arm_arch_timer.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_address.h>
  22. #include <linux/io.h>
  23. #include <linux/slab.h>
  24. #include <linux/sched_clock.h>
  25. #include <linux/acpi.h>
  26. #include <asm/arch_timer.h>
  27. #include <asm/virt.h>
  28. #include <clocksource/arm_arch_timer.h>
  29. #define CNTTIDR 0x08
  30. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  31. #define CNTACR(n) (0x40 + ((n) * 4))
  32. #define CNTACR_RPCT BIT(0)
  33. #define CNTACR_RVCT BIT(1)
  34. #define CNTACR_RFRQ BIT(2)
  35. #define CNTACR_RVOFF BIT(3)
  36. #define CNTACR_RWVT BIT(4)
  37. #define CNTACR_RWPT BIT(5)
  38. #define CNTVCT_LO 0x08
  39. #define CNTVCT_HI 0x0c
  40. #define CNTFRQ 0x10
  41. #define CNTP_TVAL 0x28
  42. #define CNTP_CTL 0x2c
  43. #define CNTV_TVAL 0x38
  44. #define CNTV_CTL 0x3c
  45. #define ARCH_CP15_TIMER BIT(0)
  46. #define ARCH_MEM_TIMER BIT(1)
  47. static unsigned arch_timers_present __initdata;
  48. static void __iomem *arch_counter_base;
  49. struct arch_timer {
  50. void __iomem *base;
  51. struct clock_event_device evt;
  52. };
  53. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  54. static u32 arch_timer_rate;
  55. enum ppi_nr {
  56. PHYS_SECURE_PPI,
  57. PHYS_NONSECURE_PPI,
  58. VIRT_PPI,
  59. HYP_PPI,
  60. MAX_TIMER_PPI
  61. };
  62. static int arch_timer_ppi[MAX_TIMER_PPI];
  63. static struct clock_event_device __percpu *arch_timer_evt;
  64. static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
  65. static bool arch_timer_c3stop;
  66. static bool arch_timer_mem_use_virtual;
  67. /*
  68. * Architected system timer support.
  69. */
  70. static __always_inline
  71. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  72. struct clock_event_device *clk)
  73. {
  74. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  75. struct arch_timer *timer = to_arch_timer(clk);
  76. switch (reg) {
  77. case ARCH_TIMER_REG_CTRL:
  78. writel_relaxed(val, timer->base + CNTP_CTL);
  79. break;
  80. case ARCH_TIMER_REG_TVAL:
  81. writel_relaxed(val, timer->base + CNTP_TVAL);
  82. break;
  83. }
  84. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  85. struct arch_timer *timer = to_arch_timer(clk);
  86. switch (reg) {
  87. case ARCH_TIMER_REG_CTRL:
  88. writel_relaxed(val, timer->base + CNTV_CTL);
  89. break;
  90. case ARCH_TIMER_REG_TVAL:
  91. writel_relaxed(val, timer->base + CNTV_TVAL);
  92. break;
  93. }
  94. } else {
  95. arch_timer_reg_write_cp15(access, reg, val);
  96. }
  97. }
  98. static __always_inline
  99. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  100. struct clock_event_device *clk)
  101. {
  102. u32 val;
  103. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  104. struct arch_timer *timer = to_arch_timer(clk);
  105. switch (reg) {
  106. case ARCH_TIMER_REG_CTRL:
  107. val = readl_relaxed(timer->base + CNTP_CTL);
  108. break;
  109. case ARCH_TIMER_REG_TVAL:
  110. val = readl_relaxed(timer->base + CNTP_TVAL);
  111. break;
  112. }
  113. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  114. struct arch_timer *timer = to_arch_timer(clk);
  115. switch (reg) {
  116. case ARCH_TIMER_REG_CTRL:
  117. val = readl_relaxed(timer->base + CNTV_CTL);
  118. break;
  119. case ARCH_TIMER_REG_TVAL:
  120. val = readl_relaxed(timer->base + CNTV_TVAL);
  121. break;
  122. }
  123. } else {
  124. val = arch_timer_reg_read_cp15(access, reg);
  125. }
  126. return val;
  127. }
  128. static __always_inline irqreturn_t timer_handler(const int access,
  129. struct clock_event_device *evt)
  130. {
  131. unsigned long ctrl;
  132. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  133. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  134. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  135. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  136. evt->event_handler(evt);
  137. return IRQ_HANDLED;
  138. }
  139. return IRQ_NONE;
  140. }
  141. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  142. {
  143. struct clock_event_device *evt = dev_id;
  144. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  145. }
  146. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  147. {
  148. struct clock_event_device *evt = dev_id;
  149. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  150. }
  151. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  152. {
  153. struct clock_event_device *evt = dev_id;
  154. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  155. }
  156. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  157. {
  158. struct clock_event_device *evt = dev_id;
  159. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  160. }
  161. static __always_inline int timer_shutdown(const int access,
  162. struct clock_event_device *clk)
  163. {
  164. unsigned long ctrl;
  165. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  166. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  167. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  168. return 0;
  169. }
  170. static int arch_timer_shutdown_virt(struct clock_event_device *clk)
  171. {
  172. return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
  173. }
  174. static int arch_timer_shutdown_phys(struct clock_event_device *clk)
  175. {
  176. return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
  177. }
  178. static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
  179. {
  180. return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
  181. }
  182. static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
  183. {
  184. return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
  185. }
  186. static __always_inline void set_next_event(const int access, unsigned long evt,
  187. struct clock_event_device *clk)
  188. {
  189. unsigned long ctrl;
  190. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  191. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  192. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  193. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  194. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  195. }
  196. static int arch_timer_set_next_event_virt(unsigned long evt,
  197. struct clock_event_device *clk)
  198. {
  199. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  200. return 0;
  201. }
  202. static int arch_timer_set_next_event_phys(unsigned long evt,
  203. struct clock_event_device *clk)
  204. {
  205. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  206. return 0;
  207. }
  208. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  209. struct clock_event_device *clk)
  210. {
  211. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  212. return 0;
  213. }
  214. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  215. struct clock_event_device *clk)
  216. {
  217. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  218. return 0;
  219. }
  220. static void __arch_timer_setup(unsigned type,
  221. struct clock_event_device *clk)
  222. {
  223. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  224. if (type == ARCH_CP15_TIMER) {
  225. if (arch_timer_c3stop)
  226. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  227. clk->name = "arch_sys_timer";
  228. clk->rating = 450;
  229. clk->cpumask = cpumask_of(smp_processor_id());
  230. clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
  231. switch (arch_timer_uses_ppi) {
  232. case VIRT_PPI:
  233. clk->set_state_shutdown = arch_timer_shutdown_virt;
  234. clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
  235. clk->set_next_event = arch_timer_set_next_event_virt;
  236. break;
  237. case PHYS_SECURE_PPI:
  238. case PHYS_NONSECURE_PPI:
  239. case HYP_PPI:
  240. clk->set_state_shutdown = arch_timer_shutdown_phys;
  241. clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
  242. clk->set_next_event = arch_timer_set_next_event_phys;
  243. break;
  244. default:
  245. BUG();
  246. }
  247. } else {
  248. clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
  249. clk->name = "arch_mem_timer";
  250. clk->rating = 400;
  251. clk->cpumask = cpu_all_mask;
  252. if (arch_timer_mem_use_virtual) {
  253. clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
  254. clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
  255. clk->set_next_event =
  256. arch_timer_set_next_event_virt_mem;
  257. } else {
  258. clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
  259. clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
  260. clk->set_next_event =
  261. arch_timer_set_next_event_phys_mem;
  262. }
  263. }
  264. clk->set_state_shutdown(clk);
  265. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  266. }
  267. static void arch_timer_evtstrm_enable(int divider)
  268. {
  269. u32 cntkctl = arch_timer_get_cntkctl();
  270. cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
  271. /* Set the divider and enable virtual event stream */
  272. cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
  273. | ARCH_TIMER_VIRT_EVT_EN;
  274. arch_timer_set_cntkctl(cntkctl);
  275. elf_hwcap |= HWCAP_EVTSTRM;
  276. #ifdef CONFIG_COMPAT
  277. compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
  278. #endif
  279. }
  280. static void arch_timer_configure_evtstream(void)
  281. {
  282. int evt_stream_div, pos;
  283. /* Find the closest power of two to the divisor */
  284. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  285. pos = fls(evt_stream_div);
  286. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  287. pos--;
  288. /* enable event stream */
  289. arch_timer_evtstrm_enable(min(pos, 15));
  290. }
  291. static void arch_counter_set_user_access(void)
  292. {
  293. u32 cntkctl = arch_timer_get_cntkctl();
  294. /* Disable user access to the timers and the physical counter */
  295. /* Also disable virtual event stream */
  296. cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
  297. | ARCH_TIMER_USR_VT_ACCESS_EN
  298. | ARCH_TIMER_VIRT_EVT_EN
  299. | ARCH_TIMER_USR_PCT_ACCESS_EN);
  300. /* Enable user access to the virtual counter */
  301. cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
  302. arch_timer_set_cntkctl(cntkctl);
  303. }
  304. static bool arch_timer_has_nonsecure_ppi(void)
  305. {
  306. return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
  307. arch_timer_ppi[PHYS_NONSECURE_PPI]);
  308. }
  309. static int arch_timer_setup(struct clock_event_device *clk)
  310. {
  311. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  312. enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
  313. if (arch_timer_has_nonsecure_ppi())
  314. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  315. arch_counter_set_user_access();
  316. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  317. arch_timer_configure_evtstream();
  318. return 0;
  319. }
  320. static void
  321. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  322. {
  323. /* Who has more than one independent system counter? */
  324. if (arch_timer_rate)
  325. return;
  326. /*
  327. * Try to determine the frequency from the device tree or CNTFRQ,
  328. * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
  329. */
  330. if (!acpi_disabled ||
  331. of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  332. if (cntbase)
  333. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  334. else
  335. arch_timer_rate = arch_timer_get_cntfrq();
  336. }
  337. /* Check the timer frequency. */
  338. if (arch_timer_rate == 0)
  339. pr_warn("Architected timer frequency not available\n");
  340. }
  341. static void arch_timer_banner(unsigned type)
  342. {
  343. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  344. type & ARCH_CP15_TIMER ? "cp15" : "",
  345. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  346. type & ARCH_MEM_TIMER ? "mmio" : "",
  347. (unsigned long)arch_timer_rate / 1000000,
  348. (unsigned long)(arch_timer_rate / 10000) % 100,
  349. type & ARCH_CP15_TIMER ?
  350. (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
  351. "",
  352. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  353. type & ARCH_MEM_TIMER ?
  354. arch_timer_mem_use_virtual ? "virt" : "phys" :
  355. "");
  356. }
  357. u32 arch_timer_get_rate(void)
  358. {
  359. return arch_timer_rate;
  360. }
  361. static u64 arch_counter_get_cntvct_mem(void)
  362. {
  363. u32 vct_lo, vct_hi, tmp_hi;
  364. do {
  365. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  366. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  367. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  368. } while (vct_hi != tmp_hi);
  369. return ((u64) vct_hi << 32) | vct_lo;
  370. }
  371. /*
  372. * Default to cp15 based access because arm64 uses this function for
  373. * sched_clock() before DT is probed and the cp15 method is guaranteed
  374. * to exist on arm64. arm doesn't use this before DT is probed so even
  375. * if we don't have the cp15 accessors we won't have a problem.
  376. */
  377. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  378. static cycle_t arch_counter_read(struct clocksource *cs)
  379. {
  380. return arch_timer_read_counter();
  381. }
  382. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  383. {
  384. return arch_timer_read_counter();
  385. }
  386. static struct clocksource clocksource_counter = {
  387. .name = "arch_sys_counter",
  388. .rating = 400,
  389. .read = arch_counter_read,
  390. .mask = CLOCKSOURCE_MASK(56),
  391. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  392. };
  393. static struct cyclecounter cyclecounter = {
  394. .read = arch_counter_read_cc,
  395. .mask = CLOCKSOURCE_MASK(56),
  396. };
  397. static struct timecounter timecounter;
  398. struct timecounter *arch_timer_get_timecounter(void)
  399. {
  400. return &timecounter;
  401. }
  402. static void __init arch_counter_register(unsigned type)
  403. {
  404. u64 start_count;
  405. /* Register the CP15 based counter if we have one */
  406. if (type & ARCH_CP15_TIMER) {
  407. if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
  408. arch_timer_read_counter = arch_counter_get_cntvct;
  409. else
  410. arch_timer_read_counter = arch_counter_get_cntpct;
  411. } else {
  412. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  413. /* If the clocksource name is "arch_sys_counter" the
  414. * VDSO will attempt to read the CP15-based counter.
  415. * Ensure this does not happen when CP15-based
  416. * counter is not available.
  417. */
  418. clocksource_counter.name = "arch_mem_counter";
  419. }
  420. start_count = arch_timer_read_counter();
  421. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  422. cyclecounter.mult = clocksource_counter.mult;
  423. cyclecounter.shift = clocksource_counter.shift;
  424. timecounter_init(&timecounter, &cyclecounter, start_count);
  425. /* 56 bits minimum, so we assume worst case rollover */
  426. sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
  427. }
  428. static void arch_timer_stop(struct clock_event_device *clk)
  429. {
  430. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  431. clk->irq, smp_processor_id());
  432. disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
  433. if (arch_timer_has_nonsecure_ppi())
  434. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  435. clk->set_state_shutdown(clk);
  436. }
  437. static int arch_timer_cpu_notify(struct notifier_block *self,
  438. unsigned long action, void *hcpu)
  439. {
  440. /*
  441. * Grab cpu pointer in each case to avoid spurious
  442. * preemptible warnings
  443. */
  444. switch (action & ~CPU_TASKS_FROZEN) {
  445. case CPU_STARTING:
  446. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  447. break;
  448. case CPU_DYING:
  449. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  450. break;
  451. }
  452. return NOTIFY_OK;
  453. }
  454. static struct notifier_block arch_timer_cpu_nb = {
  455. .notifier_call = arch_timer_cpu_notify,
  456. };
  457. #ifdef CONFIG_CPU_PM
  458. static unsigned int saved_cntkctl;
  459. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  460. unsigned long action, void *hcpu)
  461. {
  462. if (action == CPU_PM_ENTER)
  463. saved_cntkctl = arch_timer_get_cntkctl();
  464. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  465. arch_timer_set_cntkctl(saved_cntkctl);
  466. return NOTIFY_OK;
  467. }
  468. static struct notifier_block arch_timer_cpu_pm_notifier = {
  469. .notifier_call = arch_timer_cpu_pm_notify,
  470. };
  471. static int __init arch_timer_cpu_pm_init(void)
  472. {
  473. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  474. }
  475. #else
  476. static int __init arch_timer_cpu_pm_init(void)
  477. {
  478. return 0;
  479. }
  480. #endif
  481. static int __init arch_timer_register(void)
  482. {
  483. int err;
  484. int ppi;
  485. arch_timer_evt = alloc_percpu(struct clock_event_device);
  486. if (!arch_timer_evt) {
  487. err = -ENOMEM;
  488. goto out;
  489. }
  490. ppi = arch_timer_ppi[arch_timer_uses_ppi];
  491. switch (arch_timer_uses_ppi) {
  492. case VIRT_PPI:
  493. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  494. "arch_timer", arch_timer_evt);
  495. break;
  496. case PHYS_SECURE_PPI:
  497. case PHYS_NONSECURE_PPI:
  498. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  499. "arch_timer", arch_timer_evt);
  500. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  501. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  502. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  503. "arch_timer", arch_timer_evt);
  504. if (err)
  505. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  506. arch_timer_evt);
  507. }
  508. break;
  509. case HYP_PPI:
  510. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  511. "arch_timer", arch_timer_evt);
  512. break;
  513. default:
  514. BUG();
  515. }
  516. if (err) {
  517. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  518. ppi, err);
  519. goto out_free;
  520. }
  521. err = register_cpu_notifier(&arch_timer_cpu_nb);
  522. if (err)
  523. goto out_free_irq;
  524. err = arch_timer_cpu_pm_init();
  525. if (err)
  526. goto out_unreg_notify;
  527. /* Immediately configure the timer on the boot CPU */
  528. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  529. return 0;
  530. out_unreg_notify:
  531. unregister_cpu_notifier(&arch_timer_cpu_nb);
  532. out_free_irq:
  533. free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
  534. if (arch_timer_has_nonsecure_ppi())
  535. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  536. arch_timer_evt);
  537. out_free:
  538. free_percpu(arch_timer_evt);
  539. out:
  540. return err;
  541. }
  542. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  543. {
  544. int ret;
  545. irq_handler_t func;
  546. struct arch_timer *t;
  547. t = kzalloc(sizeof(*t), GFP_KERNEL);
  548. if (!t)
  549. return -ENOMEM;
  550. t->base = base;
  551. t->evt.irq = irq;
  552. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  553. if (arch_timer_mem_use_virtual)
  554. func = arch_timer_handler_virt_mem;
  555. else
  556. func = arch_timer_handler_phys_mem;
  557. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  558. if (ret) {
  559. pr_err("arch_timer: Failed to request mem timer irq\n");
  560. kfree(t);
  561. }
  562. return ret;
  563. }
  564. static const struct of_device_id arch_timer_of_match[] __initconst = {
  565. { .compatible = "arm,armv7-timer", },
  566. { .compatible = "arm,armv8-timer", },
  567. {},
  568. };
  569. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  570. { .compatible = "arm,armv7-timer-mem", },
  571. {},
  572. };
  573. static bool __init
  574. arch_timer_needs_probing(int type, const struct of_device_id *matches)
  575. {
  576. struct device_node *dn;
  577. bool needs_probing = false;
  578. dn = of_find_matching_node(NULL, matches);
  579. if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
  580. needs_probing = true;
  581. of_node_put(dn);
  582. return needs_probing;
  583. }
  584. static void __init arch_timer_common_init(void)
  585. {
  586. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  587. /* Wait until both nodes are probed if we have two timers */
  588. if ((arch_timers_present & mask) != mask) {
  589. if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
  590. return;
  591. if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
  592. return;
  593. }
  594. arch_timer_banner(arch_timers_present);
  595. arch_counter_register(arch_timers_present);
  596. arch_timer_arch_init();
  597. }
  598. static void __init arch_timer_init(void)
  599. {
  600. /*
  601. * If HYP mode is available, we know that the physical timer
  602. * has been configured to be accessible from PL1. Use it, so
  603. * that a guest can use the virtual timer instead.
  604. *
  605. * If no interrupt provided for virtual timer, we'll have to
  606. * stick to the physical timer. It'd better be accessible...
  607. *
  608. * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
  609. * accesses to CNTP_*_EL1 registers are silently redirected to
  610. * their CNTHP_*_EL2 counterparts, and use a different PPI
  611. * number.
  612. */
  613. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  614. bool has_ppi;
  615. if (is_kernel_in_hyp_mode()) {
  616. arch_timer_uses_ppi = HYP_PPI;
  617. has_ppi = !!arch_timer_ppi[HYP_PPI];
  618. } else {
  619. arch_timer_uses_ppi = PHYS_SECURE_PPI;
  620. has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
  621. !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
  622. }
  623. if (!has_ppi) {
  624. pr_warn("arch_timer: No interrupt available, giving up\n");
  625. return;
  626. }
  627. }
  628. arch_timer_register();
  629. arch_timer_common_init();
  630. }
  631. static void __init arch_timer_of_init(struct device_node *np)
  632. {
  633. int i;
  634. if (arch_timers_present & ARCH_CP15_TIMER) {
  635. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  636. return;
  637. }
  638. arch_timers_present |= ARCH_CP15_TIMER;
  639. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  640. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  641. arch_timer_detect_rate(NULL, np);
  642. arch_timer_c3stop = !of_property_read_bool(np, "always-on");
  643. /*
  644. * If we cannot rely on firmware initializing the timer registers then
  645. * we should use the physical timers instead.
  646. */
  647. if (IS_ENABLED(CONFIG_ARM) &&
  648. of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
  649. arch_timer_uses_ppi = PHYS_SECURE_PPI;
  650. arch_timer_init();
  651. }
  652. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
  653. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
  654. static void __init arch_timer_mem_init(struct device_node *np)
  655. {
  656. struct device_node *frame, *best_frame = NULL;
  657. void __iomem *cntctlbase, *base;
  658. unsigned int irq;
  659. u32 cnttidr;
  660. arch_timers_present |= ARCH_MEM_TIMER;
  661. cntctlbase = of_iomap(np, 0);
  662. if (!cntctlbase) {
  663. pr_err("arch_timer: Can't find CNTCTLBase\n");
  664. return;
  665. }
  666. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  667. /*
  668. * Try to find a virtual capable frame. Otherwise fall back to a
  669. * physical capable frame.
  670. */
  671. for_each_available_child_of_node(np, frame) {
  672. int n;
  673. u32 cntacr;
  674. if (of_property_read_u32(frame, "frame-number", &n)) {
  675. pr_err("arch_timer: Missing frame-number\n");
  676. of_node_put(frame);
  677. goto out;
  678. }
  679. /* Try enabling everything, and see what sticks */
  680. cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
  681. CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
  682. writel_relaxed(cntacr, cntctlbase + CNTACR(n));
  683. cntacr = readl_relaxed(cntctlbase + CNTACR(n));
  684. if ((cnttidr & CNTTIDR_VIRT(n)) &&
  685. !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
  686. of_node_put(best_frame);
  687. best_frame = frame;
  688. arch_timer_mem_use_virtual = true;
  689. break;
  690. }
  691. if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
  692. continue;
  693. of_node_put(best_frame);
  694. best_frame = of_node_get(frame);
  695. }
  696. base = arch_counter_base = of_iomap(best_frame, 0);
  697. if (!base) {
  698. pr_err("arch_timer: Can't map frame's registers\n");
  699. goto out;
  700. }
  701. if (arch_timer_mem_use_virtual)
  702. irq = irq_of_parse_and_map(best_frame, 1);
  703. else
  704. irq = irq_of_parse_and_map(best_frame, 0);
  705. if (!irq) {
  706. pr_err("arch_timer: Frame missing %s irq",
  707. arch_timer_mem_use_virtual ? "virt" : "phys");
  708. goto out;
  709. }
  710. arch_timer_detect_rate(base, np);
  711. arch_timer_mem_register(base, irq);
  712. arch_timer_common_init();
  713. out:
  714. iounmap(cntctlbase);
  715. of_node_put(best_frame);
  716. }
  717. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  718. arch_timer_mem_init);
  719. #ifdef CONFIG_ACPI
  720. static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
  721. {
  722. int trigger, polarity;
  723. if (!interrupt)
  724. return 0;
  725. trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
  726. : ACPI_LEVEL_SENSITIVE;
  727. polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
  728. : ACPI_ACTIVE_HIGH;
  729. return acpi_register_gsi(NULL, interrupt, trigger, polarity);
  730. }
  731. /* Initialize per-processor generic timer */
  732. static int __init arch_timer_acpi_init(struct acpi_table_header *table)
  733. {
  734. struct acpi_table_gtdt *gtdt;
  735. if (arch_timers_present & ARCH_CP15_TIMER) {
  736. pr_warn("arch_timer: already initialized, skipping\n");
  737. return -EINVAL;
  738. }
  739. gtdt = container_of(table, struct acpi_table_gtdt, header);
  740. arch_timers_present |= ARCH_CP15_TIMER;
  741. arch_timer_ppi[PHYS_SECURE_PPI] =
  742. map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
  743. gtdt->secure_el1_flags);
  744. arch_timer_ppi[PHYS_NONSECURE_PPI] =
  745. map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
  746. gtdt->non_secure_el1_flags);
  747. arch_timer_ppi[VIRT_PPI] =
  748. map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
  749. gtdt->virtual_timer_flags);
  750. arch_timer_ppi[HYP_PPI] =
  751. map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
  752. gtdt->non_secure_el2_flags);
  753. /* Get the frequency from CNTFRQ */
  754. arch_timer_detect_rate(NULL, NULL);
  755. /* Always-on capability */
  756. arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
  757. arch_timer_init();
  758. return 0;
  759. }
  760. CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
  761. #endif