workqueue.c 137 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/workqueue.txt for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/lockdep.h>
  43. #include <linux/idr.h>
  44. #include <linux/jhash.h>
  45. #include <linux/hashtable.h>
  46. #include <linux/rculist.h>
  47. #include <linux/nodemask.h>
  48. #include <linux/moduleparam.h>
  49. #include <linux/uaccess.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * attach_mutex to avoid changing binding state while
  66. * worker_attach_to_pool() is in progress.
  67. */
  68. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  69. /* worker flags */
  70. WORKER_DIE = 1 << 1, /* die die die */
  71. WORKER_IDLE = 1 << 2, /* is idle */
  72. WORKER_PREP = 1 << 3, /* preparing to run works */
  73. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  74. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  75. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  76. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  77. WORKER_UNBOUND | WORKER_REBOUND,
  78. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  79. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  80. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  81. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  82. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  83. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  84. /* call for help after 10ms
  85. (min two ticks) */
  86. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  87. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  88. /*
  89. * Rescue workers are used only on emergencies and shared by
  90. * all cpus. Give MIN_NICE.
  91. */
  92. RESCUER_NICE_LEVEL = MIN_NICE,
  93. HIGHPRI_NICE_LEVEL = MIN_NICE,
  94. WQ_NAME_LEN = 24,
  95. };
  96. /*
  97. * Structure fields follow one of the following exclusion rules.
  98. *
  99. * I: Modifiable by initialization/destruction paths and read-only for
  100. * everyone else.
  101. *
  102. * P: Preemption protected. Disabling preemption is enough and should
  103. * only be modified and accessed from the local cpu.
  104. *
  105. * L: pool->lock protected. Access with pool->lock held.
  106. *
  107. * X: During normal operation, modification requires pool->lock and should
  108. * be done only from local cpu. Either disabling preemption on local
  109. * cpu or grabbing pool->lock is enough for read access. If
  110. * POOL_DISASSOCIATED is set, it's identical to L.
  111. *
  112. * A: pool->attach_mutex protected.
  113. *
  114. * PL: wq_pool_mutex protected.
  115. *
  116. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  117. *
  118. * WQ: wq->mutex protected.
  119. *
  120. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  121. *
  122. * MD: wq_mayday_lock protected.
  123. */
  124. /* struct worker is defined in workqueue_internal.h */
  125. struct worker_pool {
  126. spinlock_t lock; /* the pool lock */
  127. int cpu; /* I: the associated cpu */
  128. int node; /* I: the associated node ID */
  129. int id; /* I: pool ID */
  130. unsigned int flags; /* X: flags */
  131. struct list_head worklist; /* L: list of pending works */
  132. int nr_workers; /* L: total number of workers */
  133. /* nr_idle includes the ones off idle_list for rebinding */
  134. int nr_idle; /* L: currently idle ones */
  135. struct list_head idle_list; /* X: list of idle workers */
  136. struct timer_list idle_timer; /* L: worker idle timeout */
  137. struct timer_list mayday_timer; /* L: SOS timer for workers */
  138. /* a workers is either on busy_hash or idle_list, or the manager */
  139. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  140. /* L: hash of busy workers */
  141. /* see manage_workers() for details on the two manager mutexes */
  142. struct mutex manager_arb; /* manager arbitration */
  143. struct mutex attach_mutex; /* attach/detach exclusion */
  144. struct list_head workers; /* A: attached workers */
  145. struct completion *detach_completion; /* all workers detached */
  146. struct ida worker_ida; /* worker IDs for task name */
  147. struct workqueue_attrs *attrs; /* I: worker attributes */
  148. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  149. int refcnt; /* PL: refcnt for unbound pools */
  150. /*
  151. * The current concurrency level. As it's likely to be accessed
  152. * from other CPUs during try_to_wake_up(), put it in a separate
  153. * cacheline.
  154. */
  155. atomic_t nr_running ____cacheline_aligned_in_smp;
  156. /*
  157. * Destruction of pool is sched-RCU protected to allow dereferences
  158. * from get_work_pool().
  159. */
  160. struct rcu_head rcu;
  161. } ____cacheline_aligned_in_smp;
  162. /*
  163. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  164. * of work_struct->data are used for flags and the remaining high bits
  165. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  166. * number of flag bits.
  167. */
  168. struct pool_workqueue {
  169. struct worker_pool *pool; /* I: the associated pool */
  170. struct workqueue_struct *wq; /* I: the owning workqueue */
  171. int work_color; /* L: current color */
  172. int flush_color; /* L: flushing color */
  173. int refcnt; /* L: reference count */
  174. int nr_in_flight[WORK_NR_COLORS];
  175. /* L: nr of in_flight works */
  176. int nr_active; /* L: nr of active works */
  177. int max_active; /* L: max active works */
  178. struct list_head delayed_works; /* L: delayed works */
  179. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  180. struct list_head mayday_node; /* MD: node on wq->maydays */
  181. /*
  182. * Release of unbound pwq is punted to system_wq. See put_pwq()
  183. * and pwq_unbound_release_workfn() for details. pool_workqueue
  184. * itself is also sched-RCU protected so that the first pwq can be
  185. * determined without grabbing wq->mutex.
  186. */
  187. struct work_struct unbound_release_work;
  188. struct rcu_head rcu;
  189. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  190. /*
  191. * Structure used to wait for workqueue flush.
  192. */
  193. struct wq_flusher {
  194. struct list_head list; /* WQ: list of flushers */
  195. int flush_color; /* WQ: flush color waiting for */
  196. struct completion done; /* flush completion */
  197. };
  198. struct wq_device;
  199. /*
  200. * The externally visible workqueue. It relays the issued work items to
  201. * the appropriate worker_pool through its pool_workqueues.
  202. */
  203. struct workqueue_struct {
  204. struct list_head pwqs; /* WR: all pwqs of this wq */
  205. struct list_head list; /* PL: list of all workqueues */
  206. struct mutex mutex; /* protects this wq */
  207. int work_color; /* WQ: current work color */
  208. int flush_color; /* WQ: current flush color */
  209. atomic_t nr_pwqs_to_flush; /* flush in progress */
  210. struct wq_flusher *first_flusher; /* WQ: first flusher */
  211. struct list_head flusher_queue; /* WQ: flush waiters */
  212. struct list_head flusher_overflow; /* WQ: flush overflow list */
  213. struct list_head maydays; /* MD: pwqs requesting rescue */
  214. struct worker *rescuer; /* I: rescue worker */
  215. int nr_drainers; /* WQ: drain in progress */
  216. int saved_max_active; /* WQ: saved pwq max_active */
  217. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  218. struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
  219. #ifdef CONFIG_SYSFS
  220. struct wq_device *wq_dev; /* I: for sysfs interface */
  221. #endif
  222. #ifdef CONFIG_LOCKDEP
  223. struct lockdep_map lockdep_map;
  224. #endif
  225. char name[WQ_NAME_LEN]; /* I: workqueue name */
  226. /* hot fields used during command issue, aligned to cacheline */
  227. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  228. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  229. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  230. };
  231. static struct kmem_cache *pwq_cache;
  232. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  233. static cpumask_var_t *wq_numa_possible_cpumask;
  234. /* possible CPUs of each node */
  235. static bool wq_disable_numa;
  236. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  237. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  238. #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
  239. static bool wq_power_efficient = true;
  240. #else
  241. static bool wq_power_efficient;
  242. #endif
  243. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  244. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  245. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  246. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  247. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  248. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  249. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  250. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  251. /* the per-cpu worker pools */
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  253. cpu_worker_pools);
  254. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  255. /* PL: hash of all unbound pools keyed by pool->attrs */
  256. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  257. /* I: attributes used when instantiating standard unbound pools on demand */
  258. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  259. /* I: attributes used when instantiating ordered pools on demand */
  260. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  261. struct workqueue_struct *system_wq __read_mostly;
  262. EXPORT_SYMBOL(system_wq);
  263. struct workqueue_struct *system_highpri_wq __read_mostly;
  264. EXPORT_SYMBOL_GPL(system_highpri_wq);
  265. struct workqueue_struct *system_long_wq __read_mostly;
  266. EXPORT_SYMBOL_GPL(system_long_wq);
  267. struct workqueue_struct *system_unbound_wq __read_mostly;
  268. EXPORT_SYMBOL_GPL(system_unbound_wq);
  269. struct workqueue_struct *system_freezable_wq __read_mostly;
  270. EXPORT_SYMBOL_GPL(system_freezable_wq);
  271. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  272. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  273. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  274. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  275. static int worker_thread(void *__worker);
  276. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  277. const struct workqueue_attrs *from);
  278. #define CREATE_TRACE_POINTS
  279. #include <trace/events/workqueue.h>
  280. #define assert_rcu_or_pool_mutex() \
  281. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  282. lockdep_is_held(&wq_pool_mutex), \
  283. "sched RCU or wq_pool_mutex should be held")
  284. #define assert_rcu_or_wq_mutex(wq) \
  285. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  286. lockdep_is_held(&wq->mutex), \
  287. "sched RCU or wq->mutex should be held")
  288. #define for_each_cpu_worker_pool(pool, cpu) \
  289. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  290. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  291. (pool)++)
  292. /**
  293. * for_each_pool - iterate through all worker_pools in the system
  294. * @pool: iteration cursor
  295. * @pi: integer used for iteration
  296. *
  297. * This must be called either with wq_pool_mutex held or sched RCU read
  298. * locked. If the pool needs to be used beyond the locking in effect, the
  299. * caller is responsible for guaranteeing that the pool stays online.
  300. *
  301. * The if/else clause exists only for the lockdep assertion and can be
  302. * ignored.
  303. */
  304. #define for_each_pool(pool, pi) \
  305. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  306. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  307. else
  308. /**
  309. * for_each_pool_worker - iterate through all workers of a worker_pool
  310. * @worker: iteration cursor
  311. * @pool: worker_pool to iterate workers of
  312. *
  313. * This must be called with @pool->attach_mutex.
  314. *
  315. * The if/else clause exists only for the lockdep assertion and can be
  316. * ignored.
  317. */
  318. #define for_each_pool_worker(worker, pool) \
  319. list_for_each_entry((worker), &(pool)->workers, node) \
  320. if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
  321. else
  322. /**
  323. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  324. * @pwq: iteration cursor
  325. * @wq: the target workqueue
  326. *
  327. * This must be called either with wq->mutex held or sched RCU read locked.
  328. * If the pwq needs to be used beyond the locking in effect, the caller is
  329. * responsible for guaranteeing that the pwq stays online.
  330. *
  331. * The if/else clause exists only for the lockdep assertion and can be
  332. * ignored.
  333. */
  334. #define for_each_pwq(pwq, wq) \
  335. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  336. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  337. else
  338. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  339. static struct debug_obj_descr work_debug_descr;
  340. static void *work_debug_hint(void *addr)
  341. {
  342. return ((struct work_struct *) addr)->func;
  343. }
  344. /*
  345. * fixup_init is called when:
  346. * - an active object is initialized
  347. */
  348. static int work_fixup_init(void *addr, enum debug_obj_state state)
  349. {
  350. struct work_struct *work = addr;
  351. switch (state) {
  352. case ODEBUG_STATE_ACTIVE:
  353. cancel_work_sync(work);
  354. debug_object_init(work, &work_debug_descr);
  355. return 1;
  356. default:
  357. return 0;
  358. }
  359. }
  360. /*
  361. * fixup_activate is called when:
  362. * - an active object is activated
  363. * - an unknown object is activated (might be a statically initialized object)
  364. */
  365. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  366. {
  367. struct work_struct *work = addr;
  368. switch (state) {
  369. case ODEBUG_STATE_NOTAVAILABLE:
  370. /*
  371. * This is not really a fixup. The work struct was
  372. * statically initialized. We just make sure that it
  373. * is tracked in the object tracker.
  374. */
  375. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  376. debug_object_init(work, &work_debug_descr);
  377. debug_object_activate(work, &work_debug_descr);
  378. return 0;
  379. }
  380. WARN_ON_ONCE(1);
  381. return 0;
  382. case ODEBUG_STATE_ACTIVE:
  383. WARN_ON(1);
  384. default:
  385. return 0;
  386. }
  387. }
  388. /*
  389. * fixup_free is called when:
  390. * - an active object is freed
  391. */
  392. static int work_fixup_free(void *addr, enum debug_obj_state state)
  393. {
  394. struct work_struct *work = addr;
  395. switch (state) {
  396. case ODEBUG_STATE_ACTIVE:
  397. cancel_work_sync(work);
  398. debug_object_free(work, &work_debug_descr);
  399. return 1;
  400. default:
  401. return 0;
  402. }
  403. }
  404. static struct debug_obj_descr work_debug_descr = {
  405. .name = "work_struct",
  406. .debug_hint = work_debug_hint,
  407. .fixup_init = work_fixup_init,
  408. .fixup_activate = work_fixup_activate,
  409. .fixup_free = work_fixup_free,
  410. };
  411. static inline void debug_work_activate(struct work_struct *work)
  412. {
  413. debug_object_activate(work, &work_debug_descr);
  414. }
  415. static inline void debug_work_deactivate(struct work_struct *work)
  416. {
  417. debug_object_deactivate(work, &work_debug_descr);
  418. }
  419. void __init_work(struct work_struct *work, int onstack)
  420. {
  421. if (onstack)
  422. debug_object_init_on_stack(work, &work_debug_descr);
  423. else
  424. debug_object_init(work, &work_debug_descr);
  425. }
  426. EXPORT_SYMBOL_GPL(__init_work);
  427. void destroy_work_on_stack(struct work_struct *work)
  428. {
  429. debug_object_free(work, &work_debug_descr);
  430. }
  431. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  432. void destroy_delayed_work_on_stack(struct delayed_work *work)
  433. {
  434. destroy_timer_on_stack(&work->timer);
  435. debug_object_free(&work->work, &work_debug_descr);
  436. }
  437. EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
  438. #else
  439. static inline void debug_work_activate(struct work_struct *work) { }
  440. static inline void debug_work_deactivate(struct work_struct *work) { }
  441. #endif
  442. /**
  443. * worker_pool_assign_id - allocate ID and assing it to @pool
  444. * @pool: the pool pointer of interest
  445. *
  446. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  447. * successfully, -errno on failure.
  448. */
  449. static int worker_pool_assign_id(struct worker_pool *pool)
  450. {
  451. int ret;
  452. lockdep_assert_held(&wq_pool_mutex);
  453. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  454. GFP_KERNEL);
  455. if (ret >= 0) {
  456. pool->id = ret;
  457. return 0;
  458. }
  459. return ret;
  460. }
  461. /**
  462. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  463. * @wq: the target workqueue
  464. * @node: the node ID
  465. *
  466. * This must be called either with pwq_lock held or sched RCU read locked.
  467. * If the pwq needs to be used beyond the locking in effect, the caller is
  468. * responsible for guaranteeing that the pwq stays online.
  469. *
  470. * Return: The unbound pool_workqueue for @node.
  471. */
  472. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  473. int node)
  474. {
  475. assert_rcu_or_wq_mutex(wq);
  476. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  477. }
  478. static unsigned int work_color_to_flags(int color)
  479. {
  480. return color << WORK_STRUCT_COLOR_SHIFT;
  481. }
  482. static int get_work_color(struct work_struct *work)
  483. {
  484. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  485. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  486. }
  487. static int work_next_color(int color)
  488. {
  489. return (color + 1) % WORK_NR_COLORS;
  490. }
  491. /*
  492. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  493. * contain the pointer to the queued pwq. Once execution starts, the flag
  494. * is cleared and the high bits contain OFFQ flags and pool ID.
  495. *
  496. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  497. * and clear_work_data() can be used to set the pwq, pool or clear
  498. * work->data. These functions should only be called while the work is
  499. * owned - ie. while the PENDING bit is set.
  500. *
  501. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  502. * corresponding to a work. Pool is available once the work has been
  503. * queued anywhere after initialization until it is sync canceled. pwq is
  504. * available only while the work item is queued.
  505. *
  506. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  507. * canceled. While being canceled, a work item may have its PENDING set
  508. * but stay off timer and worklist for arbitrarily long and nobody should
  509. * try to steal the PENDING bit.
  510. */
  511. static inline void set_work_data(struct work_struct *work, unsigned long data,
  512. unsigned long flags)
  513. {
  514. WARN_ON_ONCE(!work_pending(work));
  515. atomic_long_set(&work->data, data | flags | work_static(work));
  516. }
  517. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  518. unsigned long extra_flags)
  519. {
  520. set_work_data(work, (unsigned long)pwq,
  521. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  522. }
  523. static void set_work_pool_and_keep_pending(struct work_struct *work,
  524. int pool_id)
  525. {
  526. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  527. WORK_STRUCT_PENDING);
  528. }
  529. static void set_work_pool_and_clear_pending(struct work_struct *work,
  530. int pool_id)
  531. {
  532. /*
  533. * The following wmb is paired with the implied mb in
  534. * test_and_set_bit(PENDING) and ensures all updates to @work made
  535. * here are visible to and precede any updates by the next PENDING
  536. * owner.
  537. */
  538. smp_wmb();
  539. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  540. }
  541. static void clear_work_data(struct work_struct *work)
  542. {
  543. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  544. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  545. }
  546. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  547. {
  548. unsigned long data = atomic_long_read(&work->data);
  549. if (data & WORK_STRUCT_PWQ)
  550. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  551. else
  552. return NULL;
  553. }
  554. /**
  555. * get_work_pool - return the worker_pool a given work was associated with
  556. * @work: the work item of interest
  557. *
  558. * Pools are created and destroyed under wq_pool_mutex, and allows read
  559. * access under sched-RCU read lock. As such, this function should be
  560. * called under wq_pool_mutex or with preemption disabled.
  561. *
  562. * All fields of the returned pool are accessible as long as the above
  563. * mentioned locking is in effect. If the returned pool needs to be used
  564. * beyond the critical section, the caller is responsible for ensuring the
  565. * returned pool is and stays online.
  566. *
  567. * Return: The worker_pool @work was last associated with. %NULL if none.
  568. */
  569. static struct worker_pool *get_work_pool(struct work_struct *work)
  570. {
  571. unsigned long data = atomic_long_read(&work->data);
  572. int pool_id;
  573. assert_rcu_or_pool_mutex();
  574. if (data & WORK_STRUCT_PWQ)
  575. return ((struct pool_workqueue *)
  576. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  577. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  578. if (pool_id == WORK_OFFQ_POOL_NONE)
  579. return NULL;
  580. return idr_find(&worker_pool_idr, pool_id);
  581. }
  582. /**
  583. * get_work_pool_id - return the worker pool ID a given work is associated with
  584. * @work: the work item of interest
  585. *
  586. * Return: The worker_pool ID @work was last associated with.
  587. * %WORK_OFFQ_POOL_NONE if none.
  588. */
  589. static int get_work_pool_id(struct work_struct *work)
  590. {
  591. unsigned long data = atomic_long_read(&work->data);
  592. if (data & WORK_STRUCT_PWQ)
  593. return ((struct pool_workqueue *)
  594. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  595. return data >> WORK_OFFQ_POOL_SHIFT;
  596. }
  597. static void mark_work_canceling(struct work_struct *work)
  598. {
  599. unsigned long pool_id = get_work_pool_id(work);
  600. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  601. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  602. }
  603. static bool work_is_canceling(struct work_struct *work)
  604. {
  605. unsigned long data = atomic_long_read(&work->data);
  606. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  607. }
  608. /*
  609. * Policy functions. These define the policies on how the global worker
  610. * pools are managed. Unless noted otherwise, these functions assume that
  611. * they're being called with pool->lock held.
  612. */
  613. static bool __need_more_worker(struct worker_pool *pool)
  614. {
  615. return !atomic_read(&pool->nr_running);
  616. }
  617. /*
  618. * Need to wake up a worker? Called from anything but currently
  619. * running workers.
  620. *
  621. * Note that, because unbound workers never contribute to nr_running, this
  622. * function will always return %true for unbound pools as long as the
  623. * worklist isn't empty.
  624. */
  625. static bool need_more_worker(struct worker_pool *pool)
  626. {
  627. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  628. }
  629. /* Can I start working? Called from busy but !running workers. */
  630. static bool may_start_working(struct worker_pool *pool)
  631. {
  632. return pool->nr_idle;
  633. }
  634. /* Do I need to keep working? Called from currently running workers. */
  635. static bool keep_working(struct worker_pool *pool)
  636. {
  637. return !list_empty(&pool->worklist) &&
  638. atomic_read(&pool->nr_running) <= 1;
  639. }
  640. /* Do we need a new worker? Called from manager. */
  641. static bool need_to_create_worker(struct worker_pool *pool)
  642. {
  643. return need_more_worker(pool) && !may_start_working(pool);
  644. }
  645. /* Do we have too many workers and should some go away? */
  646. static bool too_many_workers(struct worker_pool *pool)
  647. {
  648. bool managing = mutex_is_locked(&pool->manager_arb);
  649. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  650. int nr_busy = pool->nr_workers - nr_idle;
  651. /*
  652. * nr_idle and idle_list may disagree if idle rebinding is in
  653. * progress. Never return %true if idle_list is empty.
  654. */
  655. if (list_empty(&pool->idle_list))
  656. return false;
  657. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  658. }
  659. /*
  660. * Wake up functions.
  661. */
  662. /* Return the first idle worker. Safe with preemption disabled */
  663. static struct worker *first_idle_worker(struct worker_pool *pool)
  664. {
  665. if (unlikely(list_empty(&pool->idle_list)))
  666. return NULL;
  667. return list_first_entry(&pool->idle_list, struct worker, entry);
  668. }
  669. /**
  670. * wake_up_worker - wake up an idle worker
  671. * @pool: worker pool to wake worker from
  672. *
  673. * Wake up the first idle worker of @pool.
  674. *
  675. * CONTEXT:
  676. * spin_lock_irq(pool->lock).
  677. */
  678. static void wake_up_worker(struct worker_pool *pool)
  679. {
  680. struct worker *worker = first_idle_worker(pool);
  681. if (likely(worker))
  682. wake_up_process(worker->task);
  683. }
  684. /**
  685. * wq_worker_waking_up - a worker is waking up
  686. * @task: task waking up
  687. * @cpu: CPU @task is waking up to
  688. *
  689. * This function is called during try_to_wake_up() when a worker is
  690. * being awoken.
  691. *
  692. * CONTEXT:
  693. * spin_lock_irq(rq->lock)
  694. */
  695. void wq_worker_waking_up(struct task_struct *task, int cpu)
  696. {
  697. struct worker *worker = kthread_data(task);
  698. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  699. WARN_ON_ONCE(worker->pool->cpu != cpu);
  700. atomic_inc(&worker->pool->nr_running);
  701. }
  702. }
  703. /**
  704. * wq_worker_sleeping - a worker is going to sleep
  705. * @task: task going to sleep
  706. * @cpu: CPU in question, must be the current CPU number
  707. *
  708. * This function is called during schedule() when a busy worker is
  709. * going to sleep. Worker on the same cpu can be woken up by
  710. * returning pointer to its task.
  711. *
  712. * CONTEXT:
  713. * spin_lock_irq(rq->lock)
  714. *
  715. * Return:
  716. * Worker task on @cpu to wake up, %NULL if none.
  717. */
  718. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  719. {
  720. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  721. struct worker_pool *pool;
  722. /*
  723. * Rescuers, which may not have all the fields set up like normal
  724. * workers, also reach here, let's not access anything before
  725. * checking NOT_RUNNING.
  726. */
  727. if (worker->flags & WORKER_NOT_RUNNING)
  728. return NULL;
  729. pool = worker->pool;
  730. /* this can only happen on the local cpu */
  731. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  732. return NULL;
  733. /*
  734. * The counterpart of the following dec_and_test, implied mb,
  735. * worklist not empty test sequence is in insert_work().
  736. * Please read comment there.
  737. *
  738. * NOT_RUNNING is clear. This means that we're bound to and
  739. * running on the local cpu w/ rq lock held and preemption
  740. * disabled, which in turn means that none else could be
  741. * manipulating idle_list, so dereferencing idle_list without pool
  742. * lock is safe.
  743. */
  744. if (atomic_dec_and_test(&pool->nr_running) &&
  745. !list_empty(&pool->worklist))
  746. to_wakeup = first_idle_worker(pool);
  747. return to_wakeup ? to_wakeup->task : NULL;
  748. }
  749. /**
  750. * worker_set_flags - set worker flags and adjust nr_running accordingly
  751. * @worker: self
  752. * @flags: flags to set
  753. * @wakeup: wakeup an idle worker if necessary
  754. *
  755. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  756. * nr_running becomes zero and @wakeup is %true, an idle worker is
  757. * woken up.
  758. *
  759. * CONTEXT:
  760. * spin_lock_irq(pool->lock)
  761. */
  762. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  763. bool wakeup)
  764. {
  765. struct worker_pool *pool = worker->pool;
  766. WARN_ON_ONCE(worker->task != current);
  767. /*
  768. * If transitioning into NOT_RUNNING, adjust nr_running and
  769. * wake up an idle worker as necessary if requested by
  770. * @wakeup.
  771. */
  772. if ((flags & WORKER_NOT_RUNNING) &&
  773. !(worker->flags & WORKER_NOT_RUNNING)) {
  774. if (wakeup) {
  775. if (atomic_dec_and_test(&pool->nr_running) &&
  776. !list_empty(&pool->worklist))
  777. wake_up_worker(pool);
  778. } else
  779. atomic_dec(&pool->nr_running);
  780. }
  781. worker->flags |= flags;
  782. }
  783. /**
  784. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  785. * @worker: self
  786. * @flags: flags to clear
  787. *
  788. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  789. *
  790. * CONTEXT:
  791. * spin_lock_irq(pool->lock)
  792. */
  793. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  794. {
  795. struct worker_pool *pool = worker->pool;
  796. unsigned int oflags = worker->flags;
  797. WARN_ON_ONCE(worker->task != current);
  798. worker->flags &= ~flags;
  799. /*
  800. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  801. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  802. * of multiple flags, not a single flag.
  803. */
  804. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  805. if (!(worker->flags & WORKER_NOT_RUNNING))
  806. atomic_inc(&pool->nr_running);
  807. }
  808. /**
  809. * find_worker_executing_work - find worker which is executing a work
  810. * @pool: pool of interest
  811. * @work: work to find worker for
  812. *
  813. * Find a worker which is executing @work on @pool by searching
  814. * @pool->busy_hash which is keyed by the address of @work. For a worker
  815. * to match, its current execution should match the address of @work and
  816. * its work function. This is to avoid unwanted dependency between
  817. * unrelated work executions through a work item being recycled while still
  818. * being executed.
  819. *
  820. * This is a bit tricky. A work item may be freed once its execution
  821. * starts and nothing prevents the freed area from being recycled for
  822. * another work item. If the same work item address ends up being reused
  823. * before the original execution finishes, workqueue will identify the
  824. * recycled work item as currently executing and make it wait until the
  825. * current execution finishes, introducing an unwanted dependency.
  826. *
  827. * This function checks the work item address and work function to avoid
  828. * false positives. Note that this isn't complete as one may construct a
  829. * work function which can introduce dependency onto itself through a
  830. * recycled work item. Well, if somebody wants to shoot oneself in the
  831. * foot that badly, there's only so much we can do, and if such deadlock
  832. * actually occurs, it should be easy to locate the culprit work function.
  833. *
  834. * CONTEXT:
  835. * spin_lock_irq(pool->lock).
  836. *
  837. * Return:
  838. * Pointer to worker which is executing @work if found, %NULL
  839. * otherwise.
  840. */
  841. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  842. struct work_struct *work)
  843. {
  844. struct worker *worker;
  845. hash_for_each_possible(pool->busy_hash, worker, hentry,
  846. (unsigned long)work)
  847. if (worker->current_work == work &&
  848. worker->current_func == work->func)
  849. return worker;
  850. return NULL;
  851. }
  852. /**
  853. * move_linked_works - move linked works to a list
  854. * @work: start of series of works to be scheduled
  855. * @head: target list to append @work to
  856. * @nextp: out paramter for nested worklist walking
  857. *
  858. * Schedule linked works starting from @work to @head. Work series to
  859. * be scheduled starts at @work and includes any consecutive work with
  860. * WORK_STRUCT_LINKED set in its predecessor.
  861. *
  862. * If @nextp is not NULL, it's updated to point to the next work of
  863. * the last scheduled work. This allows move_linked_works() to be
  864. * nested inside outer list_for_each_entry_safe().
  865. *
  866. * CONTEXT:
  867. * spin_lock_irq(pool->lock).
  868. */
  869. static void move_linked_works(struct work_struct *work, struct list_head *head,
  870. struct work_struct **nextp)
  871. {
  872. struct work_struct *n;
  873. /*
  874. * Linked worklist will always end before the end of the list,
  875. * use NULL for list head.
  876. */
  877. list_for_each_entry_safe_from(work, n, NULL, entry) {
  878. list_move_tail(&work->entry, head);
  879. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  880. break;
  881. }
  882. /*
  883. * If we're already inside safe list traversal and have moved
  884. * multiple works to the scheduled queue, the next position
  885. * needs to be updated.
  886. */
  887. if (nextp)
  888. *nextp = n;
  889. }
  890. /**
  891. * get_pwq - get an extra reference on the specified pool_workqueue
  892. * @pwq: pool_workqueue to get
  893. *
  894. * Obtain an extra reference on @pwq. The caller should guarantee that
  895. * @pwq has positive refcnt and be holding the matching pool->lock.
  896. */
  897. static void get_pwq(struct pool_workqueue *pwq)
  898. {
  899. lockdep_assert_held(&pwq->pool->lock);
  900. WARN_ON_ONCE(pwq->refcnt <= 0);
  901. pwq->refcnt++;
  902. }
  903. /**
  904. * put_pwq - put a pool_workqueue reference
  905. * @pwq: pool_workqueue to put
  906. *
  907. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  908. * destruction. The caller should be holding the matching pool->lock.
  909. */
  910. static void put_pwq(struct pool_workqueue *pwq)
  911. {
  912. lockdep_assert_held(&pwq->pool->lock);
  913. if (likely(--pwq->refcnt))
  914. return;
  915. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  916. return;
  917. /*
  918. * @pwq can't be released under pool->lock, bounce to
  919. * pwq_unbound_release_workfn(). This never recurses on the same
  920. * pool->lock as this path is taken only for unbound workqueues and
  921. * the release work item is scheduled on a per-cpu workqueue. To
  922. * avoid lockdep warning, unbound pool->locks are given lockdep
  923. * subclass of 1 in get_unbound_pool().
  924. */
  925. schedule_work(&pwq->unbound_release_work);
  926. }
  927. /**
  928. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  929. * @pwq: pool_workqueue to put (can be %NULL)
  930. *
  931. * put_pwq() with locking. This function also allows %NULL @pwq.
  932. */
  933. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  934. {
  935. if (pwq) {
  936. /*
  937. * As both pwqs and pools are sched-RCU protected, the
  938. * following lock operations are safe.
  939. */
  940. spin_lock_irq(&pwq->pool->lock);
  941. put_pwq(pwq);
  942. spin_unlock_irq(&pwq->pool->lock);
  943. }
  944. }
  945. static void pwq_activate_delayed_work(struct work_struct *work)
  946. {
  947. struct pool_workqueue *pwq = get_work_pwq(work);
  948. trace_workqueue_activate_work(work);
  949. move_linked_works(work, &pwq->pool->worklist, NULL);
  950. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  951. pwq->nr_active++;
  952. }
  953. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  954. {
  955. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  956. struct work_struct, entry);
  957. pwq_activate_delayed_work(work);
  958. }
  959. /**
  960. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  961. * @pwq: pwq of interest
  962. * @color: color of work which left the queue
  963. *
  964. * A work either has completed or is removed from pending queue,
  965. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  966. *
  967. * CONTEXT:
  968. * spin_lock_irq(pool->lock).
  969. */
  970. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  971. {
  972. /* uncolored work items don't participate in flushing or nr_active */
  973. if (color == WORK_NO_COLOR)
  974. goto out_put;
  975. pwq->nr_in_flight[color]--;
  976. pwq->nr_active--;
  977. if (!list_empty(&pwq->delayed_works)) {
  978. /* one down, submit a delayed one */
  979. if (pwq->nr_active < pwq->max_active)
  980. pwq_activate_first_delayed(pwq);
  981. }
  982. /* is flush in progress and are we at the flushing tip? */
  983. if (likely(pwq->flush_color != color))
  984. goto out_put;
  985. /* are there still in-flight works? */
  986. if (pwq->nr_in_flight[color])
  987. goto out_put;
  988. /* this pwq is done, clear flush_color */
  989. pwq->flush_color = -1;
  990. /*
  991. * If this was the last pwq, wake up the first flusher. It
  992. * will handle the rest.
  993. */
  994. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  995. complete(&pwq->wq->first_flusher->done);
  996. out_put:
  997. put_pwq(pwq);
  998. }
  999. /**
  1000. * try_to_grab_pending - steal work item from worklist and disable irq
  1001. * @work: work item to steal
  1002. * @is_dwork: @work is a delayed_work
  1003. * @flags: place to store irq state
  1004. *
  1005. * Try to grab PENDING bit of @work. This function can handle @work in any
  1006. * stable state - idle, on timer or on worklist.
  1007. *
  1008. * Return:
  1009. * 1 if @work was pending and we successfully stole PENDING
  1010. * 0 if @work was idle and we claimed PENDING
  1011. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1012. * -ENOENT if someone else is canceling @work, this state may persist
  1013. * for arbitrarily long
  1014. *
  1015. * Note:
  1016. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1017. * interrupted while holding PENDING and @work off queue, irq must be
  1018. * disabled on entry. This, combined with delayed_work->timer being
  1019. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1020. *
  1021. * On successful return, >= 0, irq is disabled and the caller is
  1022. * responsible for releasing it using local_irq_restore(*@flags).
  1023. *
  1024. * This function is safe to call from any context including IRQ handler.
  1025. */
  1026. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1027. unsigned long *flags)
  1028. {
  1029. struct worker_pool *pool;
  1030. struct pool_workqueue *pwq;
  1031. local_irq_save(*flags);
  1032. /* try to steal the timer if it exists */
  1033. if (is_dwork) {
  1034. struct delayed_work *dwork = to_delayed_work(work);
  1035. /*
  1036. * dwork->timer is irqsafe. If del_timer() fails, it's
  1037. * guaranteed that the timer is not queued anywhere and not
  1038. * running on the local CPU.
  1039. */
  1040. if (likely(del_timer(&dwork->timer)))
  1041. return 1;
  1042. }
  1043. /* try to claim PENDING the normal way */
  1044. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1045. return 0;
  1046. /*
  1047. * The queueing is in progress, or it is already queued. Try to
  1048. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1049. */
  1050. pool = get_work_pool(work);
  1051. if (!pool)
  1052. goto fail;
  1053. spin_lock(&pool->lock);
  1054. /*
  1055. * work->data is guaranteed to point to pwq only while the work
  1056. * item is queued on pwq->wq, and both updating work->data to point
  1057. * to pwq on queueing and to pool on dequeueing are done under
  1058. * pwq->pool->lock. This in turn guarantees that, if work->data
  1059. * points to pwq which is associated with a locked pool, the work
  1060. * item is currently queued on that pool.
  1061. */
  1062. pwq = get_work_pwq(work);
  1063. if (pwq && pwq->pool == pool) {
  1064. debug_work_deactivate(work);
  1065. /*
  1066. * A delayed work item cannot be grabbed directly because
  1067. * it might have linked NO_COLOR work items which, if left
  1068. * on the delayed_list, will confuse pwq->nr_active
  1069. * management later on and cause stall. Make sure the work
  1070. * item is activated before grabbing.
  1071. */
  1072. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1073. pwq_activate_delayed_work(work);
  1074. list_del_init(&work->entry);
  1075. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1076. /* work->data points to pwq iff queued, point to pool */
  1077. set_work_pool_and_keep_pending(work, pool->id);
  1078. spin_unlock(&pool->lock);
  1079. return 1;
  1080. }
  1081. spin_unlock(&pool->lock);
  1082. fail:
  1083. local_irq_restore(*flags);
  1084. if (work_is_canceling(work))
  1085. return -ENOENT;
  1086. cpu_relax();
  1087. return -EAGAIN;
  1088. }
  1089. /**
  1090. * insert_work - insert a work into a pool
  1091. * @pwq: pwq @work belongs to
  1092. * @work: work to insert
  1093. * @head: insertion point
  1094. * @extra_flags: extra WORK_STRUCT_* flags to set
  1095. *
  1096. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1097. * work_struct flags.
  1098. *
  1099. * CONTEXT:
  1100. * spin_lock_irq(pool->lock).
  1101. */
  1102. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1103. struct list_head *head, unsigned int extra_flags)
  1104. {
  1105. struct worker_pool *pool = pwq->pool;
  1106. /* we own @work, set data and link */
  1107. set_work_pwq(work, pwq, extra_flags);
  1108. list_add_tail(&work->entry, head);
  1109. get_pwq(pwq);
  1110. /*
  1111. * Ensure either wq_worker_sleeping() sees the above
  1112. * list_add_tail() or we see zero nr_running to avoid workers lying
  1113. * around lazily while there are works to be processed.
  1114. */
  1115. smp_mb();
  1116. if (__need_more_worker(pool))
  1117. wake_up_worker(pool);
  1118. }
  1119. /*
  1120. * Test whether @work is being queued from another work executing on the
  1121. * same workqueue.
  1122. */
  1123. static bool is_chained_work(struct workqueue_struct *wq)
  1124. {
  1125. struct worker *worker;
  1126. worker = current_wq_worker();
  1127. /*
  1128. * Return %true iff I'm a worker execuing a work item on @wq. If
  1129. * I'm @worker, it's safe to dereference it without locking.
  1130. */
  1131. return worker && worker->current_pwq->wq == wq;
  1132. }
  1133. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1134. struct work_struct *work)
  1135. {
  1136. struct pool_workqueue *pwq;
  1137. struct worker_pool *last_pool;
  1138. struct list_head *worklist;
  1139. unsigned int work_flags;
  1140. unsigned int req_cpu = cpu;
  1141. /*
  1142. * While a work item is PENDING && off queue, a task trying to
  1143. * steal the PENDING will busy-loop waiting for it to either get
  1144. * queued or lose PENDING. Grabbing PENDING and queueing should
  1145. * happen with IRQ disabled.
  1146. */
  1147. WARN_ON_ONCE(!irqs_disabled());
  1148. debug_work_activate(work);
  1149. /* if draining, only works from the same workqueue are allowed */
  1150. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1151. WARN_ON_ONCE(!is_chained_work(wq)))
  1152. return;
  1153. retry:
  1154. if (req_cpu == WORK_CPU_UNBOUND)
  1155. cpu = raw_smp_processor_id();
  1156. /* pwq which will be used unless @work is executing elsewhere */
  1157. if (!(wq->flags & WQ_UNBOUND))
  1158. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1159. else
  1160. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1161. /*
  1162. * If @work was previously on a different pool, it might still be
  1163. * running there, in which case the work needs to be queued on that
  1164. * pool to guarantee non-reentrancy.
  1165. */
  1166. last_pool = get_work_pool(work);
  1167. if (last_pool && last_pool != pwq->pool) {
  1168. struct worker *worker;
  1169. spin_lock(&last_pool->lock);
  1170. worker = find_worker_executing_work(last_pool, work);
  1171. if (worker && worker->current_pwq->wq == wq) {
  1172. pwq = worker->current_pwq;
  1173. } else {
  1174. /* meh... not running there, queue here */
  1175. spin_unlock(&last_pool->lock);
  1176. spin_lock(&pwq->pool->lock);
  1177. }
  1178. } else {
  1179. spin_lock(&pwq->pool->lock);
  1180. }
  1181. /*
  1182. * pwq is determined and locked. For unbound pools, we could have
  1183. * raced with pwq release and it could already be dead. If its
  1184. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1185. * without another pwq replacing it in the numa_pwq_tbl or while
  1186. * work items are executing on it, so the retrying is guaranteed to
  1187. * make forward-progress.
  1188. */
  1189. if (unlikely(!pwq->refcnt)) {
  1190. if (wq->flags & WQ_UNBOUND) {
  1191. spin_unlock(&pwq->pool->lock);
  1192. cpu_relax();
  1193. goto retry;
  1194. }
  1195. /* oops */
  1196. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1197. wq->name, cpu);
  1198. }
  1199. /* pwq determined, queue */
  1200. trace_workqueue_queue_work(req_cpu, pwq, work);
  1201. if (WARN_ON(!list_empty(&work->entry))) {
  1202. spin_unlock(&pwq->pool->lock);
  1203. return;
  1204. }
  1205. pwq->nr_in_flight[pwq->work_color]++;
  1206. work_flags = work_color_to_flags(pwq->work_color);
  1207. if (likely(pwq->nr_active < pwq->max_active)) {
  1208. trace_workqueue_activate_work(work);
  1209. pwq->nr_active++;
  1210. worklist = &pwq->pool->worklist;
  1211. } else {
  1212. work_flags |= WORK_STRUCT_DELAYED;
  1213. worklist = &pwq->delayed_works;
  1214. }
  1215. insert_work(pwq, work, worklist, work_flags);
  1216. spin_unlock(&pwq->pool->lock);
  1217. }
  1218. /**
  1219. * queue_work_on - queue work on specific cpu
  1220. * @cpu: CPU number to execute work on
  1221. * @wq: workqueue to use
  1222. * @work: work to queue
  1223. *
  1224. * We queue the work to a specific CPU, the caller must ensure it
  1225. * can't go away.
  1226. *
  1227. * Return: %false if @work was already on a queue, %true otherwise.
  1228. */
  1229. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1230. struct work_struct *work)
  1231. {
  1232. bool ret = false;
  1233. unsigned long flags;
  1234. local_irq_save(flags);
  1235. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1236. __queue_work(cpu, wq, work);
  1237. ret = true;
  1238. }
  1239. local_irq_restore(flags);
  1240. return ret;
  1241. }
  1242. EXPORT_SYMBOL(queue_work_on);
  1243. void delayed_work_timer_fn(unsigned long __data)
  1244. {
  1245. struct delayed_work *dwork = (struct delayed_work *)__data;
  1246. /* should have been called from irqsafe timer with irq already off */
  1247. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1248. }
  1249. EXPORT_SYMBOL(delayed_work_timer_fn);
  1250. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1251. struct delayed_work *dwork, unsigned long delay)
  1252. {
  1253. struct timer_list *timer = &dwork->timer;
  1254. struct work_struct *work = &dwork->work;
  1255. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1256. timer->data != (unsigned long)dwork);
  1257. WARN_ON_ONCE(timer_pending(timer));
  1258. WARN_ON_ONCE(!list_empty(&work->entry));
  1259. /*
  1260. * If @delay is 0, queue @dwork->work immediately. This is for
  1261. * both optimization and correctness. The earliest @timer can
  1262. * expire is on the closest next tick and delayed_work users depend
  1263. * on that there's no such delay when @delay is 0.
  1264. */
  1265. if (!delay) {
  1266. __queue_work(cpu, wq, &dwork->work);
  1267. return;
  1268. }
  1269. timer_stats_timer_set_start_info(&dwork->timer);
  1270. dwork->wq = wq;
  1271. dwork->cpu = cpu;
  1272. timer->expires = jiffies + delay;
  1273. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1274. add_timer_on(timer, cpu);
  1275. else
  1276. add_timer(timer);
  1277. }
  1278. /**
  1279. * queue_delayed_work_on - queue work on specific CPU after delay
  1280. * @cpu: CPU number to execute work on
  1281. * @wq: workqueue to use
  1282. * @dwork: work to queue
  1283. * @delay: number of jiffies to wait before queueing
  1284. *
  1285. * Return: %false if @work was already on a queue, %true otherwise. If
  1286. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1287. * execution.
  1288. */
  1289. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1290. struct delayed_work *dwork, unsigned long delay)
  1291. {
  1292. struct work_struct *work = &dwork->work;
  1293. bool ret = false;
  1294. unsigned long flags;
  1295. /* read the comment in __queue_work() */
  1296. local_irq_save(flags);
  1297. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1298. __queue_delayed_work(cpu, wq, dwork, delay);
  1299. ret = true;
  1300. }
  1301. local_irq_restore(flags);
  1302. return ret;
  1303. }
  1304. EXPORT_SYMBOL(queue_delayed_work_on);
  1305. /**
  1306. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1307. * @cpu: CPU number to execute work on
  1308. * @wq: workqueue to use
  1309. * @dwork: work to queue
  1310. * @delay: number of jiffies to wait before queueing
  1311. *
  1312. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1313. * modify @dwork's timer so that it expires after @delay. If @delay is
  1314. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1315. * current state.
  1316. *
  1317. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1318. * pending and its timer was modified.
  1319. *
  1320. * This function is safe to call from any context including IRQ handler.
  1321. * See try_to_grab_pending() for details.
  1322. */
  1323. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1324. struct delayed_work *dwork, unsigned long delay)
  1325. {
  1326. unsigned long flags;
  1327. int ret;
  1328. do {
  1329. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1330. } while (unlikely(ret == -EAGAIN));
  1331. if (likely(ret >= 0)) {
  1332. __queue_delayed_work(cpu, wq, dwork, delay);
  1333. local_irq_restore(flags);
  1334. }
  1335. /* -ENOENT from try_to_grab_pending() becomes %true */
  1336. return ret;
  1337. }
  1338. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1339. /**
  1340. * worker_enter_idle - enter idle state
  1341. * @worker: worker which is entering idle state
  1342. *
  1343. * @worker is entering idle state. Update stats and idle timer if
  1344. * necessary.
  1345. *
  1346. * LOCKING:
  1347. * spin_lock_irq(pool->lock).
  1348. */
  1349. static void worker_enter_idle(struct worker *worker)
  1350. {
  1351. struct worker_pool *pool = worker->pool;
  1352. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1353. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1354. (worker->hentry.next || worker->hentry.pprev)))
  1355. return;
  1356. /* can't use worker_set_flags(), also called from start_worker() */
  1357. worker->flags |= WORKER_IDLE;
  1358. pool->nr_idle++;
  1359. worker->last_active = jiffies;
  1360. /* idle_list is LIFO */
  1361. list_add(&worker->entry, &pool->idle_list);
  1362. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1363. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1364. /*
  1365. * Sanity check nr_running. Because wq_unbind_fn() releases
  1366. * pool->lock between setting %WORKER_UNBOUND and zapping
  1367. * nr_running, the warning may trigger spuriously. Check iff
  1368. * unbind is not in progress.
  1369. */
  1370. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1371. pool->nr_workers == pool->nr_idle &&
  1372. atomic_read(&pool->nr_running));
  1373. }
  1374. /**
  1375. * worker_leave_idle - leave idle state
  1376. * @worker: worker which is leaving idle state
  1377. *
  1378. * @worker is leaving idle state. Update stats.
  1379. *
  1380. * LOCKING:
  1381. * spin_lock_irq(pool->lock).
  1382. */
  1383. static void worker_leave_idle(struct worker *worker)
  1384. {
  1385. struct worker_pool *pool = worker->pool;
  1386. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1387. return;
  1388. worker_clr_flags(worker, WORKER_IDLE);
  1389. pool->nr_idle--;
  1390. list_del_init(&worker->entry);
  1391. }
  1392. static struct worker *alloc_worker(void)
  1393. {
  1394. struct worker *worker;
  1395. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1396. if (worker) {
  1397. INIT_LIST_HEAD(&worker->entry);
  1398. INIT_LIST_HEAD(&worker->scheduled);
  1399. INIT_LIST_HEAD(&worker->node);
  1400. /* on creation a worker is in !idle && prep state */
  1401. worker->flags = WORKER_PREP;
  1402. }
  1403. return worker;
  1404. }
  1405. /**
  1406. * worker_attach_to_pool() - attach a worker to a pool
  1407. * @worker: worker to be attached
  1408. * @pool: the target pool
  1409. *
  1410. * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
  1411. * cpu-binding of @worker are kept coordinated with the pool across
  1412. * cpu-[un]hotplugs.
  1413. */
  1414. static void worker_attach_to_pool(struct worker *worker,
  1415. struct worker_pool *pool)
  1416. {
  1417. mutex_lock(&pool->attach_mutex);
  1418. /*
  1419. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1420. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1421. */
  1422. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1423. /*
  1424. * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
  1425. * stable across this function. See the comments above the
  1426. * flag definition for details.
  1427. */
  1428. if (pool->flags & POOL_DISASSOCIATED)
  1429. worker->flags |= WORKER_UNBOUND;
  1430. list_add_tail(&worker->node, &pool->workers);
  1431. mutex_unlock(&pool->attach_mutex);
  1432. }
  1433. /**
  1434. * worker_detach_from_pool() - detach a worker from its pool
  1435. * @worker: worker which is attached to its pool
  1436. * @pool: the pool @worker is attached to
  1437. *
  1438. * Undo the attaching which had been done in worker_attach_to_pool(). The
  1439. * caller worker shouldn't access to the pool after detached except it has
  1440. * other reference to the pool.
  1441. */
  1442. static void worker_detach_from_pool(struct worker *worker,
  1443. struct worker_pool *pool)
  1444. {
  1445. struct completion *detach_completion = NULL;
  1446. mutex_lock(&pool->attach_mutex);
  1447. list_del(&worker->node);
  1448. if (list_empty(&pool->workers))
  1449. detach_completion = pool->detach_completion;
  1450. mutex_unlock(&pool->attach_mutex);
  1451. if (detach_completion)
  1452. complete(detach_completion);
  1453. }
  1454. /**
  1455. * create_worker - create a new workqueue worker
  1456. * @pool: pool the new worker will belong to
  1457. *
  1458. * Create a new worker which is attached to @pool. The new worker must be
  1459. * started by start_worker().
  1460. *
  1461. * CONTEXT:
  1462. * Might sleep. Does GFP_KERNEL allocations.
  1463. *
  1464. * Return:
  1465. * Pointer to the newly created worker.
  1466. */
  1467. static struct worker *create_worker(struct worker_pool *pool)
  1468. {
  1469. struct worker *worker = NULL;
  1470. int id = -1;
  1471. char id_buf[16];
  1472. /* ID is needed to determine kthread name */
  1473. id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
  1474. if (id < 0)
  1475. goto fail;
  1476. worker = alloc_worker();
  1477. if (!worker)
  1478. goto fail;
  1479. worker->pool = pool;
  1480. worker->id = id;
  1481. if (pool->cpu >= 0)
  1482. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1483. pool->attrs->nice < 0 ? "H" : "");
  1484. else
  1485. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1486. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1487. "kworker/%s", id_buf);
  1488. if (IS_ERR(worker->task))
  1489. goto fail;
  1490. set_user_nice(worker->task, pool->attrs->nice);
  1491. /* prevent userland from meddling with cpumask of workqueue workers */
  1492. worker->task->flags |= PF_NO_SETAFFINITY;
  1493. /* successful, attach the worker to the pool */
  1494. worker_attach_to_pool(worker, pool);
  1495. return worker;
  1496. fail:
  1497. if (id >= 0)
  1498. ida_simple_remove(&pool->worker_ida, id);
  1499. kfree(worker);
  1500. return NULL;
  1501. }
  1502. /**
  1503. * start_worker - start a newly created worker
  1504. * @worker: worker to start
  1505. *
  1506. * Make the pool aware of @worker and start it.
  1507. *
  1508. * CONTEXT:
  1509. * spin_lock_irq(pool->lock).
  1510. */
  1511. static void start_worker(struct worker *worker)
  1512. {
  1513. worker->pool->nr_workers++;
  1514. worker_enter_idle(worker);
  1515. wake_up_process(worker->task);
  1516. }
  1517. /**
  1518. * create_and_start_worker - create and start a worker for a pool
  1519. * @pool: the target pool
  1520. *
  1521. * Grab the managership of @pool and create and start a new worker for it.
  1522. *
  1523. * Return: 0 on success. A negative error code otherwise.
  1524. */
  1525. static int create_and_start_worker(struct worker_pool *pool)
  1526. {
  1527. struct worker *worker;
  1528. worker = create_worker(pool);
  1529. if (worker) {
  1530. spin_lock_irq(&pool->lock);
  1531. start_worker(worker);
  1532. spin_unlock_irq(&pool->lock);
  1533. }
  1534. return worker ? 0 : -ENOMEM;
  1535. }
  1536. /**
  1537. * destroy_worker - destroy a workqueue worker
  1538. * @worker: worker to be destroyed
  1539. *
  1540. * Destroy @worker and adjust @pool stats accordingly. The worker should
  1541. * be idle.
  1542. *
  1543. * CONTEXT:
  1544. * spin_lock_irq(pool->lock).
  1545. */
  1546. static void destroy_worker(struct worker *worker)
  1547. {
  1548. struct worker_pool *pool = worker->pool;
  1549. lockdep_assert_held(&pool->lock);
  1550. /* sanity check frenzy */
  1551. if (WARN_ON(worker->current_work) ||
  1552. WARN_ON(!list_empty(&worker->scheduled)) ||
  1553. WARN_ON(!(worker->flags & WORKER_IDLE)))
  1554. return;
  1555. pool->nr_workers--;
  1556. pool->nr_idle--;
  1557. list_del_init(&worker->entry);
  1558. worker->flags |= WORKER_DIE;
  1559. wake_up_process(worker->task);
  1560. }
  1561. static void idle_worker_timeout(unsigned long __pool)
  1562. {
  1563. struct worker_pool *pool = (void *)__pool;
  1564. spin_lock_irq(&pool->lock);
  1565. while (too_many_workers(pool)) {
  1566. struct worker *worker;
  1567. unsigned long expires;
  1568. /* idle_list is kept in LIFO order, check the last one */
  1569. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1570. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1571. if (time_before(jiffies, expires)) {
  1572. mod_timer(&pool->idle_timer, expires);
  1573. break;
  1574. }
  1575. destroy_worker(worker);
  1576. }
  1577. spin_unlock_irq(&pool->lock);
  1578. }
  1579. static void send_mayday(struct work_struct *work)
  1580. {
  1581. struct pool_workqueue *pwq = get_work_pwq(work);
  1582. struct workqueue_struct *wq = pwq->wq;
  1583. lockdep_assert_held(&wq_mayday_lock);
  1584. if (!wq->rescuer)
  1585. return;
  1586. /* mayday mayday mayday */
  1587. if (list_empty(&pwq->mayday_node)) {
  1588. /*
  1589. * If @pwq is for an unbound wq, its base ref may be put at
  1590. * any time due to an attribute change. Pin @pwq until the
  1591. * rescuer is done with it.
  1592. */
  1593. get_pwq(pwq);
  1594. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1595. wake_up_process(wq->rescuer->task);
  1596. }
  1597. }
  1598. static void pool_mayday_timeout(unsigned long __pool)
  1599. {
  1600. struct worker_pool *pool = (void *)__pool;
  1601. struct work_struct *work;
  1602. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1603. spin_lock(&pool->lock);
  1604. if (need_to_create_worker(pool)) {
  1605. /*
  1606. * We've been trying to create a new worker but
  1607. * haven't been successful. We might be hitting an
  1608. * allocation deadlock. Send distress signals to
  1609. * rescuers.
  1610. */
  1611. list_for_each_entry(work, &pool->worklist, entry)
  1612. send_mayday(work);
  1613. }
  1614. spin_unlock(&pool->lock);
  1615. spin_unlock_irq(&wq_mayday_lock);
  1616. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1617. }
  1618. /**
  1619. * maybe_create_worker - create a new worker if necessary
  1620. * @pool: pool to create a new worker for
  1621. *
  1622. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1623. * have at least one idle worker on return from this function. If
  1624. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1625. * sent to all rescuers with works scheduled on @pool to resolve
  1626. * possible allocation deadlock.
  1627. *
  1628. * On return, need_to_create_worker() is guaranteed to be %false and
  1629. * may_start_working() %true.
  1630. *
  1631. * LOCKING:
  1632. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1633. * multiple times. Does GFP_KERNEL allocations. Called only from
  1634. * manager.
  1635. *
  1636. * Return:
  1637. * %false if no action was taken and pool->lock stayed locked, %true
  1638. * otherwise.
  1639. */
  1640. static bool maybe_create_worker(struct worker_pool *pool)
  1641. __releases(&pool->lock)
  1642. __acquires(&pool->lock)
  1643. {
  1644. if (!need_to_create_worker(pool))
  1645. return false;
  1646. restart:
  1647. spin_unlock_irq(&pool->lock);
  1648. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1649. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1650. while (true) {
  1651. struct worker *worker;
  1652. worker = create_worker(pool);
  1653. if (worker) {
  1654. del_timer_sync(&pool->mayday_timer);
  1655. spin_lock_irq(&pool->lock);
  1656. start_worker(worker);
  1657. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1658. goto restart;
  1659. return true;
  1660. }
  1661. if (!need_to_create_worker(pool))
  1662. break;
  1663. __set_current_state(TASK_INTERRUPTIBLE);
  1664. schedule_timeout(CREATE_COOLDOWN);
  1665. if (!need_to_create_worker(pool))
  1666. break;
  1667. }
  1668. del_timer_sync(&pool->mayday_timer);
  1669. spin_lock_irq(&pool->lock);
  1670. if (need_to_create_worker(pool))
  1671. goto restart;
  1672. return true;
  1673. }
  1674. /**
  1675. * manage_workers - manage worker pool
  1676. * @worker: self
  1677. *
  1678. * Assume the manager role and manage the worker pool @worker belongs
  1679. * to. At any given time, there can be only zero or one manager per
  1680. * pool. The exclusion is handled automatically by this function.
  1681. *
  1682. * The caller can safely start processing works on false return. On
  1683. * true return, it's guaranteed that need_to_create_worker() is false
  1684. * and may_start_working() is true.
  1685. *
  1686. * CONTEXT:
  1687. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1688. * multiple times. Does GFP_KERNEL allocations.
  1689. *
  1690. * Return:
  1691. * %false if the pool don't need management and the caller can safely start
  1692. * processing works, %true indicates that the function released pool->lock
  1693. * and reacquired it to perform some management function and that the
  1694. * conditions that the caller verified while holding the lock before
  1695. * calling the function might no longer be true.
  1696. */
  1697. static bool manage_workers(struct worker *worker)
  1698. {
  1699. struct worker_pool *pool = worker->pool;
  1700. bool ret = false;
  1701. /*
  1702. * Anyone who successfully grabs manager_arb wins the arbitration
  1703. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1704. * failure while holding pool->lock reliably indicates that someone
  1705. * else is managing the pool and the worker which failed trylock
  1706. * can proceed to executing work items. This means that anyone
  1707. * grabbing manager_arb is responsible for actually performing
  1708. * manager duties. If manager_arb is grabbed and released without
  1709. * actual management, the pool may stall indefinitely.
  1710. */
  1711. if (!mutex_trylock(&pool->manager_arb))
  1712. return ret;
  1713. ret |= maybe_create_worker(pool);
  1714. mutex_unlock(&pool->manager_arb);
  1715. return ret;
  1716. }
  1717. /**
  1718. * process_one_work - process single work
  1719. * @worker: self
  1720. * @work: work to process
  1721. *
  1722. * Process @work. This function contains all the logics necessary to
  1723. * process a single work including synchronization against and
  1724. * interaction with other workers on the same cpu, queueing and
  1725. * flushing. As long as context requirement is met, any worker can
  1726. * call this function to process a work.
  1727. *
  1728. * CONTEXT:
  1729. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1730. */
  1731. static void process_one_work(struct worker *worker, struct work_struct *work)
  1732. __releases(&pool->lock)
  1733. __acquires(&pool->lock)
  1734. {
  1735. struct pool_workqueue *pwq = get_work_pwq(work);
  1736. struct worker_pool *pool = worker->pool;
  1737. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1738. int work_color;
  1739. struct worker *collision;
  1740. #ifdef CONFIG_LOCKDEP
  1741. /*
  1742. * It is permissible to free the struct work_struct from
  1743. * inside the function that is called from it, this we need to
  1744. * take into account for lockdep too. To avoid bogus "held
  1745. * lock freed" warnings as well as problems when looking into
  1746. * work->lockdep_map, make a copy and use that here.
  1747. */
  1748. struct lockdep_map lockdep_map;
  1749. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1750. #endif
  1751. /*
  1752. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1753. * necessary to avoid spurious warnings from rescuers servicing the
  1754. * unbound or a disassociated pool.
  1755. */
  1756. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1757. !(pool->flags & POOL_DISASSOCIATED) &&
  1758. raw_smp_processor_id() != pool->cpu);
  1759. /*
  1760. * A single work shouldn't be executed concurrently by
  1761. * multiple workers on a single cpu. Check whether anyone is
  1762. * already processing the work. If so, defer the work to the
  1763. * currently executing one.
  1764. */
  1765. collision = find_worker_executing_work(pool, work);
  1766. if (unlikely(collision)) {
  1767. move_linked_works(work, &collision->scheduled, NULL);
  1768. return;
  1769. }
  1770. /* claim and dequeue */
  1771. debug_work_deactivate(work);
  1772. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1773. worker->current_work = work;
  1774. worker->current_func = work->func;
  1775. worker->current_pwq = pwq;
  1776. work_color = get_work_color(work);
  1777. list_del_init(&work->entry);
  1778. /*
  1779. * CPU intensive works don't participate in concurrency
  1780. * management. They're the scheduler's responsibility.
  1781. */
  1782. if (unlikely(cpu_intensive))
  1783. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1784. /*
  1785. * Unbound pool isn't concurrency managed and work items should be
  1786. * executed ASAP. Wake up another worker if necessary.
  1787. */
  1788. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1789. wake_up_worker(pool);
  1790. /*
  1791. * Record the last pool and clear PENDING which should be the last
  1792. * update to @work. Also, do this inside @pool->lock so that
  1793. * PENDING and queued state changes happen together while IRQ is
  1794. * disabled.
  1795. */
  1796. set_work_pool_and_clear_pending(work, pool->id);
  1797. spin_unlock_irq(&pool->lock);
  1798. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1799. lock_map_acquire(&lockdep_map);
  1800. trace_workqueue_execute_start(work);
  1801. worker->current_func(work);
  1802. /*
  1803. * While we must be careful to not use "work" after this, the trace
  1804. * point will only record its address.
  1805. */
  1806. trace_workqueue_execute_end(work);
  1807. lock_map_release(&lockdep_map);
  1808. lock_map_release(&pwq->wq->lockdep_map);
  1809. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1810. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1811. " last function: %pf\n",
  1812. current->comm, preempt_count(), task_pid_nr(current),
  1813. worker->current_func);
  1814. debug_show_held_locks(current);
  1815. dump_stack();
  1816. }
  1817. /*
  1818. * The following prevents a kworker from hogging CPU on !PREEMPT
  1819. * kernels, where a requeueing work item waiting for something to
  1820. * happen could deadlock with stop_machine as such work item could
  1821. * indefinitely requeue itself while all other CPUs are trapped in
  1822. * stop_machine.
  1823. */
  1824. cond_resched();
  1825. spin_lock_irq(&pool->lock);
  1826. /* clear cpu intensive status */
  1827. if (unlikely(cpu_intensive))
  1828. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1829. /* we're done with it, release */
  1830. hash_del(&worker->hentry);
  1831. worker->current_work = NULL;
  1832. worker->current_func = NULL;
  1833. worker->current_pwq = NULL;
  1834. worker->desc_valid = false;
  1835. pwq_dec_nr_in_flight(pwq, work_color);
  1836. }
  1837. /**
  1838. * process_scheduled_works - process scheduled works
  1839. * @worker: self
  1840. *
  1841. * Process all scheduled works. Please note that the scheduled list
  1842. * may change while processing a work, so this function repeatedly
  1843. * fetches a work from the top and executes it.
  1844. *
  1845. * CONTEXT:
  1846. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1847. * multiple times.
  1848. */
  1849. static void process_scheduled_works(struct worker *worker)
  1850. {
  1851. while (!list_empty(&worker->scheduled)) {
  1852. struct work_struct *work = list_first_entry(&worker->scheduled,
  1853. struct work_struct, entry);
  1854. process_one_work(worker, work);
  1855. }
  1856. }
  1857. /**
  1858. * worker_thread - the worker thread function
  1859. * @__worker: self
  1860. *
  1861. * The worker thread function. All workers belong to a worker_pool -
  1862. * either a per-cpu one or dynamic unbound one. These workers process all
  1863. * work items regardless of their specific target workqueue. The only
  1864. * exception is work items which belong to workqueues with a rescuer which
  1865. * will be explained in rescuer_thread().
  1866. *
  1867. * Return: 0
  1868. */
  1869. static int worker_thread(void *__worker)
  1870. {
  1871. struct worker *worker = __worker;
  1872. struct worker_pool *pool = worker->pool;
  1873. /* tell the scheduler that this is a workqueue worker */
  1874. worker->task->flags |= PF_WQ_WORKER;
  1875. woke_up:
  1876. spin_lock_irq(&pool->lock);
  1877. /* am I supposed to die? */
  1878. if (unlikely(worker->flags & WORKER_DIE)) {
  1879. spin_unlock_irq(&pool->lock);
  1880. WARN_ON_ONCE(!list_empty(&worker->entry));
  1881. worker->task->flags &= ~PF_WQ_WORKER;
  1882. set_task_comm(worker->task, "kworker/dying");
  1883. ida_simple_remove(&pool->worker_ida, worker->id);
  1884. worker_detach_from_pool(worker, pool);
  1885. kfree(worker);
  1886. return 0;
  1887. }
  1888. worker_leave_idle(worker);
  1889. recheck:
  1890. /* no more worker necessary? */
  1891. if (!need_more_worker(pool))
  1892. goto sleep;
  1893. /* do we need to manage? */
  1894. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1895. goto recheck;
  1896. /*
  1897. * ->scheduled list can only be filled while a worker is
  1898. * preparing to process a work or actually processing it.
  1899. * Make sure nobody diddled with it while I was sleeping.
  1900. */
  1901. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1902. /*
  1903. * Finish PREP stage. We're guaranteed to have at least one idle
  1904. * worker or that someone else has already assumed the manager
  1905. * role. This is where @worker starts participating in concurrency
  1906. * management if applicable and concurrency management is restored
  1907. * after being rebound. See rebind_workers() for details.
  1908. */
  1909. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1910. do {
  1911. struct work_struct *work =
  1912. list_first_entry(&pool->worklist,
  1913. struct work_struct, entry);
  1914. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1915. /* optimization path, not strictly necessary */
  1916. process_one_work(worker, work);
  1917. if (unlikely(!list_empty(&worker->scheduled)))
  1918. process_scheduled_works(worker);
  1919. } else {
  1920. move_linked_works(work, &worker->scheduled, NULL);
  1921. process_scheduled_works(worker);
  1922. }
  1923. } while (keep_working(pool));
  1924. worker_set_flags(worker, WORKER_PREP, false);
  1925. sleep:
  1926. /*
  1927. * pool->lock is held and there's no work to process and no need to
  1928. * manage, sleep. Workers are woken up only while holding
  1929. * pool->lock or from local cpu, so setting the current state
  1930. * before releasing pool->lock is enough to prevent losing any
  1931. * event.
  1932. */
  1933. worker_enter_idle(worker);
  1934. __set_current_state(TASK_INTERRUPTIBLE);
  1935. spin_unlock_irq(&pool->lock);
  1936. schedule();
  1937. goto woke_up;
  1938. }
  1939. /**
  1940. * rescuer_thread - the rescuer thread function
  1941. * @__rescuer: self
  1942. *
  1943. * Workqueue rescuer thread function. There's one rescuer for each
  1944. * workqueue which has WQ_MEM_RECLAIM set.
  1945. *
  1946. * Regular work processing on a pool may block trying to create a new
  1947. * worker which uses GFP_KERNEL allocation which has slight chance of
  1948. * developing into deadlock if some works currently on the same queue
  1949. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1950. * the problem rescuer solves.
  1951. *
  1952. * When such condition is possible, the pool summons rescuers of all
  1953. * workqueues which have works queued on the pool and let them process
  1954. * those works so that forward progress can be guaranteed.
  1955. *
  1956. * This should happen rarely.
  1957. *
  1958. * Return: 0
  1959. */
  1960. static int rescuer_thread(void *__rescuer)
  1961. {
  1962. struct worker *rescuer = __rescuer;
  1963. struct workqueue_struct *wq = rescuer->rescue_wq;
  1964. struct list_head *scheduled = &rescuer->scheduled;
  1965. bool should_stop;
  1966. set_user_nice(current, RESCUER_NICE_LEVEL);
  1967. /*
  1968. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  1969. * doesn't participate in concurrency management.
  1970. */
  1971. rescuer->task->flags |= PF_WQ_WORKER;
  1972. repeat:
  1973. set_current_state(TASK_INTERRUPTIBLE);
  1974. /*
  1975. * By the time the rescuer is requested to stop, the workqueue
  1976. * shouldn't have any work pending, but @wq->maydays may still have
  1977. * pwq(s) queued. This can happen by non-rescuer workers consuming
  1978. * all the work items before the rescuer got to them. Go through
  1979. * @wq->maydays processing before acting on should_stop so that the
  1980. * list is always empty on exit.
  1981. */
  1982. should_stop = kthread_should_stop();
  1983. /* see whether any pwq is asking for help */
  1984. spin_lock_irq(&wq_mayday_lock);
  1985. while (!list_empty(&wq->maydays)) {
  1986. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  1987. struct pool_workqueue, mayday_node);
  1988. struct worker_pool *pool = pwq->pool;
  1989. struct work_struct *work, *n;
  1990. __set_current_state(TASK_RUNNING);
  1991. list_del_init(&pwq->mayday_node);
  1992. spin_unlock_irq(&wq_mayday_lock);
  1993. worker_attach_to_pool(rescuer, pool);
  1994. spin_lock_irq(&pool->lock);
  1995. rescuer->pool = pool;
  1996. /*
  1997. * Slurp in all works issued via this workqueue and
  1998. * process'em.
  1999. */
  2000. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2001. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2002. if (get_work_pwq(work) == pwq)
  2003. move_linked_works(work, scheduled, &n);
  2004. process_scheduled_works(rescuer);
  2005. spin_unlock_irq(&pool->lock);
  2006. worker_detach_from_pool(rescuer, pool);
  2007. spin_lock_irq(&pool->lock);
  2008. /*
  2009. * Put the reference grabbed by send_mayday(). @pool won't
  2010. * go away while we're holding its lock.
  2011. */
  2012. put_pwq(pwq);
  2013. /*
  2014. * Leave this pool. If keep_working() is %true, notify a
  2015. * regular worker; otherwise, we end up with 0 concurrency
  2016. * and stalling the execution.
  2017. */
  2018. if (keep_working(pool))
  2019. wake_up_worker(pool);
  2020. rescuer->pool = NULL;
  2021. spin_unlock(&pool->lock);
  2022. spin_lock(&wq_mayday_lock);
  2023. }
  2024. spin_unlock_irq(&wq_mayday_lock);
  2025. if (should_stop) {
  2026. __set_current_state(TASK_RUNNING);
  2027. rescuer->task->flags &= ~PF_WQ_WORKER;
  2028. return 0;
  2029. }
  2030. /* rescuers should never participate in concurrency management */
  2031. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2032. schedule();
  2033. goto repeat;
  2034. }
  2035. struct wq_barrier {
  2036. struct work_struct work;
  2037. struct completion done;
  2038. };
  2039. static void wq_barrier_func(struct work_struct *work)
  2040. {
  2041. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2042. complete(&barr->done);
  2043. }
  2044. /**
  2045. * insert_wq_barrier - insert a barrier work
  2046. * @pwq: pwq to insert barrier into
  2047. * @barr: wq_barrier to insert
  2048. * @target: target work to attach @barr to
  2049. * @worker: worker currently executing @target, NULL if @target is not executing
  2050. *
  2051. * @barr is linked to @target such that @barr is completed only after
  2052. * @target finishes execution. Please note that the ordering
  2053. * guarantee is observed only with respect to @target and on the local
  2054. * cpu.
  2055. *
  2056. * Currently, a queued barrier can't be canceled. This is because
  2057. * try_to_grab_pending() can't determine whether the work to be
  2058. * grabbed is at the head of the queue and thus can't clear LINKED
  2059. * flag of the previous work while there must be a valid next work
  2060. * after a work with LINKED flag set.
  2061. *
  2062. * Note that when @worker is non-NULL, @target may be modified
  2063. * underneath us, so we can't reliably determine pwq from @target.
  2064. *
  2065. * CONTEXT:
  2066. * spin_lock_irq(pool->lock).
  2067. */
  2068. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2069. struct wq_barrier *barr,
  2070. struct work_struct *target, struct worker *worker)
  2071. {
  2072. struct list_head *head;
  2073. unsigned int linked = 0;
  2074. /*
  2075. * debugobject calls are safe here even with pool->lock locked
  2076. * as we know for sure that this will not trigger any of the
  2077. * checks and call back into the fixup functions where we
  2078. * might deadlock.
  2079. */
  2080. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2081. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2082. init_completion(&barr->done);
  2083. /*
  2084. * If @target is currently being executed, schedule the
  2085. * barrier to the worker; otherwise, put it after @target.
  2086. */
  2087. if (worker)
  2088. head = worker->scheduled.next;
  2089. else {
  2090. unsigned long *bits = work_data_bits(target);
  2091. head = target->entry.next;
  2092. /* there can already be other linked works, inherit and set */
  2093. linked = *bits & WORK_STRUCT_LINKED;
  2094. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2095. }
  2096. debug_work_activate(&barr->work);
  2097. insert_work(pwq, &barr->work, head,
  2098. work_color_to_flags(WORK_NO_COLOR) | linked);
  2099. }
  2100. /**
  2101. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2102. * @wq: workqueue being flushed
  2103. * @flush_color: new flush color, < 0 for no-op
  2104. * @work_color: new work color, < 0 for no-op
  2105. *
  2106. * Prepare pwqs for workqueue flushing.
  2107. *
  2108. * If @flush_color is non-negative, flush_color on all pwqs should be
  2109. * -1. If no pwq has in-flight commands at the specified color, all
  2110. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2111. * has in flight commands, its pwq->flush_color is set to
  2112. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2113. * wakeup logic is armed and %true is returned.
  2114. *
  2115. * The caller should have initialized @wq->first_flusher prior to
  2116. * calling this function with non-negative @flush_color. If
  2117. * @flush_color is negative, no flush color update is done and %false
  2118. * is returned.
  2119. *
  2120. * If @work_color is non-negative, all pwqs should have the same
  2121. * work_color which is previous to @work_color and all will be
  2122. * advanced to @work_color.
  2123. *
  2124. * CONTEXT:
  2125. * mutex_lock(wq->mutex).
  2126. *
  2127. * Return:
  2128. * %true if @flush_color >= 0 and there's something to flush. %false
  2129. * otherwise.
  2130. */
  2131. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2132. int flush_color, int work_color)
  2133. {
  2134. bool wait = false;
  2135. struct pool_workqueue *pwq;
  2136. if (flush_color >= 0) {
  2137. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2138. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2139. }
  2140. for_each_pwq(pwq, wq) {
  2141. struct worker_pool *pool = pwq->pool;
  2142. spin_lock_irq(&pool->lock);
  2143. if (flush_color >= 0) {
  2144. WARN_ON_ONCE(pwq->flush_color != -1);
  2145. if (pwq->nr_in_flight[flush_color]) {
  2146. pwq->flush_color = flush_color;
  2147. atomic_inc(&wq->nr_pwqs_to_flush);
  2148. wait = true;
  2149. }
  2150. }
  2151. if (work_color >= 0) {
  2152. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2153. pwq->work_color = work_color;
  2154. }
  2155. spin_unlock_irq(&pool->lock);
  2156. }
  2157. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2158. complete(&wq->first_flusher->done);
  2159. return wait;
  2160. }
  2161. /**
  2162. * flush_workqueue - ensure that any scheduled work has run to completion.
  2163. * @wq: workqueue to flush
  2164. *
  2165. * This function sleeps until all work items which were queued on entry
  2166. * have finished execution, but it is not livelocked by new incoming ones.
  2167. */
  2168. void flush_workqueue(struct workqueue_struct *wq)
  2169. {
  2170. struct wq_flusher this_flusher = {
  2171. .list = LIST_HEAD_INIT(this_flusher.list),
  2172. .flush_color = -1,
  2173. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2174. };
  2175. int next_color;
  2176. lock_map_acquire(&wq->lockdep_map);
  2177. lock_map_release(&wq->lockdep_map);
  2178. mutex_lock(&wq->mutex);
  2179. /*
  2180. * Start-to-wait phase
  2181. */
  2182. next_color = work_next_color(wq->work_color);
  2183. if (next_color != wq->flush_color) {
  2184. /*
  2185. * Color space is not full. The current work_color
  2186. * becomes our flush_color and work_color is advanced
  2187. * by one.
  2188. */
  2189. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2190. this_flusher.flush_color = wq->work_color;
  2191. wq->work_color = next_color;
  2192. if (!wq->first_flusher) {
  2193. /* no flush in progress, become the first flusher */
  2194. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2195. wq->first_flusher = &this_flusher;
  2196. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2197. wq->work_color)) {
  2198. /* nothing to flush, done */
  2199. wq->flush_color = next_color;
  2200. wq->first_flusher = NULL;
  2201. goto out_unlock;
  2202. }
  2203. } else {
  2204. /* wait in queue */
  2205. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2206. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2207. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2208. }
  2209. } else {
  2210. /*
  2211. * Oops, color space is full, wait on overflow queue.
  2212. * The next flush completion will assign us
  2213. * flush_color and transfer to flusher_queue.
  2214. */
  2215. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2216. }
  2217. mutex_unlock(&wq->mutex);
  2218. wait_for_completion(&this_flusher.done);
  2219. /*
  2220. * Wake-up-and-cascade phase
  2221. *
  2222. * First flushers are responsible for cascading flushes and
  2223. * handling overflow. Non-first flushers can simply return.
  2224. */
  2225. if (wq->first_flusher != &this_flusher)
  2226. return;
  2227. mutex_lock(&wq->mutex);
  2228. /* we might have raced, check again with mutex held */
  2229. if (wq->first_flusher != &this_flusher)
  2230. goto out_unlock;
  2231. wq->first_flusher = NULL;
  2232. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2233. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2234. while (true) {
  2235. struct wq_flusher *next, *tmp;
  2236. /* complete all the flushers sharing the current flush color */
  2237. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2238. if (next->flush_color != wq->flush_color)
  2239. break;
  2240. list_del_init(&next->list);
  2241. complete(&next->done);
  2242. }
  2243. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2244. wq->flush_color != work_next_color(wq->work_color));
  2245. /* this flush_color is finished, advance by one */
  2246. wq->flush_color = work_next_color(wq->flush_color);
  2247. /* one color has been freed, handle overflow queue */
  2248. if (!list_empty(&wq->flusher_overflow)) {
  2249. /*
  2250. * Assign the same color to all overflowed
  2251. * flushers, advance work_color and append to
  2252. * flusher_queue. This is the start-to-wait
  2253. * phase for these overflowed flushers.
  2254. */
  2255. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2256. tmp->flush_color = wq->work_color;
  2257. wq->work_color = work_next_color(wq->work_color);
  2258. list_splice_tail_init(&wq->flusher_overflow,
  2259. &wq->flusher_queue);
  2260. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2261. }
  2262. if (list_empty(&wq->flusher_queue)) {
  2263. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2264. break;
  2265. }
  2266. /*
  2267. * Need to flush more colors. Make the next flusher
  2268. * the new first flusher and arm pwqs.
  2269. */
  2270. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2271. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2272. list_del_init(&next->list);
  2273. wq->first_flusher = next;
  2274. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2275. break;
  2276. /*
  2277. * Meh... this color is already done, clear first
  2278. * flusher and repeat cascading.
  2279. */
  2280. wq->first_flusher = NULL;
  2281. }
  2282. out_unlock:
  2283. mutex_unlock(&wq->mutex);
  2284. }
  2285. EXPORT_SYMBOL_GPL(flush_workqueue);
  2286. /**
  2287. * drain_workqueue - drain a workqueue
  2288. * @wq: workqueue to drain
  2289. *
  2290. * Wait until the workqueue becomes empty. While draining is in progress,
  2291. * only chain queueing is allowed. IOW, only currently pending or running
  2292. * work items on @wq can queue further work items on it. @wq is flushed
  2293. * repeatedly until it becomes empty. The number of flushing is detemined
  2294. * by the depth of chaining and should be relatively short. Whine if it
  2295. * takes too long.
  2296. */
  2297. void drain_workqueue(struct workqueue_struct *wq)
  2298. {
  2299. unsigned int flush_cnt = 0;
  2300. struct pool_workqueue *pwq;
  2301. /*
  2302. * __queue_work() needs to test whether there are drainers, is much
  2303. * hotter than drain_workqueue() and already looks at @wq->flags.
  2304. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2305. */
  2306. mutex_lock(&wq->mutex);
  2307. if (!wq->nr_drainers++)
  2308. wq->flags |= __WQ_DRAINING;
  2309. mutex_unlock(&wq->mutex);
  2310. reflush:
  2311. flush_workqueue(wq);
  2312. mutex_lock(&wq->mutex);
  2313. for_each_pwq(pwq, wq) {
  2314. bool drained;
  2315. spin_lock_irq(&pwq->pool->lock);
  2316. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2317. spin_unlock_irq(&pwq->pool->lock);
  2318. if (drained)
  2319. continue;
  2320. if (++flush_cnt == 10 ||
  2321. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2322. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2323. wq->name, flush_cnt);
  2324. mutex_unlock(&wq->mutex);
  2325. goto reflush;
  2326. }
  2327. if (!--wq->nr_drainers)
  2328. wq->flags &= ~__WQ_DRAINING;
  2329. mutex_unlock(&wq->mutex);
  2330. }
  2331. EXPORT_SYMBOL_GPL(drain_workqueue);
  2332. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2333. {
  2334. struct worker *worker = NULL;
  2335. struct worker_pool *pool;
  2336. struct pool_workqueue *pwq;
  2337. might_sleep();
  2338. local_irq_disable();
  2339. pool = get_work_pool(work);
  2340. if (!pool) {
  2341. local_irq_enable();
  2342. return false;
  2343. }
  2344. spin_lock(&pool->lock);
  2345. /* see the comment in try_to_grab_pending() with the same code */
  2346. pwq = get_work_pwq(work);
  2347. if (pwq) {
  2348. if (unlikely(pwq->pool != pool))
  2349. goto already_gone;
  2350. } else {
  2351. worker = find_worker_executing_work(pool, work);
  2352. if (!worker)
  2353. goto already_gone;
  2354. pwq = worker->current_pwq;
  2355. }
  2356. insert_wq_barrier(pwq, barr, work, worker);
  2357. spin_unlock_irq(&pool->lock);
  2358. /*
  2359. * If @max_active is 1 or rescuer is in use, flushing another work
  2360. * item on the same workqueue may lead to deadlock. Make sure the
  2361. * flusher is not running on the same workqueue by verifying write
  2362. * access.
  2363. */
  2364. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2365. lock_map_acquire(&pwq->wq->lockdep_map);
  2366. else
  2367. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2368. lock_map_release(&pwq->wq->lockdep_map);
  2369. return true;
  2370. already_gone:
  2371. spin_unlock_irq(&pool->lock);
  2372. return false;
  2373. }
  2374. /**
  2375. * flush_work - wait for a work to finish executing the last queueing instance
  2376. * @work: the work to flush
  2377. *
  2378. * Wait until @work has finished execution. @work is guaranteed to be idle
  2379. * on return if it hasn't been requeued since flush started.
  2380. *
  2381. * Return:
  2382. * %true if flush_work() waited for the work to finish execution,
  2383. * %false if it was already idle.
  2384. */
  2385. bool flush_work(struct work_struct *work)
  2386. {
  2387. struct wq_barrier barr;
  2388. lock_map_acquire(&work->lockdep_map);
  2389. lock_map_release(&work->lockdep_map);
  2390. if (start_flush_work(work, &barr)) {
  2391. wait_for_completion(&barr.done);
  2392. destroy_work_on_stack(&barr.work);
  2393. return true;
  2394. } else {
  2395. return false;
  2396. }
  2397. }
  2398. EXPORT_SYMBOL_GPL(flush_work);
  2399. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2400. {
  2401. unsigned long flags;
  2402. int ret;
  2403. do {
  2404. ret = try_to_grab_pending(work, is_dwork, &flags);
  2405. /*
  2406. * If someone else is canceling, wait for the same event it
  2407. * would be waiting for before retrying.
  2408. */
  2409. if (unlikely(ret == -ENOENT))
  2410. flush_work(work);
  2411. } while (unlikely(ret < 0));
  2412. /* tell other tasks trying to grab @work to back off */
  2413. mark_work_canceling(work);
  2414. local_irq_restore(flags);
  2415. flush_work(work);
  2416. clear_work_data(work);
  2417. return ret;
  2418. }
  2419. /**
  2420. * cancel_work_sync - cancel a work and wait for it to finish
  2421. * @work: the work to cancel
  2422. *
  2423. * Cancel @work and wait for its execution to finish. This function
  2424. * can be used even if the work re-queues itself or migrates to
  2425. * another workqueue. On return from this function, @work is
  2426. * guaranteed to be not pending or executing on any CPU.
  2427. *
  2428. * cancel_work_sync(&delayed_work->work) must not be used for
  2429. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2430. *
  2431. * The caller must ensure that the workqueue on which @work was last
  2432. * queued can't be destroyed before this function returns.
  2433. *
  2434. * Return:
  2435. * %true if @work was pending, %false otherwise.
  2436. */
  2437. bool cancel_work_sync(struct work_struct *work)
  2438. {
  2439. return __cancel_work_timer(work, false);
  2440. }
  2441. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2442. /**
  2443. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2444. * @dwork: the delayed work to flush
  2445. *
  2446. * Delayed timer is cancelled and the pending work is queued for
  2447. * immediate execution. Like flush_work(), this function only
  2448. * considers the last queueing instance of @dwork.
  2449. *
  2450. * Return:
  2451. * %true if flush_work() waited for the work to finish execution,
  2452. * %false if it was already idle.
  2453. */
  2454. bool flush_delayed_work(struct delayed_work *dwork)
  2455. {
  2456. local_irq_disable();
  2457. if (del_timer_sync(&dwork->timer))
  2458. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2459. local_irq_enable();
  2460. return flush_work(&dwork->work);
  2461. }
  2462. EXPORT_SYMBOL(flush_delayed_work);
  2463. /**
  2464. * cancel_delayed_work - cancel a delayed work
  2465. * @dwork: delayed_work to cancel
  2466. *
  2467. * Kill off a pending delayed_work.
  2468. *
  2469. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2470. * pending.
  2471. *
  2472. * Note:
  2473. * The work callback function may still be running on return, unless
  2474. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2475. * use cancel_delayed_work_sync() to wait on it.
  2476. *
  2477. * This function is safe to call from any context including IRQ handler.
  2478. */
  2479. bool cancel_delayed_work(struct delayed_work *dwork)
  2480. {
  2481. unsigned long flags;
  2482. int ret;
  2483. do {
  2484. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2485. } while (unlikely(ret == -EAGAIN));
  2486. if (unlikely(ret < 0))
  2487. return false;
  2488. set_work_pool_and_clear_pending(&dwork->work,
  2489. get_work_pool_id(&dwork->work));
  2490. local_irq_restore(flags);
  2491. return ret;
  2492. }
  2493. EXPORT_SYMBOL(cancel_delayed_work);
  2494. /**
  2495. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2496. * @dwork: the delayed work cancel
  2497. *
  2498. * This is cancel_work_sync() for delayed works.
  2499. *
  2500. * Return:
  2501. * %true if @dwork was pending, %false otherwise.
  2502. */
  2503. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2504. {
  2505. return __cancel_work_timer(&dwork->work, true);
  2506. }
  2507. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2508. /**
  2509. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2510. * @func: the function to call
  2511. *
  2512. * schedule_on_each_cpu() executes @func on each online CPU using the
  2513. * system workqueue and blocks until all CPUs have completed.
  2514. * schedule_on_each_cpu() is very slow.
  2515. *
  2516. * Return:
  2517. * 0 on success, -errno on failure.
  2518. */
  2519. int schedule_on_each_cpu(work_func_t func)
  2520. {
  2521. int cpu;
  2522. struct work_struct __percpu *works;
  2523. works = alloc_percpu(struct work_struct);
  2524. if (!works)
  2525. return -ENOMEM;
  2526. get_online_cpus();
  2527. for_each_online_cpu(cpu) {
  2528. struct work_struct *work = per_cpu_ptr(works, cpu);
  2529. INIT_WORK(work, func);
  2530. schedule_work_on(cpu, work);
  2531. }
  2532. for_each_online_cpu(cpu)
  2533. flush_work(per_cpu_ptr(works, cpu));
  2534. put_online_cpus();
  2535. free_percpu(works);
  2536. return 0;
  2537. }
  2538. /**
  2539. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2540. *
  2541. * Forces execution of the kernel-global workqueue and blocks until its
  2542. * completion.
  2543. *
  2544. * Think twice before calling this function! It's very easy to get into
  2545. * trouble if you don't take great care. Either of the following situations
  2546. * will lead to deadlock:
  2547. *
  2548. * One of the work items currently on the workqueue needs to acquire
  2549. * a lock held by your code or its caller.
  2550. *
  2551. * Your code is running in the context of a work routine.
  2552. *
  2553. * They will be detected by lockdep when they occur, but the first might not
  2554. * occur very often. It depends on what work items are on the workqueue and
  2555. * what locks they need, which you have no control over.
  2556. *
  2557. * In most situations flushing the entire workqueue is overkill; you merely
  2558. * need to know that a particular work item isn't queued and isn't running.
  2559. * In such cases you should use cancel_delayed_work_sync() or
  2560. * cancel_work_sync() instead.
  2561. */
  2562. void flush_scheduled_work(void)
  2563. {
  2564. flush_workqueue(system_wq);
  2565. }
  2566. EXPORT_SYMBOL(flush_scheduled_work);
  2567. /**
  2568. * execute_in_process_context - reliably execute the routine with user context
  2569. * @fn: the function to execute
  2570. * @ew: guaranteed storage for the execute work structure (must
  2571. * be available when the work executes)
  2572. *
  2573. * Executes the function immediately if process context is available,
  2574. * otherwise schedules the function for delayed execution.
  2575. *
  2576. * Return: 0 - function was executed
  2577. * 1 - function was scheduled for execution
  2578. */
  2579. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2580. {
  2581. if (!in_interrupt()) {
  2582. fn(&ew->work);
  2583. return 0;
  2584. }
  2585. INIT_WORK(&ew->work, fn);
  2586. schedule_work(&ew->work);
  2587. return 1;
  2588. }
  2589. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2590. #ifdef CONFIG_SYSFS
  2591. /*
  2592. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2593. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2594. * following attributes.
  2595. *
  2596. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2597. * max_active RW int : maximum number of in-flight work items
  2598. *
  2599. * Unbound workqueues have the following extra attributes.
  2600. *
  2601. * id RO int : the associated pool ID
  2602. * nice RW int : nice value of the workers
  2603. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2604. */
  2605. struct wq_device {
  2606. struct workqueue_struct *wq;
  2607. struct device dev;
  2608. };
  2609. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2610. {
  2611. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2612. return wq_dev->wq;
  2613. }
  2614. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  2615. char *buf)
  2616. {
  2617. struct workqueue_struct *wq = dev_to_wq(dev);
  2618. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2619. }
  2620. static DEVICE_ATTR_RO(per_cpu);
  2621. static ssize_t max_active_show(struct device *dev,
  2622. struct device_attribute *attr, char *buf)
  2623. {
  2624. struct workqueue_struct *wq = dev_to_wq(dev);
  2625. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2626. }
  2627. static ssize_t max_active_store(struct device *dev,
  2628. struct device_attribute *attr, const char *buf,
  2629. size_t count)
  2630. {
  2631. struct workqueue_struct *wq = dev_to_wq(dev);
  2632. int val;
  2633. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2634. return -EINVAL;
  2635. workqueue_set_max_active(wq, val);
  2636. return count;
  2637. }
  2638. static DEVICE_ATTR_RW(max_active);
  2639. static struct attribute *wq_sysfs_attrs[] = {
  2640. &dev_attr_per_cpu.attr,
  2641. &dev_attr_max_active.attr,
  2642. NULL,
  2643. };
  2644. ATTRIBUTE_GROUPS(wq_sysfs);
  2645. static ssize_t wq_pool_ids_show(struct device *dev,
  2646. struct device_attribute *attr, char *buf)
  2647. {
  2648. struct workqueue_struct *wq = dev_to_wq(dev);
  2649. const char *delim = "";
  2650. int node, written = 0;
  2651. rcu_read_lock_sched();
  2652. for_each_node(node) {
  2653. written += scnprintf(buf + written, PAGE_SIZE - written,
  2654. "%s%d:%d", delim, node,
  2655. unbound_pwq_by_node(wq, node)->pool->id);
  2656. delim = " ";
  2657. }
  2658. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2659. rcu_read_unlock_sched();
  2660. return written;
  2661. }
  2662. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2663. char *buf)
  2664. {
  2665. struct workqueue_struct *wq = dev_to_wq(dev);
  2666. int written;
  2667. mutex_lock(&wq->mutex);
  2668. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2669. mutex_unlock(&wq->mutex);
  2670. return written;
  2671. }
  2672. /* prepare workqueue_attrs for sysfs store operations */
  2673. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2674. {
  2675. struct workqueue_attrs *attrs;
  2676. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2677. if (!attrs)
  2678. return NULL;
  2679. mutex_lock(&wq->mutex);
  2680. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2681. mutex_unlock(&wq->mutex);
  2682. return attrs;
  2683. }
  2684. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2685. const char *buf, size_t count)
  2686. {
  2687. struct workqueue_struct *wq = dev_to_wq(dev);
  2688. struct workqueue_attrs *attrs;
  2689. int ret;
  2690. attrs = wq_sysfs_prep_attrs(wq);
  2691. if (!attrs)
  2692. return -ENOMEM;
  2693. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2694. attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
  2695. ret = apply_workqueue_attrs(wq, attrs);
  2696. else
  2697. ret = -EINVAL;
  2698. free_workqueue_attrs(attrs);
  2699. return ret ?: count;
  2700. }
  2701. static ssize_t wq_cpumask_show(struct device *dev,
  2702. struct device_attribute *attr, char *buf)
  2703. {
  2704. struct workqueue_struct *wq = dev_to_wq(dev);
  2705. int written;
  2706. mutex_lock(&wq->mutex);
  2707. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2708. mutex_unlock(&wq->mutex);
  2709. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2710. return written;
  2711. }
  2712. static ssize_t wq_cpumask_store(struct device *dev,
  2713. struct device_attribute *attr,
  2714. const char *buf, size_t count)
  2715. {
  2716. struct workqueue_struct *wq = dev_to_wq(dev);
  2717. struct workqueue_attrs *attrs;
  2718. int ret;
  2719. attrs = wq_sysfs_prep_attrs(wq);
  2720. if (!attrs)
  2721. return -ENOMEM;
  2722. ret = cpumask_parse(buf, attrs->cpumask);
  2723. if (!ret)
  2724. ret = apply_workqueue_attrs(wq, attrs);
  2725. free_workqueue_attrs(attrs);
  2726. return ret ?: count;
  2727. }
  2728. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  2729. char *buf)
  2730. {
  2731. struct workqueue_struct *wq = dev_to_wq(dev);
  2732. int written;
  2733. mutex_lock(&wq->mutex);
  2734. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2735. !wq->unbound_attrs->no_numa);
  2736. mutex_unlock(&wq->mutex);
  2737. return written;
  2738. }
  2739. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  2740. const char *buf, size_t count)
  2741. {
  2742. struct workqueue_struct *wq = dev_to_wq(dev);
  2743. struct workqueue_attrs *attrs;
  2744. int v, ret;
  2745. attrs = wq_sysfs_prep_attrs(wq);
  2746. if (!attrs)
  2747. return -ENOMEM;
  2748. ret = -EINVAL;
  2749. if (sscanf(buf, "%d", &v) == 1) {
  2750. attrs->no_numa = !v;
  2751. ret = apply_workqueue_attrs(wq, attrs);
  2752. }
  2753. free_workqueue_attrs(attrs);
  2754. return ret ?: count;
  2755. }
  2756. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2757. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  2758. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2759. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2760. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  2761. __ATTR_NULL,
  2762. };
  2763. static struct bus_type wq_subsys = {
  2764. .name = "workqueue",
  2765. .dev_groups = wq_sysfs_groups,
  2766. };
  2767. static int __init wq_sysfs_init(void)
  2768. {
  2769. return subsys_virtual_register(&wq_subsys, NULL);
  2770. }
  2771. core_initcall(wq_sysfs_init);
  2772. static void wq_device_release(struct device *dev)
  2773. {
  2774. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2775. kfree(wq_dev);
  2776. }
  2777. /**
  2778. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2779. * @wq: the workqueue to register
  2780. *
  2781. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2782. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2783. * which is the preferred method.
  2784. *
  2785. * Workqueue user should use this function directly iff it wants to apply
  2786. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2787. * apply_workqueue_attrs() may race against userland updating the
  2788. * attributes.
  2789. *
  2790. * Return: 0 on success, -errno on failure.
  2791. */
  2792. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2793. {
  2794. struct wq_device *wq_dev;
  2795. int ret;
  2796. /*
  2797. * Adjusting max_active or creating new pwqs by applyting
  2798. * attributes breaks ordering guarantee. Disallow exposing ordered
  2799. * workqueues.
  2800. */
  2801. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2802. return -EINVAL;
  2803. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2804. if (!wq_dev)
  2805. return -ENOMEM;
  2806. wq_dev->wq = wq;
  2807. wq_dev->dev.bus = &wq_subsys;
  2808. wq_dev->dev.init_name = wq->name;
  2809. wq_dev->dev.release = wq_device_release;
  2810. /*
  2811. * unbound_attrs are created separately. Suppress uevent until
  2812. * everything is ready.
  2813. */
  2814. dev_set_uevent_suppress(&wq_dev->dev, true);
  2815. ret = device_register(&wq_dev->dev);
  2816. if (ret) {
  2817. kfree(wq_dev);
  2818. wq->wq_dev = NULL;
  2819. return ret;
  2820. }
  2821. if (wq->flags & WQ_UNBOUND) {
  2822. struct device_attribute *attr;
  2823. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2824. ret = device_create_file(&wq_dev->dev, attr);
  2825. if (ret) {
  2826. device_unregister(&wq_dev->dev);
  2827. wq->wq_dev = NULL;
  2828. return ret;
  2829. }
  2830. }
  2831. }
  2832. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2833. return 0;
  2834. }
  2835. /**
  2836. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2837. * @wq: the workqueue to unregister
  2838. *
  2839. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2840. */
  2841. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2842. {
  2843. struct wq_device *wq_dev = wq->wq_dev;
  2844. if (!wq->wq_dev)
  2845. return;
  2846. wq->wq_dev = NULL;
  2847. device_unregister(&wq_dev->dev);
  2848. }
  2849. #else /* CONFIG_SYSFS */
  2850. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2851. #endif /* CONFIG_SYSFS */
  2852. /**
  2853. * free_workqueue_attrs - free a workqueue_attrs
  2854. * @attrs: workqueue_attrs to free
  2855. *
  2856. * Undo alloc_workqueue_attrs().
  2857. */
  2858. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2859. {
  2860. if (attrs) {
  2861. free_cpumask_var(attrs->cpumask);
  2862. kfree(attrs);
  2863. }
  2864. }
  2865. /**
  2866. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2867. * @gfp_mask: allocation mask to use
  2868. *
  2869. * Allocate a new workqueue_attrs, initialize with default settings and
  2870. * return it.
  2871. *
  2872. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2873. */
  2874. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2875. {
  2876. struct workqueue_attrs *attrs;
  2877. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2878. if (!attrs)
  2879. goto fail;
  2880. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2881. goto fail;
  2882. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2883. return attrs;
  2884. fail:
  2885. free_workqueue_attrs(attrs);
  2886. return NULL;
  2887. }
  2888. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2889. const struct workqueue_attrs *from)
  2890. {
  2891. to->nice = from->nice;
  2892. cpumask_copy(to->cpumask, from->cpumask);
  2893. /*
  2894. * Unlike hash and equality test, this function doesn't ignore
  2895. * ->no_numa as it is used for both pool and wq attrs. Instead,
  2896. * get_unbound_pool() explicitly clears ->no_numa after copying.
  2897. */
  2898. to->no_numa = from->no_numa;
  2899. }
  2900. /* hash value of the content of @attr */
  2901. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2902. {
  2903. u32 hash = 0;
  2904. hash = jhash_1word(attrs->nice, hash);
  2905. hash = jhash(cpumask_bits(attrs->cpumask),
  2906. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  2907. return hash;
  2908. }
  2909. /* content equality test */
  2910. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2911. const struct workqueue_attrs *b)
  2912. {
  2913. if (a->nice != b->nice)
  2914. return false;
  2915. if (!cpumask_equal(a->cpumask, b->cpumask))
  2916. return false;
  2917. return true;
  2918. }
  2919. /**
  2920. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2921. * @pool: worker_pool to initialize
  2922. *
  2923. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2924. *
  2925. * Return: 0 on success, -errno on failure. Even on failure, all fields
  2926. * inside @pool proper are initialized and put_unbound_pool() can be called
  2927. * on @pool safely to release it.
  2928. */
  2929. static int init_worker_pool(struct worker_pool *pool)
  2930. {
  2931. spin_lock_init(&pool->lock);
  2932. pool->id = -1;
  2933. pool->cpu = -1;
  2934. pool->node = NUMA_NO_NODE;
  2935. pool->flags |= POOL_DISASSOCIATED;
  2936. INIT_LIST_HEAD(&pool->worklist);
  2937. INIT_LIST_HEAD(&pool->idle_list);
  2938. hash_init(pool->busy_hash);
  2939. init_timer_deferrable(&pool->idle_timer);
  2940. pool->idle_timer.function = idle_worker_timeout;
  2941. pool->idle_timer.data = (unsigned long)pool;
  2942. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2943. (unsigned long)pool);
  2944. mutex_init(&pool->manager_arb);
  2945. mutex_init(&pool->attach_mutex);
  2946. INIT_LIST_HEAD(&pool->workers);
  2947. ida_init(&pool->worker_ida);
  2948. INIT_HLIST_NODE(&pool->hash_node);
  2949. pool->refcnt = 1;
  2950. /* shouldn't fail above this point */
  2951. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2952. if (!pool->attrs)
  2953. return -ENOMEM;
  2954. return 0;
  2955. }
  2956. static void rcu_free_pool(struct rcu_head *rcu)
  2957. {
  2958. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2959. ida_destroy(&pool->worker_ida);
  2960. free_workqueue_attrs(pool->attrs);
  2961. kfree(pool);
  2962. }
  2963. /**
  2964. * put_unbound_pool - put a worker_pool
  2965. * @pool: worker_pool to put
  2966. *
  2967. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2968. * safe manner. get_unbound_pool() calls this function on its failure path
  2969. * and this function should be able to release pools which went through,
  2970. * successfully or not, init_worker_pool().
  2971. *
  2972. * Should be called with wq_pool_mutex held.
  2973. */
  2974. static void put_unbound_pool(struct worker_pool *pool)
  2975. {
  2976. DECLARE_COMPLETION_ONSTACK(detach_completion);
  2977. struct worker *worker;
  2978. lockdep_assert_held(&wq_pool_mutex);
  2979. if (--pool->refcnt)
  2980. return;
  2981. /* sanity checks */
  2982. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  2983. WARN_ON(!list_empty(&pool->worklist)))
  2984. return;
  2985. /* release id and unhash */
  2986. if (pool->id >= 0)
  2987. idr_remove(&worker_pool_idr, pool->id);
  2988. hash_del(&pool->hash_node);
  2989. /*
  2990. * Become the manager and destroy all workers. Grabbing
  2991. * manager_arb prevents @pool's workers from blocking on
  2992. * attach_mutex.
  2993. */
  2994. mutex_lock(&pool->manager_arb);
  2995. spin_lock_irq(&pool->lock);
  2996. while ((worker = first_idle_worker(pool)))
  2997. destroy_worker(worker);
  2998. WARN_ON(pool->nr_workers || pool->nr_idle);
  2999. spin_unlock_irq(&pool->lock);
  3000. mutex_lock(&pool->attach_mutex);
  3001. if (!list_empty(&pool->workers))
  3002. pool->detach_completion = &detach_completion;
  3003. mutex_unlock(&pool->attach_mutex);
  3004. if (pool->detach_completion)
  3005. wait_for_completion(pool->detach_completion);
  3006. mutex_unlock(&pool->manager_arb);
  3007. /* shut down the timers */
  3008. del_timer_sync(&pool->idle_timer);
  3009. del_timer_sync(&pool->mayday_timer);
  3010. /* sched-RCU protected to allow dereferences from get_work_pool() */
  3011. call_rcu_sched(&pool->rcu, rcu_free_pool);
  3012. }
  3013. /**
  3014. * get_unbound_pool - get a worker_pool with the specified attributes
  3015. * @attrs: the attributes of the worker_pool to get
  3016. *
  3017. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3018. * reference count and return it. If there already is a matching
  3019. * worker_pool, it will be used; otherwise, this function attempts to
  3020. * create a new one.
  3021. *
  3022. * Should be called with wq_pool_mutex held.
  3023. *
  3024. * Return: On success, a worker_pool with the same attributes as @attrs.
  3025. * On failure, %NULL.
  3026. */
  3027. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3028. {
  3029. u32 hash = wqattrs_hash(attrs);
  3030. struct worker_pool *pool;
  3031. int node;
  3032. lockdep_assert_held(&wq_pool_mutex);
  3033. /* do we already have a matching pool? */
  3034. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3035. if (wqattrs_equal(pool->attrs, attrs)) {
  3036. pool->refcnt++;
  3037. goto out_unlock;
  3038. }
  3039. }
  3040. /* nope, create a new one */
  3041. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3042. if (!pool || init_worker_pool(pool) < 0)
  3043. goto fail;
  3044. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3045. copy_workqueue_attrs(pool->attrs, attrs);
  3046. /*
  3047. * no_numa isn't a worker_pool attribute, always clear it. See
  3048. * 'struct workqueue_attrs' comments for detail.
  3049. */
  3050. pool->attrs->no_numa = false;
  3051. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3052. if (wq_numa_enabled) {
  3053. for_each_node(node) {
  3054. if (cpumask_subset(pool->attrs->cpumask,
  3055. wq_numa_possible_cpumask[node])) {
  3056. pool->node = node;
  3057. break;
  3058. }
  3059. }
  3060. }
  3061. if (worker_pool_assign_id(pool) < 0)
  3062. goto fail;
  3063. /* create and start the initial worker */
  3064. if (create_and_start_worker(pool) < 0)
  3065. goto fail;
  3066. /* install */
  3067. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3068. out_unlock:
  3069. return pool;
  3070. fail:
  3071. if (pool)
  3072. put_unbound_pool(pool);
  3073. return NULL;
  3074. }
  3075. static void rcu_free_pwq(struct rcu_head *rcu)
  3076. {
  3077. kmem_cache_free(pwq_cache,
  3078. container_of(rcu, struct pool_workqueue, rcu));
  3079. }
  3080. /*
  3081. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3082. * and needs to be destroyed.
  3083. */
  3084. static void pwq_unbound_release_workfn(struct work_struct *work)
  3085. {
  3086. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3087. unbound_release_work);
  3088. struct workqueue_struct *wq = pwq->wq;
  3089. struct worker_pool *pool = pwq->pool;
  3090. bool is_last;
  3091. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3092. return;
  3093. /*
  3094. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3095. * necessary on release but do it anyway. It's easier to verify
  3096. * and consistent with the linking path.
  3097. */
  3098. mutex_lock(&wq->mutex);
  3099. list_del_rcu(&pwq->pwqs_node);
  3100. is_last = list_empty(&wq->pwqs);
  3101. mutex_unlock(&wq->mutex);
  3102. mutex_lock(&wq_pool_mutex);
  3103. put_unbound_pool(pool);
  3104. mutex_unlock(&wq_pool_mutex);
  3105. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3106. /*
  3107. * If we're the last pwq going away, @wq is already dead and no one
  3108. * is gonna access it anymore. Free it.
  3109. */
  3110. if (is_last) {
  3111. free_workqueue_attrs(wq->unbound_attrs);
  3112. kfree(wq);
  3113. }
  3114. }
  3115. /**
  3116. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3117. * @pwq: target pool_workqueue
  3118. *
  3119. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3120. * workqueue's saved_max_active and activate delayed work items
  3121. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3122. */
  3123. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3124. {
  3125. struct workqueue_struct *wq = pwq->wq;
  3126. bool freezable = wq->flags & WQ_FREEZABLE;
  3127. /* for @wq->saved_max_active */
  3128. lockdep_assert_held(&wq->mutex);
  3129. /* fast exit for non-freezable wqs */
  3130. if (!freezable && pwq->max_active == wq->saved_max_active)
  3131. return;
  3132. spin_lock_irq(&pwq->pool->lock);
  3133. /*
  3134. * During [un]freezing, the caller is responsible for ensuring that
  3135. * this function is called at least once after @workqueue_freezing
  3136. * is updated and visible.
  3137. */
  3138. if (!freezable || !workqueue_freezing) {
  3139. pwq->max_active = wq->saved_max_active;
  3140. while (!list_empty(&pwq->delayed_works) &&
  3141. pwq->nr_active < pwq->max_active)
  3142. pwq_activate_first_delayed(pwq);
  3143. /*
  3144. * Need to kick a worker after thawed or an unbound wq's
  3145. * max_active is bumped. It's a slow path. Do it always.
  3146. */
  3147. wake_up_worker(pwq->pool);
  3148. } else {
  3149. pwq->max_active = 0;
  3150. }
  3151. spin_unlock_irq(&pwq->pool->lock);
  3152. }
  3153. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3154. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3155. struct worker_pool *pool)
  3156. {
  3157. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3158. memset(pwq, 0, sizeof(*pwq));
  3159. pwq->pool = pool;
  3160. pwq->wq = wq;
  3161. pwq->flush_color = -1;
  3162. pwq->refcnt = 1;
  3163. INIT_LIST_HEAD(&pwq->delayed_works);
  3164. INIT_LIST_HEAD(&pwq->pwqs_node);
  3165. INIT_LIST_HEAD(&pwq->mayday_node);
  3166. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3167. }
  3168. /* sync @pwq with the current state of its associated wq and link it */
  3169. static void link_pwq(struct pool_workqueue *pwq)
  3170. {
  3171. struct workqueue_struct *wq = pwq->wq;
  3172. lockdep_assert_held(&wq->mutex);
  3173. /* may be called multiple times, ignore if already linked */
  3174. if (!list_empty(&pwq->pwqs_node))
  3175. return;
  3176. /*
  3177. * Set the matching work_color. This is synchronized with
  3178. * wq->mutex to avoid confusing flush_workqueue().
  3179. */
  3180. pwq->work_color = wq->work_color;
  3181. /* sync max_active to the current setting */
  3182. pwq_adjust_max_active(pwq);
  3183. /* link in @pwq */
  3184. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3185. }
  3186. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3187. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3188. const struct workqueue_attrs *attrs)
  3189. {
  3190. struct worker_pool *pool;
  3191. struct pool_workqueue *pwq;
  3192. lockdep_assert_held(&wq_pool_mutex);
  3193. pool = get_unbound_pool(attrs);
  3194. if (!pool)
  3195. return NULL;
  3196. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3197. if (!pwq) {
  3198. put_unbound_pool(pool);
  3199. return NULL;
  3200. }
  3201. init_pwq(pwq, wq, pool);
  3202. return pwq;
  3203. }
  3204. /* undo alloc_unbound_pwq(), used only in the error path */
  3205. static void free_unbound_pwq(struct pool_workqueue *pwq)
  3206. {
  3207. lockdep_assert_held(&wq_pool_mutex);
  3208. if (pwq) {
  3209. put_unbound_pool(pwq->pool);
  3210. kmem_cache_free(pwq_cache, pwq);
  3211. }
  3212. }
  3213. /**
  3214. * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
  3215. * @attrs: the wq_attrs of interest
  3216. * @node: the target NUMA node
  3217. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3218. * @cpumask: outarg, the resulting cpumask
  3219. *
  3220. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3221. * @cpu_going_down is >= 0, that cpu is considered offline during
  3222. * calculation. The result is stored in @cpumask.
  3223. *
  3224. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3225. * enabled and @node has online CPUs requested by @attrs, the returned
  3226. * cpumask is the intersection of the possible CPUs of @node and
  3227. * @attrs->cpumask.
  3228. *
  3229. * The caller is responsible for ensuring that the cpumask of @node stays
  3230. * stable.
  3231. *
  3232. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3233. * %false if equal.
  3234. */
  3235. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3236. int cpu_going_down, cpumask_t *cpumask)
  3237. {
  3238. if (!wq_numa_enabled || attrs->no_numa)
  3239. goto use_dfl;
  3240. /* does @node have any online CPUs @attrs wants? */
  3241. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3242. if (cpu_going_down >= 0)
  3243. cpumask_clear_cpu(cpu_going_down, cpumask);
  3244. if (cpumask_empty(cpumask))
  3245. goto use_dfl;
  3246. /* yeap, return possible CPUs in @node that @attrs wants */
  3247. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3248. return !cpumask_equal(cpumask, attrs->cpumask);
  3249. use_dfl:
  3250. cpumask_copy(cpumask, attrs->cpumask);
  3251. return false;
  3252. }
  3253. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3254. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3255. int node,
  3256. struct pool_workqueue *pwq)
  3257. {
  3258. struct pool_workqueue *old_pwq;
  3259. lockdep_assert_held(&wq->mutex);
  3260. /* link_pwq() can handle duplicate calls */
  3261. link_pwq(pwq);
  3262. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3263. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3264. return old_pwq;
  3265. }
  3266. /**
  3267. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3268. * @wq: the target workqueue
  3269. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3270. *
  3271. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3272. * machines, this function maps a separate pwq to each NUMA node with
  3273. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3274. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3275. * items finish. Note that a work item which repeatedly requeues itself
  3276. * back-to-back will stay on its current pwq.
  3277. *
  3278. * Performs GFP_KERNEL allocations.
  3279. *
  3280. * Return: 0 on success and -errno on failure.
  3281. */
  3282. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3283. const struct workqueue_attrs *attrs)
  3284. {
  3285. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3286. struct pool_workqueue **pwq_tbl, *dfl_pwq;
  3287. int node, ret;
  3288. /* only unbound workqueues can change attributes */
  3289. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3290. return -EINVAL;
  3291. /* creating multiple pwqs breaks ordering guarantee */
  3292. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3293. return -EINVAL;
  3294. pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
  3295. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3296. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3297. if (!pwq_tbl || !new_attrs || !tmp_attrs)
  3298. goto enomem;
  3299. /* make a copy of @attrs and sanitize it */
  3300. copy_workqueue_attrs(new_attrs, attrs);
  3301. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3302. /*
  3303. * We may create multiple pwqs with differing cpumasks. Make a
  3304. * copy of @new_attrs which will be modified and used to obtain
  3305. * pools.
  3306. */
  3307. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3308. /*
  3309. * CPUs should stay stable across pwq creations and installations.
  3310. * Pin CPUs, determine the target cpumask for each node and create
  3311. * pwqs accordingly.
  3312. */
  3313. get_online_cpus();
  3314. mutex_lock(&wq_pool_mutex);
  3315. /*
  3316. * If something goes wrong during CPU up/down, we'll fall back to
  3317. * the default pwq covering whole @attrs->cpumask. Always create
  3318. * it even if we don't use it immediately.
  3319. */
  3320. dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3321. if (!dfl_pwq)
  3322. goto enomem_pwq;
  3323. for_each_node(node) {
  3324. if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
  3325. pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3326. if (!pwq_tbl[node])
  3327. goto enomem_pwq;
  3328. } else {
  3329. dfl_pwq->refcnt++;
  3330. pwq_tbl[node] = dfl_pwq;
  3331. }
  3332. }
  3333. mutex_unlock(&wq_pool_mutex);
  3334. /* all pwqs have been created successfully, let's install'em */
  3335. mutex_lock(&wq->mutex);
  3336. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3337. /* save the previous pwq and install the new one */
  3338. for_each_node(node)
  3339. pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
  3340. /* @dfl_pwq might not have been used, ensure it's linked */
  3341. link_pwq(dfl_pwq);
  3342. swap(wq->dfl_pwq, dfl_pwq);
  3343. mutex_unlock(&wq->mutex);
  3344. /* put the old pwqs */
  3345. for_each_node(node)
  3346. put_pwq_unlocked(pwq_tbl[node]);
  3347. put_pwq_unlocked(dfl_pwq);
  3348. put_online_cpus();
  3349. ret = 0;
  3350. /* fall through */
  3351. out_free:
  3352. free_workqueue_attrs(tmp_attrs);
  3353. free_workqueue_attrs(new_attrs);
  3354. kfree(pwq_tbl);
  3355. return ret;
  3356. enomem_pwq:
  3357. free_unbound_pwq(dfl_pwq);
  3358. for_each_node(node)
  3359. if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
  3360. free_unbound_pwq(pwq_tbl[node]);
  3361. mutex_unlock(&wq_pool_mutex);
  3362. put_online_cpus();
  3363. enomem:
  3364. ret = -ENOMEM;
  3365. goto out_free;
  3366. }
  3367. /**
  3368. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3369. * @wq: the target workqueue
  3370. * @cpu: the CPU coming up or going down
  3371. * @online: whether @cpu is coming up or going down
  3372. *
  3373. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3374. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3375. * @wq accordingly.
  3376. *
  3377. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3378. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3379. * correct.
  3380. *
  3381. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3382. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3383. * already executing the work items for the workqueue will lose their CPU
  3384. * affinity and may execute on any CPU. This is similar to how per-cpu
  3385. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3386. * affinity, it's the user's responsibility to flush the work item from
  3387. * CPU_DOWN_PREPARE.
  3388. */
  3389. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3390. bool online)
  3391. {
  3392. int node = cpu_to_node(cpu);
  3393. int cpu_off = online ? -1 : cpu;
  3394. struct pool_workqueue *old_pwq = NULL, *pwq;
  3395. struct workqueue_attrs *target_attrs;
  3396. cpumask_t *cpumask;
  3397. lockdep_assert_held(&wq_pool_mutex);
  3398. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
  3399. return;
  3400. /*
  3401. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3402. * Let's use a preallocated one. The following buf is protected by
  3403. * CPU hotplug exclusion.
  3404. */
  3405. target_attrs = wq_update_unbound_numa_attrs_buf;
  3406. cpumask = target_attrs->cpumask;
  3407. mutex_lock(&wq->mutex);
  3408. if (wq->unbound_attrs->no_numa)
  3409. goto out_unlock;
  3410. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3411. pwq = unbound_pwq_by_node(wq, node);
  3412. /*
  3413. * Let's determine what needs to be done. If the target cpumask is
  3414. * different from wq's, we need to compare it to @pwq's and create
  3415. * a new one if they don't match. If the target cpumask equals
  3416. * wq's, the default pwq should be used.
  3417. */
  3418. if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
  3419. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3420. goto out_unlock;
  3421. } else {
  3422. goto use_dfl_pwq;
  3423. }
  3424. mutex_unlock(&wq->mutex);
  3425. /* create a new pwq */
  3426. pwq = alloc_unbound_pwq(wq, target_attrs);
  3427. if (!pwq) {
  3428. pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3429. wq->name);
  3430. mutex_lock(&wq->mutex);
  3431. goto use_dfl_pwq;
  3432. }
  3433. /*
  3434. * Install the new pwq. As this function is called only from CPU
  3435. * hotplug callbacks and applying a new attrs is wrapped with
  3436. * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
  3437. * inbetween.
  3438. */
  3439. mutex_lock(&wq->mutex);
  3440. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3441. goto out_unlock;
  3442. use_dfl_pwq:
  3443. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3444. get_pwq(wq->dfl_pwq);
  3445. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3446. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3447. out_unlock:
  3448. mutex_unlock(&wq->mutex);
  3449. put_pwq_unlocked(old_pwq);
  3450. }
  3451. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3452. {
  3453. bool highpri = wq->flags & WQ_HIGHPRI;
  3454. int cpu, ret;
  3455. if (!(wq->flags & WQ_UNBOUND)) {
  3456. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3457. if (!wq->cpu_pwqs)
  3458. return -ENOMEM;
  3459. for_each_possible_cpu(cpu) {
  3460. struct pool_workqueue *pwq =
  3461. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3462. struct worker_pool *cpu_pools =
  3463. per_cpu(cpu_worker_pools, cpu);
  3464. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3465. mutex_lock(&wq->mutex);
  3466. link_pwq(pwq);
  3467. mutex_unlock(&wq->mutex);
  3468. }
  3469. return 0;
  3470. } else if (wq->flags & __WQ_ORDERED) {
  3471. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3472. /* there should only be single pwq for ordering guarantee */
  3473. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3474. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3475. "ordering guarantee broken for workqueue %s\n", wq->name);
  3476. return ret;
  3477. } else {
  3478. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3479. }
  3480. }
  3481. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3482. const char *name)
  3483. {
  3484. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3485. if (max_active < 1 || max_active > lim)
  3486. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3487. max_active, name, 1, lim);
  3488. return clamp_val(max_active, 1, lim);
  3489. }
  3490. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3491. unsigned int flags,
  3492. int max_active,
  3493. struct lock_class_key *key,
  3494. const char *lock_name, ...)
  3495. {
  3496. size_t tbl_size = 0;
  3497. va_list args;
  3498. struct workqueue_struct *wq;
  3499. struct pool_workqueue *pwq;
  3500. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3501. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3502. flags |= WQ_UNBOUND;
  3503. /* allocate wq and format name */
  3504. if (flags & WQ_UNBOUND)
  3505. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3506. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3507. if (!wq)
  3508. return NULL;
  3509. if (flags & WQ_UNBOUND) {
  3510. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3511. if (!wq->unbound_attrs)
  3512. goto err_free_wq;
  3513. }
  3514. va_start(args, lock_name);
  3515. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3516. va_end(args);
  3517. max_active = max_active ?: WQ_DFL_ACTIVE;
  3518. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3519. /* init wq */
  3520. wq->flags = flags;
  3521. wq->saved_max_active = max_active;
  3522. mutex_init(&wq->mutex);
  3523. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3524. INIT_LIST_HEAD(&wq->pwqs);
  3525. INIT_LIST_HEAD(&wq->flusher_queue);
  3526. INIT_LIST_HEAD(&wq->flusher_overflow);
  3527. INIT_LIST_HEAD(&wq->maydays);
  3528. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3529. INIT_LIST_HEAD(&wq->list);
  3530. if (alloc_and_link_pwqs(wq) < 0)
  3531. goto err_free_wq;
  3532. /*
  3533. * Workqueues which may be used during memory reclaim should
  3534. * have a rescuer to guarantee forward progress.
  3535. */
  3536. if (flags & WQ_MEM_RECLAIM) {
  3537. struct worker *rescuer;
  3538. rescuer = alloc_worker();
  3539. if (!rescuer)
  3540. goto err_destroy;
  3541. rescuer->rescue_wq = wq;
  3542. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3543. wq->name);
  3544. if (IS_ERR(rescuer->task)) {
  3545. kfree(rescuer);
  3546. goto err_destroy;
  3547. }
  3548. wq->rescuer = rescuer;
  3549. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3550. wake_up_process(rescuer->task);
  3551. }
  3552. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3553. goto err_destroy;
  3554. /*
  3555. * wq_pool_mutex protects global freeze state and workqueues list.
  3556. * Grab it, adjust max_active and add the new @wq to workqueues
  3557. * list.
  3558. */
  3559. mutex_lock(&wq_pool_mutex);
  3560. mutex_lock(&wq->mutex);
  3561. for_each_pwq(pwq, wq)
  3562. pwq_adjust_max_active(pwq);
  3563. mutex_unlock(&wq->mutex);
  3564. list_add(&wq->list, &workqueues);
  3565. mutex_unlock(&wq_pool_mutex);
  3566. return wq;
  3567. err_free_wq:
  3568. free_workqueue_attrs(wq->unbound_attrs);
  3569. kfree(wq);
  3570. return NULL;
  3571. err_destroy:
  3572. destroy_workqueue(wq);
  3573. return NULL;
  3574. }
  3575. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3576. /**
  3577. * destroy_workqueue - safely terminate a workqueue
  3578. * @wq: target workqueue
  3579. *
  3580. * Safely destroy a workqueue. All work currently pending will be done first.
  3581. */
  3582. void destroy_workqueue(struct workqueue_struct *wq)
  3583. {
  3584. struct pool_workqueue *pwq;
  3585. int node;
  3586. /* drain it before proceeding with destruction */
  3587. drain_workqueue(wq);
  3588. /* sanity checks */
  3589. mutex_lock(&wq->mutex);
  3590. for_each_pwq(pwq, wq) {
  3591. int i;
  3592. for (i = 0; i < WORK_NR_COLORS; i++) {
  3593. if (WARN_ON(pwq->nr_in_flight[i])) {
  3594. mutex_unlock(&wq->mutex);
  3595. return;
  3596. }
  3597. }
  3598. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3599. WARN_ON(pwq->nr_active) ||
  3600. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3601. mutex_unlock(&wq->mutex);
  3602. return;
  3603. }
  3604. }
  3605. mutex_unlock(&wq->mutex);
  3606. /*
  3607. * wq list is used to freeze wq, remove from list after
  3608. * flushing is complete in case freeze races us.
  3609. */
  3610. mutex_lock(&wq_pool_mutex);
  3611. list_del_init(&wq->list);
  3612. mutex_unlock(&wq_pool_mutex);
  3613. workqueue_sysfs_unregister(wq);
  3614. if (wq->rescuer) {
  3615. kthread_stop(wq->rescuer->task);
  3616. kfree(wq->rescuer);
  3617. wq->rescuer = NULL;
  3618. }
  3619. if (!(wq->flags & WQ_UNBOUND)) {
  3620. /*
  3621. * The base ref is never dropped on per-cpu pwqs. Directly
  3622. * free the pwqs and wq.
  3623. */
  3624. free_percpu(wq->cpu_pwqs);
  3625. kfree(wq);
  3626. } else {
  3627. /*
  3628. * We're the sole accessor of @wq at this point. Directly
  3629. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3630. * @wq will be freed when the last pwq is released.
  3631. */
  3632. for_each_node(node) {
  3633. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3634. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3635. put_pwq_unlocked(pwq);
  3636. }
  3637. /*
  3638. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3639. * put. Don't access it afterwards.
  3640. */
  3641. pwq = wq->dfl_pwq;
  3642. wq->dfl_pwq = NULL;
  3643. put_pwq_unlocked(pwq);
  3644. }
  3645. }
  3646. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3647. /**
  3648. * workqueue_set_max_active - adjust max_active of a workqueue
  3649. * @wq: target workqueue
  3650. * @max_active: new max_active value.
  3651. *
  3652. * Set max_active of @wq to @max_active.
  3653. *
  3654. * CONTEXT:
  3655. * Don't call from IRQ context.
  3656. */
  3657. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3658. {
  3659. struct pool_workqueue *pwq;
  3660. /* disallow meddling with max_active for ordered workqueues */
  3661. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3662. return;
  3663. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3664. mutex_lock(&wq->mutex);
  3665. wq->saved_max_active = max_active;
  3666. for_each_pwq(pwq, wq)
  3667. pwq_adjust_max_active(pwq);
  3668. mutex_unlock(&wq->mutex);
  3669. }
  3670. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3671. /**
  3672. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3673. *
  3674. * Determine whether %current is a workqueue rescuer. Can be used from
  3675. * work functions to determine whether it's being run off the rescuer task.
  3676. *
  3677. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3678. */
  3679. bool current_is_workqueue_rescuer(void)
  3680. {
  3681. struct worker *worker = current_wq_worker();
  3682. return worker && worker->rescue_wq;
  3683. }
  3684. /**
  3685. * workqueue_congested - test whether a workqueue is congested
  3686. * @cpu: CPU in question
  3687. * @wq: target workqueue
  3688. *
  3689. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3690. * no synchronization around this function and the test result is
  3691. * unreliable and only useful as advisory hints or for debugging.
  3692. *
  3693. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3694. * Note that both per-cpu and unbound workqueues may be associated with
  3695. * multiple pool_workqueues which have separate congested states. A
  3696. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3697. * contested on other CPUs / NUMA nodes.
  3698. *
  3699. * Return:
  3700. * %true if congested, %false otherwise.
  3701. */
  3702. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3703. {
  3704. struct pool_workqueue *pwq;
  3705. bool ret;
  3706. rcu_read_lock_sched();
  3707. if (cpu == WORK_CPU_UNBOUND)
  3708. cpu = smp_processor_id();
  3709. if (!(wq->flags & WQ_UNBOUND))
  3710. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3711. else
  3712. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3713. ret = !list_empty(&pwq->delayed_works);
  3714. rcu_read_unlock_sched();
  3715. return ret;
  3716. }
  3717. EXPORT_SYMBOL_GPL(workqueue_congested);
  3718. /**
  3719. * work_busy - test whether a work is currently pending or running
  3720. * @work: the work to be tested
  3721. *
  3722. * Test whether @work is currently pending or running. There is no
  3723. * synchronization around this function and the test result is
  3724. * unreliable and only useful as advisory hints or for debugging.
  3725. *
  3726. * Return:
  3727. * OR'd bitmask of WORK_BUSY_* bits.
  3728. */
  3729. unsigned int work_busy(struct work_struct *work)
  3730. {
  3731. struct worker_pool *pool;
  3732. unsigned long flags;
  3733. unsigned int ret = 0;
  3734. if (work_pending(work))
  3735. ret |= WORK_BUSY_PENDING;
  3736. local_irq_save(flags);
  3737. pool = get_work_pool(work);
  3738. if (pool) {
  3739. spin_lock(&pool->lock);
  3740. if (find_worker_executing_work(pool, work))
  3741. ret |= WORK_BUSY_RUNNING;
  3742. spin_unlock(&pool->lock);
  3743. }
  3744. local_irq_restore(flags);
  3745. return ret;
  3746. }
  3747. EXPORT_SYMBOL_GPL(work_busy);
  3748. /**
  3749. * set_worker_desc - set description for the current work item
  3750. * @fmt: printf-style format string
  3751. * @...: arguments for the format string
  3752. *
  3753. * This function can be called by a running work function to describe what
  3754. * the work item is about. If the worker task gets dumped, this
  3755. * information will be printed out together to help debugging. The
  3756. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3757. */
  3758. void set_worker_desc(const char *fmt, ...)
  3759. {
  3760. struct worker *worker = current_wq_worker();
  3761. va_list args;
  3762. if (worker) {
  3763. va_start(args, fmt);
  3764. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3765. va_end(args);
  3766. worker->desc_valid = true;
  3767. }
  3768. }
  3769. /**
  3770. * print_worker_info - print out worker information and description
  3771. * @log_lvl: the log level to use when printing
  3772. * @task: target task
  3773. *
  3774. * If @task is a worker and currently executing a work item, print out the
  3775. * name of the workqueue being serviced and worker description set with
  3776. * set_worker_desc() by the currently executing work item.
  3777. *
  3778. * This function can be safely called on any task as long as the
  3779. * task_struct itself is accessible. While safe, this function isn't
  3780. * synchronized and may print out mixups or garbages of limited length.
  3781. */
  3782. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3783. {
  3784. work_func_t *fn = NULL;
  3785. char name[WQ_NAME_LEN] = { };
  3786. char desc[WORKER_DESC_LEN] = { };
  3787. struct pool_workqueue *pwq = NULL;
  3788. struct workqueue_struct *wq = NULL;
  3789. bool desc_valid = false;
  3790. struct worker *worker;
  3791. if (!(task->flags & PF_WQ_WORKER))
  3792. return;
  3793. /*
  3794. * This function is called without any synchronization and @task
  3795. * could be in any state. Be careful with dereferences.
  3796. */
  3797. worker = probe_kthread_data(task);
  3798. /*
  3799. * Carefully copy the associated workqueue's workfn and name. Keep
  3800. * the original last '\0' in case the original contains garbage.
  3801. */
  3802. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3803. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3804. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3805. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3806. /* copy worker description */
  3807. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3808. if (desc_valid)
  3809. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3810. if (fn || name[0] || desc[0]) {
  3811. printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3812. if (desc[0])
  3813. pr_cont(" (%s)", desc);
  3814. pr_cont("\n");
  3815. }
  3816. }
  3817. /*
  3818. * CPU hotplug.
  3819. *
  3820. * There are two challenges in supporting CPU hotplug. Firstly, there
  3821. * are a lot of assumptions on strong associations among work, pwq and
  3822. * pool which make migrating pending and scheduled works very
  3823. * difficult to implement without impacting hot paths. Secondly,
  3824. * worker pools serve mix of short, long and very long running works making
  3825. * blocked draining impractical.
  3826. *
  3827. * This is solved by allowing the pools to be disassociated from the CPU
  3828. * running as an unbound one and allowing it to be reattached later if the
  3829. * cpu comes back online.
  3830. */
  3831. static void wq_unbind_fn(struct work_struct *work)
  3832. {
  3833. int cpu = smp_processor_id();
  3834. struct worker_pool *pool;
  3835. struct worker *worker;
  3836. for_each_cpu_worker_pool(pool, cpu) {
  3837. WARN_ON_ONCE(cpu != smp_processor_id());
  3838. mutex_lock(&pool->attach_mutex);
  3839. spin_lock_irq(&pool->lock);
  3840. /*
  3841. * We've blocked all attach/detach operations. Make all workers
  3842. * unbound and set DISASSOCIATED. Before this, all workers
  3843. * except for the ones which are still executing works from
  3844. * before the last CPU down must be on the cpu. After
  3845. * this, they may become diasporas.
  3846. */
  3847. for_each_pool_worker(worker, pool)
  3848. worker->flags |= WORKER_UNBOUND;
  3849. pool->flags |= POOL_DISASSOCIATED;
  3850. spin_unlock_irq(&pool->lock);
  3851. mutex_unlock(&pool->attach_mutex);
  3852. /*
  3853. * Call schedule() so that we cross rq->lock and thus can
  3854. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3855. * This is necessary as scheduler callbacks may be invoked
  3856. * from other cpus.
  3857. */
  3858. schedule();
  3859. /*
  3860. * Sched callbacks are disabled now. Zap nr_running.
  3861. * After this, nr_running stays zero and need_more_worker()
  3862. * and keep_working() are always true as long as the
  3863. * worklist is not empty. This pool now behaves as an
  3864. * unbound (in terms of concurrency management) pool which
  3865. * are served by workers tied to the pool.
  3866. */
  3867. atomic_set(&pool->nr_running, 0);
  3868. /*
  3869. * With concurrency management just turned off, a busy
  3870. * worker blocking could lead to lengthy stalls. Kick off
  3871. * unbound chain execution of currently pending work items.
  3872. */
  3873. spin_lock_irq(&pool->lock);
  3874. wake_up_worker(pool);
  3875. spin_unlock_irq(&pool->lock);
  3876. }
  3877. }
  3878. /**
  3879. * rebind_workers - rebind all workers of a pool to the associated CPU
  3880. * @pool: pool of interest
  3881. *
  3882. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3883. */
  3884. static void rebind_workers(struct worker_pool *pool)
  3885. {
  3886. struct worker *worker;
  3887. lockdep_assert_held(&pool->attach_mutex);
  3888. /*
  3889. * Restore CPU affinity of all workers. As all idle workers should
  3890. * be on the run-queue of the associated CPU before any local
  3891. * wake-ups for concurrency management happen, restore CPU affinty
  3892. * of all workers first and then clear UNBOUND. As we're called
  3893. * from CPU_ONLINE, the following shouldn't fail.
  3894. */
  3895. for_each_pool_worker(worker, pool)
  3896. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3897. pool->attrs->cpumask) < 0);
  3898. spin_lock_irq(&pool->lock);
  3899. for_each_pool_worker(worker, pool) {
  3900. unsigned int worker_flags = worker->flags;
  3901. /*
  3902. * A bound idle worker should actually be on the runqueue
  3903. * of the associated CPU for local wake-ups targeting it to
  3904. * work. Kick all idle workers so that they migrate to the
  3905. * associated CPU. Doing this in the same loop as
  3906. * replacing UNBOUND with REBOUND is safe as no worker will
  3907. * be bound before @pool->lock is released.
  3908. */
  3909. if (worker_flags & WORKER_IDLE)
  3910. wake_up_process(worker->task);
  3911. /*
  3912. * We want to clear UNBOUND but can't directly call
  3913. * worker_clr_flags() or adjust nr_running. Atomically
  3914. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3915. * @worker will clear REBOUND using worker_clr_flags() when
  3916. * it initiates the next execution cycle thus restoring
  3917. * concurrency management. Note that when or whether
  3918. * @worker clears REBOUND doesn't affect correctness.
  3919. *
  3920. * ACCESS_ONCE() is necessary because @worker->flags may be
  3921. * tested without holding any lock in
  3922. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3923. * fail incorrectly leading to premature concurrency
  3924. * management operations.
  3925. */
  3926. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3927. worker_flags |= WORKER_REBOUND;
  3928. worker_flags &= ~WORKER_UNBOUND;
  3929. ACCESS_ONCE(worker->flags) = worker_flags;
  3930. }
  3931. spin_unlock_irq(&pool->lock);
  3932. }
  3933. /**
  3934. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  3935. * @pool: unbound pool of interest
  3936. * @cpu: the CPU which is coming up
  3937. *
  3938. * An unbound pool may end up with a cpumask which doesn't have any online
  3939. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  3940. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  3941. * online CPU before, cpus_allowed of all its workers should be restored.
  3942. */
  3943. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  3944. {
  3945. static cpumask_t cpumask;
  3946. struct worker *worker;
  3947. lockdep_assert_held(&pool->attach_mutex);
  3948. /* is @cpu allowed for @pool? */
  3949. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  3950. return;
  3951. /* is @cpu the only online CPU? */
  3952. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  3953. if (cpumask_weight(&cpumask) != 1)
  3954. return;
  3955. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  3956. for_each_pool_worker(worker, pool)
  3957. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3958. pool->attrs->cpumask) < 0);
  3959. }
  3960. /*
  3961. * Workqueues should be brought up before normal priority CPU notifiers.
  3962. * This will be registered high priority CPU notifier.
  3963. */
  3964. static int workqueue_cpu_up_callback(struct notifier_block *nfb,
  3965. unsigned long action,
  3966. void *hcpu)
  3967. {
  3968. int cpu = (unsigned long)hcpu;
  3969. struct worker_pool *pool;
  3970. struct workqueue_struct *wq;
  3971. int pi;
  3972. switch (action & ~CPU_TASKS_FROZEN) {
  3973. case CPU_UP_PREPARE:
  3974. for_each_cpu_worker_pool(pool, cpu) {
  3975. if (pool->nr_workers)
  3976. continue;
  3977. if (create_and_start_worker(pool) < 0)
  3978. return NOTIFY_BAD;
  3979. }
  3980. break;
  3981. case CPU_DOWN_FAILED:
  3982. case CPU_ONLINE:
  3983. mutex_lock(&wq_pool_mutex);
  3984. for_each_pool(pool, pi) {
  3985. mutex_lock(&pool->attach_mutex);
  3986. if (pool->cpu == cpu) {
  3987. spin_lock_irq(&pool->lock);
  3988. pool->flags &= ~POOL_DISASSOCIATED;
  3989. spin_unlock_irq(&pool->lock);
  3990. rebind_workers(pool);
  3991. } else if (pool->cpu < 0) {
  3992. restore_unbound_workers_cpumask(pool, cpu);
  3993. }
  3994. mutex_unlock(&pool->attach_mutex);
  3995. }
  3996. /* update NUMA affinity of unbound workqueues */
  3997. list_for_each_entry(wq, &workqueues, list)
  3998. wq_update_unbound_numa(wq, cpu, true);
  3999. mutex_unlock(&wq_pool_mutex);
  4000. break;
  4001. }
  4002. return NOTIFY_OK;
  4003. }
  4004. /*
  4005. * Workqueues should be brought down after normal priority CPU notifiers.
  4006. * This will be registered as low priority CPU notifier.
  4007. */
  4008. static int workqueue_cpu_down_callback(struct notifier_block *nfb,
  4009. unsigned long action,
  4010. void *hcpu)
  4011. {
  4012. int cpu = (unsigned long)hcpu;
  4013. struct work_struct unbind_work;
  4014. struct workqueue_struct *wq;
  4015. switch (action & ~CPU_TASKS_FROZEN) {
  4016. case CPU_DOWN_PREPARE:
  4017. /* unbinding per-cpu workers should happen on the local CPU */
  4018. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  4019. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  4020. /* update NUMA affinity of unbound workqueues */
  4021. mutex_lock(&wq_pool_mutex);
  4022. list_for_each_entry(wq, &workqueues, list)
  4023. wq_update_unbound_numa(wq, cpu, false);
  4024. mutex_unlock(&wq_pool_mutex);
  4025. /* wait for per-cpu unbinding to finish */
  4026. flush_work(&unbind_work);
  4027. destroy_work_on_stack(&unbind_work);
  4028. break;
  4029. }
  4030. return NOTIFY_OK;
  4031. }
  4032. #ifdef CONFIG_SMP
  4033. struct work_for_cpu {
  4034. struct work_struct work;
  4035. long (*fn)(void *);
  4036. void *arg;
  4037. long ret;
  4038. };
  4039. static void work_for_cpu_fn(struct work_struct *work)
  4040. {
  4041. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4042. wfc->ret = wfc->fn(wfc->arg);
  4043. }
  4044. /**
  4045. * work_on_cpu - run a function in user context on a particular cpu
  4046. * @cpu: the cpu to run on
  4047. * @fn: the function to run
  4048. * @arg: the function arg
  4049. *
  4050. * It is up to the caller to ensure that the cpu doesn't go offline.
  4051. * The caller must not hold any locks which would prevent @fn from completing.
  4052. *
  4053. * Return: The value @fn returns.
  4054. */
  4055. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4056. {
  4057. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4058. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4059. schedule_work_on(cpu, &wfc.work);
  4060. flush_work(&wfc.work);
  4061. destroy_work_on_stack(&wfc.work);
  4062. return wfc.ret;
  4063. }
  4064. EXPORT_SYMBOL_GPL(work_on_cpu);
  4065. #endif /* CONFIG_SMP */
  4066. #ifdef CONFIG_FREEZER
  4067. /**
  4068. * freeze_workqueues_begin - begin freezing workqueues
  4069. *
  4070. * Start freezing workqueues. After this function returns, all freezable
  4071. * workqueues will queue new works to their delayed_works list instead of
  4072. * pool->worklist.
  4073. *
  4074. * CONTEXT:
  4075. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4076. */
  4077. void freeze_workqueues_begin(void)
  4078. {
  4079. struct workqueue_struct *wq;
  4080. struct pool_workqueue *pwq;
  4081. mutex_lock(&wq_pool_mutex);
  4082. WARN_ON_ONCE(workqueue_freezing);
  4083. workqueue_freezing = true;
  4084. list_for_each_entry(wq, &workqueues, list) {
  4085. mutex_lock(&wq->mutex);
  4086. for_each_pwq(pwq, wq)
  4087. pwq_adjust_max_active(pwq);
  4088. mutex_unlock(&wq->mutex);
  4089. }
  4090. mutex_unlock(&wq_pool_mutex);
  4091. }
  4092. /**
  4093. * freeze_workqueues_busy - are freezable workqueues still busy?
  4094. *
  4095. * Check whether freezing is complete. This function must be called
  4096. * between freeze_workqueues_begin() and thaw_workqueues().
  4097. *
  4098. * CONTEXT:
  4099. * Grabs and releases wq_pool_mutex.
  4100. *
  4101. * Return:
  4102. * %true if some freezable workqueues are still busy. %false if freezing
  4103. * is complete.
  4104. */
  4105. bool freeze_workqueues_busy(void)
  4106. {
  4107. bool busy = false;
  4108. struct workqueue_struct *wq;
  4109. struct pool_workqueue *pwq;
  4110. mutex_lock(&wq_pool_mutex);
  4111. WARN_ON_ONCE(!workqueue_freezing);
  4112. list_for_each_entry(wq, &workqueues, list) {
  4113. if (!(wq->flags & WQ_FREEZABLE))
  4114. continue;
  4115. /*
  4116. * nr_active is monotonically decreasing. It's safe
  4117. * to peek without lock.
  4118. */
  4119. rcu_read_lock_sched();
  4120. for_each_pwq(pwq, wq) {
  4121. WARN_ON_ONCE(pwq->nr_active < 0);
  4122. if (pwq->nr_active) {
  4123. busy = true;
  4124. rcu_read_unlock_sched();
  4125. goto out_unlock;
  4126. }
  4127. }
  4128. rcu_read_unlock_sched();
  4129. }
  4130. out_unlock:
  4131. mutex_unlock(&wq_pool_mutex);
  4132. return busy;
  4133. }
  4134. /**
  4135. * thaw_workqueues - thaw workqueues
  4136. *
  4137. * Thaw workqueues. Normal queueing is restored and all collected
  4138. * frozen works are transferred to their respective pool worklists.
  4139. *
  4140. * CONTEXT:
  4141. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4142. */
  4143. void thaw_workqueues(void)
  4144. {
  4145. struct workqueue_struct *wq;
  4146. struct pool_workqueue *pwq;
  4147. mutex_lock(&wq_pool_mutex);
  4148. if (!workqueue_freezing)
  4149. goto out_unlock;
  4150. workqueue_freezing = false;
  4151. /* restore max_active and repopulate worklist */
  4152. list_for_each_entry(wq, &workqueues, list) {
  4153. mutex_lock(&wq->mutex);
  4154. for_each_pwq(pwq, wq)
  4155. pwq_adjust_max_active(pwq);
  4156. mutex_unlock(&wq->mutex);
  4157. }
  4158. out_unlock:
  4159. mutex_unlock(&wq_pool_mutex);
  4160. }
  4161. #endif /* CONFIG_FREEZER */
  4162. static void __init wq_numa_init(void)
  4163. {
  4164. cpumask_var_t *tbl;
  4165. int node, cpu;
  4166. /* determine NUMA pwq table len - highest node id + 1 */
  4167. for_each_node(node)
  4168. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  4169. if (num_possible_nodes() <= 1)
  4170. return;
  4171. if (wq_disable_numa) {
  4172. pr_info("workqueue: NUMA affinity support disabled\n");
  4173. return;
  4174. }
  4175. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4176. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4177. /*
  4178. * We want masks of possible CPUs of each node which isn't readily
  4179. * available. Build one from cpu_to_node() which should have been
  4180. * fully initialized by now.
  4181. */
  4182. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  4183. BUG_ON(!tbl);
  4184. for_each_node(node)
  4185. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4186. node_online(node) ? node : NUMA_NO_NODE));
  4187. for_each_possible_cpu(cpu) {
  4188. node = cpu_to_node(cpu);
  4189. if (WARN_ON(node == NUMA_NO_NODE)) {
  4190. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4191. /* happens iff arch is bonkers, let's just proceed */
  4192. return;
  4193. }
  4194. cpumask_set_cpu(cpu, tbl[node]);
  4195. }
  4196. wq_numa_possible_cpumask = tbl;
  4197. wq_numa_enabled = true;
  4198. }
  4199. static int __init init_workqueues(void)
  4200. {
  4201. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4202. int i, cpu;
  4203. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4204. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4205. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4206. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4207. wq_numa_init();
  4208. /* initialize CPU pools */
  4209. for_each_possible_cpu(cpu) {
  4210. struct worker_pool *pool;
  4211. i = 0;
  4212. for_each_cpu_worker_pool(pool, cpu) {
  4213. BUG_ON(init_worker_pool(pool));
  4214. pool->cpu = cpu;
  4215. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4216. pool->attrs->nice = std_nice[i++];
  4217. pool->node = cpu_to_node(cpu);
  4218. /* alloc pool ID */
  4219. mutex_lock(&wq_pool_mutex);
  4220. BUG_ON(worker_pool_assign_id(pool));
  4221. mutex_unlock(&wq_pool_mutex);
  4222. }
  4223. }
  4224. /* create the initial worker */
  4225. for_each_online_cpu(cpu) {
  4226. struct worker_pool *pool;
  4227. for_each_cpu_worker_pool(pool, cpu) {
  4228. pool->flags &= ~POOL_DISASSOCIATED;
  4229. BUG_ON(create_and_start_worker(pool) < 0);
  4230. }
  4231. }
  4232. /* create default unbound and ordered wq attrs */
  4233. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4234. struct workqueue_attrs *attrs;
  4235. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4236. attrs->nice = std_nice[i];
  4237. unbound_std_wq_attrs[i] = attrs;
  4238. /*
  4239. * An ordered wq should have only one pwq as ordering is
  4240. * guaranteed by max_active which is enforced by pwqs.
  4241. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4242. */
  4243. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4244. attrs->nice = std_nice[i];
  4245. attrs->no_numa = true;
  4246. ordered_wq_attrs[i] = attrs;
  4247. }
  4248. system_wq = alloc_workqueue("events", 0, 0);
  4249. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4250. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4251. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4252. WQ_UNBOUND_MAX_ACTIVE);
  4253. system_freezable_wq = alloc_workqueue("events_freezable",
  4254. WQ_FREEZABLE, 0);
  4255. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4256. WQ_POWER_EFFICIENT, 0);
  4257. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4258. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4259. 0);
  4260. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4261. !system_unbound_wq || !system_freezable_wq ||
  4262. !system_power_efficient_wq ||
  4263. !system_freezable_power_efficient_wq);
  4264. return 0;
  4265. }
  4266. early_initcall(init_workqueues);