ccp-pci.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Tom Lendacky <thomas.lendacky@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/device.h>
  15. #include <linux/pci.h>
  16. #include <linux/pci_ids.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/kthread.h>
  19. #include <linux/sched.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/delay.h>
  23. #include <linux/ccp.h>
  24. #include "ccp-dev.h"
  25. #define IO_BAR 2
  26. #define IO_OFFSET 0x20000
  27. #define MSIX_VECTORS 2
  28. struct ccp_msix {
  29. u32 vector;
  30. char name[16];
  31. };
  32. struct ccp_pci {
  33. int msix_count;
  34. struct ccp_msix msix[MSIX_VECTORS];
  35. };
  36. static int ccp_get_msix_irqs(struct ccp_device *ccp)
  37. {
  38. struct ccp_pci *ccp_pci = ccp->dev_specific;
  39. struct device *dev = ccp->dev;
  40. struct pci_dev *pdev = to_pci_dev(dev);
  41. struct msix_entry msix_entry[MSIX_VECTORS];
  42. unsigned int name_len = sizeof(ccp_pci->msix[0].name) - 1;
  43. int v, ret;
  44. for (v = 0; v < ARRAY_SIZE(msix_entry); v++)
  45. msix_entry[v].entry = v;
  46. ret = pci_enable_msix_range(pdev, msix_entry, 1, v);
  47. if (ret < 0)
  48. return ret;
  49. ccp_pci->msix_count = ret;
  50. for (v = 0; v < ccp_pci->msix_count; v++) {
  51. /* Set the interrupt names and request the irqs */
  52. snprintf(ccp_pci->msix[v].name, name_len, "%s-%u",
  53. ccp->name, v);
  54. ccp_pci->msix[v].vector = msix_entry[v].vector;
  55. ret = request_irq(ccp_pci->msix[v].vector,
  56. ccp->vdata->perform->irqhandler,
  57. 0, ccp_pci->msix[v].name, dev);
  58. if (ret) {
  59. dev_notice(dev, "unable to allocate MSI-X IRQ (%d)\n",
  60. ret);
  61. goto e_irq;
  62. }
  63. }
  64. return 0;
  65. e_irq:
  66. while (v--)
  67. free_irq(ccp_pci->msix[v].vector, dev);
  68. pci_disable_msix(pdev);
  69. ccp_pci->msix_count = 0;
  70. return ret;
  71. }
  72. static int ccp_get_msi_irq(struct ccp_device *ccp)
  73. {
  74. struct device *dev = ccp->dev;
  75. struct pci_dev *pdev = to_pci_dev(dev);
  76. int ret;
  77. ret = pci_enable_msi(pdev);
  78. if (ret)
  79. return ret;
  80. ccp->irq = pdev->irq;
  81. ret = request_irq(ccp->irq, ccp->vdata->perform->irqhandler, 0,
  82. ccp->name, dev);
  83. if (ret) {
  84. dev_notice(dev, "unable to allocate MSI IRQ (%d)\n", ret);
  85. goto e_msi;
  86. }
  87. return 0;
  88. e_msi:
  89. pci_disable_msi(pdev);
  90. return ret;
  91. }
  92. static int ccp_get_irqs(struct ccp_device *ccp)
  93. {
  94. struct device *dev = ccp->dev;
  95. int ret;
  96. ret = ccp_get_msix_irqs(ccp);
  97. if (!ret)
  98. return 0;
  99. /* Couldn't get MSI-X vectors, try MSI */
  100. dev_notice(dev, "could not enable MSI-X (%d), trying MSI\n", ret);
  101. ret = ccp_get_msi_irq(ccp);
  102. if (!ret)
  103. return 0;
  104. /* Couldn't get MSI interrupt */
  105. dev_notice(dev, "could not enable MSI (%d)\n", ret);
  106. return ret;
  107. }
  108. static void ccp_free_irqs(struct ccp_device *ccp)
  109. {
  110. struct ccp_pci *ccp_pci = ccp->dev_specific;
  111. struct device *dev = ccp->dev;
  112. struct pci_dev *pdev = to_pci_dev(dev);
  113. if (ccp_pci->msix_count) {
  114. while (ccp_pci->msix_count--)
  115. free_irq(ccp_pci->msix[ccp_pci->msix_count].vector,
  116. dev);
  117. pci_disable_msix(pdev);
  118. } else {
  119. free_irq(ccp->irq, dev);
  120. pci_disable_msi(pdev);
  121. }
  122. }
  123. static int ccp_find_mmio_area(struct ccp_device *ccp)
  124. {
  125. struct device *dev = ccp->dev;
  126. struct pci_dev *pdev = to_pci_dev(dev);
  127. resource_size_t io_len;
  128. unsigned long io_flags;
  129. io_flags = pci_resource_flags(pdev, IO_BAR);
  130. io_len = pci_resource_len(pdev, IO_BAR);
  131. if ((io_flags & IORESOURCE_MEM) && (io_len >= (IO_OFFSET + 0x800)))
  132. return IO_BAR;
  133. return -EIO;
  134. }
  135. static int ccp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  136. {
  137. struct ccp_device *ccp;
  138. struct ccp_pci *ccp_pci;
  139. struct device *dev = &pdev->dev;
  140. unsigned int bar;
  141. int ret;
  142. ret = -ENOMEM;
  143. ccp = ccp_alloc_struct(dev);
  144. if (!ccp)
  145. goto e_err;
  146. ccp_pci = devm_kzalloc(dev, sizeof(*ccp_pci), GFP_KERNEL);
  147. if (!ccp_pci)
  148. goto e_err;
  149. ccp->dev_specific = ccp_pci;
  150. ccp->vdata = (struct ccp_vdata *)id->driver_data;
  151. if (!ccp->vdata || !ccp->vdata->version) {
  152. ret = -ENODEV;
  153. dev_err(dev, "missing driver data\n");
  154. goto e_err;
  155. }
  156. ccp->get_irq = ccp_get_irqs;
  157. ccp->free_irq = ccp_free_irqs;
  158. ret = pci_request_regions(pdev, "ccp");
  159. if (ret) {
  160. dev_err(dev, "pci_request_regions failed (%d)\n", ret);
  161. goto e_err;
  162. }
  163. ret = pci_enable_device(pdev);
  164. if (ret) {
  165. dev_err(dev, "pci_enable_device failed (%d)\n", ret);
  166. goto e_regions;
  167. }
  168. pci_set_master(pdev);
  169. ret = ccp_find_mmio_area(ccp);
  170. if (ret < 0)
  171. goto e_device;
  172. bar = ret;
  173. ret = -EIO;
  174. ccp->io_map = pci_iomap(pdev, bar, 0);
  175. if (!ccp->io_map) {
  176. dev_err(dev, "pci_iomap failed\n");
  177. goto e_device;
  178. }
  179. ccp->io_regs = ccp->io_map + IO_OFFSET;
  180. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
  181. if (ret) {
  182. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
  183. if (ret) {
  184. dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n",
  185. ret);
  186. goto e_iomap;
  187. }
  188. }
  189. dev_set_drvdata(dev, ccp);
  190. ret = ccp->vdata->perform->init(ccp);
  191. if (ret)
  192. goto e_iomap;
  193. dev_notice(dev, "enabled\n");
  194. return 0;
  195. e_iomap:
  196. pci_iounmap(pdev, ccp->io_map);
  197. e_device:
  198. pci_disable_device(pdev);
  199. e_regions:
  200. pci_release_regions(pdev);
  201. e_err:
  202. dev_notice(dev, "initialization failed\n");
  203. return ret;
  204. }
  205. static void ccp_pci_remove(struct pci_dev *pdev)
  206. {
  207. struct device *dev = &pdev->dev;
  208. struct ccp_device *ccp = dev_get_drvdata(dev);
  209. if (!ccp)
  210. return;
  211. ccp->vdata->perform->destroy(ccp);
  212. pci_iounmap(pdev, ccp->io_map);
  213. pci_disable_device(pdev);
  214. pci_release_regions(pdev);
  215. dev_notice(dev, "disabled\n");
  216. }
  217. #ifdef CONFIG_PM
  218. static int ccp_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  219. {
  220. struct device *dev = &pdev->dev;
  221. struct ccp_device *ccp = dev_get_drvdata(dev);
  222. unsigned long flags;
  223. unsigned int i;
  224. spin_lock_irqsave(&ccp->cmd_lock, flags);
  225. ccp->suspending = 1;
  226. /* Wake all the queue kthreads to prepare for suspend */
  227. for (i = 0; i < ccp->cmd_q_count; i++)
  228. wake_up_process(ccp->cmd_q[i].kthread);
  229. spin_unlock_irqrestore(&ccp->cmd_lock, flags);
  230. /* Wait for all queue kthreads to say they're done */
  231. while (!ccp_queues_suspended(ccp))
  232. wait_event_interruptible(ccp->suspend_queue,
  233. ccp_queues_suspended(ccp));
  234. return 0;
  235. }
  236. static int ccp_pci_resume(struct pci_dev *pdev)
  237. {
  238. struct device *dev = &pdev->dev;
  239. struct ccp_device *ccp = dev_get_drvdata(dev);
  240. unsigned long flags;
  241. unsigned int i;
  242. spin_lock_irqsave(&ccp->cmd_lock, flags);
  243. ccp->suspending = 0;
  244. /* Wake up all the kthreads */
  245. for (i = 0; i < ccp->cmd_q_count; i++) {
  246. ccp->cmd_q[i].suspended = 0;
  247. wake_up_process(ccp->cmd_q[i].kthread);
  248. }
  249. spin_unlock_irqrestore(&ccp->cmd_lock, flags);
  250. return 0;
  251. }
  252. #endif
  253. static const struct pci_device_id ccp_pci_table[] = {
  254. { PCI_VDEVICE(AMD, 0x1537), (kernel_ulong_t)&ccpv3 },
  255. /* Last entry must be zero */
  256. { 0, }
  257. };
  258. MODULE_DEVICE_TABLE(pci, ccp_pci_table);
  259. static struct pci_driver ccp_pci_driver = {
  260. .name = "ccp",
  261. .id_table = ccp_pci_table,
  262. .probe = ccp_pci_probe,
  263. .remove = ccp_pci_remove,
  264. #ifdef CONFIG_PM
  265. .suspend = ccp_pci_suspend,
  266. .resume = ccp_pci_resume,
  267. #endif
  268. };
  269. int ccp_pci_init(void)
  270. {
  271. return pci_register_driver(&ccp_pci_driver);
  272. }
  273. void ccp_pci_exit(void)
  274. {
  275. pci_unregister_driver(&ccp_pci_driver);
  276. }