acpi_lpss.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. /*
  2. * ACPI support for Intel Lynxpoint LPSS.
  3. *
  4. * Copyright (C) 2013, Intel Corporation
  5. * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
  6. * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/acpi.h>
  13. #include <linux/clkdev.h>
  14. #include <linux/clk-provider.h>
  15. #include <linux/err.h>
  16. #include <linux/io.h>
  17. #include <linux/mutex.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/platform_data/clk-lpss.h>
  20. #include <linux/pm_domain.h>
  21. #include <linux/pm_runtime.h>
  22. #include <linux/delay.h>
  23. #include "internal.h"
  24. ACPI_MODULE_NAME("acpi_lpss");
  25. #ifdef CONFIG_X86_INTEL_LPSS
  26. #include <asm/cpu_device_id.h>
  27. #include <asm/iosf_mbi.h>
  28. #include <asm/pmc_atom.h>
  29. #define LPSS_ADDR(desc) ((unsigned long)&desc)
  30. #define LPSS_CLK_SIZE 0x04
  31. #define LPSS_LTR_SIZE 0x18
  32. /* Offsets relative to LPSS_PRIVATE_OFFSET */
  33. #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
  34. #define LPSS_RESETS 0x04
  35. #define LPSS_RESETS_RESET_FUNC BIT(0)
  36. #define LPSS_RESETS_RESET_APB BIT(1)
  37. #define LPSS_GENERAL 0x08
  38. #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
  39. #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
  40. #define LPSS_SW_LTR 0x10
  41. #define LPSS_AUTO_LTR 0x14
  42. #define LPSS_LTR_SNOOP_REQ BIT(15)
  43. #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
  44. #define LPSS_LTR_SNOOP_LAT_1US 0x800
  45. #define LPSS_LTR_SNOOP_LAT_32US 0xC00
  46. #define LPSS_LTR_SNOOP_LAT_SHIFT 5
  47. #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
  48. #define LPSS_LTR_MAX_VAL 0x3FF
  49. #define LPSS_TX_INT 0x20
  50. #define LPSS_TX_INT_MASK BIT(1)
  51. #define LPSS_PRV_REG_COUNT 9
  52. /* LPSS Flags */
  53. #define LPSS_CLK BIT(0)
  54. #define LPSS_CLK_GATE BIT(1)
  55. #define LPSS_CLK_DIVIDER BIT(2)
  56. #define LPSS_LTR BIT(3)
  57. #define LPSS_SAVE_CTX BIT(4)
  58. #define LPSS_NO_D3_DELAY BIT(5)
  59. struct lpss_private_data;
  60. struct lpss_device_desc {
  61. unsigned int flags;
  62. const char *clk_con_id;
  63. unsigned int prv_offset;
  64. size_t prv_size_override;
  65. void (*setup)(struct lpss_private_data *pdata);
  66. };
  67. static const struct lpss_device_desc lpss_dma_desc = {
  68. .flags = LPSS_CLK,
  69. };
  70. struct lpss_private_data {
  71. void __iomem *mmio_base;
  72. resource_size_t mmio_size;
  73. unsigned int fixed_clk_rate;
  74. struct clk *clk;
  75. const struct lpss_device_desc *dev_desc;
  76. u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
  77. };
  78. /* LPSS run time quirks */
  79. static unsigned int lpss_quirks;
  80. /*
  81. * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
  82. *
  83. * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
  84. * it can be powered off automatically whenever the last LPSS device goes down.
  85. * In case of no power any access to the DMA controller will hang the system.
  86. * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
  87. * well as on ASuS T100TA transformer.
  88. *
  89. * This quirk overrides power state of entire LPSS island to keep DMA powered
  90. * on whenever we have at least one other device in use.
  91. */
  92. #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
  93. /* UART Component Parameter Register */
  94. #define LPSS_UART_CPR 0xF4
  95. #define LPSS_UART_CPR_AFCE BIT(4)
  96. static void lpss_uart_setup(struct lpss_private_data *pdata)
  97. {
  98. unsigned int offset;
  99. u32 val;
  100. offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
  101. val = readl(pdata->mmio_base + offset);
  102. writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
  103. val = readl(pdata->mmio_base + LPSS_UART_CPR);
  104. if (!(val & LPSS_UART_CPR_AFCE)) {
  105. offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
  106. val = readl(pdata->mmio_base + offset);
  107. val |= LPSS_GENERAL_UART_RTS_OVRD;
  108. writel(val, pdata->mmio_base + offset);
  109. }
  110. }
  111. static void lpss_deassert_reset(struct lpss_private_data *pdata)
  112. {
  113. unsigned int offset;
  114. u32 val;
  115. offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
  116. val = readl(pdata->mmio_base + offset);
  117. val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
  118. writel(val, pdata->mmio_base + offset);
  119. }
  120. #define LPSS_I2C_ENABLE 0x6c
  121. static void byt_i2c_setup(struct lpss_private_data *pdata)
  122. {
  123. lpss_deassert_reset(pdata);
  124. if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
  125. pdata->fixed_clk_rate = 133000000;
  126. writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
  127. }
  128. static const struct lpss_device_desc lpt_dev_desc = {
  129. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  130. .prv_offset = 0x800,
  131. };
  132. static const struct lpss_device_desc lpt_i2c_dev_desc = {
  133. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
  134. .prv_offset = 0x800,
  135. };
  136. static const struct lpss_device_desc lpt_uart_dev_desc = {
  137. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
  138. .clk_con_id = "baudclk",
  139. .prv_offset = 0x800,
  140. .setup = lpss_uart_setup,
  141. };
  142. static const struct lpss_device_desc lpt_sdio_dev_desc = {
  143. .flags = LPSS_LTR,
  144. .prv_offset = 0x1000,
  145. .prv_size_override = 0x1018,
  146. };
  147. static const struct lpss_device_desc byt_pwm_dev_desc = {
  148. .flags = LPSS_SAVE_CTX,
  149. };
  150. static const struct lpss_device_desc bsw_pwm_dev_desc = {
  151. .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
  152. };
  153. static const struct lpss_device_desc byt_uart_dev_desc = {
  154. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  155. .clk_con_id = "baudclk",
  156. .prv_offset = 0x800,
  157. .setup = lpss_uart_setup,
  158. };
  159. static const struct lpss_device_desc bsw_uart_dev_desc = {
  160. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
  161. | LPSS_NO_D3_DELAY,
  162. .clk_con_id = "baudclk",
  163. .prv_offset = 0x800,
  164. .setup = lpss_uart_setup,
  165. };
  166. static const struct lpss_device_desc byt_spi_dev_desc = {
  167. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
  168. .prv_offset = 0x400,
  169. };
  170. static const struct lpss_device_desc byt_sdio_dev_desc = {
  171. .flags = LPSS_CLK,
  172. };
  173. static const struct lpss_device_desc byt_i2c_dev_desc = {
  174. .flags = LPSS_CLK | LPSS_SAVE_CTX,
  175. .prv_offset = 0x800,
  176. .setup = byt_i2c_setup,
  177. };
  178. static const struct lpss_device_desc bsw_i2c_dev_desc = {
  179. .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
  180. .prv_offset = 0x800,
  181. .setup = byt_i2c_setup,
  182. };
  183. static const struct lpss_device_desc bsw_spi_dev_desc = {
  184. .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
  185. | LPSS_NO_D3_DELAY,
  186. .prv_offset = 0x400,
  187. .setup = lpss_deassert_reset,
  188. };
  189. #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
  190. static const struct x86_cpu_id lpss_cpu_ids[] = {
  191. ICPU(0x37), /* Valleyview, Bay Trail */
  192. ICPU(0x4c), /* Braswell, Cherry Trail */
  193. {}
  194. };
  195. #else
  196. #define LPSS_ADDR(desc) (0UL)
  197. #endif /* CONFIG_X86_INTEL_LPSS */
  198. static const struct acpi_device_id acpi_lpss_device_ids[] = {
  199. /* Generic LPSS devices */
  200. { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
  201. /* Lynxpoint LPSS devices */
  202. { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
  203. { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
  204. { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
  205. { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
  206. { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
  207. { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
  208. { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
  209. { "INT33C7", },
  210. /* BayTrail LPSS devices */
  211. { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
  212. { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
  213. { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
  214. { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
  215. { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
  216. { "INT33B2", },
  217. { "INT33FC", },
  218. /* Braswell LPSS devices */
  219. { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
  220. { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
  221. { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
  222. { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
  223. /* Broadwell LPSS devices */
  224. { "INT3430", LPSS_ADDR(lpt_dev_desc) },
  225. { "INT3431", LPSS_ADDR(lpt_dev_desc) },
  226. { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
  227. { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
  228. { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
  229. { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
  230. { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
  231. { "INT3437", },
  232. /* Wildcat Point LPSS devices */
  233. { "INT3438", LPSS_ADDR(lpt_dev_desc) },
  234. { }
  235. };
  236. #ifdef CONFIG_X86_INTEL_LPSS
  237. static int is_memory(struct acpi_resource *res, void *not_used)
  238. {
  239. struct resource r;
  240. return !acpi_dev_resource_memory(res, &r);
  241. }
  242. /* LPSS main clock device. */
  243. static struct platform_device *lpss_clk_dev;
  244. static inline void lpt_register_clock_device(void)
  245. {
  246. lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
  247. }
  248. static int register_device_clock(struct acpi_device *adev,
  249. struct lpss_private_data *pdata)
  250. {
  251. const struct lpss_device_desc *dev_desc = pdata->dev_desc;
  252. const char *devname = dev_name(&adev->dev);
  253. struct clk *clk = ERR_PTR(-ENODEV);
  254. struct lpss_clk_data *clk_data;
  255. const char *parent, *clk_name;
  256. void __iomem *prv_base;
  257. if (!lpss_clk_dev)
  258. lpt_register_clock_device();
  259. clk_data = platform_get_drvdata(lpss_clk_dev);
  260. if (!clk_data)
  261. return -ENODEV;
  262. clk = clk_data->clk;
  263. if (!pdata->mmio_base
  264. || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
  265. return -ENODATA;
  266. parent = clk_data->name;
  267. prv_base = pdata->mmio_base + dev_desc->prv_offset;
  268. if (pdata->fixed_clk_rate) {
  269. clk = clk_register_fixed_rate(NULL, devname, parent, 0,
  270. pdata->fixed_clk_rate);
  271. goto out;
  272. }
  273. if (dev_desc->flags & LPSS_CLK_GATE) {
  274. clk = clk_register_gate(NULL, devname, parent, 0,
  275. prv_base, 0, 0, NULL);
  276. parent = devname;
  277. }
  278. if (dev_desc->flags & LPSS_CLK_DIVIDER) {
  279. /* Prevent division by zero */
  280. if (!readl(prv_base))
  281. writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
  282. clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
  283. if (!clk_name)
  284. return -ENOMEM;
  285. clk = clk_register_fractional_divider(NULL, clk_name, parent,
  286. 0, prv_base,
  287. 1, 15, 16, 15, 0, NULL);
  288. parent = clk_name;
  289. clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
  290. if (!clk_name) {
  291. kfree(parent);
  292. return -ENOMEM;
  293. }
  294. clk = clk_register_gate(NULL, clk_name, parent,
  295. CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
  296. prv_base, 31, 0, NULL);
  297. kfree(parent);
  298. kfree(clk_name);
  299. }
  300. out:
  301. if (IS_ERR(clk))
  302. return PTR_ERR(clk);
  303. pdata->clk = clk;
  304. clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
  305. return 0;
  306. }
  307. static int acpi_lpss_create_device(struct acpi_device *adev,
  308. const struct acpi_device_id *id)
  309. {
  310. const struct lpss_device_desc *dev_desc;
  311. struct lpss_private_data *pdata;
  312. struct resource_entry *rentry;
  313. struct list_head resource_list;
  314. struct platform_device *pdev;
  315. int ret;
  316. dev_desc = (const struct lpss_device_desc *)id->driver_data;
  317. if (!dev_desc) {
  318. pdev = acpi_create_platform_device(adev);
  319. return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
  320. }
  321. pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
  322. if (!pdata)
  323. return -ENOMEM;
  324. INIT_LIST_HEAD(&resource_list);
  325. ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
  326. if (ret < 0)
  327. goto err_out;
  328. list_for_each_entry(rentry, &resource_list, node)
  329. if (resource_type(rentry->res) == IORESOURCE_MEM) {
  330. if (dev_desc->prv_size_override)
  331. pdata->mmio_size = dev_desc->prv_size_override;
  332. else
  333. pdata->mmio_size = resource_size(rentry->res);
  334. pdata->mmio_base = ioremap(rentry->res->start,
  335. pdata->mmio_size);
  336. break;
  337. }
  338. acpi_dev_free_resource_list(&resource_list);
  339. if (!pdata->mmio_base) {
  340. ret = -ENOMEM;
  341. goto err_out;
  342. }
  343. pdata->dev_desc = dev_desc;
  344. if (dev_desc->setup)
  345. dev_desc->setup(pdata);
  346. if (dev_desc->flags & LPSS_CLK) {
  347. ret = register_device_clock(adev, pdata);
  348. if (ret) {
  349. /* Skip the device, but continue the namespace scan. */
  350. ret = 0;
  351. goto err_out;
  352. }
  353. }
  354. /*
  355. * This works around a known issue in ACPI tables where LPSS devices
  356. * have _PS0 and _PS3 without _PSC (and no power resources), so
  357. * acpi_bus_init_power() will assume that the BIOS has put them into D0.
  358. */
  359. ret = acpi_device_fix_up_power(adev);
  360. if (ret) {
  361. /* Skip the device, but continue the namespace scan. */
  362. ret = 0;
  363. goto err_out;
  364. }
  365. adev->driver_data = pdata;
  366. pdev = acpi_create_platform_device(adev);
  367. if (!IS_ERR_OR_NULL(pdev)) {
  368. return 1;
  369. }
  370. ret = PTR_ERR(pdev);
  371. adev->driver_data = NULL;
  372. err_out:
  373. kfree(pdata);
  374. return ret;
  375. }
  376. static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
  377. {
  378. return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  379. }
  380. static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
  381. unsigned int reg)
  382. {
  383. writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
  384. }
  385. static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
  386. {
  387. struct acpi_device *adev;
  388. struct lpss_private_data *pdata;
  389. unsigned long flags;
  390. int ret;
  391. ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
  392. if (WARN_ON(ret))
  393. return ret;
  394. spin_lock_irqsave(&dev->power.lock, flags);
  395. if (pm_runtime_suspended(dev)) {
  396. ret = -EAGAIN;
  397. goto out;
  398. }
  399. pdata = acpi_driver_data(adev);
  400. if (WARN_ON(!pdata || !pdata->mmio_base)) {
  401. ret = -ENODEV;
  402. goto out;
  403. }
  404. *val = __lpss_reg_read(pdata, reg);
  405. out:
  406. spin_unlock_irqrestore(&dev->power.lock, flags);
  407. return ret;
  408. }
  409. static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
  410. char *buf)
  411. {
  412. u32 ltr_value = 0;
  413. unsigned int reg;
  414. int ret;
  415. reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
  416. ret = lpss_reg_read(dev, reg, &ltr_value);
  417. if (ret)
  418. return ret;
  419. return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
  420. }
  421. static ssize_t lpss_ltr_mode_show(struct device *dev,
  422. struct device_attribute *attr, char *buf)
  423. {
  424. u32 ltr_mode = 0;
  425. char *outstr;
  426. int ret;
  427. ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
  428. if (ret)
  429. return ret;
  430. outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
  431. return sprintf(buf, "%s\n", outstr);
  432. }
  433. static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
  434. static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
  435. static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
  436. static struct attribute *lpss_attrs[] = {
  437. &dev_attr_auto_ltr.attr,
  438. &dev_attr_sw_ltr.attr,
  439. &dev_attr_ltr_mode.attr,
  440. NULL,
  441. };
  442. static struct attribute_group lpss_attr_group = {
  443. .attrs = lpss_attrs,
  444. .name = "lpss_ltr",
  445. };
  446. static void acpi_lpss_set_ltr(struct device *dev, s32 val)
  447. {
  448. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  449. u32 ltr_mode, ltr_val;
  450. ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
  451. if (val < 0) {
  452. if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
  453. ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
  454. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  455. }
  456. return;
  457. }
  458. ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
  459. if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
  460. ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
  461. val = LPSS_LTR_MAX_VAL;
  462. } else if (val > LPSS_LTR_MAX_VAL) {
  463. ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
  464. val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
  465. } else {
  466. ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
  467. }
  468. ltr_val |= val;
  469. __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
  470. if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
  471. ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
  472. __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
  473. }
  474. }
  475. #ifdef CONFIG_PM
  476. /**
  477. * acpi_lpss_save_ctx() - Save the private registers of LPSS device
  478. * @dev: LPSS device
  479. * @pdata: pointer to the private data of the LPSS device
  480. *
  481. * Most LPSS devices have private registers which may loose their context when
  482. * the device is powered down. acpi_lpss_save_ctx() saves those registers into
  483. * prv_reg_ctx array.
  484. */
  485. static void acpi_lpss_save_ctx(struct device *dev,
  486. struct lpss_private_data *pdata)
  487. {
  488. unsigned int i;
  489. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  490. unsigned long offset = i * sizeof(u32);
  491. pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
  492. dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
  493. pdata->prv_reg_ctx[i], offset);
  494. }
  495. }
  496. /**
  497. * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
  498. * @dev: LPSS device
  499. * @pdata: pointer to the private data of the LPSS device
  500. *
  501. * Restores the registers that were previously stored with acpi_lpss_save_ctx().
  502. */
  503. static void acpi_lpss_restore_ctx(struct device *dev,
  504. struct lpss_private_data *pdata)
  505. {
  506. unsigned int i;
  507. for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
  508. unsigned long offset = i * sizeof(u32);
  509. __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
  510. dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
  511. pdata->prv_reg_ctx[i], offset);
  512. }
  513. }
  514. static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
  515. {
  516. /*
  517. * The following delay is needed or the subsequent write operations may
  518. * fail. The LPSS devices are actually PCI devices and the PCI spec
  519. * expects 10ms delay before the device can be accessed after D3 to D0
  520. * transition. However some platforms like BSW does not need this delay.
  521. */
  522. unsigned int delay = 10; /* default 10ms delay */
  523. if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
  524. delay = 0;
  525. msleep(delay);
  526. }
  527. static int acpi_lpss_activate(struct device *dev)
  528. {
  529. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  530. int ret;
  531. ret = acpi_dev_runtime_resume(dev);
  532. if (ret)
  533. return ret;
  534. acpi_lpss_d3_to_d0_delay(pdata);
  535. /*
  536. * This is called only on ->probe() stage where a device is either in
  537. * known state defined by BIOS or most likely powered off. Due to this
  538. * we have to deassert reset line to be sure that ->probe() will
  539. * recognize the device.
  540. */
  541. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  542. lpss_deassert_reset(pdata);
  543. return 0;
  544. }
  545. static void acpi_lpss_dismiss(struct device *dev)
  546. {
  547. acpi_dev_runtime_suspend(dev);
  548. }
  549. #ifdef CONFIG_PM_SLEEP
  550. static int acpi_lpss_suspend_late(struct device *dev)
  551. {
  552. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  553. int ret;
  554. ret = pm_generic_suspend_late(dev);
  555. if (ret)
  556. return ret;
  557. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  558. acpi_lpss_save_ctx(dev, pdata);
  559. return acpi_dev_suspend_late(dev);
  560. }
  561. static int acpi_lpss_resume_early(struct device *dev)
  562. {
  563. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  564. int ret;
  565. ret = acpi_dev_resume_early(dev);
  566. if (ret)
  567. return ret;
  568. acpi_lpss_d3_to_d0_delay(pdata);
  569. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  570. acpi_lpss_restore_ctx(dev, pdata);
  571. return pm_generic_resume_early(dev);
  572. }
  573. #endif /* CONFIG_PM_SLEEP */
  574. /* IOSF SB for LPSS island */
  575. #define LPSS_IOSF_UNIT_LPIOEP 0xA0
  576. #define LPSS_IOSF_UNIT_LPIO1 0xAB
  577. #define LPSS_IOSF_UNIT_LPIO2 0xAC
  578. #define LPSS_IOSF_PMCSR 0x84
  579. #define LPSS_PMCSR_D0 0
  580. #define LPSS_PMCSR_D3hot 3
  581. #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
  582. #define LPSS_IOSF_GPIODEF0 0x154
  583. #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
  584. #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
  585. #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
  586. static DEFINE_MUTEX(lpss_iosf_mutex);
  587. static void lpss_iosf_enter_d3_state(void)
  588. {
  589. u32 value1 = 0;
  590. u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK;
  591. u32 value2 = LPSS_PMCSR_D3hot;
  592. u32 mask2 = LPSS_PMCSR_Dx_MASK;
  593. /*
  594. * PMC provides an information about actual status of the LPSS devices.
  595. * Here we read the values related to LPSS power island, i.e. LPSS
  596. * devices, excluding both LPSS DMA controllers, along with SCC domain.
  597. */
  598. u32 func_dis, d3_sts_0, pmc_status, pmc_mask = 0xfe000ffe;
  599. int ret;
  600. ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
  601. if (ret)
  602. return;
  603. mutex_lock(&lpss_iosf_mutex);
  604. ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
  605. if (ret)
  606. goto exit;
  607. /*
  608. * Get the status of entire LPSS power island per device basis.
  609. * Shutdown both LPSS DMA controllers if and only if all other devices
  610. * are already in D3hot.
  611. */
  612. pmc_status = (~(d3_sts_0 | func_dis)) & pmc_mask;
  613. if (pmc_status)
  614. goto exit;
  615. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
  616. LPSS_IOSF_PMCSR, value2, mask2);
  617. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
  618. LPSS_IOSF_PMCSR, value2, mask2);
  619. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
  620. LPSS_IOSF_GPIODEF0, value1, mask1);
  621. exit:
  622. mutex_unlock(&lpss_iosf_mutex);
  623. }
  624. static void lpss_iosf_exit_d3_state(void)
  625. {
  626. u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3;
  627. u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK;
  628. u32 value2 = LPSS_PMCSR_D0;
  629. u32 mask2 = LPSS_PMCSR_Dx_MASK;
  630. mutex_lock(&lpss_iosf_mutex);
  631. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
  632. LPSS_IOSF_GPIODEF0, value1, mask1);
  633. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
  634. LPSS_IOSF_PMCSR, value2, mask2);
  635. iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
  636. LPSS_IOSF_PMCSR, value2, mask2);
  637. mutex_unlock(&lpss_iosf_mutex);
  638. }
  639. static int acpi_lpss_runtime_suspend(struct device *dev)
  640. {
  641. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  642. int ret;
  643. ret = pm_generic_runtime_suspend(dev);
  644. if (ret)
  645. return ret;
  646. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  647. acpi_lpss_save_ctx(dev, pdata);
  648. ret = acpi_dev_runtime_suspend(dev);
  649. /*
  650. * This call must be last in the sequence, otherwise PMC will return
  651. * wrong status for devices being about to be powered off. See
  652. * lpss_iosf_enter_d3_state() for further information.
  653. */
  654. if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
  655. lpss_iosf_enter_d3_state();
  656. return ret;
  657. }
  658. static int acpi_lpss_runtime_resume(struct device *dev)
  659. {
  660. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  661. int ret;
  662. /*
  663. * This call is kept first to be in symmetry with
  664. * acpi_lpss_runtime_suspend() one.
  665. */
  666. if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
  667. lpss_iosf_exit_d3_state();
  668. ret = acpi_dev_runtime_resume(dev);
  669. if (ret)
  670. return ret;
  671. acpi_lpss_d3_to_d0_delay(pdata);
  672. if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
  673. acpi_lpss_restore_ctx(dev, pdata);
  674. return pm_generic_runtime_resume(dev);
  675. }
  676. #endif /* CONFIG_PM */
  677. static struct dev_pm_domain acpi_lpss_pm_domain = {
  678. #ifdef CONFIG_PM
  679. .activate = acpi_lpss_activate,
  680. .dismiss = acpi_lpss_dismiss,
  681. #endif
  682. .ops = {
  683. #ifdef CONFIG_PM
  684. #ifdef CONFIG_PM_SLEEP
  685. .prepare = acpi_subsys_prepare,
  686. .complete = pm_complete_with_resume_check,
  687. .suspend = acpi_subsys_suspend,
  688. .suspend_late = acpi_lpss_suspend_late,
  689. .resume_early = acpi_lpss_resume_early,
  690. .freeze = acpi_subsys_freeze,
  691. .poweroff = acpi_subsys_suspend,
  692. .poweroff_late = acpi_lpss_suspend_late,
  693. .restore_early = acpi_lpss_resume_early,
  694. #endif
  695. .runtime_suspend = acpi_lpss_runtime_suspend,
  696. .runtime_resume = acpi_lpss_runtime_resume,
  697. #endif
  698. },
  699. };
  700. static int acpi_lpss_platform_notify(struct notifier_block *nb,
  701. unsigned long action, void *data)
  702. {
  703. struct platform_device *pdev = to_platform_device(data);
  704. struct lpss_private_data *pdata;
  705. struct acpi_device *adev;
  706. const struct acpi_device_id *id;
  707. id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
  708. if (!id || !id->driver_data)
  709. return 0;
  710. if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  711. return 0;
  712. pdata = acpi_driver_data(adev);
  713. if (!pdata)
  714. return 0;
  715. if (pdata->mmio_base &&
  716. pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
  717. dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
  718. return 0;
  719. }
  720. switch (action) {
  721. case BUS_NOTIFY_BIND_DRIVER:
  722. dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
  723. break;
  724. case BUS_NOTIFY_DRIVER_NOT_BOUND:
  725. case BUS_NOTIFY_UNBOUND_DRIVER:
  726. dev_pm_domain_set(&pdev->dev, NULL);
  727. break;
  728. case BUS_NOTIFY_ADD_DEVICE:
  729. dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
  730. if (pdata->dev_desc->flags & LPSS_LTR)
  731. return sysfs_create_group(&pdev->dev.kobj,
  732. &lpss_attr_group);
  733. break;
  734. case BUS_NOTIFY_DEL_DEVICE:
  735. if (pdata->dev_desc->flags & LPSS_LTR)
  736. sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
  737. dev_pm_domain_set(&pdev->dev, NULL);
  738. break;
  739. default:
  740. break;
  741. }
  742. return 0;
  743. }
  744. static struct notifier_block acpi_lpss_nb = {
  745. .notifier_call = acpi_lpss_platform_notify,
  746. };
  747. static void acpi_lpss_bind(struct device *dev)
  748. {
  749. struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
  750. if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
  751. return;
  752. if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
  753. dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
  754. else
  755. dev_err(dev, "MMIO size insufficient to access LTR\n");
  756. }
  757. static void acpi_lpss_unbind(struct device *dev)
  758. {
  759. dev->power.set_latency_tolerance = NULL;
  760. }
  761. static struct acpi_scan_handler lpss_handler = {
  762. .ids = acpi_lpss_device_ids,
  763. .attach = acpi_lpss_create_device,
  764. .bind = acpi_lpss_bind,
  765. .unbind = acpi_lpss_unbind,
  766. };
  767. void __init acpi_lpss_init(void)
  768. {
  769. const struct x86_cpu_id *id;
  770. int ret;
  771. ret = lpt_clk_init();
  772. if (ret)
  773. return;
  774. id = x86_match_cpu(lpss_cpu_ids);
  775. if (id)
  776. lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
  777. bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
  778. acpi_scan_add_handler(&lpss_handler);
  779. }
  780. #else
  781. static struct acpi_scan_handler lpss_handler = {
  782. .ids = acpi_lpss_device_ids,
  783. };
  784. void __init acpi_lpss_init(void)
  785. {
  786. acpi_scan_add_handler(&lpss_handler);
  787. }
  788. #endif /* CONFIG_X86_INTEL_LPSS */