sdma_v3_0.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  53. {
  54. SDMA0_REGISTER_OFFSET,
  55. SDMA1_REGISTER_OFFSET
  56. };
  57. static const u32 golden_settings_tonga_a11[] =
  58. {
  59. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  60. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  61. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  62. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  63. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  65. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  66. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  69. };
  70. static const u32 tonga_mgcg_cgcg_init[] =
  71. {
  72. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  73. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  74. };
  75. static const u32 golden_settings_fiji_a10[] =
  76. {
  77. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  78. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  79. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  80. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  81. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. };
  86. static const u32 fiji_mgcg_cgcg_init[] =
  87. {
  88. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  89. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  90. };
  91. static const u32 cz_golden_settings_a11[] =
  92. {
  93. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  94. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  95. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  96. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  97. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  98. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  99. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  102. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  103. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  104. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  105. };
  106. static const u32 cz_mgcg_cgcg_init[] =
  107. {
  108. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  109. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  110. };
  111. static const u32 stoney_golden_settings_a11[] =
  112. {
  113. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  114. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  115. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  117. };
  118. static const u32 stoney_mgcg_cgcg_init[] =
  119. {
  120. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  121. };
  122. /*
  123. * sDMA - System DMA
  124. * Starting with CIK, the GPU has new asynchronous
  125. * DMA engines. These engines are used for compute
  126. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  127. * and each one supports 1 ring buffer used for gfx
  128. * and 2 queues used for compute.
  129. *
  130. * The programming model is very similar to the CP
  131. * (ring buffer, IBs, etc.), but sDMA has it's own
  132. * packet format that is different from the PM4 format
  133. * used by the CP. sDMA supports copying data, writing
  134. * embedded data, solid fills, and a number of other
  135. * things. It also has support for tiling/detiling of
  136. * buffers.
  137. */
  138. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  139. {
  140. switch (adev->asic_type) {
  141. case CHIP_FIJI:
  142. amdgpu_program_register_sequence(adev,
  143. fiji_mgcg_cgcg_init,
  144. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  145. amdgpu_program_register_sequence(adev,
  146. golden_settings_fiji_a10,
  147. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  148. break;
  149. case CHIP_TONGA:
  150. amdgpu_program_register_sequence(adev,
  151. tonga_mgcg_cgcg_init,
  152. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  153. amdgpu_program_register_sequence(adev,
  154. golden_settings_tonga_a11,
  155. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  156. break;
  157. case CHIP_CARRIZO:
  158. amdgpu_program_register_sequence(adev,
  159. cz_mgcg_cgcg_init,
  160. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  161. amdgpu_program_register_sequence(adev,
  162. cz_golden_settings_a11,
  163. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  164. break;
  165. case CHIP_STONEY:
  166. amdgpu_program_register_sequence(adev,
  167. stoney_mgcg_cgcg_init,
  168. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  169. amdgpu_program_register_sequence(adev,
  170. stoney_golden_settings_a11,
  171. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  172. break;
  173. default:
  174. break;
  175. }
  176. }
  177. /**
  178. * sdma_v3_0_init_microcode - load ucode images from disk
  179. *
  180. * @adev: amdgpu_device pointer
  181. *
  182. * Use the firmware interface to load the ucode images into
  183. * the driver (not loaded into hw).
  184. * Returns 0 on success, error on failure.
  185. */
  186. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  187. {
  188. const char *chip_name;
  189. char fw_name[30];
  190. int err = 0, i;
  191. struct amdgpu_firmware_info *info = NULL;
  192. const struct common_firmware_header *header = NULL;
  193. const struct sdma_firmware_header_v1_0 *hdr;
  194. DRM_DEBUG("\n");
  195. switch (adev->asic_type) {
  196. case CHIP_TONGA:
  197. chip_name = "tonga";
  198. break;
  199. case CHIP_FIJI:
  200. chip_name = "fiji";
  201. break;
  202. case CHIP_CARRIZO:
  203. chip_name = "carrizo";
  204. break;
  205. case CHIP_STONEY:
  206. chip_name = "stoney";
  207. break;
  208. default: BUG();
  209. }
  210. for (i = 0; i < adev->sdma.num_instances; i++) {
  211. if (i == 0)
  212. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  213. else
  214. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  215. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  216. if (err)
  217. goto out;
  218. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  219. if (err)
  220. goto out;
  221. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  222. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  223. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  224. if (adev->sdma.instance[i].feature_version >= 20)
  225. adev->sdma.instance[i].burst_nop = true;
  226. if (adev->firmware.smu_load) {
  227. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  228. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  229. info->fw = adev->sdma.instance[i].fw;
  230. header = (const struct common_firmware_header *)info->fw->data;
  231. adev->firmware.fw_size +=
  232. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  233. }
  234. }
  235. out:
  236. if (err) {
  237. printk(KERN_ERR
  238. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  239. fw_name);
  240. for (i = 0; i < adev->sdma.num_instances; i++) {
  241. release_firmware(adev->sdma.instance[i].fw);
  242. adev->sdma.instance[i].fw = NULL;
  243. }
  244. }
  245. return err;
  246. }
  247. /**
  248. * sdma_v3_0_ring_get_rptr - get the current read pointer
  249. *
  250. * @ring: amdgpu ring pointer
  251. *
  252. * Get the current rptr from the hardware (VI+).
  253. */
  254. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  255. {
  256. u32 rptr;
  257. /* XXX check if swapping is necessary on BE */
  258. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  259. return rptr;
  260. }
  261. /**
  262. * sdma_v3_0_ring_get_wptr - get the current write pointer
  263. *
  264. * @ring: amdgpu ring pointer
  265. *
  266. * Get the current wptr from the hardware (VI+).
  267. */
  268. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  269. {
  270. struct amdgpu_device *adev = ring->adev;
  271. u32 wptr;
  272. if (ring->use_doorbell) {
  273. /* XXX check if swapping is necessary on BE */
  274. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  275. } else {
  276. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  277. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  278. }
  279. return wptr;
  280. }
  281. /**
  282. * sdma_v3_0_ring_set_wptr - commit the write pointer
  283. *
  284. * @ring: amdgpu ring pointer
  285. *
  286. * Write the wptr back to the hardware (VI+).
  287. */
  288. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  289. {
  290. struct amdgpu_device *adev = ring->adev;
  291. if (ring->use_doorbell) {
  292. /* XXX check if swapping is necessary on BE */
  293. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  294. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  295. } else {
  296. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  297. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  298. }
  299. }
  300. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  301. {
  302. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  303. int i;
  304. for (i = 0; i < count; i++)
  305. if (sdma && sdma->burst_nop && (i == 0))
  306. amdgpu_ring_write(ring, ring->nop |
  307. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  308. else
  309. amdgpu_ring_write(ring, ring->nop);
  310. }
  311. /**
  312. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  313. *
  314. * @ring: amdgpu ring pointer
  315. * @ib: IB object to schedule
  316. *
  317. * Schedule an IB in the DMA ring (VI).
  318. */
  319. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  320. struct amdgpu_ib *ib)
  321. {
  322. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  323. u32 next_rptr = ring->wptr + 5;
  324. while ((next_rptr & 7) != 2)
  325. next_rptr++;
  326. next_rptr += 6;
  327. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  328. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  329. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  330. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  331. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  332. amdgpu_ring_write(ring, next_rptr);
  333. /* IB packet must end on a 8 DW boundary */
  334. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  335. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  336. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  337. /* base must be 32 byte aligned */
  338. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  339. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  340. amdgpu_ring_write(ring, ib->length_dw);
  341. amdgpu_ring_write(ring, 0);
  342. amdgpu_ring_write(ring, 0);
  343. }
  344. /**
  345. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  346. *
  347. * @ring: amdgpu ring pointer
  348. *
  349. * Emit an hdp flush packet on the requested DMA ring.
  350. */
  351. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  352. {
  353. u32 ref_and_mask = 0;
  354. if (ring == &ring->adev->sdma.instance[0].ring)
  355. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  356. else
  357. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  358. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  359. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  360. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  361. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  362. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  363. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  364. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  365. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  366. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  367. }
  368. /**
  369. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  370. *
  371. * @ring: amdgpu ring pointer
  372. * @fence: amdgpu fence object
  373. *
  374. * Add a DMA fence packet to the ring to write
  375. * the fence seq number and DMA trap packet to generate
  376. * an interrupt if needed (VI).
  377. */
  378. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  379. unsigned flags)
  380. {
  381. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  382. /* write the fence */
  383. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  384. amdgpu_ring_write(ring, lower_32_bits(addr));
  385. amdgpu_ring_write(ring, upper_32_bits(addr));
  386. amdgpu_ring_write(ring, lower_32_bits(seq));
  387. /* optionally write high bits as well */
  388. if (write64bit) {
  389. addr += 4;
  390. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  391. amdgpu_ring_write(ring, lower_32_bits(addr));
  392. amdgpu_ring_write(ring, upper_32_bits(addr));
  393. amdgpu_ring_write(ring, upper_32_bits(seq));
  394. }
  395. /* generate an interrupt */
  396. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  397. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  398. }
  399. /**
  400. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  401. *
  402. * @adev: amdgpu_device pointer
  403. *
  404. * Stop the gfx async dma ring buffers (VI).
  405. */
  406. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  407. {
  408. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  409. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  410. u32 rb_cntl, ib_cntl;
  411. int i;
  412. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  413. (adev->mman.buffer_funcs_ring == sdma1))
  414. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  415. for (i = 0; i < adev->sdma.num_instances; i++) {
  416. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  417. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  418. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  419. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  420. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  421. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  422. }
  423. sdma0->ready = false;
  424. sdma1->ready = false;
  425. }
  426. /**
  427. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  428. *
  429. * @adev: amdgpu_device pointer
  430. *
  431. * Stop the compute async dma queues (VI).
  432. */
  433. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  434. {
  435. /* XXX todo */
  436. }
  437. /**
  438. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  439. *
  440. * @adev: amdgpu_device pointer
  441. * @enable: enable/disable the DMA MEs context switch.
  442. *
  443. * Halt or unhalt the async dma engines context switch (VI).
  444. */
  445. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  446. {
  447. u32 f32_cntl;
  448. int i;
  449. for (i = 0; i < adev->sdma.num_instances; i++) {
  450. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  451. if (enable)
  452. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  453. AUTO_CTXSW_ENABLE, 1);
  454. else
  455. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  456. AUTO_CTXSW_ENABLE, 0);
  457. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  458. }
  459. }
  460. /**
  461. * sdma_v3_0_enable - stop the async dma engines
  462. *
  463. * @adev: amdgpu_device pointer
  464. * @enable: enable/disable the DMA MEs.
  465. *
  466. * Halt or unhalt the async dma engines (VI).
  467. */
  468. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  469. {
  470. u32 f32_cntl;
  471. int i;
  472. if (enable == false) {
  473. sdma_v3_0_gfx_stop(adev);
  474. sdma_v3_0_rlc_stop(adev);
  475. }
  476. for (i = 0; i < adev->sdma.num_instances; i++) {
  477. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  478. if (enable)
  479. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  480. else
  481. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  482. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  483. }
  484. }
  485. /**
  486. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  487. *
  488. * @adev: amdgpu_device pointer
  489. *
  490. * Set up the gfx DMA ring buffers and enable them (VI).
  491. * Returns 0 for success, error for failure.
  492. */
  493. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  494. {
  495. struct amdgpu_ring *ring;
  496. u32 rb_cntl, ib_cntl;
  497. u32 rb_bufsz;
  498. u32 wb_offset;
  499. u32 doorbell;
  500. int i, j, r;
  501. for (i = 0; i < adev->sdma.num_instances; i++) {
  502. ring = &adev->sdma.instance[i].ring;
  503. wb_offset = (ring->rptr_offs * 4);
  504. mutex_lock(&adev->srbm_mutex);
  505. for (j = 0; j < 16; j++) {
  506. vi_srbm_select(adev, 0, 0, 0, j);
  507. /* SDMA GFX */
  508. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  509. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  510. }
  511. vi_srbm_select(adev, 0, 0, 0, 0);
  512. mutex_unlock(&adev->srbm_mutex);
  513. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  514. /* Set ring buffer size in dwords */
  515. rb_bufsz = order_base_2(ring->ring_size / 4);
  516. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  517. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  518. #ifdef __BIG_ENDIAN
  519. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  520. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  521. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  522. #endif
  523. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  524. /* Initialize the ring buffer's read and write pointers */
  525. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  526. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  527. /* set the wb address whether it's enabled or not */
  528. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  529. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  530. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  531. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  532. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  533. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  534. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  535. ring->wptr = 0;
  536. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  537. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  538. if (ring->use_doorbell) {
  539. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  540. OFFSET, ring->doorbell_index);
  541. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  542. } else {
  543. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  544. }
  545. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  546. /* enable DMA RB */
  547. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  548. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  549. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  550. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  551. #ifdef __BIG_ENDIAN
  552. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  553. #endif
  554. /* enable DMA IBs */
  555. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  556. ring->ready = true;
  557. r = amdgpu_ring_test_ring(ring);
  558. if (r) {
  559. ring->ready = false;
  560. return r;
  561. }
  562. if (adev->mman.buffer_funcs_ring == ring)
  563. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  564. }
  565. return 0;
  566. }
  567. /**
  568. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  569. *
  570. * @adev: amdgpu_device pointer
  571. *
  572. * Set up the compute DMA queues and enable them (VI).
  573. * Returns 0 for success, error for failure.
  574. */
  575. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  576. {
  577. /* XXX todo */
  578. return 0;
  579. }
  580. /**
  581. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  582. *
  583. * @adev: amdgpu_device pointer
  584. *
  585. * Loads the sDMA0/1 ucode.
  586. * Returns 0 for success, -EINVAL if the ucode is not available.
  587. */
  588. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  589. {
  590. const struct sdma_firmware_header_v1_0 *hdr;
  591. const __le32 *fw_data;
  592. u32 fw_size;
  593. int i, j;
  594. /* halt the MEs */
  595. sdma_v3_0_enable(adev, false);
  596. for (i = 0; i < adev->sdma.num_instances; i++) {
  597. if (!adev->sdma.instance[i].fw)
  598. return -EINVAL;
  599. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  600. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  601. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  602. fw_data = (const __le32 *)
  603. (adev->sdma.instance[i].fw->data +
  604. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  605. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  606. for (j = 0; j < fw_size; j++)
  607. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  608. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  609. }
  610. return 0;
  611. }
  612. /**
  613. * sdma_v3_0_start - setup and start the async dma engines
  614. *
  615. * @adev: amdgpu_device pointer
  616. *
  617. * Set up the DMA engines and enable them (VI).
  618. * Returns 0 for success, error for failure.
  619. */
  620. static int sdma_v3_0_start(struct amdgpu_device *adev)
  621. {
  622. int r, i;
  623. if (!adev->pp_enabled) {
  624. if (!adev->firmware.smu_load) {
  625. r = sdma_v3_0_load_microcode(adev);
  626. if (r)
  627. return r;
  628. } else {
  629. for (i = 0; i < adev->sdma.num_instances; i++) {
  630. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  631. (i == 0) ?
  632. AMDGPU_UCODE_ID_SDMA0 :
  633. AMDGPU_UCODE_ID_SDMA1);
  634. if (r)
  635. return -EINVAL;
  636. }
  637. }
  638. }
  639. /* unhalt the MEs */
  640. sdma_v3_0_enable(adev, true);
  641. /* enable sdma ring preemption */
  642. sdma_v3_0_ctx_switch_enable(adev, true);
  643. /* start the gfx rings and rlc compute queues */
  644. r = sdma_v3_0_gfx_resume(adev);
  645. if (r)
  646. return r;
  647. r = sdma_v3_0_rlc_resume(adev);
  648. if (r)
  649. return r;
  650. return 0;
  651. }
  652. /**
  653. * sdma_v3_0_ring_test_ring - simple async dma engine test
  654. *
  655. * @ring: amdgpu_ring structure holding ring information
  656. *
  657. * Test the DMA engine by writing using it to write an
  658. * value to memory. (VI).
  659. * Returns 0 for success, error for failure.
  660. */
  661. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  662. {
  663. struct amdgpu_device *adev = ring->adev;
  664. unsigned i;
  665. unsigned index;
  666. int r;
  667. u32 tmp;
  668. u64 gpu_addr;
  669. r = amdgpu_wb_get(adev, &index);
  670. if (r) {
  671. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  672. return r;
  673. }
  674. gpu_addr = adev->wb.gpu_addr + (index * 4);
  675. tmp = 0xCAFEDEAD;
  676. adev->wb.wb[index] = cpu_to_le32(tmp);
  677. r = amdgpu_ring_lock(ring, 5);
  678. if (r) {
  679. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  680. amdgpu_wb_free(adev, index);
  681. return r;
  682. }
  683. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  684. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  685. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  686. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  687. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  688. amdgpu_ring_write(ring, 0xDEADBEEF);
  689. amdgpu_ring_unlock_commit(ring);
  690. for (i = 0; i < adev->usec_timeout; i++) {
  691. tmp = le32_to_cpu(adev->wb.wb[index]);
  692. if (tmp == 0xDEADBEEF)
  693. break;
  694. DRM_UDELAY(1);
  695. }
  696. if (i < adev->usec_timeout) {
  697. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  698. } else {
  699. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  700. ring->idx, tmp);
  701. r = -EINVAL;
  702. }
  703. amdgpu_wb_free(adev, index);
  704. return r;
  705. }
  706. /**
  707. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  708. *
  709. * @ring: amdgpu_ring structure holding ring information
  710. *
  711. * Test a simple IB in the DMA ring (VI).
  712. * Returns 0 on success, error on failure.
  713. */
  714. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  715. {
  716. struct amdgpu_device *adev = ring->adev;
  717. struct amdgpu_ib ib;
  718. struct fence *f = NULL;
  719. unsigned i;
  720. unsigned index;
  721. int r;
  722. u32 tmp = 0;
  723. u64 gpu_addr;
  724. r = amdgpu_wb_get(adev, &index);
  725. if (r) {
  726. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  727. return r;
  728. }
  729. gpu_addr = adev->wb.gpu_addr + (index * 4);
  730. tmp = 0xCAFEDEAD;
  731. adev->wb.wb[index] = cpu_to_le32(tmp);
  732. memset(&ib, 0, sizeof(ib));
  733. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  734. if (r) {
  735. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  736. goto err0;
  737. }
  738. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  739. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  740. ib.ptr[1] = lower_32_bits(gpu_addr);
  741. ib.ptr[2] = upper_32_bits(gpu_addr);
  742. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  743. ib.ptr[4] = 0xDEADBEEF;
  744. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  745. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  746. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  747. ib.length_dw = 8;
  748. r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
  749. AMDGPU_FENCE_OWNER_UNDEFINED,
  750. &f);
  751. if (r)
  752. goto err1;
  753. r = fence_wait(f, false);
  754. if (r) {
  755. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  756. goto err1;
  757. }
  758. for (i = 0; i < adev->usec_timeout; i++) {
  759. tmp = le32_to_cpu(adev->wb.wb[index]);
  760. if (tmp == 0xDEADBEEF)
  761. break;
  762. DRM_UDELAY(1);
  763. }
  764. if (i < adev->usec_timeout) {
  765. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  766. ring->idx, i);
  767. goto err1;
  768. } else {
  769. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  770. r = -EINVAL;
  771. }
  772. err1:
  773. fence_put(f);
  774. amdgpu_ib_free(adev, &ib);
  775. err0:
  776. amdgpu_wb_free(adev, index);
  777. return r;
  778. }
  779. /**
  780. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  781. *
  782. * @ib: indirect buffer to fill with commands
  783. * @pe: addr of the page entry
  784. * @src: src addr to copy from
  785. * @count: number of page entries to update
  786. *
  787. * Update PTEs by copying them from the GART using sDMA (CIK).
  788. */
  789. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  790. uint64_t pe, uint64_t src,
  791. unsigned count)
  792. {
  793. while (count) {
  794. unsigned bytes = count * 8;
  795. if (bytes > 0x1FFFF8)
  796. bytes = 0x1FFFF8;
  797. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  798. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  799. ib->ptr[ib->length_dw++] = bytes;
  800. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  801. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  802. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  803. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  804. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  805. pe += bytes;
  806. src += bytes;
  807. count -= bytes / 8;
  808. }
  809. }
  810. /**
  811. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  812. *
  813. * @ib: indirect buffer to fill with commands
  814. * @pe: addr of the page entry
  815. * @addr: dst addr to write into pe
  816. * @count: number of page entries to update
  817. * @incr: increase next addr by incr bytes
  818. * @flags: access flags
  819. *
  820. * Update PTEs by writing them manually using sDMA (CIK).
  821. */
  822. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  823. uint64_t pe,
  824. uint64_t addr, unsigned count,
  825. uint32_t incr, uint32_t flags)
  826. {
  827. uint64_t value;
  828. unsigned ndw;
  829. while (count) {
  830. ndw = count * 2;
  831. if (ndw > 0xFFFFE)
  832. ndw = 0xFFFFE;
  833. /* for non-physically contiguous pages (system) */
  834. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  835. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  836. ib->ptr[ib->length_dw++] = pe;
  837. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  838. ib->ptr[ib->length_dw++] = ndw;
  839. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  840. if (flags & AMDGPU_PTE_SYSTEM) {
  841. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  842. value &= 0xFFFFFFFFFFFFF000ULL;
  843. } else if (flags & AMDGPU_PTE_VALID) {
  844. value = addr;
  845. } else {
  846. value = 0;
  847. }
  848. addr += incr;
  849. value |= flags;
  850. ib->ptr[ib->length_dw++] = value;
  851. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  852. }
  853. }
  854. }
  855. /**
  856. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  857. *
  858. * @ib: indirect buffer to fill with commands
  859. * @pe: addr of the page entry
  860. * @addr: dst addr to write into pe
  861. * @count: number of page entries to update
  862. * @incr: increase next addr by incr bytes
  863. * @flags: access flags
  864. *
  865. * Update the page tables using sDMA (CIK).
  866. */
  867. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  868. uint64_t pe,
  869. uint64_t addr, unsigned count,
  870. uint32_t incr, uint32_t flags)
  871. {
  872. uint64_t value;
  873. unsigned ndw;
  874. while (count) {
  875. ndw = count;
  876. if (ndw > 0x7FFFF)
  877. ndw = 0x7FFFF;
  878. if (flags & AMDGPU_PTE_VALID)
  879. value = addr;
  880. else
  881. value = 0;
  882. /* for physically contiguous pages (vram) */
  883. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  884. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  885. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  886. ib->ptr[ib->length_dw++] = flags; /* mask */
  887. ib->ptr[ib->length_dw++] = 0;
  888. ib->ptr[ib->length_dw++] = value; /* value */
  889. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  890. ib->ptr[ib->length_dw++] = incr; /* increment size */
  891. ib->ptr[ib->length_dw++] = 0;
  892. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  893. pe += ndw * 8;
  894. addr += ndw * incr;
  895. count -= ndw;
  896. }
  897. }
  898. /**
  899. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  900. *
  901. * @ib: indirect buffer to fill with padding
  902. *
  903. */
  904. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  905. {
  906. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
  907. u32 pad_count;
  908. int i;
  909. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  910. for (i = 0; i < pad_count; i++)
  911. if (sdma && sdma->burst_nop && (i == 0))
  912. ib->ptr[ib->length_dw++] =
  913. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  914. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  915. else
  916. ib->ptr[ib->length_dw++] =
  917. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  918. }
  919. /**
  920. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  921. *
  922. * @ring: amdgpu_ring pointer
  923. * @vm: amdgpu_vm pointer
  924. *
  925. * Update the page table base and flush the VM TLB
  926. * using sDMA (VI).
  927. */
  928. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  929. unsigned vm_id, uint64_t pd_addr)
  930. {
  931. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  932. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  933. if (vm_id < 8) {
  934. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  935. } else {
  936. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  937. }
  938. amdgpu_ring_write(ring, pd_addr >> 12);
  939. /* flush TLB */
  940. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  941. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  942. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  943. amdgpu_ring_write(ring, 1 << vm_id);
  944. /* wait for flush */
  945. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  946. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  947. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  948. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  949. amdgpu_ring_write(ring, 0);
  950. amdgpu_ring_write(ring, 0); /* reference */
  951. amdgpu_ring_write(ring, 0); /* mask */
  952. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  953. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  954. }
  955. static int sdma_v3_0_early_init(void *handle)
  956. {
  957. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  958. switch (adev->asic_type) {
  959. case CHIP_STONEY:
  960. adev->sdma.num_instances = 1;
  961. break;
  962. default:
  963. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  964. break;
  965. }
  966. sdma_v3_0_set_ring_funcs(adev);
  967. sdma_v3_0_set_buffer_funcs(adev);
  968. sdma_v3_0_set_vm_pte_funcs(adev);
  969. sdma_v3_0_set_irq_funcs(adev);
  970. return 0;
  971. }
  972. static int sdma_v3_0_sw_init(void *handle)
  973. {
  974. struct amdgpu_ring *ring;
  975. int r, i;
  976. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  977. /* SDMA trap event */
  978. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  979. if (r)
  980. return r;
  981. /* SDMA Privileged inst */
  982. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  983. if (r)
  984. return r;
  985. /* SDMA Privileged inst */
  986. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  987. if (r)
  988. return r;
  989. r = sdma_v3_0_init_microcode(adev);
  990. if (r) {
  991. DRM_ERROR("Failed to load sdma firmware!\n");
  992. return r;
  993. }
  994. for (i = 0; i < adev->sdma.num_instances; i++) {
  995. ring = &adev->sdma.instance[i].ring;
  996. ring->ring_obj = NULL;
  997. ring->use_doorbell = true;
  998. ring->doorbell_index = (i == 0) ?
  999. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1000. sprintf(ring->name, "sdma%d", i);
  1001. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  1002. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1003. &adev->sdma.trap_irq,
  1004. (i == 0) ?
  1005. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1006. AMDGPU_RING_TYPE_SDMA);
  1007. if (r)
  1008. return r;
  1009. }
  1010. return r;
  1011. }
  1012. static int sdma_v3_0_sw_fini(void *handle)
  1013. {
  1014. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1015. int i;
  1016. for (i = 0; i < adev->sdma.num_instances; i++)
  1017. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1018. return 0;
  1019. }
  1020. static int sdma_v3_0_hw_init(void *handle)
  1021. {
  1022. int r;
  1023. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1024. sdma_v3_0_init_golden_registers(adev);
  1025. r = sdma_v3_0_start(adev);
  1026. if (r)
  1027. return r;
  1028. return r;
  1029. }
  1030. static int sdma_v3_0_hw_fini(void *handle)
  1031. {
  1032. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1033. sdma_v3_0_ctx_switch_enable(adev, false);
  1034. sdma_v3_0_enable(adev, false);
  1035. return 0;
  1036. }
  1037. static int sdma_v3_0_suspend(void *handle)
  1038. {
  1039. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1040. return sdma_v3_0_hw_fini(adev);
  1041. }
  1042. static int sdma_v3_0_resume(void *handle)
  1043. {
  1044. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1045. return sdma_v3_0_hw_init(adev);
  1046. }
  1047. static bool sdma_v3_0_is_idle(void *handle)
  1048. {
  1049. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1050. u32 tmp = RREG32(mmSRBM_STATUS2);
  1051. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1052. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1053. return false;
  1054. return true;
  1055. }
  1056. static int sdma_v3_0_wait_for_idle(void *handle)
  1057. {
  1058. unsigned i;
  1059. u32 tmp;
  1060. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1061. for (i = 0; i < adev->usec_timeout; i++) {
  1062. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1063. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1064. if (!tmp)
  1065. return 0;
  1066. udelay(1);
  1067. }
  1068. return -ETIMEDOUT;
  1069. }
  1070. static void sdma_v3_0_print_status(void *handle)
  1071. {
  1072. int i, j;
  1073. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1074. dev_info(adev->dev, "VI SDMA registers\n");
  1075. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1076. RREG32(mmSRBM_STATUS2));
  1077. for (i = 0; i < adev->sdma.num_instances; i++) {
  1078. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1079. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1080. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1081. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1082. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1083. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1084. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1085. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1086. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1087. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1088. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1089. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1090. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1091. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1092. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1093. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1094. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1095. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1096. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1097. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1098. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1099. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1100. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1101. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1102. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1103. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1104. mutex_lock(&adev->srbm_mutex);
  1105. for (j = 0; j < 16; j++) {
  1106. vi_srbm_select(adev, 0, 0, 0, j);
  1107. dev_info(adev->dev, " VM %d:\n", j);
  1108. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1109. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1110. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1111. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1112. }
  1113. vi_srbm_select(adev, 0, 0, 0, 0);
  1114. mutex_unlock(&adev->srbm_mutex);
  1115. }
  1116. }
  1117. static int sdma_v3_0_soft_reset(void *handle)
  1118. {
  1119. u32 srbm_soft_reset = 0;
  1120. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1121. u32 tmp = RREG32(mmSRBM_STATUS2);
  1122. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1123. /* sdma0 */
  1124. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1125. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1126. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1127. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1128. }
  1129. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1130. /* sdma1 */
  1131. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1132. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1133. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1134. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1135. }
  1136. if (srbm_soft_reset) {
  1137. sdma_v3_0_print_status((void *)adev);
  1138. tmp = RREG32(mmSRBM_SOFT_RESET);
  1139. tmp |= srbm_soft_reset;
  1140. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1141. WREG32(mmSRBM_SOFT_RESET, tmp);
  1142. tmp = RREG32(mmSRBM_SOFT_RESET);
  1143. udelay(50);
  1144. tmp &= ~srbm_soft_reset;
  1145. WREG32(mmSRBM_SOFT_RESET, tmp);
  1146. tmp = RREG32(mmSRBM_SOFT_RESET);
  1147. /* Wait a little for things to settle down */
  1148. udelay(50);
  1149. sdma_v3_0_print_status((void *)adev);
  1150. }
  1151. return 0;
  1152. }
  1153. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1154. struct amdgpu_irq_src *source,
  1155. unsigned type,
  1156. enum amdgpu_interrupt_state state)
  1157. {
  1158. u32 sdma_cntl;
  1159. switch (type) {
  1160. case AMDGPU_SDMA_IRQ_TRAP0:
  1161. switch (state) {
  1162. case AMDGPU_IRQ_STATE_DISABLE:
  1163. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1164. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1165. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1166. break;
  1167. case AMDGPU_IRQ_STATE_ENABLE:
  1168. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1169. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1170. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1171. break;
  1172. default:
  1173. break;
  1174. }
  1175. break;
  1176. case AMDGPU_SDMA_IRQ_TRAP1:
  1177. switch (state) {
  1178. case AMDGPU_IRQ_STATE_DISABLE:
  1179. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1180. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1181. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1182. break;
  1183. case AMDGPU_IRQ_STATE_ENABLE:
  1184. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1185. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1186. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1187. break;
  1188. default:
  1189. break;
  1190. }
  1191. break;
  1192. default:
  1193. break;
  1194. }
  1195. return 0;
  1196. }
  1197. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1198. struct amdgpu_irq_src *source,
  1199. struct amdgpu_iv_entry *entry)
  1200. {
  1201. u8 instance_id, queue_id;
  1202. instance_id = (entry->ring_id & 0x3) >> 0;
  1203. queue_id = (entry->ring_id & 0xc) >> 2;
  1204. DRM_DEBUG("IH: SDMA trap\n");
  1205. switch (instance_id) {
  1206. case 0:
  1207. switch (queue_id) {
  1208. case 0:
  1209. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1210. break;
  1211. case 1:
  1212. /* XXX compute */
  1213. break;
  1214. case 2:
  1215. /* XXX compute */
  1216. break;
  1217. }
  1218. break;
  1219. case 1:
  1220. switch (queue_id) {
  1221. case 0:
  1222. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1223. break;
  1224. case 1:
  1225. /* XXX compute */
  1226. break;
  1227. case 2:
  1228. /* XXX compute */
  1229. break;
  1230. }
  1231. break;
  1232. }
  1233. return 0;
  1234. }
  1235. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1236. struct amdgpu_irq_src *source,
  1237. struct amdgpu_iv_entry *entry)
  1238. {
  1239. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1240. schedule_work(&adev->reset_work);
  1241. return 0;
  1242. }
  1243. static void fiji_update_sdma_medium_grain_clock_gating(
  1244. struct amdgpu_device *adev,
  1245. bool enable)
  1246. {
  1247. uint32_t temp, data;
  1248. if (enable) {
  1249. temp = data = RREG32(mmSDMA0_CLK_CTRL);
  1250. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1251. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1252. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1253. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1254. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1255. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1256. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1257. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1258. if (data != temp)
  1259. WREG32(mmSDMA0_CLK_CTRL, data);
  1260. temp = data = RREG32(mmSDMA1_CLK_CTRL);
  1261. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1262. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1263. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1264. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1265. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1266. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1267. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1268. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1269. if (data != temp)
  1270. WREG32(mmSDMA1_CLK_CTRL, data);
  1271. } else {
  1272. temp = data = RREG32(mmSDMA0_CLK_CTRL);
  1273. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1274. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1275. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1276. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1277. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1278. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1279. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1280. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1281. if (data != temp)
  1282. WREG32(mmSDMA0_CLK_CTRL, data);
  1283. temp = data = RREG32(mmSDMA1_CLK_CTRL);
  1284. data |= SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1285. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1286. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1287. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1288. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1289. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1290. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1291. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1292. if (data != temp)
  1293. WREG32(mmSDMA1_CLK_CTRL, data);
  1294. }
  1295. }
  1296. static void fiji_update_sdma_medium_grain_light_sleep(
  1297. struct amdgpu_device *adev,
  1298. bool enable)
  1299. {
  1300. uint32_t temp, data;
  1301. if (enable) {
  1302. temp = data = RREG32(mmSDMA0_POWER_CNTL);
  1303. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1304. if (temp != data)
  1305. WREG32(mmSDMA0_POWER_CNTL, data);
  1306. temp = data = RREG32(mmSDMA1_POWER_CNTL);
  1307. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1308. if (temp != data)
  1309. WREG32(mmSDMA1_POWER_CNTL, data);
  1310. } else {
  1311. temp = data = RREG32(mmSDMA0_POWER_CNTL);
  1312. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1313. if (temp != data)
  1314. WREG32(mmSDMA0_POWER_CNTL, data);
  1315. temp = data = RREG32(mmSDMA1_POWER_CNTL);
  1316. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1317. if (temp != data)
  1318. WREG32(mmSDMA1_POWER_CNTL, data);
  1319. }
  1320. }
  1321. static int sdma_v3_0_set_clockgating_state(void *handle,
  1322. enum amd_clockgating_state state)
  1323. {
  1324. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1325. switch (adev->asic_type) {
  1326. case CHIP_FIJI:
  1327. fiji_update_sdma_medium_grain_clock_gating(adev,
  1328. state == AMD_CG_STATE_GATE ? true : false);
  1329. fiji_update_sdma_medium_grain_light_sleep(adev,
  1330. state == AMD_CG_STATE_GATE ? true : false);
  1331. break;
  1332. default:
  1333. break;
  1334. }
  1335. return 0;
  1336. }
  1337. static int sdma_v3_0_set_powergating_state(void *handle,
  1338. enum amd_powergating_state state)
  1339. {
  1340. return 0;
  1341. }
  1342. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1343. .early_init = sdma_v3_0_early_init,
  1344. .late_init = NULL,
  1345. .sw_init = sdma_v3_0_sw_init,
  1346. .sw_fini = sdma_v3_0_sw_fini,
  1347. .hw_init = sdma_v3_0_hw_init,
  1348. .hw_fini = sdma_v3_0_hw_fini,
  1349. .suspend = sdma_v3_0_suspend,
  1350. .resume = sdma_v3_0_resume,
  1351. .is_idle = sdma_v3_0_is_idle,
  1352. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1353. .soft_reset = sdma_v3_0_soft_reset,
  1354. .print_status = sdma_v3_0_print_status,
  1355. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1356. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1357. };
  1358. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1359. .get_rptr = sdma_v3_0_ring_get_rptr,
  1360. .get_wptr = sdma_v3_0_ring_get_wptr,
  1361. .set_wptr = sdma_v3_0_ring_set_wptr,
  1362. .parse_cs = NULL,
  1363. .emit_ib = sdma_v3_0_ring_emit_ib,
  1364. .emit_fence = sdma_v3_0_ring_emit_fence,
  1365. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1366. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1367. .test_ring = sdma_v3_0_ring_test_ring,
  1368. .test_ib = sdma_v3_0_ring_test_ib,
  1369. .insert_nop = sdma_v3_0_ring_insert_nop,
  1370. };
  1371. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1372. {
  1373. int i;
  1374. for (i = 0; i < adev->sdma.num_instances; i++)
  1375. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1376. }
  1377. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1378. .set = sdma_v3_0_set_trap_irq_state,
  1379. .process = sdma_v3_0_process_trap_irq,
  1380. };
  1381. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1382. .process = sdma_v3_0_process_illegal_inst_irq,
  1383. };
  1384. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1385. {
  1386. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1387. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1388. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1389. }
  1390. /**
  1391. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1392. *
  1393. * @ring: amdgpu_ring structure holding ring information
  1394. * @src_offset: src GPU address
  1395. * @dst_offset: dst GPU address
  1396. * @byte_count: number of bytes to xfer
  1397. *
  1398. * Copy GPU buffers using the DMA engine (VI).
  1399. * Used by the amdgpu ttm implementation to move pages if
  1400. * registered as the asic copy callback.
  1401. */
  1402. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1403. uint64_t src_offset,
  1404. uint64_t dst_offset,
  1405. uint32_t byte_count)
  1406. {
  1407. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1408. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1409. ib->ptr[ib->length_dw++] = byte_count;
  1410. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1411. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1412. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1413. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1414. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1415. }
  1416. /**
  1417. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1418. *
  1419. * @ring: amdgpu_ring structure holding ring information
  1420. * @src_data: value to write to buffer
  1421. * @dst_offset: dst GPU address
  1422. * @byte_count: number of bytes to xfer
  1423. *
  1424. * Fill GPU buffers using the DMA engine (VI).
  1425. */
  1426. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1427. uint32_t src_data,
  1428. uint64_t dst_offset,
  1429. uint32_t byte_count)
  1430. {
  1431. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1432. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1433. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1434. ib->ptr[ib->length_dw++] = src_data;
  1435. ib->ptr[ib->length_dw++] = byte_count;
  1436. }
  1437. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1438. .copy_max_bytes = 0x1fffff,
  1439. .copy_num_dw = 7,
  1440. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1441. .fill_max_bytes = 0x1fffff,
  1442. .fill_num_dw = 5,
  1443. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1444. };
  1445. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1446. {
  1447. if (adev->mman.buffer_funcs == NULL) {
  1448. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1449. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1450. }
  1451. }
  1452. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1453. .copy_pte = sdma_v3_0_vm_copy_pte,
  1454. .write_pte = sdma_v3_0_vm_write_pte,
  1455. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1456. .pad_ib = sdma_v3_0_vm_pad_ib,
  1457. };
  1458. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1459. {
  1460. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1461. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1462. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
  1463. adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
  1464. }
  1465. }