hsu.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /*
  2. * Core driver for the High Speed UART DMA
  3. *
  4. * Copyright (C) 2015 Intel Corporation
  5. * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
  6. *
  7. * Partially based on the bits found in drivers/tty/serial/mfd.c.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /*
  14. * DMA channel allocation:
  15. * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
  16. * Write (UART RX).
  17. * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
  18. * port 3, and so on.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/dmaengine.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/slab.h>
  26. #include "hsu.h"
  27. #define HSU_DMA_BUSWIDTHS \
  28. BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  29. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  30. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  31. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  32. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  33. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
  34. BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
  35. static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
  36. {
  37. hsu_chan_writel(hsuc, HSU_CH_CR, 0);
  38. }
  39. static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
  40. {
  41. u32 cr = HSU_CH_CR_CHA;
  42. if (hsuc->direction == DMA_MEM_TO_DEV)
  43. cr &= ~HSU_CH_CR_CHD;
  44. else if (hsuc->direction == DMA_DEV_TO_MEM)
  45. cr |= HSU_CH_CR_CHD;
  46. hsu_chan_writel(hsuc, HSU_CH_CR, cr);
  47. }
  48. static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
  49. {
  50. struct dma_slave_config *config = &hsuc->config;
  51. struct hsu_dma_desc *desc = hsuc->desc;
  52. u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
  53. u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
  54. unsigned int i, count;
  55. if (hsuc->direction == DMA_MEM_TO_DEV) {
  56. bsr = config->dst_maxburst;
  57. mtsr = config->dst_addr_width;
  58. } else if (hsuc->direction == DMA_DEV_TO_MEM) {
  59. bsr = config->src_maxburst;
  60. mtsr = config->src_addr_width;
  61. }
  62. hsu_chan_disable(hsuc);
  63. hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
  64. hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
  65. hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
  66. /* Set descriptors */
  67. count = (desc->nents - desc->active) % HSU_DMA_CHAN_NR_DESC;
  68. for (i = 0; i < count; i++) {
  69. hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
  70. hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
  71. /* Prepare value for DCR */
  72. dcr |= HSU_CH_DCR_DESCA(i);
  73. dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
  74. desc->active++;
  75. }
  76. /* Only for the last descriptor in the chain */
  77. dcr |= HSU_CH_DCR_CHSOD(count - 1);
  78. dcr |= HSU_CH_DCR_CHDI(count - 1);
  79. hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
  80. hsu_chan_enable(hsuc);
  81. }
  82. static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
  83. {
  84. hsu_chan_disable(hsuc);
  85. hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
  86. }
  87. static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
  88. {
  89. hsu_dma_chan_start(hsuc);
  90. }
  91. static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
  92. {
  93. struct virt_dma_desc *vdesc;
  94. /* Get the next descriptor */
  95. vdesc = vchan_next_desc(&hsuc->vchan);
  96. if (!vdesc) {
  97. hsuc->desc = NULL;
  98. return;
  99. }
  100. list_del(&vdesc->node);
  101. hsuc->desc = to_hsu_dma_desc(vdesc);
  102. /* Start the channel with a new descriptor */
  103. hsu_dma_start_channel(hsuc);
  104. }
  105. static u32 hsu_dma_chan_get_sr(struct hsu_dma_chan *hsuc)
  106. {
  107. unsigned long flags;
  108. u32 sr;
  109. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  110. sr = hsu_chan_readl(hsuc, HSU_CH_SR);
  111. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  112. return sr;
  113. }
  114. irqreturn_t hsu_dma_irq(struct hsu_dma_chip *chip, unsigned short nr)
  115. {
  116. struct hsu_dma_chan *hsuc;
  117. struct hsu_dma_desc *desc;
  118. unsigned long flags;
  119. u32 sr;
  120. /* Sanity check */
  121. if (nr >= chip->hsu->nr_channels)
  122. return IRQ_NONE;
  123. hsuc = &chip->hsu->chan[nr];
  124. /*
  125. * No matter what situation, need read clear the IRQ status
  126. * There is a bug, see Errata 5, HSD 2900918
  127. */
  128. sr = hsu_dma_chan_get_sr(hsuc);
  129. if (!sr)
  130. return IRQ_NONE;
  131. /* Timeout IRQ, need wait some time, see Errata 2 */
  132. if (hsuc->direction == DMA_DEV_TO_MEM && (sr & HSU_CH_SR_DESCTO_ANY))
  133. udelay(2);
  134. sr &= ~HSU_CH_SR_DESCTO_ANY;
  135. if (!sr)
  136. return IRQ_HANDLED;
  137. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  138. desc = hsuc->desc;
  139. if (desc) {
  140. if (sr & HSU_CH_SR_CHE) {
  141. desc->status = DMA_ERROR;
  142. } else if (desc->active < desc->nents) {
  143. hsu_dma_start_channel(hsuc);
  144. } else {
  145. vchan_cookie_complete(&desc->vdesc);
  146. desc->status = DMA_COMPLETE;
  147. hsu_dma_start_transfer(hsuc);
  148. }
  149. }
  150. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  151. return IRQ_HANDLED;
  152. }
  153. EXPORT_SYMBOL_GPL(hsu_dma_irq);
  154. static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
  155. {
  156. struct hsu_dma_desc *desc;
  157. desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
  158. if (!desc)
  159. return NULL;
  160. desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
  161. if (!desc->sg) {
  162. kfree(desc);
  163. return NULL;
  164. }
  165. return desc;
  166. }
  167. static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
  168. {
  169. struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
  170. kfree(desc->sg);
  171. kfree(desc);
  172. }
  173. static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
  174. struct dma_chan *chan, struct scatterlist *sgl,
  175. unsigned int sg_len, enum dma_transfer_direction direction,
  176. unsigned long flags, void *context)
  177. {
  178. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  179. struct hsu_dma_desc *desc;
  180. struct scatterlist *sg;
  181. unsigned int i;
  182. desc = hsu_dma_alloc_desc(sg_len);
  183. if (!desc)
  184. return NULL;
  185. for_each_sg(sgl, sg, sg_len, i) {
  186. desc->sg[i].addr = sg_dma_address(sg);
  187. desc->sg[i].len = sg_dma_len(sg);
  188. desc->length += sg_dma_len(sg);
  189. }
  190. desc->nents = sg_len;
  191. desc->direction = direction;
  192. /* desc->active = 0 by kzalloc */
  193. desc->status = DMA_IN_PROGRESS;
  194. return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
  195. }
  196. static void hsu_dma_issue_pending(struct dma_chan *chan)
  197. {
  198. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  199. unsigned long flags;
  200. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  201. if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
  202. hsu_dma_start_transfer(hsuc);
  203. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  204. }
  205. static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
  206. {
  207. struct hsu_dma_desc *desc = hsuc->desc;
  208. size_t bytes = desc->length;
  209. int i;
  210. i = desc->active % HSU_DMA_CHAN_NR_DESC;
  211. do {
  212. bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
  213. } while (--i >= 0);
  214. return bytes;
  215. }
  216. static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
  217. dma_cookie_t cookie, struct dma_tx_state *state)
  218. {
  219. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  220. struct virt_dma_desc *vdesc;
  221. enum dma_status status;
  222. size_t bytes;
  223. unsigned long flags;
  224. status = dma_cookie_status(chan, cookie, state);
  225. if (status == DMA_COMPLETE)
  226. return status;
  227. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  228. vdesc = vchan_find_desc(&hsuc->vchan, cookie);
  229. if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
  230. bytes = hsu_dma_active_desc_size(hsuc);
  231. dma_set_residue(state, bytes);
  232. status = hsuc->desc->status;
  233. } else if (vdesc) {
  234. bytes = to_hsu_dma_desc(vdesc)->length;
  235. dma_set_residue(state, bytes);
  236. }
  237. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  238. return status;
  239. }
  240. static int hsu_dma_slave_config(struct dma_chan *chan,
  241. struct dma_slave_config *config)
  242. {
  243. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  244. /* Check if chan will be configured for slave transfers */
  245. if (!is_slave_direction(config->direction))
  246. return -EINVAL;
  247. memcpy(&hsuc->config, config, sizeof(hsuc->config));
  248. return 0;
  249. }
  250. static int hsu_dma_pause(struct dma_chan *chan)
  251. {
  252. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  253. unsigned long flags;
  254. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  255. if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
  256. hsu_chan_disable(hsuc);
  257. hsuc->desc->status = DMA_PAUSED;
  258. }
  259. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  260. return 0;
  261. }
  262. static int hsu_dma_resume(struct dma_chan *chan)
  263. {
  264. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  265. unsigned long flags;
  266. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  267. if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
  268. hsuc->desc->status = DMA_IN_PROGRESS;
  269. hsu_chan_enable(hsuc);
  270. }
  271. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  272. return 0;
  273. }
  274. static int hsu_dma_terminate_all(struct dma_chan *chan)
  275. {
  276. struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
  277. unsigned long flags;
  278. LIST_HEAD(head);
  279. spin_lock_irqsave(&hsuc->vchan.lock, flags);
  280. hsu_dma_stop_channel(hsuc);
  281. if (hsuc->desc) {
  282. hsu_dma_desc_free(&hsuc->desc->vdesc);
  283. hsuc->desc = NULL;
  284. }
  285. vchan_get_all_descriptors(&hsuc->vchan, &head);
  286. spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
  287. vchan_dma_desc_free_list(&hsuc->vchan, &head);
  288. return 0;
  289. }
  290. static void hsu_dma_free_chan_resources(struct dma_chan *chan)
  291. {
  292. vchan_free_chan_resources(to_virt_chan(chan));
  293. }
  294. int hsu_dma_probe(struct hsu_dma_chip *chip)
  295. {
  296. struct hsu_dma *hsu;
  297. void __iomem *addr = chip->regs + chip->offset;
  298. unsigned short i;
  299. int ret;
  300. hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
  301. if (!hsu)
  302. return -ENOMEM;
  303. chip->hsu = hsu;
  304. /* Calculate nr_channels from the IO space length */
  305. hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
  306. hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
  307. sizeof(*hsu->chan), GFP_KERNEL);
  308. if (!hsu->chan)
  309. return -ENOMEM;
  310. INIT_LIST_HEAD(&hsu->dma.channels);
  311. for (i = 0; i < hsu->nr_channels; i++) {
  312. struct hsu_dma_chan *hsuc = &hsu->chan[i];
  313. hsuc->vchan.desc_free = hsu_dma_desc_free;
  314. vchan_init(&hsuc->vchan, &hsu->dma);
  315. hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
  316. hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
  317. }
  318. dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
  319. dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
  320. hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
  321. hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
  322. hsu->dma.device_issue_pending = hsu_dma_issue_pending;
  323. hsu->dma.device_tx_status = hsu_dma_tx_status;
  324. hsu->dma.device_config = hsu_dma_slave_config;
  325. hsu->dma.device_pause = hsu_dma_pause;
  326. hsu->dma.device_resume = hsu_dma_resume;
  327. hsu->dma.device_terminate_all = hsu_dma_terminate_all;
  328. hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
  329. hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
  330. hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  331. hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  332. hsu->dma.dev = chip->dev;
  333. ret = dma_async_device_register(&hsu->dma);
  334. if (ret)
  335. return ret;
  336. dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
  337. return 0;
  338. }
  339. EXPORT_SYMBOL_GPL(hsu_dma_probe);
  340. int hsu_dma_remove(struct hsu_dma_chip *chip)
  341. {
  342. struct hsu_dma *hsu = chip->hsu;
  343. unsigned short i;
  344. dma_async_device_unregister(&hsu->dma);
  345. for (i = 0; i < hsu->nr_channels; i++) {
  346. struct hsu_dma_chan *hsuc = &hsu->chan[i];
  347. tasklet_kill(&hsuc->vchan.task);
  348. }
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(hsu_dma_remove);
  352. MODULE_LICENSE("GPL v2");
  353. MODULE_DESCRIPTION("High Speed UART DMA core driver");
  354. MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");