DMATCR_MASK 0x00ffffff
  183. #define RCAR_DMATSR 0x0028
  184. #define RCAR_DMACHCR 0x000c
  185. #define RCAR_DMACHCR_CAE (1 << 31)
  186. #define RCAR_DMACHCR_CAIE (1 << 30)
  187. #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
  188. #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
  189. #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
  190. #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
  191. #define RCAR_DMACHCR_RPT_SAR (1 << 27)
  192. #define RCAR_DMACHCR_RPT_DAR (1 << 26)
  193. #define RCAR_DMACHCR_RPT_TCR (1 << 25)
  194. #define RCAR_DMACHCR_DPB (1 << 22)
  195. #define RCAR_DMACHCR_DSE (1 << 19)
  196. #define RCAR_DMACHCR_DSIE (1 << 18)
  197. #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
  198. #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
  199. #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
  200. #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
  201. #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
  202. #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
  203. #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
  204. #define RCAR_DMACHCR_DM_FIXED (0 << 14)
  205. #define RCAR_DMACHCR_DM_INC (1 << 14)
  206. #define RCAR_DMACHCR_DM_DEC (2 << 14)
  207. #define RCAR_DMACHCR_SM_FIXED (0 << 12)
  208. #define RCAR_DMACHCR_SM_INC (1 << 12)
  209. #define RCAR_DMACHCR_SM_DEC (2 << 12)
  210. #define RCAR_DMACHCR_RS_AUTO (4 << 8)
  211. #define RCAR_DMACHCR_RS_DMARS (8 << 8)
  212. #define RCAR_DMACHCR_IE (1 << 2)
  213. #define RCAR_DMACHCR_TE (1 << 1)
  214. #define RCAR_DMACHCR_DE (1 << 0)
  215. #define RCAR_DMATCRB 0x0018
  216. #define RCAR_DMATSRB 0x0038
  217. #define RCAR_DMACHCRB 0x001c
  218. #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
  219. #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
  220. #define RCAR_DMACHCRB_DPTR_SHIFT 16
  221. #define RCAR_DMACHCRB_DRST (1 << 15)
  222. #define RCAR_DMACHCRB_DTS (1 << 8)
  223. #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
  224. #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
  225. #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
  226. #define RCAR_DMARS 0x0040
  227. #define RCAR_DMABUFCR 0x0048
  228. #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
  229. #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
  230. #define RCAR_DMADPBASE 0x0050
  231. #define RCAR_DMADPBASE_MASK 0xfffffff0
  232. #define RCAR_DMADPBASE_SEL (1 << 0)
  233. #define RCAR_DMADPCR 0x0054
  234. #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
  235. #define RCAR_DMAFIXSAR 0x0010
  236. #define RCAR_DMAFIXDAR 0x0014
  237. #define RCAR_DMAFIXDPBASE 0x0060
  238. /* Hardcode the MEMCPY transfer size to 4 bytes. */
  239. #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
  240. /* -----------------------------------------------------------------------------
  241. * Device access
  242. */
  243. static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
  244. {
  245. if (reg == RCAR_DMAOR)
  246. writew(data, dmac->iomem + reg);
  247. else
  248. writel(data, dmac->iomem + reg);
  249. }
  250. static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
  251. {
  252. if (reg == RCAR_DMAOR)
  253. return readw(dmac->iomem + reg);
  254. else
  255. return readl(dmac->iomem + reg);
  256. }
  257. static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
  258. {
  259. if (reg == RCAR_DMARS)
  260. return readw(chan->iomem + reg);
  261. else
  262. return readl(chan->iomem + reg);
  263. }
  264. static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
  265. {
  266. if (reg == RCAR_DMARS)
  267. writew(data, chan->iomem + reg);
  268. else
  269. writel(data, chan->iomem + reg);
  270. }
  271. /* -----------------------------------------------------------------------------
  272. * Initialization and configuration
  273. */
  274. static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
  275. {
  276. u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  277. return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
  278. }
  279. static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
  280. {
  281. struct rcar_dmac_desc *desc = chan->desc.running;
  282. u32 chcr = desc->chcr;
  283. WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
  284. if (chan->mid_rid >= 0)
  285. rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
  286. if (desc->hwdescs.use) {
  287. struct rcar_dmac_xfer_chunk *chunk;
  288. dev_dbg(chan->chan.device->dev,
  289. "chan%u: queue desc %p: %u@%pad\n",
  290. chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
  291. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  292. rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
  293. desc->hwdescs.dma >> 32);
  294. #endif
  295. rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
  296. (desc->hwdescs.dma & 0xfffffff0) |
  297. RCAR_DMADPBASE_SEL);
  298. rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
  299. RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
  300. RCAR_DMACHCRB_DRST);
  301. /*
  302. * Errata: When descriptor memory is accessed through an IOMMU
  303. * the DMADAR register isn't initialized automatically from the
  304. * first descriptor at beginning of transfer by the DMAC like it
  305. * should. Initialize it manually with the destination address
  306. * of the first chunk.
  307. */
  308. chunk = list_first_entry(&desc->chunks,
  309. struct rcar_dmac_xfer_chunk, node);
  310. rcar_dmac_chan_write(chan, RCAR_DMADAR,
  311. chunk->dst_addr & 0xffffffff);
  312. /*
  313. * Program the descriptor stage interrupt to occur after the end
  314. * of the first stage.
  315. */
  316. rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
  317. chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
  318. | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
  319. /*
  320. * If the descriptor isn't cyclic enable normal descriptor mode
  321. * and the transfer completion interrupt.
  322. */
  323. if (!desc->cyclic)
  324. chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
  325. /*
  326. * If the descriptor is cyclic and has a callback enable the
  327. * descriptor stage interrupt in infinite repeat mode.
  328. */
  329. else if (desc->async_tx.callback)
  330. chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
  331. /*
  332. * Otherwise just select infinite repeat mode without any
  333. * interrupt.
  334. */
  335. else
  336. chcr |= RCAR_DMACHCR_DPM_INFINITE;
  337. } else {
  338. struct rcar_dmac_xfer_chunk *chunk = desc->running;
  339. dev_dbg(chan->chan.device->dev,
  340. "chan%u: queue chunk %p: %u@%pad -> %pad\n",
  341. chan->index, chunk, chunk->size, &chunk->src_addr,
  342. &chunk->dst_addr);
  343. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  344. rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
  345. chunk->src_addr >> 32);
  346. rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
  347. chunk->dst_addr >> 32);
  348. #endif
  349. rcar_dmac_chan_write(chan, RCAR_DMASAR,
  350. chunk->src_addr & 0xffffffff);
  351. rcar_dmac_chan_write(chan, RCAR_DMADAR,
  352. chunk->dst_addr & 0xffffffff);
  353. rcar_dmac_chan_write(chan, RCAR_DMATCR,
  354. chunk->size >> desc->xfer_shift);
  355. chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
  356. }
  357. rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
  358. }
  359. static int rcar_dmac_init(struct rcar_dmac *dmac)
  360. {
  361. u16 dmaor;
  362. /* Clear all channels and enable the DMAC globally. */
  363. rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
  364. rcar_dmac_write(dmac, RCAR_DMAOR,
  365. RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
  366. dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
  367. if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
  368. dev_warn(dmac->dev, "DMAOR initialization failed.\n");
  369. return -EIO;
  370. }
  371. return 0;
  372. }
  373. /* -----------------------------------------------------------------------------
  374. * Descriptors submission
  375. */
  376. static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
  377. {
  378. struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
  379. struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
  380. unsigned long flags;
  381. dma_cookie_t cookie;
  382. spin_lock_irqsave(&chan->lock, flags);
  383. cookie = dma_cookie_assign(tx);
  384. dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
  385. chan->index, tx->cookie, desc);
  386. list_add_tail(&desc->node, &chan->desc.pending);
  387. desc->running = list_first_entry(&desc->chunks,
  388. struct rcar_dmac_xfer_chunk, node);
  389. spin_unlock_irqrestore(&chan->lock, flags);
  390. return cookie;
  391. }
  392. /* -----------------------------------------------------------------------------
  393. * Descriptors allocation and free
  394. */
  395. /*
  396. * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
  397. * @chan: the DMA channel
  398. * @gfp: allocation flags
  399. */
  400. static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
  401. {
  402. struct rcar_dmac_desc_page *page;
  403. unsigned long flags;
  404. LIST_HEAD(list);
  405. unsigned int i;
  406. page = (void *)get_zeroed_page(gfp);
  407. if (!page)
  408. return -ENOMEM;
  409. for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
  410. struct rcar_dmac_desc *desc = &page->descs[i];
  411. dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
  412. desc->async_tx.tx_submit = rcar_dmac_tx_submit;
  413. INIT_LIST_HEAD(&desc->chunks);
  414. list_add_tail(&desc->node, &list);
  415. }
  416. spin_lock_irqsave(&chan->lock, flags);
  417. list_splice_tail(&list, &chan->desc.free);
  418. list_add_tail(&page->node, &chan->desc.pages);
  419. spin_unlock_irqrestore(&chan->lock, flags);
  420. return 0;
  421. }
  422. /*
  423. * rcar_dmac_desc_put - Release a DMA transfer descriptor
  424. * @chan: the DMA channel
  425. * @desc: the descriptor
  426. *
  427. * Put the descriptor and its transfer chunk descriptors back in the channel's
  428. * free descriptors lists. The descriptor's chunks list will be reinitialized to
  429. * an empty list as a result.
  430. *
  431. * The descriptor must have been removed from the channel's lists before calling
  432. * this function.
  433. */
  434. static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
  435. struct rcar_dmac_desc *desc)
  436. {
  437. unsigned long flags;
  438. spin_lock_irqsave(&chan->lock, flags);
  439. list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
  440. list_add_tail(&desc->node, &chan->desc.free);
  441. spin_unlock_irqrestore(&chan->lock, flags);
  442. }
  443. static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
  444. {
  445. struct rcar_dmac_desc *desc, *_desc;
  446. unsigned long flags;
  447. LIST_HEAD(list);
  448. /*
  449. * We have to temporarily move all descriptors from the wait list to a
  450. * local list as iterating over the wait list, even with
  451. * list_for_each_entry_safe, isn't safe if we release the channel lock
  452. * around the rcar_dmac_desc_put() call.
  453. */
  454. spin_lock_irqsave(&chan->lock, flags);
  455. list_splice_init(&chan->desc.wait, &list);
  456. spin_unlock_irqrestore(&chan->lock, flags);
  457. list_for_each_entry_safe(desc, _desc, &list, node) {
  458. if (async_tx_test_ack(&desc->async_tx)) {
  459. list_del(&desc->node);
  460. rcar_dmac_desc_put(chan, desc);
  461. }
  462. }
  463. if (list_empty(&list))
  464. return;
  465. /* Put the remaining descriptors back in the wait list. */
  466. spin_lock_irqsave(&chan->lock, flags);
  467. list_splice(&list, &chan->desc.wait);
  468. spin_unlock_irqrestore(&chan->lock, flags);
  469. }
  470. /*
  471. * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
  472. * @chan: the DMA channel
  473. *
  474. * Locking: This function must be called in a non-atomic context.
  475. *
  476. * Return: A pointer to the allocated descriptor or NULL if no descriptor can
  477. * be allocated.
  478. */
  479. static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
  480. {
  481. struct rcar_dmac_desc *desc;
  482. unsigned long flags;
  483. int ret;
  484. /* Recycle acked descriptors before attempting allocation. */
  485. rcar_dmac_desc_recycle_acked(chan);
  486. spin_lock_irqsave(&chan->lock, flags);
  487. while (list_empty(&chan->desc.free)) {
  488. /*
  489. * No free descriptors, allocate a page worth of them and try
  490. * again, as someone else could race us to get the newly
  491. * allocated descriptors. If the allocation fails return an
  492. * error.
  493. */
  494. spin_unlock_irqrestore(&chan->lock, flags);
  495. ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
  496. if (ret < 0)
  497. return NULL;
  498. spin_lock_irqsave(&chan->lock, flags);
  499. }
  500. desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
  501. list_del(&desc->node);
  502. spin_unlock_irqrestore(&chan->lock, flags);
  503. return desc;
  504. }
  505. /*
  506. * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
  507. * @chan: the DMA channel
  508. * @gfp: allocation flags
  509. */
  510. static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
  511. {
  512. struct rcar_dmac_desc_page *page;
  513. unsigned long flags;
  514. LIST_HEAD(list);
  515. unsigned int i;
  516. page = (void *)get_zeroed_page(gfp);
  517. if (!page)
  518. return -ENOMEM;
  519. for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
  520. struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
  521. list_add_tail(&chunk->node, &list);
  522. }
  523. spin_lock_irqsave(&chan->lock, flags);
  524. list_splice_tail(&list, &chan->desc.chunks_free);
  525. list_add_tail(&page->node, &chan->desc.pages);
  526. spin_unlock_irqrestore(&chan->lock, flags);
  527. return 0;
  528. }
  529. /*
  530. * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
  531. * @chan: the DMA channel
  532. *
  533. * Locking: This function must be called in a non-atomic context.
  534. *
  535. * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
  536. * descriptor can be allocated.
  537. */
  538. static struct rcar_dmac_xfer_chunk *
  539. rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
  540. {
  541. struct rcar_dmac_xfer_chunk *chunk;
  542. unsigned long flags;
  543. int ret;
  544. spin_lock_irqsave(&chan->lock, flags);
  545. while (list_empty(&chan->desc.chunks_free)) {
  546. /*
  547. * No free descriptors, allocate a page worth of them and try
  548. * again, as someone else could race us to get the newly
  549. * allocated descriptors. If the allocation fails return an
  550. * error.
  551. */
  552. spin_unlock_irqrestore(&chan->lock, flags);
  553. ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
  554. if (ret < 0)
  555. return NULL;
  556. spin_lock_irqsave(&chan->lock, flags);
  557. }
  558. chunk = list_first_entry(&chan->desc.chunks_free,
  559. struct rcar_dmac_xfer_chunk, node);
  560. list_del(&chunk->node);
  561. spin_unlock_irqrestore(&chan->lock, flags);
  562. return chunk;
  563. }
  564. static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
  565. struct rcar_dmac_desc *desc, size_t size)
  566. {
  567. /*
  568. * dma_alloc_coherent() allocates memory in page size increments. To
  569. * avoid reallocating the hardware descriptors when the allocated size
  570. * wouldn't change align the requested size to a multiple of the page
  571. * size.
  572. */
  573. size = PAGE_ALIGN(size);
  574. if (desc->hwdescs.size == size)
  575. return;
  576. if (desc->hwdescs.mem) {
  577. dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
  578. desc->hwdescs.mem, desc->hwdescs.dma);
  579. desc->hwdescs.mem = NULL;
  580. desc->hwdescs.size = 0;
  581. }
  582. if (!size)
  583. return;
  584. desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
  585. &desc->hwdescs.dma, GFP_NOWAIT);
  586. if (!desc->hwdescs.mem)
  587. return;
  588. desc->hwdescs.size = size;
  589. }
  590. static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
  591. struct rcar_dmac_desc *desc)
  592. {
  593. struct rcar_dmac_xfer_chunk *chunk;
  594. struct rcar_dmac_hw_desc *hwdesc;
  595. rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
  596. hwdesc = desc->hwdescs.mem;
  597. if (!hwdesc)
  598. return -ENOMEM;
  599. list_for_each_entry(chunk, &desc->chunks, node) {
  600. hwdesc->sar = chunk->src_addr;
  601. hwdesc->dar = chunk->dst_addr;
  602. hwdesc->tcr = chunk->size >> desc->xfer_shift;
  603. hwdesc++;
  604. }
  605. return 0;
  606. }
  607. /* -----------------------------------------------------------------------------
  608. * Stop and reset
  609. */
  610. static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
  611. {
  612. u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  613. chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
  614. RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
  615. rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
  616. }
  617. static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
  618. {
  619. struct rcar_dmac_desc *desc, *_desc;
  620. unsigned long flags;
  621. LIST_HEAD(descs);
  622. spin_lock_irqsave(&chan->lock, flags);
  623. /* Move all non-free descriptors to the local lists. */
  624. list_splice_init(&chan->desc.pending, &descs);
  625. list_splice_init(&chan->desc.active, &descs);
  626. list_splice_init(&chan->desc.done, &descs);
  627. list_splice_init(&chan->desc.wait, &descs);
  628. chan->desc.running = NULL;
  629. spin_unlock_irqrestore(&chan->lock, flags);
  630. list_for_each_entry_safe(desc, _desc, &descs, node) {
  631. list_del(&desc->node);
  632. rcar_dmac_desc_put(chan, desc);
  633. }
  634. }
  635. static void rcar_dmac_stop(struct rcar_dmac *dmac)
  636. {
  637. rcar_dmac_write(dmac, RCAR_DMAOR, 0);
  638. }
  639. static void rcar_dmac_abort(struct rcar_dmac *dmac)
  640. {
  641. unsigned int i;
  642. /* Stop all channels. */
  643. for (i = 0; i < dmac->n_channels; ++i) {
  644. struct rcar_dmac_chan *chan = &dmac->channels[i];
  645. /* Stop and reinitialize the channel. */
  646. spin_lock(&chan->lock);
  647. rcar_dmac_chan_halt(chan);
  648. spin_unlock(&chan->lock);
  649. rcar_dmac_chan_reinit(chan);
  650. }
  651. }
  652. /* -----------------------------------------------------------------------------
  653. * Descriptors preparation
  654. */
  655. static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
  656. struct rcar_dmac_desc *desc)
  657. {
  658. static const u32 chcr_ts[] = {
  659. RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
  660. RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
  661. RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
  662. RCAR_DMACHCR_TS_64B,
  663. };
  664. unsigned int xfer_size;
  665. u32 chcr;
  666. switch (desc->direction) {
  667. case DMA_DEV_TO_MEM:
  668. chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
  669. | RCAR_DMACHCR_RS_DMARS;
  670. xfer_size = chan->src_xfer_size;
  671. break;
  672. case DMA_MEM_TO_DEV:
  673. chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
  674. | RCAR_DMACHCR_RS_DMARS;
  675. xfer_size = chan->dst_xfer_size;
  676. break;
  677. case DMA_MEM_TO_MEM:
  678. default:
  679. chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
  680. | RCAR_DMACHCR_RS_AUTO;
  681. xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
  682. break;
  683. }
  684. desc->xfer_shift = ilog2(xfer_size);
  685. desc->chcr = chcr | chcr_ts[desc->xfer_shift];
  686. }
  687. /*
  688. * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
  689. *
  690. * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
  691. * converted to scatter-gather to guarantee consistent locking and a correct
  692. * list manipulation. For slave DMA direction carries the usual meaning, and,
  693. * logically, the SG list is RAM and the addr variable contains slave address,
  694. * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
  695. * and the SG list contains only one element and points at the source buffer.
  696. */
  697. static struct dma_async_tx_descriptor *
  698. rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
  699. unsigned int sg_len, dma_addr_t dev_addr,
  700. enum dma_transfer_direction dir, unsigned long dma_flags,
  701. bool cyclic)
  702. {
  703. struct rcar_dmac_xfer_chunk *chunk;
  704. struct rcar_dmac_desc *desc;
  705. struct scatterlist *sg;
  706. unsigned int nchunks = 0;
  707. unsigned int max_chunk_size;
  708. unsigned int full_size = 0;
  709. bool highmem = false;
  710. unsigned int i;
  711. desc = rcar_dmac_desc_get(chan);
  712. if (!desc)
  713. return NULL;
  714. desc->async_tx.flags = dma_flags;
  715. desc->async_tx.cookie = -EBUSY;
  716. desc->cyclic = cyclic;
  717. desc->direction = dir;
  718. rcar_dmac_chan_configure_desc(chan, desc);
  719. max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
  720. /*
  721. * Allocate and fill the transfer chunk descriptors. We own the only
  722. * reference to the DMA descriptor, there's no need for locking.
  723. */
  724. for_each_sg(sgl, sg, sg_len, i) {
  725. dma_addr_t mem_addr = sg_dma_address(sg);
  726. unsigned int len = sg_dma_len(sg);
  727. full_size += len;
  728. while (len) {
  729. unsigned int size = min(len, max_chunk_size);
  730. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  731. /*
  732. * Prevent individual transfers from crossing 4GB
  733. * boundaries.
  734. */
  735. if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
  736. size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
  737. if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
  738. size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
  739. /*
  740. * Check if either of the source or destination address
  741. * can't be expressed in 32 bits. If so we can't use
  742. * hardware descriptor lists.
  743. */
  744. if (dev_addr >> 32 || mem_addr >> 32)
  745. highmem = true;
  746. #endif
  747. chunk = rcar_dmac_xfer_chunk_get(chan);
  748. if (!chunk) {
  749. rcar_dmac_desc_put(chan, desc);
  750. return NULL;
  751. }
  752. if (dir == DMA_DEV_TO_MEM) {
  753. chunk->src_addr = dev_addr;
  754. chunk->dst_addr = mem_addr;
  755. } else {
  756. chunk->src_addr = mem_addr;
  757. chunk->dst_addr = dev_addr;
  758. }
  759. chunk->size = size;
  760. dev_dbg(chan->chan.device->dev,
  761. "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
  762. chan->index, chunk, desc, i, sg, size, len,
  763. &chunk->src_addr, &chunk->dst_addr);
  764. mem_addr += size;
  765. if (dir == DMA_MEM_TO_MEM)
  766. dev_addr += size;
  767. len -= size;
  768. list_add_tail(&chunk->node, &desc->chunks);
  769. nchunks++;
  770. }
  771. }
  772. desc->nchunks = nchunks;
  773. desc->size = full_size;
  774. /*
  775. * Use hardware descriptor lists if possible when more than one chunk
  776. * needs to be transferred (otherwise they don't make much sense).
  777. *
  778. * The highmem check currently covers the whole transfer. As an
  779. * optimization we could use descriptor lists for consecutive lowmem
  780. * chunks and direct manual mode for highmem chunks. Whether the
  781. * performance improvement would be significant enough compared to the
  782. * additional complexity remains to be investigated.
  783. */
  784. desc->hwdescs.use = !highmem && nchunks > 1;
  785. if (desc->hwdescs.use) {
  786. if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
  787. desc->hwdescs.use = false;
  788. }
  789. return &desc->async_tx;
  790. }
  791. /* -----------------------------------------------------------------------------
  792. * DMA engine operations
  793. */
  794. static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
  795. {
  796. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  797. int ret;
  798. INIT_LIST_HEAD(&rchan->desc.chunks_free);
  799. INIT_LIST_HEAD(&rchan->desc.pages);
  800. /* Preallocate descriptors. */
  801. ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
  802. if (ret < 0)
  803. return -ENOMEM;
  804. ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
  805. if (ret < 0)
  806. return -ENOMEM;
  807. return pm_runtime_get_sync(chan->device->dev);
  808. }
  809. static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
  810. {
  811. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  812. struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
  813. struct rcar_dmac_desc_page *page, *_page;
  814. struct rcar_dmac_desc *desc;
  815. LIST_HEAD(list);
  816. /* Protect against ISR */
  817. spin_lock_irq(&rchan->lock);
  818. rcar_dmac_chan_halt(rchan);
  819. spin_unlock_irq(&rchan->lock);
  820. /* Now no new interrupts will occur */
  821. if (rchan->mid_rid >= 0) {
  822. /* The caller is holding dma_list_mutex */
  823. clear_bit(rchan->mid_rid, dmac->modules);
  824. rchan->mid_rid = -EINVAL;
  825. }
  826. list_splice_init(&rchan->desc.free, &list);
  827. list_splice_init(&rchan->desc.pending, &list);
  828. list_splice_init(&rchan->desc.active, &list);
  829. list_splice_init(&rchan->desc.done, &list);
  830. list_splice_init(&rchan->desc.wait, &list);
  831. list_for_each_entry(desc, &list, node)
  832. rcar_dmac_realloc_hwdesc(rchan, desc, 0);
  833. list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
  834. list_del(&page->node);
  835. free_page((unsigned long)page);
  836. }
  837. pm_runtime_put(chan->device->dev);
  838. }
  839. static struct dma_async_tx_descriptor *
  840. rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  841. dma_addr_t dma_src, size_t len, unsigned long flags)
  842. {
  843. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  844. struct scatterlist sgl;
  845. if (!len)
  846. return NULL;
  847. sg_init_table(&sgl, 1);
  848. sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
  849. offset_in_page(dma_src));
  850. sg_dma_address(&sgl) = dma_src;
  851. sg_dma_len(&sgl) = len;
  852. return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
  853. DMA_MEM_TO_MEM, flags, false);
  854. }
  855. static struct dma_async_tx_descriptor *
  856. rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  857. unsigned int sg_len, enum dma_transfer_direction dir,
  858. unsigned long flags, void *context)
  859. {
  860. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  861. dma_addr_t dev_addr;
  862. /* Someone calling slave DMA on a generic channel? */
  863. if (rchan->mid_rid < 0 || !sg_len) {
  864. dev_warn(chan->device->dev,
  865. "%s: bad parameter: len=%d, id=%d\n",
  866. __func__, sg_len, rchan->mid_rid);
  867. return NULL;
  868. }
  869. dev_addr = dir == DMA_DEV_TO_MEM
  870. ? rchan->src_slave_addr : rchan->dst_slave_addr;
  871. return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
  872. dir, flags, false);
  873. }
  874. #define RCAR_DMAC_MAX_SG_LEN 32
  875. static struct dma_async_tx_descriptor *
  876. rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
  877. size_t buf_len, size_t period_len,
  878. enum dma_transfer_direction dir, unsigned long flags)
  879. {
  880. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  881. struct dma_async_tx_descriptor *desc;
  882. struct scatterlist *sgl;
  883. dma_addr_t dev_addr;
  884. unsigned int sg_len;
  885. unsigned int i;
  886. /* Someone calling slave DMA on a generic channel? */
  887. if (rchan->mid_rid < 0 || buf_len < period_len) {
  888. dev_warn(chan->device->dev,
  889. "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
  890. __func__, buf_len, period_len, rchan->mid_rid);
  891. return NULL;
  892. }
  893. sg_len = buf_len / period_len;
  894. if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
  895. dev_err(chan->device->dev,
  896. "chan%u: sg length %d exceds limit %d",
  897. rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
  898. return NULL;
  899. }
  900. /*
  901. * Allocate the sg list dynamically as it would consume too much stack
  902. * space.
  903. */
  904. sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
  905. if (!sgl)
  906. return NULL;
  907. sg_init_table(sgl, sg_len);
  908. for (i = 0; i < sg_len; ++i) {
  909. dma_addr_t src = buf_addr + (period_len * i);
  910. sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
  911. offset_in_page(src));
  912. sg_dma_address(&sgl[i]) = src;
  913. sg_dma_len(&sgl[i]) = period_len;
  914. }
  915. dev_addr = dir == DMA_DEV_TO_MEM
  916. ? rchan->src_slave_addr : rchan->dst_slave_addr;
  917. desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
  918. dir, flags, true);
  919. kfree(sgl);
  920. return desc;
  921. }
  922. static int rcar_dmac_device_config(struct dma_chan *chan,
  923. struct dma_slave_config *cfg)
  924. {
  925. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  926. /*
  927. * We could lock this, but you shouldn't be configuring the
  928. * channel, while using it...
  929. */
  930. rchan->src_slave_addr = cfg->src_addr;
  931. rchan->dst_slave_addr = cfg->dst_addr;
  932. rchan->src_xfer_size = cfg->src_addr_width;
  933. rchan->dst_xfer_size = cfg->dst_addr_width;
  934. return 0;
  935. }
  936. static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
  937. {
  938. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  939. unsigned long flags;
  940. spin_lock_irqsave(&rchan->lock, flags);
  941. rcar_dmac_chan_halt(rchan);
  942. spin_unlock_irqrestore(&rchan->lock, flags);
  943. /*
  944. * FIXME: No new interrupt can occur now, but the IRQ thread might still
  945. * be running.
  946. */
  947. rcar_dmac_chan_reinit(rchan);
  948. return 0;
  949. }
  950. static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
  951. dma_cookie_t cookie)
  952. {
  953. struct rcar_dmac_desc *desc = chan->desc.running;
  954. struct rcar_dmac_xfer_chunk *running = NULL;
  955. struct rcar_dmac_xfer_chunk *chunk;
  956. unsigned int residue = 0;
  957. unsigned int dptr = 0;
  958. if (!desc)
  959. return 0;
  960. /*
  961. * If the cookie doesn't correspond to the currently running transfer
  962. * then the descriptor hasn't been processed yet, and the residue is
  963. * equal to the full descriptor size.
  964. */
  965. if (cookie != desc->async_tx.cookie)
  966. return desc->size;
  967. /*
  968. * In descriptor mode the descriptor running pointer is not maintained
  969. * by the interrupt handler, find the running descriptor from the
  970. * descriptor pointer field in the CHCRB register. In non-descriptor
  971. * mode just use the running descriptor pointer.
  972. */
  973. if (desc->hwdescs.use) {
  974. dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
  975. RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
  976. WARN_ON(dptr >= desc->nchunks);
  977. } else {
  978. running = desc->running;
  979. }
  980. /* Compute the size of all chunks still to be transferred. */
  981. list_for_each_entry_reverse(chunk, &desc->chunks, node) {
  982. if (chunk == running || ++dptr == desc->nchunks)
  983. break;
  984. residue += chunk->size;
  985. }
  986. /* Add the residue for the current chunk. */
  987. residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
  988. return residue;
  989. }
  990. static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
  991. dma_cookie_t cookie,
  992. struct dma_tx_state *txstate)
  993. {
  994. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  995. enum dma_status status;
  996. unsigned long flags;
  997. unsigned int residue;
  998. status = dma_cookie_status(chan, cookie, txstate);
  999. if (status == DMA_COMPLETE || !txstate)
  1000. return status;
  1001. spin_lock_irqsave(&rchan->lock, flags);
  1002. residue = rcar_dmac_chan_get_residue(rchan, cookie);
  1003. spin_unlock_irqrestore(&rchan->lock, flags);
  1004. dma_set_residue(txstate, residue);
  1005. return status;
  1006. }
  1007. static void rcar_dmac_issue_pending(struct dma_chan *chan)
  1008. {
  1009. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1010. unsigned long flags;
  1011. spin_lock_irqsave(&rchan->lock, flags);
  1012. if (list_empty(&rchan->desc.pending))
  1013. goto done;
  1014. /* Append the pending list to the active list. */
  1015. list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
  1016. /*
  1017. * If no transfer is running pick the first descriptor from the active
  1018. * list and start the transfer.
  1019. */
  1020. if (!rchan->desc.running) {
  1021. struct rcar_dmac_desc *desc;
  1022. desc = list_first_entry(&rchan->desc.active,
  1023. struct rcar_dmac_desc, node);
  1024. rchan->desc.running = desc;
  1025. rcar_dmac_chan_start_xfer(rchan);
  1026. }
  1027. done:
  1028. spin_unlock_irqrestore(&rchan->lock, flags);
  1029. }
  1030. /* -----------------------------------------------------------------------------
  1031. * IRQ handling
  1032. */
  1033. static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
  1034. {
  1035. struct rcar_dmac_desc *desc = chan->desc.running;
  1036. unsigned int stage;
  1037. if (WARN_ON(!desc || !desc->cyclic)) {
  1038. /*
  1039. * This should never happen, there should always be a running
  1040. * cyclic descriptor when a descriptor stage end interrupt is
  1041. * triggered. Warn and return.
  1042. */
  1043. return IRQ_NONE;
  1044. }
  1045. /* Program the interrupt pointer to the next stage. */
  1046. stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
  1047. RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
  1048. rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
  1049. return IRQ_WAKE_THREAD;
  1050. }
  1051. static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
  1052. {
  1053. struct rcar_dmac_desc *desc = chan->desc.running;
  1054. irqreturn_t ret = IRQ_WAKE_THREAD;
  1055. if (WARN_ON_ONCE(!desc)) {
  1056. /*
  1057. * This should never happen, there should always be a running
  1058. * descriptor when a transfer end interrupt is triggered. Warn
  1059. * and return.
  1060. */
  1061. return IRQ_NONE;
  1062. }
  1063. /*
  1064. * The transfer end interrupt isn't generated for each chunk when using
  1065. * descriptor mode. Only update the running chunk pointer in
  1066. * non-descriptor mode.
  1067. */
  1068. if (!desc->hwdescs.use) {
  1069. /*
  1070. * If we haven't completed the last transfer chunk simply move
  1071. * to the next one. Only wake the IRQ thread if the transfer is
  1072. * cyclic.
  1073. */
  1074. if (!list_is_last(&desc->running->node, &desc->chunks)) {
  1075. desc->running = list_next_entry(desc->running, node);
  1076. if (!desc->cyclic)
  1077. ret = IRQ_HANDLED;
  1078. goto done;
  1079. }
  1080. /*
  1081. * We've completed the last transfer chunk. If the transfer is
  1082. * cyclic, move back to the first one.
  1083. */
  1084. if (desc->cyclic) {
  1085. desc->running =
  1086. list_first_entry(&desc->chunks,
  1087. struct rcar_dmac_xfer_chunk,
  1088. node);
  1089. goto done;
  1090. }
  1091. }
  1092. /* The descriptor is complete, move it to the done list. */
  1093. list_move_tail(&desc->node, &chan->desc.done);
  1094. /* Queue the next descriptor, if any. */
  1095. if (!list_empty(&chan->desc.active))
  1096. chan->desc.running = list_first_entry(&chan->desc.active,
  1097. struct rcar_dmac_desc,
  1098. node);
  1099. else
  1100. chan->desc.running = NULL;
  1101. done:
  1102. if (chan->desc.running)
  1103. rcar_dmac_chan_start_xfer(chan);
  1104. return ret;
  1105. }
  1106. static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
  1107. {
  1108. u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
  1109. struct rcar_dmac_chan *chan = dev;
  1110. irqreturn_t ret = IRQ_NONE;
  1111. u32 chcr;
  1112. spin_lock(&chan->lock);
  1113. chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  1114. if (chcr & RCAR_DMACHCR_TE)
  1115. mask |= RCAR_DMACHCR_DE;
  1116. rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
  1117. if (chcr & RCAR_DMACHCR_DSE)
  1118. ret |= rcar_dmac_isr_desc_stage_end(chan);
  1119. if (chcr & RCAR_DMACHCR_TE)
  1120. ret |= rcar_dmac_isr_transfer_end(chan);
  1121. spin_unlock(&chan->lock);
  1122. return ret;
  1123. }
  1124. static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
  1125. {
  1126. struct rcar_dmac_chan *chan = dev;
  1127. struct rcar_dmac_desc *desc;
  1128. spin_lock_irq(&chan->lock);
  1129. /* For cyclic transfers notify the user after every chunk. */
  1130. if (chan->desc.running && chan->desc.running->cyclic) {
  1131. dma_async_tx_callback callback;
  1132. void *callback_param;
  1133. desc = chan->desc.running;
  1134. callback = desc->async_tx.callback;
  1135. callback_param = desc->async_tx.callback_param;
  1136. if (callback) {
  1137. spin_unlock_irq(&chan->lock);
  1138. callback(callback_param);
  1139. spin_lock_irq(&chan->lock);
  1140. }
  1141. }
  1142. /*
  1143. * Call the callback function for all descriptors on the done list and
  1144. * move them to the ack wait list.
  1145. */
  1146. while (!list_empty(&chan->desc.done)) {
  1147. desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
  1148. node);
  1149. dma_cookie_complete(&desc->async_tx);
  1150. list_del(&desc->node);
  1151. if (desc->async_tx.callback) {
  1152. spin_unlock_irq(&chan->lock);
  1153. /*
  1154. * We own the only reference to this descriptor, we can
  1155. * safely dereference it without holding the channel
  1156. * lock.
  1157. */
  1158. desc->async_tx.callback(desc->async_tx.callback_param);
  1159. spin_lock_irq(&chan->lock);
  1160. }
  1161. list_add_tail(&desc->node, &chan->desc.wait);
  1162. }
  1163. spin_unlock_irq(&chan->lock);
  1164. /* Recycle all acked descriptors. */
  1165. rcar_dmac_desc_recycle_acked(chan);
  1166. return IRQ_HANDLED;
  1167. }
  1168. static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
  1169. {
  1170. struct rcar_dmac *dmac = data;
  1171. if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
  1172. return IRQ_NONE;
  1173. /*
  1174. * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
  1175. * abort transfers on all channels, and reinitialize the DMAC.
  1176. */
  1177. rcar_dmac_stop(dmac);
  1178. rcar_dmac_abort(dmac);
  1179. rcar_dmac_init(dmac);
  1180. return IRQ_HANDLED;
  1181. }
  1182. /* -----------------------------------------------------------------------------
  1183. * OF xlate and channel filter
  1184. */
  1185. static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
  1186. {
  1187. struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
  1188. struct of_phandle_args *dma_spec = arg;
  1189. /*
  1190. * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
  1191. * function knows from which device it wants to allocate a channel from,
  1192. * and would be perfectly capable of selecting the channel it wants.
  1193. * Forcing it to call dma_request_channel() and iterate through all
  1194. * channels from all controllers is just pointless.
  1195. */
  1196. if (chan->device->device_config != rcar_dmac_device_config ||
  1197. dma_spec->np != chan->device->dev->of_node)
  1198. return false;
  1199. return !test_and_set_bit(dma_spec->args[0], dmac->modules);
  1200. }
  1201. static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
  1202. struct of_dma *ofdma)
  1203. {
  1204. struct rcar_dmac_chan *rchan;
  1205. struct dma_chan *chan;
  1206. dma_cap_mask_t mask;
  1207. if (dma_spec->args_count != 1)
  1208. return NULL;
  1209. /* Only slave DMA channels can be allocated via DT */
  1210. dma_cap_zero(mask);
  1211. dma_cap_set(DMA_SLAVE, mask);
  1212. chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
  1213. if (!chan)
  1214. return NULL;
  1215. rchan = to_rcar_dmac_chan(chan);
  1216. rchan->mid_rid = dma_spec->args[0];
  1217. return chan;
  1218. }
  1219. /* -----------------------------------------------------------------------------
  1220. * Power management
  1221. */
  1222. #ifdef CONFIG_PM_SLEEP
  1223. static int rcar_dmac_sleep_suspend(struct device *dev)
  1224. {
  1225. /*
  1226. * TODO: Wait for the current transfer to complete and stop the device.
  1227. */
  1228. return 0;
  1229. }
  1230. static int rcar_dmac_sleep_resume(struct device *dev)
  1231. {
  1232. /* TODO: Resume transfers, if any. */
  1233. return 0;
  1234. }
  1235. #endif
  1236. #ifdef CONFIG_PM
  1237. static int rcar_dmac_runtime_suspend(struct device *dev)
  1238. {
  1239. return 0;
  1240. }
  1241. static int rcar_dmac_runtime_resume(struct device *dev)
  1242. {
  1243. struct rcar_dmac *dmac = dev_get_drvdata(dev);
  1244. return rcar_dmac_init(dmac);
  1245. }
  1246. #endif
  1247. static const struct dev_pm_ops rcar_dmac_pm = {
  1248. SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
  1249. SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
  1250. NULL)
  1251. };
  1252. /* -----------------------------------------------------------------------------
  1253. * Probe and remove
  1254. */
  1255. static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
  1256. struct rcar_dmac_chan *rchan,
  1257. unsigned int index)
  1258. {
  1259. struct platform_device *pdev = to_platform_device(dmac->dev);
  1260. struct dma_chan *chan = &rchan->chan;
  1261. char pdev_irqname[5];
  1262. char *irqname;
  1263. int irq;
  1264. int ret;
  1265. rchan->index = index;
  1266. rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
  1267. rchan->mid_rid = -EINVAL;
  1268. spin_lock_init(&rchan->lock);
  1269. INIT_LIST_HEAD(&rchan->desc.free);
  1270. INIT_LIST_HEAD(&rchan->desc.pending);
  1271. INIT_LIST_HEAD(&rchan->desc.active);
  1272. INIT_LIST_HEAD(&rchan->desc.done);
  1273. INIT_LIST_HEAD(&rchan->desc.wait);
  1274. /* Request the channel interrupt. */
  1275. sprintf(pdev_irqname, "ch%u", index);
  1276. irq = platform_get_irq_byname(pdev, pdev_irqname);
  1277. if (irq < 0) {
  1278. dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
  1279. return -ENODEV;
  1280. }
  1281. irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
  1282. dev_name(dmac->dev), index);
  1283. if (!irqname)
  1284. return -ENOMEM;
  1285. ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
  1286. rcar_dmac_isr_channel_thread, 0,
  1287. irqname, rchan);
  1288. if (ret) {
  1289. dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
  1290. return ret;
  1291. }
  1292. /*
  1293. * Initialize the DMA engine channel and add it to the DMA engine
  1294. * channels list.
  1295. */
  1296. chan->device = &dmac->engine;
  1297. dma_cookie_init(chan);
  1298. list_add_tail(&chan->device_node, &dmac->engine.channels);
  1299. return 0;
  1300. }
  1301. static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
  1302. {
  1303. struct device_node *np = dev->of_node;
  1304. int ret;
  1305. ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
  1306. if (ret < 0) {
  1307. dev_err(dev, "unable to read dma-channels property\n");
  1308. return ret;
  1309. }
  1310. if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
  1311. dev_err(dev, "invalid number of channels %u\n",
  1312. dmac->n_channels);
  1313. return -EINVAL;
  1314. }
  1315. return 0;
  1316. }
  1317. static int rcar_dmac_probe(struct platform_device *pdev)
  1318. {
  1319. const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
  1320. DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
  1321. DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
  1322. DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
  1323. unsigned int channels_offset = 0;
  1324. struct dma_device *engine;
  1325. struct rcar_dmac *dmac;
  1326. struct resource *mem;
  1327. unsigned int i;
  1328. char *irqname;
  1329. int irq;
  1330. int ret;
  1331. dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
  1332. if (!dmac)
  1333. return -ENOMEM;
  1334. dmac->dev = &pdev->dev;
  1335. platform_set_drvdata(pdev, dmac);
  1336. ret = rcar_dmac_parse_of(&pdev->dev, dmac);
  1337. if (ret < 0)
  1338. return ret;
  1339. /*
  1340. * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
  1341. * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
  1342. * is connected to microTLB 0 on currently supported platforms, so we
  1343. * can't use it with the IPMMU. As the IOMMU API operates at the device
  1344. * level we can't disable it selectively, so ignore channel 0 for now if
  1345. * the device is part of an IOMMU group.
  1346. */
  1347. if (pdev->dev.iommu_group) {
  1348. dmac->n_channels--;
  1349. channels_offset = 1;
  1350. }
  1351. dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
  1352. sizeof(*dmac->channels), GFP_KERNEL);
  1353. if (!dmac->channels)
  1354. return -ENOMEM;
  1355. /* Request resources. */
  1356. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1357. dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
  1358. if (IS_ERR(dmac->iomem))
  1359. return PTR_ERR(dmac->iomem);
  1360. irq = platform_get_irq_byname(pdev, "error");
  1361. if (irq < 0) {
  1362. dev_err(&pdev->dev, "no error IRQ specified\n");
  1363. return -ENODEV;
  1364. }
  1365. irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
  1366. dev_name(dmac->dev));
  1367. if (!irqname)
  1368. return -ENOMEM;
  1369. ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
  1370. irqname, dmac);
  1371. if (ret) {
  1372. dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
  1373. irq, ret);
  1374. return ret;
  1375. }
  1376. /* Enable runtime PM and initialize the device. */
  1377. pm_runtime_enable(&pdev->dev);
  1378. ret = pm_runtime_get_sync(&pdev->dev);
  1379. if (ret < 0) {
  1380. dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
  1381. return ret;
  1382. }
  1383. ret = rcar_dmac_init(dmac);
  1384. pm_runtime_put(&pdev->dev);
  1385. if (ret) {
  1386. dev_err(&pdev->dev, "failed to reset device\n");
  1387. goto error;
  1388. }
  1389. /* Initialize the channels. */
  1390. INIT_LIST_HEAD(&dmac->engine.channels);
  1391. for (i = 0; i < dmac->n_channels; ++i) {
  1392. ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
  1393. i + channels_offset);
  1394. if (ret < 0)
  1395. goto error;
  1396. }
  1397. /* Register the DMAC as a DMA provider for DT. */
  1398. ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
  1399. NULL);
  1400. if (ret < 0)
  1401. goto error;
  1402. /*
  1403. * Register the DMA engine device.
  1404. *
  1405. * Default transfer size of 32 bytes requires 32-byte alignment.
  1406. */
  1407. engine = &dmac->engine;
  1408. dma_cap_set(DMA_MEMCPY, engine->cap_mask);
  1409. dma_cap_set(DMA_SLAVE, engine->cap_mask);
  1410. engine->dev = &pdev->dev;
  1411. engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
  1412. engine->src_addr_widths = widths;
  1413. engine->dst_addr_widths = widths;
  1414. engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
  1415. engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1416. engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
  1417. engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
  1418. engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
  1419. engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
  1420. engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
  1421. engine->device_config = rcar_dmac_device_config;
  1422. engine->device_terminate_all = rcar_dmac_chan_terminate_all;
  1423. engine->device_tx_status = rcar_dmac_tx_status;
  1424. engine->device_issue_pending = rcar_dmac_issue_pending;
  1425. ret = dma_async_device_register(engine);
  1426. if (ret < 0)
  1427. goto error;
  1428. return 0;
  1429. error:
  1430. of_dma_controller_free(pdev->dev.of_node);
  1431. pm_runtime_disable(&pdev->dev);
  1432. return ret;
  1433. }
  1434. static int rcar_dmac_remove(struct platform_device *pdev)
  1435. {
  1436. struct rcar_dmac *dmac = platform_get_drvdata(pdev);
  1437. of_dma_controller_free(pdev->dev.of_node);
  1438. dma_async_device_unregister(&dmac->engine);
  1439. pm_runtime_disable(&pdev->dev);
  1440. return 0;
  1441. }
  1442. static void rcar_dmac_shutdown(struct platform_device *pdev)
  1443. {
  1444. struct rcar_dmac *dmac = platform_get_drvdata(pdev);
  1445. rcar_dmac_stop(dmac);
  1446. }
  1447. static const struct of_device_id rcar_dmac_of_ids[] = {
  1448. { .compatible = "renesas,rcar-dmac", },
  1449. { /* Sentinel */ }
  1450. };
  1451. MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
  1452. static struct platform_driver rcar_dmac_driver = {
  1453. .driver = {
  1454. .pm = &rcar_dmac_pm,
  1455. .name = "rcar-dmac",
  1456. .of_match_table = rcar_dmac_of_ids,
  1457. },
  1458. .probe = rcar_dmac_probe,
  1459. .remove = rcar_dmac_remove,
  1460. .shutdown = rcar_dmac_shutdown,
  1461. };
  1462. module_platform_driver(rcar_dmac_driver);
  1463. MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
  1464. MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
  1465. MODULE_LICENSE("GPL v2");