intel_ringbuffer.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_ring_stopped(struct intel_engine_cs *ring)
  57. {
  58. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *ring)
  62. {
  63. struct intel_ringbuffer *ringbuf = ring->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_ring_stopped(ring))
  66. return;
  67. ring->write_tail(ring, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *ring = req->ring;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(ring, cmd);
  86. intel_ring_emit(ring, MI_NOOP);
  87. intel_ring_advance(ring);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *ring = req->ring;
  96. struct drm_device *dev = ring->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(ring, cmd);
  138. intel_ring_emit(ring, MI_NOOP);
  139. intel_ring_advance(ring);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *ring = req->ring;
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *ring = req->ring;
  213. u32 flags = 0;
  214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, flags);
  250. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_advance(ring);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *ring = req->ring;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(ring, 0);
  267. intel_ring_emit(ring, 0);
  268. intel_ring_advance(ring);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *ring = req->ring;
  276. u32 flags = 0;
  277. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(ring, flags);
  322. intel_ring_emit(ring, scratch_addr);
  323. intel_ring_emit(ring, 0);
  324. intel_ring_advance(ring);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *ring = req->ring;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(ring, flags);
  338. intel_ring_emit(ring, scratch_addr);
  339. intel_ring_emit(ring, 0);
  340. intel_ring_emit(ring, 0);
  341. intel_ring_emit(ring, 0);
  342. intel_ring_advance(ring);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *ring,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. I915_WRITE_TAIL(ring, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  385. {
  386. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(ring->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  390. RING_ACTHD_UDW(ring->mmio_base));
  391. else if (INTEL_INFO(ring->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(ring->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  407. {
  408. struct drm_device *dev = ring->dev;
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (ring->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(ring->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(ring->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. ring->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *ring)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  465. if (!IS_GEN2(ring->dev)) {
  466. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(ring, 0);
  478. I915_WRITE_HEAD(ring, 0);
  479. ring->write_tail(ring, 0);
  480. if (!IS_GEN2(ring->dev)) {
  481. (void)I915_READ_CTL(ring);
  482. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  485. }
  486. static int init_ring_common(struct intel_engine_cs *ring)
  487. {
  488. struct drm_device *dev = ring->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = ring->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(ring)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. ring->name,
  499. I915_READ_CTL(ring),
  500. I915_READ_HEAD(ring),
  501. I915_READ_TAIL(ring),
  502. I915_READ_START(ring));
  503. if (!stop_ring(ring)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(ring);
  517. else
  518. ring_setup_phys_status_page(ring);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(ring);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(ring))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. ring->name, I915_READ_HEAD(ring));
  530. I915_WRITE_HEAD(ring, 0);
  531. (void)I915_READ_HEAD(ring);
  532. I915_WRITE_CTL(ring,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  537. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. ring->name,
  542. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  543. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  544. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  545. ret = -EIO;
  546. goto out;
  547. }
  548. ringbuf->last_retired_head = -1;
  549. ringbuf->head = I915_READ_HEAD(ring);
  550. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  551. intel_ring_update_space(ringbuf);
  552. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  553. out:
  554. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  555. return ret;
  556. }
  557. void
  558. intel_fini_pipe_control(struct intel_engine_cs *ring)
  559. {
  560. struct drm_device *dev = ring->dev;
  561. if (ring->scratch.obj == NULL)
  562. return;
  563. if (INTEL_INFO(dev)->gen >= 5) {
  564. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  565. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  566. }
  567. drm_gem_object_unreference(&ring->scratch.obj->base);
  568. ring->scratch.obj = NULL;
  569. }
  570. int
  571. intel_init_pipe_control(struct intel_engine_cs *ring)
  572. {
  573. int ret;
  574. WARN_ON(ring->scratch.obj);
  575. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  576. if (ring->scratch.obj == NULL) {
  577. DRM_ERROR("Failed to allocate seqno page\n");
  578. ret = -ENOMEM;
  579. goto err;
  580. }
  581. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  582. if (ret)
  583. goto err_unref;
  584. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  585. if (ret)
  586. goto err_unref;
  587. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  588. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  589. if (ring->scratch.cpu_page == NULL) {
  590. ret = -ENOMEM;
  591. goto err_unpin;
  592. }
  593. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  594. ring->name, ring->scratch.gtt_offset);
  595. return 0;
  596. err_unpin:
  597. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  598. err_unref:
  599. drm_gem_object_unreference(&ring->scratch.obj->base);
  600. err:
  601. return ret;
  602. }
  603. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  604. {
  605. int ret, i;
  606. struct intel_engine_cs *ring = req->ring;
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. struct i915_workarounds *w = &dev_priv->workarounds;
  610. if (w->count == 0)
  611. return 0;
  612. ring->gpu_caches_dirty = true;
  613. ret = intel_ring_flush_all_caches(req);
  614. if (ret)
  615. return ret;
  616. ret = intel_ring_begin(req, (w->count * 2 + 2));
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  620. for (i = 0; i < w->count; i++) {
  621. intel_ring_emit_reg(ring, w->reg[i].addr);
  622. intel_ring_emit(ring, w->reg[i].value);
  623. }
  624. intel_ring_emit(ring, MI_NOOP);
  625. intel_ring_advance(ring);
  626. ring->gpu_caches_dirty = true;
  627. ret = intel_ring_flush_all_caches(req);
  628. if (ret)
  629. return ret;
  630. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  631. return 0;
  632. }
  633. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  634. {
  635. int ret;
  636. ret = intel_ring_workarounds_emit(req);
  637. if (ret != 0)
  638. return ret;
  639. ret = i915_gem_render_state_init(req);
  640. if (ret)
  641. DRM_ERROR("init render state: %d\n", ret);
  642. return ret;
  643. }
  644. static int wa_add(struct drm_i915_private *dev_priv,
  645. i915_reg_t addr,
  646. const u32 mask, const u32 val)
  647. {
  648. const u32 idx = dev_priv->workarounds.count;
  649. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  650. return -ENOSPC;
  651. dev_priv->workarounds.reg[idx].addr = addr;
  652. dev_priv->workarounds.reg[idx].value = val;
  653. dev_priv->workarounds.reg[idx].mask = mask;
  654. dev_priv->workarounds.count++;
  655. return 0;
  656. }
  657. #define WA_REG(addr, mask, val) do { \
  658. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  659. if (r) \
  660. return r; \
  661. } while (0)
  662. #define WA_SET_BIT_MASKED(addr, mask) \
  663. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  664. #define WA_CLR_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  666. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  667. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  668. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  669. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  670. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  671. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  672. {
  673. struct drm_device *dev = ring->dev;
  674. struct drm_i915_private *dev_priv = dev->dev_private;
  675. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  676. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  677. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  678. /* WaDisablePartialInstShootdown:bdw,chv */
  679. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  680. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  681. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  682. * workaround for for a possible hang in the unlikely event a TLB
  683. * invalidation occurs during a PSD flush.
  684. */
  685. /* WaForceEnableNonCoherent:bdw,chv */
  686. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  687. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  688. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  689. HDC_FORCE_NON_COHERENT);
  690. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  691. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  692. * polygons in the same 8x4 pixel/sample area to be processed without
  693. * stalling waiting for the earlier ones to write to Hierarchical Z
  694. * buffer."
  695. *
  696. * This optimization is off by default for BDW and CHV; turn it on.
  697. */
  698. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  699. /* Wa4x4STCOptimizationDisable:bdw,chv */
  700. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  701. /*
  702. * BSpec recommends 8x4 when MSAA is used,
  703. * however in practice 16x4 seems fastest.
  704. *
  705. * Note that PS/WM thread counts depend on the WIZ hashing
  706. * disable bit, which we don't touch here, but it's good
  707. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  708. */
  709. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  710. GEN6_WIZ_HASHING_MASK,
  711. GEN6_WIZ_HASHING_16x4);
  712. return 0;
  713. }
  714. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  715. {
  716. int ret;
  717. struct drm_device *dev = ring->dev;
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. ret = gen8_init_workarounds(ring);
  720. if (ret)
  721. return ret;
  722. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  723. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  724. /* WaDisableDopClockGating:bdw */
  725. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  726. DOP_CLOCK_GATING_DISABLE);
  727. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  728. GEN8_SAMPLER_POWER_BYPASS_DIS);
  729. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  730. /* WaForceContextSaveRestoreNonCoherent:bdw */
  731. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  732. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  733. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  734. return 0;
  735. }
  736. static int chv_init_workarounds(struct intel_engine_cs *ring)
  737. {
  738. int ret;
  739. struct drm_device *dev = ring->dev;
  740. struct drm_i915_private *dev_priv = dev->dev_private;
  741. ret = gen8_init_workarounds(ring);
  742. if (ret)
  743. return ret;
  744. /* WaDisableThreadStallDopClockGating:chv */
  745. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  746. /* Improve HiZ throughput on CHV. */
  747. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  748. return 0;
  749. }
  750. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. uint32_t tmp;
  755. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  756. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  757. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  758. /* WaDisableKillLogic:bxt,skl */
  759. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  760. ECOCHK_DIS_TLB);
  761. /* WaDisablePartialInstShootdown:skl,bxt */
  762. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  763. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  764. /* Syncing dependencies between camera and graphics:skl,bxt */
  765. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  766. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  767. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  768. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  769. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  770. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  771. GEN9_DG_MIRROR_FIX_ENABLE);
  772. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  773. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  774. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  775. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  776. GEN9_RHWO_OPTIMIZATION_DISABLE);
  777. /*
  778. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  779. * but we do that in per ctx batchbuffer as there is an issue
  780. * with this register not getting restored on ctx restore
  781. */
  782. }
  783. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  784. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  785. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  786. GEN9_ENABLE_YV12_BUGFIX);
  787. /* Wa4x4STCOptimizationDisable:skl,bxt */
  788. /* WaDisablePartialResolveInVc:skl,bxt */
  789. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  790. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  791. /* WaCcsTlbPrefetchDisable:skl,bxt */
  792. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  793. GEN9_CCS_TLB_PREFETCH_ENABLE);
  794. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  795. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  796. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  797. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  798. PIXEL_MASK_CAMMING_DISABLE);
  799. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  800. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  801. if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
  802. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  803. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  804. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  805. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  806. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  807. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  808. GEN8_SAMPLER_POWER_BYPASS_DIS);
  809. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  810. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  811. return 0;
  812. }
  813. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  814. {
  815. struct drm_device *dev = ring->dev;
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u8 vals[3] = { 0, 0, 0 };
  818. unsigned int i;
  819. for (i = 0; i < 3; i++) {
  820. u8 ss;
  821. /*
  822. * Only consider slices where one, and only one, subslice has 7
  823. * EUs
  824. */
  825. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  826. continue;
  827. /*
  828. * subslice_7eu[i] != 0 (because of the check above) and
  829. * ss_max == 4 (maximum number of subslices possible per slice)
  830. *
  831. * -> 0 <= ss <= 3;
  832. */
  833. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  834. vals[i] = 3 - ss;
  835. }
  836. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  837. return 0;
  838. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  839. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  840. GEN9_IZ_HASHING_MASK(2) |
  841. GEN9_IZ_HASHING_MASK(1) |
  842. GEN9_IZ_HASHING_MASK(0),
  843. GEN9_IZ_HASHING(2, vals[2]) |
  844. GEN9_IZ_HASHING(1, vals[1]) |
  845. GEN9_IZ_HASHING(0, vals[0]));
  846. return 0;
  847. }
  848. static int skl_init_workarounds(struct intel_engine_cs *ring)
  849. {
  850. int ret;
  851. struct drm_device *dev = ring->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. ret = gen9_init_workarounds(ring);
  854. if (ret)
  855. return ret;
  856. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  857. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  858. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  859. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  860. }
  861. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  862. * involving this register should also be added to WA batch as required.
  863. */
  864. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  865. /* WaDisableLSQCROPERFforOCL:skl */
  866. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  867. GEN8_LQSC_RO_PERF_DIS);
  868. /* WaEnableGapsTsvCreditFix:skl */
  869. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  870. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  871. GEN9_GAPS_TSV_CREDIT_DISABLE));
  872. }
  873. /* WaDisablePowerCompilerClockGating:skl */
  874. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  875. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  876. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  877. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
  878. /*
  879. *Use Force Non-Coherent whenever executing a 3D context. This
  880. * is a workaround for a possible hang in the unlikely event
  881. * a TLB invalidation occurs during a PSD flush.
  882. */
  883. /* WaForceEnableNonCoherent:skl */
  884. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  885. HDC_FORCE_NON_COHERENT);
  886. /* WaDisableHDCInvalidation:skl */
  887. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  888. BDW_DISABLE_HDC_INVALIDATION);
  889. }
  890. /* WaBarrierPerformanceFixDisable:skl */
  891. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  892. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  893. HDC_FENCE_DEST_SLM_DISABLE |
  894. HDC_BARRIER_PERFORMANCE_DISABLE);
  895. /* WaDisableSbeCacheDispatchPortSharing:skl */
  896. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  897. WA_SET_BIT_MASKED(
  898. GEN7_HALF_SLICE_CHICKEN1,
  899. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  900. return skl_tune_iz_hashing(ring);
  901. }
  902. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  903. {
  904. int ret;
  905. struct drm_device *dev = ring->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. ret = gen9_init_workarounds(ring);
  908. if (ret)
  909. return ret;
  910. /* WaStoreMultiplePTEenable:bxt */
  911. /* This is a requirement according to Hardware specification */
  912. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  913. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  914. /* WaSetClckGatingDisableMedia:bxt */
  915. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  916. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  917. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  918. }
  919. /* WaDisableThreadStallDopClockGating:bxt */
  920. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  921. STALL_DOP_GATING_DISABLE);
  922. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  923. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  924. WA_SET_BIT_MASKED(
  925. GEN7_HALF_SLICE_CHICKEN1,
  926. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  927. }
  928. return 0;
  929. }
  930. int init_workarounds_ring(struct intel_engine_cs *ring)
  931. {
  932. struct drm_device *dev = ring->dev;
  933. struct drm_i915_private *dev_priv = dev->dev_private;
  934. WARN_ON(ring->id != RCS);
  935. dev_priv->workarounds.count = 0;
  936. if (IS_BROADWELL(dev))
  937. return bdw_init_workarounds(ring);
  938. if (IS_CHERRYVIEW(dev))
  939. return chv_init_workarounds(ring);
  940. if (IS_SKYLAKE(dev))
  941. return skl_init_workarounds(ring);
  942. if (IS_BROXTON(dev))
  943. return bxt_init_workarounds(ring);
  944. return 0;
  945. }
  946. static int init_render_ring(struct intel_engine_cs *ring)
  947. {
  948. struct drm_device *dev = ring->dev;
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. int ret = init_ring_common(ring);
  951. if (ret)
  952. return ret;
  953. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  954. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  955. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  956. /* We need to disable the AsyncFlip performance optimisations in order
  957. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  958. * programmed to '1' on all products.
  959. *
  960. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  961. */
  962. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  963. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  964. /* Required for the hardware to program scanline values for waiting */
  965. /* WaEnableFlushTlbInvalidationMode:snb */
  966. if (INTEL_INFO(dev)->gen == 6)
  967. I915_WRITE(GFX_MODE,
  968. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  969. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  970. if (IS_GEN7(dev))
  971. I915_WRITE(GFX_MODE_GEN7,
  972. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  973. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  974. if (IS_GEN6(dev)) {
  975. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  976. * "If this bit is set, STCunit will have LRA as replacement
  977. * policy. [...] This bit must be reset. LRA replacement
  978. * policy is not supported."
  979. */
  980. I915_WRITE(CACHE_MODE_0,
  981. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  982. }
  983. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  984. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  985. if (HAS_L3_DPF(dev))
  986. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  987. return init_workarounds_ring(ring);
  988. }
  989. static void render_ring_cleanup(struct intel_engine_cs *ring)
  990. {
  991. struct drm_device *dev = ring->dev;
  992. struct drm_i915_private *dev_priv = dev->dev_private;
  993. if (dev_priv->semaphore_obj) {
  994. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  995. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  996. dev_priv->semaphore_obj = NULL;
  997. }
  998. intel_fini_pipe_control(ring);
  999. }
  1000. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1001. unsigned int num_dwords)
  1002. {
  1003. #define MBOX_UPDATE_DWORDS 8
  1004. struct intel_engine_cs *signaller = signaller_req->ring;
  1005. struct drm_device *dev = signaller->dev;
  1006. struct drm_i915_private *dev_priv = dev->dev_private;
  1007. struct intel_engine_cs *waiter;
  1008. int i, ret, num_rings;
  1009. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1010. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1011. #undef MBOX_UPDATE_DWORDS
  1012. ret = intel_ring_begin(signaller_req, num_dwords);
  1013. if (ret)
  1014. return ret;
  1015. for_each_ring(waiter, dev_priv, i) {
  1016. u32 seqno;
  1017. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1018. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1019. continue;
  1020. seqno = i915_gem_request_get_seqno(signaller_req);
  1021. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1022. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1023. PIPE_CONTROL_QW_WRITE |
  1024. PIPE_CONTROL_FLUSH_ENABLE);
  1025. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1026. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1027. intel_ring_emit(signaller, seqno);
  1028. intel_ring_emit(signaller, 0);
  1029. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1030. MI_SEMAPHORE_TARGET(waiter->id));
  1031. intel_ring_emit(signaller, 0);
  1032. }
  1033. return 0;
  1034. }
  1035. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1036. unsigned int num_dwords)
  1037. {
  1038. #define MBOX_UPDATE_DWORDS 6
  1039. struct intel_engine_cs *signaller = signaller_req->ring;
  1040. struct drm_device *dev = signaller->dev;
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. struct intel_engine_cs *waiter;
  1043. int i, ret, num_rings;
  1044. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1045. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1046. #undef MBOX_UPDATE_DWORDS
  1047. ret = intel_ring_begin(signaller_req, num_dwords);
  1048. if (ret)
  1049. return ret;
  1050. for_each_ring(waiter, dev_priv, i) {
  1051. u32 seqno;
  1052. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1053. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1054. continue;
  1055. seqno = i915_gem_request_get_seqno(signaller_req);
  1056. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1057. MI_FLUSH_DW_OP_STOREDW);
  1058. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1059. MI_FLUSH_DW_USE_GTT);
  1060. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1061. intel_ring_emit(signaller, seqno);
  1062. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1063. MI_SEMAPHORE_TARGET(waiter->id));
  1064. intel_ring_emit(signaller, 0);
  1065. }
  1066. return 0;
  1067. }
  1068. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1069. unsigned int num_dwords)
  1070. {
  1071. struct intel_engine_cs *signaller = signaller_req->ring;
  1072. struct drm_device *dev = signaller->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_engine_cs *useless;
  1075. int i, ret, num_rings;
  1076. #define MBOX_UPDATE_DWORDS 3
  1077. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1078. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1079. #undef MBOX_UPDATE_DWORDS
  1080. ret = intel_ring_begin(signaller_req, num_dwords);
  1081. if (ret)
  1082. return ret;
  1083. for_each_ring(useless, dev_priv, i) {
  1084. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1085. if (i915_mmio_reg_valid(mbox_reg)) {
  1086. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1087. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1088. intel_ring_emit_reg(signaller, mbox_reg);
  1089. intel_ring_emit(signaller, seqno);
  1090. }
  1091. }
  1092. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1093. if (num_rings % 2 == 0)
  1094. intel_ring_emit(signaller, MI_NOOP);
  1095. return 0;
  1096. }
  1097. /**
  1098. * gen6_add_request - Update the semaphore mailbox registers
  1099. *
  1100. * @request - request to write to the ring
  1101. *
  1102. * Update the mailbox registers in the *other* rings with the current seqno.
  1103. * This acts like a signal in the canonical semaphore.
  1104. */
  1105. static int
  1106. gen6_add_request(struct drm_i915_gem_request *req)
  1107. {
  1108. struct intel_engine_cs *ring = req->ring;
  1109. int ret;
  1110. if (ring->semaphore.signal)
  1111. ret = ring->semaphore.signal(req, 4);
  1112. else
  1113. ret = intel_ring_begin(req, 4);
  1114. if (ret)
  1115. return ret;
  1116. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1117. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1118. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1119. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1120. __intel_ring_advance(ring);
  1121. return 0;
  1122. }
  1123. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1124. u32 seqno)
  1125. {
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. return dev_priv->last_seqno < seqno;
  1128. }
  1129. /**
  1130. * intel_ring_sync - sync the waiter to the signaller on seqno
  1131. *
  1132. * @waiter - ring that is waiting
  1133. * @signaller - ring which has, or will signal
  1134. * @seqno - seqno which the waiter will block on
  1135. */
  1136. static int
  1137. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1138. struct intel_engine_cs *signaller,
  1139. u32 seqno)
  1140. {
  1141. struct intel_engine_cs *waiter = waiter_req->ring;
  1142. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1143. int ret;
  1144. ret = intel_ring_begin(waiter_req, 4);
  1145. if (ret)
  1146. return ret;
  1147. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1148. MI_SEMAPHORE_GLOBAL_GTT |
  1149. MI_SEMAPHORE_POLL |
  1150. MI_SEMAPHORE_SAD_GTE_SDD);
  1151. intel_ring_emit(waiter, seqno);
  1152. intel_ring_emit(waiter,
  1153. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1154. intel_ring_emit(waiter,
  1155. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1156. intel_ring_advance(waiter);
  1157. return 0;
  1158. }
  1159. static int
  1160. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1161. struct intel_engine_cs *signaller,
  1162. u32 seqno)
  1163. {
  1164. struct intel_engine_cs *waiter = waiter_req->ring;
  1165. u32 dw1 = MI_SEMAPHORE_MBOX |
  1166. MI_SEMAPHORE_COMPARE |
  1167. MI_SEMAPHORE_REGISTER;
  1168. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1169. int ret;
  1170. /* Throughout all of the GEM code, seqno passed implies our current
  1171. * seqno is >= the last seqno executed. However for hardware the
  1172. * comparison is strictly greater than.
  1173. */
  1174. seqno -= 1;
  1175. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1176. ret = intel_ring_begin(waiter_req, 4);
  1177. if (ret)
  1178. return ret;
  1179. /* If seqno wrap happened, omit the wait with no-ops */
  1180. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1181. intel_ring_emit(waiter, dw1 | wait_mbox);
  1182. intel_ring_emit(waiter, seqno);
  1183. intel_ring_emit(waiter, 0);
  1184. intel_ring_emit(waiter, MI_NOOP);
  1185. } else {
  1186. intel_ring_emit(waiter, MI_NOOP);
  1187. intel_ring_emit(waiter, MI_NOOP);
  1188. intel_ring_emit(waiter, MI_NOOP);
  1189. intel_ring_emit(waiter, MI_NOOP);
  1190. }
  1191. intel_ring_advance(waiter);
  1192. return 0;
  1193. }
  1194. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1195. do { \
  1196. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1197. PIPE_CONTROL_DEPTH_STALL); \
  1198. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1199. intel_ring_emit(ring__, 0); \
  1200. intel_ring_emit(ring__, 0); \
  1201. } while (0)
  1202. static int
  1203. pc_render_add_request(struct drm_i915_gem_request *req)
  1204. {
  1205. struct intel_engine_cs *ring = req->ring;
  1206. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1207. int ret;
  1208. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1209. * incoherent with writes to memory, i.e. completely fubar,
  1210. * so we need to use PIPE_NOTIFY instead.
  1211. *
  1212. * However, we also need to workaround the qword write
  1213. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1214. * memory before requesting an interrupt.
  1215. */
  1216. ret = intel_ring_begin(req, 32);
  1217. if (ret)
  1218. return ret;
  1219. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1220. PIPE_CONTROL_WRITE_FLUSH |
  1221. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1222. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1223. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1224. intel_ring_emit(ring, 0);
  1225. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1226. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1227. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1228. scratch_addr += 2 * CACHELINE_BYTES;
  1229. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1230. scratch_addr += 2 * CACHELINE_BYTES;
  1231. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1232. scratch_addr += 2 * CACHELINE_BYTES;
  1233. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1234. scratch_addr += 2 * CACHELINE_BYTES;
  1235. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1236. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1237. PIPE_CONTROL_WRITE_FLUSH |
  1238. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1239. PIPE_CONTROL_NOTIFY);
  1240. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1241. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1242. intel_ring_emit(ring, 0);
  1243. __intel_ring_advance(ring);
  1244. return 0;
  1245. }
  1246. static u32
  1247. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1248. {
  1249. /* Workaround to force correct ordering between irq and seqno writes on
  1250. * ivb (and maybe also on snb) by reading from a CS register (like
  1251. * ACTHD) before reading the status page. */
  1252. if (!lazy_coherency) {
  1253. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1254. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1255. }
  1256. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1257. }
  1258. static u32
  1259. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1260. {
  1261. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1262. }
  1263. static void
  1264. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1265. {
  1266. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1267. }
  1268. static u32
  1269. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1270. {
  1271. return ring->scratch.cpu_page[0];
  1272. }
  1273. static void
  1274. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1275. {
  1276. ring->scratch.cpu_page[0] = seqno;
  1277. }
  1278. static bool
  1279. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1280. {
  1281. struct drm_device *dev = ring->dev;
  1282. struct drm_i915_private *dev_priv = dev->dev_private;
  1283. unsigned long flags;
  1284. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1285. return false;
  1286. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1287. if (ring->irq_refcount++ == 0)
  1288. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1289. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1290. return true;
  1291. }
  1292. static void
  1293. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1294. {
  1295. struct drm_device *dev = ring->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. unsigned long flags;
  1298. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1299. if (--ring->irq_refcount == 0)
  1300. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1301. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1302. }
  1303. static bool
  1304. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1305. {
  1306. struct drm_device *dev = ring->dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. unsigned long flags;
  1309. if (!intel_irqs_enabled(dev_priv))
  1310. return false;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (ring->irq_refcount++ == 0) {
  1313. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1314. I915_WRITE(IMR, dev_priv->irq_mask);
  1315. POSTING_READ(IMR);
  1316. }
  1317. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1318. return true;
  1319. }
  1320. static void
  1321. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1322. {
  1323. struct drm_device *dev = ring->dev;
  1324. struct drm_i915_private *dev_priv = dev->dev_private;
  1325. unsigned long flags;
  1326. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1327. if (--ring->irq_refcount == 0) {
  1328. dev_priv->irq_mask |= ring->irq_enable_mask;
  1329. I915_WRITE(IMR, dev_priv->irq_mask);
  1330. POSTING_READ(IMR);
  1331. }
  1332. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1333. }
  1334. static bool
  1335. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1336. {
  1337. struct drm_device *dev = ring->dev;
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. unsigned long flags;
  1340. if (!intel_irqs_enabled(dev_priv))
  1341. return false;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (ring->irq_refcount++ == 0) {
  1344. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1345. I915_WRITE16(IMR, dev_priv->irq_mask);
  1346. POSTING_READ16(IMR);
  1347. }
  1348. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1349. return true;
  1350. }
  1351. static void
  1352. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1353. {
  1354. struct drm_device *dev = ring->dev;
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. unsigned long flags;
  1357. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1358. if (--ring->irq_refcount == 0) {
  1359. dev_priv->irq_mask |= ring->irq_enable_mask;
  1360. I915_WRITE16(IMR, dev_priv->irq_mask);
  1361. POSTING_READ16(IMR);
  1362. }
  1363. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1364. }
  1365. static int
  1366. bsd_ring_flush(struct drm_i915_gem_request *req,
  1367. u32 invalidate_domains,
  1368. u32 flush_domains)
  1369. {
  1370. struct intel_engine_cs *ring = req->ring;
  1371. int ret;
  1372. ret = intel_ring_begin(req, 2);
  1373. if (ret)
  1374. return ret;
  1375. intel_ring_emit(ring, MI_FLUSH);
  1376. intel_ring_emit(ring, MI_NOOP);
  1377. intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static int
  1381. i9xx_add_request(struct drm_i915_gem_request *req)
  1382. {
  1383. struct intel_engine_cs *ring = req->ring;
  1384. int ret;
  1385. ret = intel_ring_begin(req, 4);
  1386. if (ret)
  1387. return ret;
  1388. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1389. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1390. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1391. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1392. __intel_ring_advance(ring);
  1393. return 0;
  1394. }
  1395. static bool
  1396. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (ring->irq_refcount++ == 0) {
  1405. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1406. I915_WRITE_IMR(ring,
  1407. ~(ring->irq_enable_mask |
  1408. GT_PARITY_ERROR(dev)));
  1409. else
  1410. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1411. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1412. }
  1413. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1414. return true;
  1415. }
  1416. static void
  1417. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1418. {
  1419. struct drm_device *dev = ring->dev;
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. unsigned long flags;
  1422. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1423. if (--ring->irq_refcount == 0) {
  1424. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1425. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1426. else
  1427. I915_WRITE_IMR(ring, ~0);
  1428. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1429. }
  1430. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1431. }
  1432. static bool
  1433. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1434. {
  1435. struct drm_device *dev = ring->dev;
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. unsigned long flags;
  1438. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1439. return false;
  1440. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1441. if (ring->irq_refcount++ == 0) {
  1442. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1443. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1444. }
  1445. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1446. return true;
  1447. }
  1448. static void
  1449. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1450. {
  1451. struct drm_device *dev = ring->dev;
  1452. struct drm_i915_private *dev_priv = dev->dev_private;
  1453. unsigned long flags;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (--ring->irq_refcount == 0) {
  1456. I915_WRITE_IMR(ring, ~0);
  1457. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1458. }
  1459. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1460. }
  1461. static bool
  1462. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1463. {
  1464. struct drm_device *dev = ring->dev;
  1465. struct drm_i915_private *dev_priv = dev->dev_private;
  1466. unsigned long flags;
  1467. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1468. return false;
  1469. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1470. if (ring->irq_refcount++ == 0) {
  1471. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1472. I915_WRITE_IMR(ring,
  1473. ~(ring->irq_enable_mask |
  1474. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1475. } else {
  1476. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1477. }
  1478. POSTING_READ(RING_IMR(ring->mmio_base));
  1479. }
  1480. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1481. return true;
  1482. }
  1483. static void
  1484. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1485. {
  1486. struct drm_device *dev = ring->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. unsigned long flags;
  1489. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1490. if (--ring->irq_refcount == 0) {
  1491. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1492. I915_WRITE_IMR(ring,
  1493. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1494. } else {
  1495. I915_WRITE_IMR(ring, ~0);
  1496. }
  1497. POSTING_READ(RING_IMR(ring->mmio_base));
  1498. }
  1499. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1500. }
  1501. static int
  1502. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1503. u64 offset, u32 length,
  1504. unsigned dispatch_flags)
  1505. {
  1506. struct intel_engine_cs *ring = req->ring;
  1507. int ret;
  1508. ret = intel_ring_begin(req, 2);
  1509. if (ret)
  1510. return ret;
  1511. intel_ring_emit(ring,
  1512. MI_BATCH_BUFFER_START |
  1513. MI_BATCH_GTT |
  1514. (dispatch_flags & I915_DISPATCH_SECURE ?
  1515. 0 : MI_BATCH_NON_SECURE_I965));
  1516. intel_ring_emit(ring, offset);
  1517. intel_ring_advance(ring);
  1518. return 0;
  1519. }
  1520. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1521. #define I830_BATCH_LIMIT (256*1024)
  1522. #define I830_TLB_ENTRIES (2)
  1523. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1524. static int
  1525. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1526. u64 offset, u32 len,
  1527. unsigned dispatch_flags)
  1528. {
  1529. struct intel_engine_cs *ring = req->ring;
  1530. u32 cs_offset = ring->scratch.gtt_offset;
  1531. int ret;
  1532. ret = intel_ring_begin(req, 6);
  1533. if (ret)
  1534. return ret;
  1535. /* Evict the invalid PTE TLBs */
  1536. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1537. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1538. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1539. intel_ring_emit(ring, cs_offset);
  1540. intel_ring_emit(ring, 0xdeadbeef);
  1541. intel_ring_emit(ring, MI_NOOP);
  1542. intel_ring_advance(ring);
  1543. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1544. if (len > I830_BATCH_LIMIT)
  1545. return -ENOSPC;
  1546. ret = intel_ring_begin(req, 6 + 2);
  1547. if (ret)
  1548. return ret;
  1549. /* Blit the batch (which has now all relocs applied) to the
  1550. * stable batch scratch bo area (so that the CS never
  1551. * stumbles over its tlb invalidation bug) ...
  1552. */
  1553. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1554. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1555. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1556. intel_ring_emit(ring, cs_offset);
  1557. intel_ring_emit(ring, 4096);
  1558. intel_ring_emit(ring, offset);
  1559. intel_ring_emit(ring, MI_FLUSH);
  1560. intel_ring_emit(ring, MI_NOOP);
  1561. intel_ring_advance(ring);
  1562. /* ... and execute it. */
  1563. offset = cs_offset;
  1564. }
  1565. ret = intel_ring_begin(req, 4);
  1566. if (ret)
  1567. return ret;
  1568. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1569. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1570. 0 : MI_BATCH_NON_SECURE));
  1571. intel_ring_emit(ring, offset + len - 8);
  1572. intel_ring_emit(ring, MI_NOOP);
  1573. intel_ring_advance(ring);
  1574. return 0;
  1575. }
  1576. static int
  1577. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1578. u64 offset, u32 len,
  1579. unsigned dispatch_flags)
  1580. {
  1581. struct intel_engine_cs *ring = req->ring;
  1582. int ret;
  1583. ret = intel_ring_begin(req, 2);
  1584. if (ret)
  1585. return ret;
  1586. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1587. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1588. 0 : MI_BATCH_NON_SECURE));
  1589. intel_ring_advance(ring);
  1590. return 0;
  1591. }
  1592. static void cleanup_status_page(struct intel_engine_cs *ring)
  1593. {
  1594. struct drm_i915_gem_object *obj;
  1595. obj = ring->status_page.obj;
  1596. if (obj == NULL)
  1597. return;
  1598. kunmap(sg_page(obj->pages->sgl));
  1599. i915_gem_object_ggtt_unpin(obj);
  1600. drm_gem_object_unreference(&obj->base);
  1601. ring->status_page.obj = NULL;
  1602. }
  1603. static int init_status_page(struct intel_engine_cs *ring)
  1604. {
  1605. struct drm_i915_gem_object *obj;
  1606. if ((obj = ring->status_page.obj) == NULL) {
  1607. unsigned flags;
  1608. int ret;
  1609. obj = i915_gem_alloc_object(ring->dev, 4096);
  1610. if (obj == NULL) {
  1611. DRM_ERROR("Failed to allocate status page\n");
  1612. return -ENOMEM;
  1613. }
  1614. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1615. if (ret)
  1616. goto err_unref;
  1617. flags = 0;
  1618. if (!HAS_LLC(ring->dev))
  1619. /* On g33, we cannot place HWS above 256MiB, so
  1620. * restrict its pinning to the low mappable arena.
  1621. * Though this restriction is not documented for
  1622. * gen4, gen5, or byt, they also behave similarly
  1623. * and hang if the HWS is placed at the top of the
  1624. * GTT. To generalise, it appears that all !llc
  1625. * platforms have issues with us placing the HWS
  1626. * above the mappable region (even though we never
  1627. * actualy map it).
  1628. */
  1629. flags |= PIN_MAPPABLE;
  1630. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1631. if (ret) {
  1632. err_unref:
  1633. drm_gem_object_unreference(&obj->base);
  1634. return ret;
  1635. }
  1636. ring->status_page.obj = obj;
  1637. }
  1638. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1639. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1640. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1641. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1642. ring->name, ring->status_page.gfx_addr);
  1643. return 0;
  1644. }
  1645. static int init_phys_status_page(struct intel_engine_cs *ring)
  1646. {
  1647. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1648. if (!dev_priv->status_page_dmah) {
  1649. dev_priv->status_page_dmah =
  1650. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1651. if (!dev_priv->status_page_dmah)
  1652. return -ENOMEM;
  1653. }
  1654. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1655. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1656. return 0;
  1657. }
  1658. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1659. {
  1660. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1661. vunmap(ringbuf->virtual_start);
  1662. else
  1663. iounmap(ringbuf->virtual_start);
  1664. ringbuf->virtual_start = NULL;
  1665. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1666. }
  1667. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1668. {
  1669. struct sg_page_iter sg_iter;
  1670. struct page **pages;
  1671. void *addr;
  1672. int i;
  1673. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1674. if (pages == NULL)
  1675. return NULL;
  1676. i = 0;
  1677. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1678. pages[i++] = sg_page_iter_page(&sg_iter);
  1679. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1680. drm_free_large(pages);
  1681. return addr;
  1682. }
  1683. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1684. struct intel_ringbuffer *ringbuf)
  1685. {
  1686. struct drm_i915_private *dev_priv = to_i915(dev);
  1687. struct drm_i915_gem_object *obj = ringbuf->obj;
  1688. int ret;
  1689. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1690. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
  1691. if (ret)
  1692. return ret;
  1693. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1694. if (ret) {
  1695. i915_gem_object_ggtt_unpin(obj);
  1696. return ret;
  1697. }
  1698. ringbuf->virtual_start = vmap_obj(obj);
  1699. if (ringbuf->virtual_start == NULL) {
  1700. i915_gem_object_ggtt_unpin(obj);
  1701. return -ENOMEM;
  1702. }
  1703. } else {
  1704. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1705. if (ret)
  1706. return ret;
  1707. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1708. if (ret) {
  1709. i915_gem_object_ggtt_unpin(obj);
  1710. return ret;
  1711. }
  1712. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1713. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1714. if (ringbuf->virtual_start == NULL) {
  1715. i915_gem_object_ggtt_unpin(obj);
  1716. return -EINVAL;
  1717. }
  1718. }
  1719. return 0;
  1720. }
  1721. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1722. {
  1723. drm_gem_object_unreference(&ringbuf->obj->base);
  1724. ringbuf->obj = NULL;
  1725. }
  1726. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1727. struct intel_ringbuffer *ringbuf)
  1728. {
  1729. struct drm_i915_gem_object *obj;
  1730. obj = NULL;
  1731. if (!HAS_LLC(dev))
  1732. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1733. if (obj == NULL)
  1734. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1735. if (obj == NULL)
  1736. return -ENOMEM;
  1737. /* mark ring buffers as read-only from GPU side by default */
  1738. obj->gt_ro = 1;
  1739. ringbuf->obj = obj;
  1740. return 0;
  1741. }
  1742. struct intel_ringbuffer *
  1743. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1744. {
  1745. struct intel_ringbuffer *ring;
  1746. int ret;
  1747. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1748. if (ring == NULL) {
  1749. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1750. engine->name);
  1751. return ERR_PTR(-ENOMEM);
  1752. }
  1753. ring->ring = engine;
  1754. list_add(&ring->link, &engine->buffers);
  1755. ring->size = size;
  1756. /* Workaround an erratum on the i830 which causes a hang if
  1757. * the TAIL pointer points to within the last 2 cachelines
  1758. * of the buffer.
  1759. */
  1760. ring->effective_size = size;
  1761. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1762. ring->effective_size -= 2 * CACHELINE_BYTES;
  1763. ring->last_retired_head = -1;
  1764. intel_ring_update_space(ring);
  1765. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1766. if (ret) {
  1767. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1768. engine->name, ret);
  1769. list_del(&ring->link);
  1770. kfree(ring);
  1771. return ERR_PTR(ret);
  1772. }
  1773. return ring;
  1774. }
  1775. void
  1776. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1777. {
  1778. intel_destroy_ringbuffer_obj(ring);
  1779. list_del(&ring->link);
  1780. kfree(ring);
  1781. }
  1782. static int intel_init_ring_buffer(struct drm_device *dev,
  1783. struct intel_engine_cs *ring)
  1784. {
  1785. struct intel_ringbuffer *ringbuf;
  1786. int ret;
  1787. WARN_ON(ring->buffer);
  1788. ring->dev = dev;
  1789. INIT_LIST_HEAD(&ring->active_list);
  1790. INIT_LIST_HEAD(&ring->request_list);
  1791. INIT_LIST_HEAD(&ring->execlist_queue);
  1792. INIT_LIST_HEAD(&ring->buffers);
  1793. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1794. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1795. init_waitqueue_head(&ring->irq_queue);
  1796. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1797. if (IS_ERR(ringbuf)) {
  1798. ret = PTR_ERR(ringbuf);
  1799. goto error;
  1800. }
  1801. ring->buffer = ringbuf;
  1802. if (I915_NEED_GFX_HWS(dev)) {
  1803. ret = init_status_page(ring);
  1804. if (ret)
  1805. goto error;
  1806. } else {
  1807. BUG_ON(ring->id != RCS);
  1808. ret = init_phys_status_page(ring);
  1809. if (ret)
  1810. goto error;
  1811. }
  1812. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1813. if (ret) {
  1814. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1815. ring->name, ret);
  1816. intel_destroy_ringbuffer_obj(ringbuf);
  1817. goto error;
  1818. }
  1819. ret = i915_cmd_parser_init_ring(ring);
  1820. if (ret)
  1821. goto error;
  1822. return 0;
  1823. error:
  1824. intel_cleanup_ring_buffer(ring);
  1825. return ret;
  1826. }
  1827. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1828. {
  1829. struct drm_i915_private *dev_priv;
  1830. if (!intel_ring_initialized(ring))
  1831. return;
  1832. dev_priv = to_i915(ring->dev);
  1833. if (ring->buffer) {
  1834. intel_stop_ring_buffer(ring);
  1835. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1836. intel_unpin_ringbuffer_obj(ring->buffer);
  1837. intel_ringbuffer_free(ring->buffer);
  1838. ring->buffer = NULL;
  1839. }
  1840. if (ring->cleanup)
  1841. ring->cleanup(ring);
  1842. cleanup_status_page(ring);
  1843. i915_cmd_parser_fini_ring(ring);
  1844. i915_gem_batch_pool_fini(&ring->batch_pool);
  1845. ring->dev = NULL;
  1846. }
  1847. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1848. {
  1849. struct intel_ringbuffer *ringbuf = ring->buffer;
  1850. struct drm_i915_gem_request *request;
  1851. unsigned space;
  1852. int ret;
  1853. if (intel_ring_space(ringbuf) >= n)
  1854. return 0;
  1855. /* The whole point of reserving space is to not wait! */
  1856. WARN_ON(ringbuf->reserved_in_use);
  1857. list_for_each_entry(request, &ring->request_list, list) {
  1858. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1859. ringbuf->size);
  1860. if (space >= n)
  1861. break;
  1862. }
  1863. if (WARN_ON(&request->list == &ring->request_list))
  1864. return -ENOSPC;
  1865. ret = i915_wait_request(request);
  1866. if (ret)
  1867. return ret;
  1868. ringbuf->space = space;
  1869. return 0;
  1870. }
  1871. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1872. {
  1873. uint32_t __iomem *virt;
  1874. int rem = ringbuf->size - ringbuf->tail;
  1875. virt = ringbuf->virtual_start + ringbuf->tail;
  1876. rem /= 4;
  1877. while (rem--)
  1878. iowrite32(MI_NOOP, virt++);
  1879. ringbuf->tail = 0;
  1880. intel_ring_update_space(ringbuf);
  1881. }
  1882. int intel_ring_idle(struct intel_engine_cs *ring)
  1883. {
  1884. struct drm_i915_gem_request *req;
  1885. /* Wait upon the last request to be completed */
  1886. if (list_empty(&ring->request_list))
  1887. return 0;
  1888. req = list_entry(ring->request_list.prev,
  1889. struct drm_i915_gem_request,
  1890. list);
  1891. /* Make sure we do not trigger any retires */
  1892. return __i915_wait_request(req,
  1893. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1894. to_i915(ring->dev)->mm.interruptible,
  1895. NULL, NULL);
  1896. }
  1897. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1898. {
  1899. request->ringbuf = request->ring->buffer;
  1900. return 0;
  1901. }
  1902. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1903. {
  1904. /*
  1905. * The first call merely notes the reserve request and is common for
  1906. * all back ends. The subsequent localised _begin() call actually
  1907. * ensures that the reservation is available. Without the begin, if
  1908. * the request creator immediately submitted the request without
  1909. * adding any commands to it then there might not actually be
  1910. * sufficient room for the submission commands.
  1911. */
  1912. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1913. return intel_ring_begin(request, 0);
  1914. }
  1915. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1916. {
  1917. WARN_ON(ringbuf->reserved_size);
  1918. WARN_ON(ringbuf->reserved_in_use);
  1919. ringbuf->reserved_size = size;
  1920. }
  1921. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1922. {
  1923. WARN_ON(ringbuf->reserved_in_use);
  1924. ringbuf->reserved_size = 0;
  1925. ringbuf->reserved_in_use = false;
  1926. }
  1927. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1928. {
  1929. WARN_ON(ringbuf->reserved_in_use);
  1930. ringbuf->reserved_in_use = true;
  1931. ringbuf->reserved_tail = ringbuf->tail;
  1932. }
  1933. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1934. {
  1935. WARN_ON(!ringbuf->reserved_in_use);
  1936. if (ringbuf->tail > ringbuf->reserved_tail) {
  1937. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1938. "request reserved size too small: %d vs %d!\n",
  1939. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1940. } else {
  1941. /*
  1942. * The ring was wrapped while the reserved space was in use.
  1943. * That means that some unknown amount of the ring tail was
  1944. * no-op filled and skipped. Thus simply adding the ring size
  1945. * to the tail and doing the above space check will not work.
  1946. * Rather than attempt to track how much tail was skipped,
  1947. * it is much simpler to say that also skipping the sanity
  1948. * check every once in a while is not a big issue.
  1949. */
  1950. }
  1951. ringbuf->reserved_size = 0;
  1952. ringbuf->reserved_in_use = false;
  1953. }
  1954. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1955. {
  1956. struct intel_ringbuffer *ringbuf = ring->buffer;
  1957. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1958. int remain_actual = ringbuf->size - ringbuf->tail;
  1959. int ret, total_bytes, wait_bytes = 0;
  1960. bool need_wrap = false;
  1961. if (ringbuf->reserved_in_use)
  1962. total_bytes = bytes;
  1963. else
  1964. total_bytes = bytes + ringbuf->reserved_size;
  1965. if (unlikely(bytes > remain_usable)) {
  1966. /*
  1967. * Not enough space for the basic request. So need to flush
  1968. * out the remainder and then wait for base + reserved.
  1969. */
  1970. wait_bytes = remain_actual + total_bytes;
  1971. need_wrap = true;
  1972. } else {
  1973. if (unlikely(total_bytes > remain_usable)) {
  1974. /*
  1975. * The base request will fit but the reserved space
  1976. * falls off the end. So only need to to wait for the
  1977. * reserved size after flushing out the remainder.
  1978. */
  1979. wait_bytes = remain_actual + ringbuf->reserved_size;
  1980. need_wrap = true;
  1981. } else if (total_bytes > ringbuf->space) {
  1982. /* No wrapping required, just waiting. */
  1983. wait_bytes = total_bytes;
  1984. }
  1985. }
  1986. if (wait_bytes) {
  1987. ret = ring_wait_for_space(ring, wait_bytes);
  1988. if (unlikely(ret))
  1989. return ret;
  1990. if (need_wrap)
  1991. __wrap_ring_buffer(ringbuf);
  1992. }
  1993. return 0;
  1994. }
  1995. int intel_ring_begin(struct drm_i915_gem_request *req,
  1996. int num_dwords)
  1997. {
  1998. struct intel_engine_cs *ring;
  1999. struct drm_i915_private *dev_priv;
  2000. int ret;
  2001. WARN_ON(req == NULL);
  2002. ring = req->ring;
  2003. dev_priv = ring->dev->dev_private;
  2004. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2005. dev_priv->mm.interruptible);
  2006. if (ret)
  2007. return ret;
  2008. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2009. if (ret)
  2010. return ret;
  2011. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2012. return 0;
  2013. }
  2014. /* Align the ring tail to a cacheline boundary */
  2015. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2016. {
  2017. struct intel_engine_cs *ring = req->ring;
  2018. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2019. int ret;
  2020. if (num_dwords == 0)
  2021. return 0;
  2022. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2023. ret = intel_ring_begin(req, num_dwords);
  2024. if (ret)
  2025. return ret;
  2026. while (num_dwords--)
  2027. intel_ring_emit(ring, MI_NOOP);
  2028. intel_ring_advance(ring);
  2029. return 0;
  2030. }
  2031. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2032. {
  2033. struct drm_device *dev = ring->dev;
  2034. struct drm_i915_private *dev_priv = dev->dev_private;
  2035. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2036. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2037. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2038. if (HAS_VEBOX(dev))
  2039. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2040. }
  2041. ring->set_seqno(ring, seqno);
  2042. ring->hangcheck.seqno = seqno;
  2043. }
  2044. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2045. u32 value)
  2046. {
  2047. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2048. /* Every tail move must follow the sequence below */
  2049. /* Disable notification that the ring is IDLE. The GT
  2050. * will then assume that it is busy and bring it out of rc6.
  2051. */
  2052. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2053. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2054. /* Clear the context id. Here be magic! */
  2055. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2056. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2057. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2058. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2059. 50))
  2060. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2061. /* Now that the ring is fully powered up, update the tail */
  2062. I915_WRITE_TAIL(ring, value);
  2063. POSTING_READ(RING_TAIL(ring->mmio_base));
  2064. /* Let the ring send IDLE messages to the GT again,
  2065. * and so let it sleep to conserve power when idle.
  2066. */
  2067. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2068. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2069. }
  2070. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2071. u32 invalidate, u32 flush)
  2072. {
  2073. struct intel_engine_cs *ring = req->ring;
  2074. uint32_t cmd;
  2075. int ret;
  2076. ret = intel_ring_begin(req, 4);
  2077. if (ret)
  2078. return ret;
  2079. cmd = MI_FLUSH_DW;
  2080. if (INTEL_INFO(ring->dev)->gen >= 8)
  2081. cmd += 1;
  2082. /* We always require a command barrier so that subsequent
  2083. * commands, such as breadcrumb interrupts, are strictly ordered
  2084. * wrt the contents of the write cache being flushed to memory
  2085. * (and thus being coherent from the CPU).
  2086. */
  2087. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2088. /*
  2089. * Bspec vol 1c.5 - video engine command streamer:
  2090. * "If ENABLED, all TLBs will be invalidated once the flush
  2091. * operation is complete. This bit is only valid when the
  2092. * Post-Sync Operation field is a value of 1h or 3h."
  2093. */
  2094. if (invalidate & I915_GEM_GPU_DOMAINS)
  2095. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2096. intel_ring_emit(ring, cmd);
  2097. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2098. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2099. intel_ring_emit(ring, 0); /* upper addr */
  2100. intel_ring_emit(ring, 0); /* value */
  2101. } else {
  2102. intel_ring_emit(ring, 0);
  2103. intel_ring_emit(ring, MI_NOOP);
  2104. }
  2105. intel_ring_advance(ring);
  2106. return 0;
  2107. }
  2108. static int
  2109. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2110. u64 offset, u32 len,
  2111. unsigned dispatch_flags)
  2112. {
  2113. struct intel_engine_cs *ring = req->ring;
  2114. bool ppgtt = USES_PPGTT(ring->dev) &&
  2115. !(dispatch_flags & I915_DISPATCH_SECURE);
  2116. int ret;
  2117. ret = intel_ring_begin(req, 4);
  2118. if (ret)
  2119. return ret;
  2120. /* FIXME(BDW): Address space and security selectors. */
  2121. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2122. (dispatch_flags & I915_DISPATCH_RS ?
  2123. MI_BATCH_RESOURCE_STREAMER : 0));
  2124. intel_ring_emit(ring, lower_32_bits(offset));
  2125. intel_ring_emit(ring, upper_32_bits(offset));
  2126. intel_ring_emit(ring, MI_NOOP);
  2127. intel_ring_advance(ring);
  2128. return 0;
  2129. }
  2130. static int
  2131. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2132. u64 offset, u32 len,
  2133. unsigned dispatch_flags)
  2134. {
  2135. struct intel_engine_cs *ring = req->ring;
  2136. int ret;
  2137. ret = intel_ring_begin(req, 2);
  2138. if (ret)
  2139. return ret;
  2140. intel_ring_emit(ring,
  2141. MI_BATCH_BUFFER_START |
  2142. (dispatch_flags & I915_DISPATCH_SECURE ?
  2143. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2144. (dispatch_flags & I915_DISPATCH_RS ?
  2145. MI_BATCH_RESOURCE_STREAMER : 0));
  2146. /* bit0-7 is the length on GEN6+ */
  2147. intel_ring_emit(ring, offset);
  2148. intel_ring_advance(ring);
  2149. return 0;
  2150. }
  2151. static int
  2152. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2153. u64 offset, u32 len,
  2154. unsigned dispatch_flags)
  2155. {
  2156. struct intel_engine_cs *ring = req->ring;
  2157. int ret;
  2158. ret = intel_ring_begin(req, 2);
  2159. if (ret)
  2160. return ret;
  2161. intel_ring_emit(ring,
  2162. MI_BATCH_BUFFER_START |
  2163. (dispatch_flags & I915_DISPATCH_SECURE ?
  2164. 0 : MI_BATCH_NON_SECURE_I965));
  2165. /* bit0-7 is the length on GEN6+ */
  2166. intel_ring_emit(ring, offset);
  2167. intel_ring_advance(ring);
  2168. return 0;
  2169. }
  2170. /* Blitter support (SandyBridge+) */
  2171. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2172. u32 invalidate, u32 flush)
  2173. {
  2174. struct intel_engine_cs *ring = req->ring;
  2175. struct drm_device *dev = ring->dev;
  2176. uint32_t cmd;
  2177. int ret;
  2178. ret = intel_ring_begin(req, 4);
  2179. if (ret)
  2180. return ret;
  2181. cmd = MI_FLUSH_DW;
  2182. if (INTEL_INFO(dev)->gen >= 8)
  2183. cmd += 1;
  2184. /* We always require a command barrier so that subsequent
  2185. * commands, such as breadcrumb interrupts, are strictly ordered
  2186. * wrt the contents of the write cache being flushed to memory
  2187. * (and thus being coherent from the CPU).
  2188. */
  2189. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2190. /*
  2191. * Bspec vol 1c.3 - blitter engine command streamer:
  2192. * "If ENABLED, all TLBs will be invalidated once the flush
  2193. * operation is complete. This bit is only valid when the
  2194. * Post-Sync Operation field is a value of 1h or 3h."
  2195. */
  2196. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2197. cmd |= MI_INVALIDATE_TLB;
  2198. intel_ring_emit(ring, cmd);
  2199. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2200. if (INTEL_INFO(dev)->gen >= 8) {
  2201. intel_ring_emit(ring, 0); /* upper addr */
  2202. intel_ring_emit(ring, 0); /* value */
  2203. } else {
  2204. intel_ring_emit(ring, 0);
  2205. intel_ring_emit(ring, MI_NOOP);
  2206. }
  2207. intel_ring_advance(ring);
  2208. return 0;
  2209. }
  2210. int intel_init_render_ring_buffer(struct drm_device *dev)
  2211. {
  2212. struct drm_i915_private *dev_priv = dev->dev_private;
  2213. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2214. struct drm_i915_gem_object *obj;
  2215. int ret;
  2216. ring->name = "render ring";
  2217. ring->id = RCS;
  2218. ring->mmio_base = RENDER_RING_BASE;
  2219. if (INTEL_INFO(dev)->gen >= 8) {
  2220. if (i915_semaphore_is_enabled(dev)) {
  2221. obj = i915_gem_alloc_object(dev, 4096);
  2222. if (obj == NULL) {
  2223. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2224. i915.semaphores = 0;
  2225. } else {
  2226. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2227. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2228. if (ret != 0) {
  2229. drm_gem_object_unreference(&obj->base);
  2230. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2231. i915.semaphores = 0;
  2232. } else
  2233. dev_priv->semaphore_obj = obj;
  2234. }
  2235. }
  2236. ring->init_context = intel_rcs_ctx_init;
  2237. ring->add_request = gen6_add_request;
  2238. ring->flush = gen8_render_ring_flush;
  2239. ring->irq_get = gen8_ring_get_irq;
  2240. ring->irq_put = gen8_ring_put_irq;
  2241. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2242. ring->get_seqno = gen6_ring_get_seqno;
  2243. ring->set_seqno = ring_set_seqno;
  2244. if (i915_semaphore_is_enabled(dev)) {
  2245. WARN_ON(!dev_priv->semaphore_obj);
  2246. ring->semaphore.sync_to = gen8_ring_sync;
  2247. ring->semaphore.signal = gen8_rcs_signal;
  2248. GEN8_RING_SEMAPHORE_INIT;
  2249. }
  2250. } else if (INTEL_INFO(dev)->gen >= 6) {
  2251. ring->init_context = intel_rcs_ctx_init;
  2252. ring->add_request = gen6_add_request;
  2253. ring->flush = gen7_render_ring_flush;
  2254. if (INTEL_INFO(dev)->gen == 6)
  2255. ring->flush = gen6_render_ring_flush;
  2256. ring->irq_get = gen6_ring_get_irq;
  2257. ring->irq_put = gen6_ring_put_irq;
  2258. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2259. ring->get_seqno = gen6_ring_get_seqno;
  2260. ring->set_seqno = ring_set_seqno;
  2261. if (i915_semaphore_is_enabled(dev)) {
  2262. ring->semaphore.sync_to = gen6_ring_sync;
  2263. ring->semaphore.signal = gen6_signal;
  2264. /*
  2265. * The current semaphore is only applied on pre-gen8
  2266. * platform. And there is no VCS2 ring on the pre-gen8
  2267. * platform. So the semaphore between RCS and VCS2 is
  2268. * initialized as INVALID. Gen8 will initialize the
  2269. * sema between VCS2 and RCS later.
  2270. */
  2271. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2272. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2273. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2274. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2275. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2276. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2277. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2278. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2279. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2280. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2281. }
  2282. } else if (IS_GEN5(dev)) {
  2283. ring->add_request = pc_render_add_request;
  2284. ring->flush = gen4_render_ring_flush;
  2285. ring->get_seqno = pc_render_get_seqno;
  2286. ring->set_seqno = pc_render_set_seqno;
  2287. ring->irq_get = gen5_ring_get_irq;
  2288. ring->irq_put = gen5_ring_put_irq;
  2289. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2290. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2291. } else {
  2292. ring->add_request = i9xx_add_request;
  2293. if (INTEL_INFO(dev)->gen < 4)
  2294. ring->flush = gen2_render_ring_flush;
  2295. else
  2296. ring->flush = gen4_render_ring_flush;
  2297. ring->get_seqno = ring_get_seqno;
  2298. ring->set_seqno = ring_set_seqno;
  2299. if (IS_GEN2(dev)) {
  2300. ring->irq_get = i8xx_ring_get_irq;
  2301. ring->irq_put = i8xx_ring_put_irq;
  2302. } else {
  2303. ring->irq_get = i9xx_ring_get_irq;
  2304. ring->irq_put = i9xx_ring_put_irq;
  2305. }
  2306. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2307. }
  2308. ring->write_tail = ring_write_tail;
  2309. if (IS_HASWELL(dev))
  2310. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2311. else if (IS_GEN8(dev))
  2312. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2313. else if (INTEL_INFO(dev)->gen >= 6)
  2314. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2315. else if (INTEL_INFO(dev)->gen >= 4)
  2316. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2317. else if (IS_I830(dev) || IS_845G(dev))
  2318. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2319. else
  2320. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2321. ring->init_hw = init_render_ring;
  2322. ring->cleanup = render_ring_cleanup;
  2323. /* Workaround batchbuffer to combat CS tlb bug. */
  2324. if (HAS_BROKEN_CS_TLB(dev)) {
  2325. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2326. if (obj == NULL) {
  2327. DRM_ERROR("Failed to allocate batch bo\n");
  2328. return -ENOMEM;
  2329. }
  2330. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2331. if (ret != 0) {
  2332. drm_gem_object_unreference(&obj->base);
  2333. DRM_ERROR("Failed to ping batch bo\n");
  2334. return ret;
  2335. }
  2336. ring->scratch.obj = obj;
  2337. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2338. }
  2339. ret = intel_init_ring_buffer(dev, ring);
  2340. if (ret)
  2341. return ret;
  2342. if (INTEL_INFO(dev)->gen >= 5) {
  2343. ret = intel_init_pipe_control(ring);
  2344. if (ret)
  2345. return ret;
  2346. }
  2347. return 0;
  2348. }
  2349. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2350. {
  2351. struct drm_i915_private *dev_priv = dev->dev_private;
  2352. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2353. ring->name = "bsd ring";
  2354. ring->id = VCS;
  2355. ring->write_tail = ring_write_tail;
  2356. if (INTEL_INFO(dev)->gen >= 6) {
  2357. ring->mmio_base = GEN6_BSD_RING_BASE;
  2358. /* gen6 bsd needs a special wa for tail updates */
  2359. if (IS_GEN6(dev))
  2360. ring->write_tail = gen6_bsd_ring_write_tail;
  2361. ring->flush = gen6_bsd_ring_flush;
  2362. ring->add_request = gen6_add_request;
  2363. ring->get_seqno = gen6_ring_get_seqno;
  2364. ring->set_seqno = ring_set_seqno;
  2365. if (INTEL_INFO(dev)->gen >= 8) {
  2366. ring->irq_enable_mask =
  2367. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2368. ring->irq_get = gen8_ring_get_irq;
  2369. ring->irq_put = gen8_ring_put_irq;
  2370. ring->dispatch_execbuffer =
  2371. gen8_ring_dispatch_execbuffer;
  2372. if (i915_semaphore_is_enabled(dev)) {
  2373. ring->semaphore.sync_to = gen8_ring_sync;
  2374. ring->semaphore.signal = gen8_xcs_signal;
  2375. GEN8_RING_SEMAPHORE_INIT;
  2376. }
  2377. } else {
  2378. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2379. ring->irq_get = gen6_ring_get_irq;
  2380. ring->irq_put = gen6_ring_put_irq;
  2381. ring->dispatch_execbuffer =
  2382. gen6_ring_dispatch_execbuffer;
  2383. if (i915_semaphore_is_enabled(dev)) {
  2384. ring->semaphore.sync_to = gen6_ring_sync;
  2385. ring->semaphore.signal = gen6_signal;
  2386. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2387. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2388. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2389. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2390. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2391. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2392. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2393. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2394. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2395. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2396. }
  2397. }
  2398. } else {
  2399. ring->mmio_base = BSD_RING_BASE;
  2400. ring->flush = bsd_ring_flush;
  2401. ring->add_request = i9xx_add_request;
  2402. ring->get_seqno = ring_get_seqno;
  2403. ring->set_seqno = ring_set_seqno;
  2404. if (IS_GEN5(dev)) {
  2405. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2406. ring->irq_get = gen5_ring_get_irq;
  2407. ring->irq_put = gen5_ring_put_irq;
  2408. } else {
  2409. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2410. ring->irq_get = i9xx_ring_get_irq;
  2411. ring->irq_put = i9xx_ring_put_irq;
  2412. }
  2413. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2414. }
  2415. ring->init_hw = init_ring_common;
  2416. return intel_init_ring_buffer(dev, ring);
  2417. }
  2418. /**
  2419. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2420. */
  2421. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2422. {
  2423. struct drm_i915_private *dev_priv = dev->dev_private;
  2424. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2425. ring->name = "bsd2 ring";
  2426. ring->id = VCS2;
  2427. ring->write_tail = ring_write_tail;
  2428. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2429. ring->flush = gen6_bsd_ring_flush;
  2430. ring->add_request = gen6_add_request;
  2431. ring->get_seqno = gen6_ring_get_seqno;
  2432. ring->set_seqno = ring_set_seqno;
  2433. ring->irq_enable_mask =
  2434. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2435. ring->irq_get = gen8_ring_get_irq;
  2436. ring->irq_put = gen8_ring_put_irq;
  2437. ring->dispatch_execbuffer =
  2438. gen8_ring_dispatch_execbuffer;
  2439. if (i915_semaphore_is_enabled(dev)) {
  2440. ring->semaphore.sync_to = gen8_ring_sync;
  2441. ring->semaphore.signal = gen8_xcs_signal;
  2442. GEN8_RING_SEMAPHORE_INIT;
  2443. }
  2444. ring->init_hw = init_ring_common;
  2445. return intel_init_ring_buffer(dev, ring);
  2446. }
  2447. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2448. {
  2449. struct drm_i915_private *dev_priv = dev->dev_private;
  2450. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2451. ring->name = "blitter ring";
  2452. ring->id = BCS;
  2453. ring->mmio_base = BLT_RING_BASE;
  2454. ring->write_tail = ring_write_tail;
  2455. ring->flush = gen6_ring_flush;
  2456. ring->add_request = gen6_add_request;
  2457. ring->get_seqno = gen6_ring_get_seqno;
  2458. ring->set_seqno = ring_set_seqno;
  2459. if (INTEL_INFO(dev)->gen >= 8) {
  2460. ring->irq_enable_mask =
  2461. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2462. ring->irq_get = gen8_ring_get_irq;
  2463. ring->irq_put = gen8_ring_put_irq;
  2464. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2465. if (i915_semaphore_is_enabled(dev)) {
  2466. ring->semaphore.sync_to = gen8_ring_sync;
  2467. ring->semaphore.signal = gen8_xcs_signal;
  2468. GEN8_RING_SEMAPHORE_INIT;
  2469. }
  2470. } else {
  2471. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2472. ring->irq_get = gen6_ring_get_irq;
  2473. ring->irq_put = gen6_ring_put_irq;
  2474. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2475. if (i915_semaphore_is_enabled(dev)) {
  2476. ring->semaphore.signal = gen6_signal;
  2477. ring->semaphore.sync_to = gen6_ring_sync;
  2478. /*
  2479. * The current semaphore is only applied on pre-gen8
  2480. * platform. And there is no VCS2 ring on the pre-gen8
  2481. * platform. So the semaphore between BCS and VCS2 is
  2482. * initialized as INVALID. Gen8 will initialize the
  2483. * sema between BCS and VCS2 later.
  2484. */
  2485. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2486. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2487. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2488. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2489. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2490. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2491. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2492. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2493. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2494. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2495. }
  2496. }
  2497. ring->init_hw = init_ring_common;
  2498. return intel_init_ring_buffer(dev, ring);
  2499. }
  2500. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2501. {
  2502. struct drm_i915_private *dev_priv = dev->dev_private;
  2503. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2504. ring->name = "video enhancement ring";
  2505. ring->id = VECS;
  2506. ring->mmio_base = VEBOX_RING_BASE;
  2507. ring->write_tail = ring_write_tail;
  2508. ring->flush = gen6_ring_flush;
  2509. ring->add_request = gen6_add_request;
  2510. ring->get_seqno = gen6_ring_get_seqno;
  2511. ring->set_seqno = ring_set_seqno;
  2512. if (INTEL_INFO(dev)->gen >= 8) {
  2513. ring->irq_enable_mask =
  2514. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2515. ring->irq_get = gen8_ring_get_irq;
  2516. ring->irq_put = gen8_ring_put_irq;
  2517. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2518. if (i915_semaphore_is_enabled(dev)) {
  2519. ring->semaphore.sync_to = gen8_ring_sync;
  2520. ring->semaphore.signal = gen8_xcs_signal;
  2521. GEN8_RING_SEMAPHORE_INIT;
  2522. }
  2523. } else {
  2524. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2525. ring->irq_get = hsw_vebox_get_irq;
  2526. ring->irq_put = hsw_vebox_put_irq;
  2527. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2528. if (i915_semaphore_is_enabled(dev)) {
  2529. ring->semaphore.sync_to = gen6_ring_sync;
  2530. ring->semaphore.signal = gen6_signal;
  2531. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2532. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2533. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2534. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2535. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2536. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2537. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2538. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2539. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2540. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2541. }
  2542. }
  2543. ring->init_hw = init_ring_common;
  2544. return intel_init_ring_buffer(dev, ring);
  2545. }
  2546. int
  2547. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2548. {
  2549. struct intel_engine_cs *ring = req->ring;
  2550. int ret;
  2551. if (!ring->gpu_caches_dirty)
  2552. return 0;
  2553. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2554. if (ret)
  2555. return ret;
  2556. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2557. ring->gpu_caches_dirty = false;
  2558. return 0;
  2559. }
  2560. int
  2561. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2562. {
  2563. struct intel_engine_cs *ring = req->ring;
  2564. uint32_t flush_domains;
  2565. int ret;
  2566. flush_domains = 0;
  2567. if (ring->gpu_caches_dirty)
  2568. flush_domains = I915_GEM_GPU_DOMAINS;
  2569. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2570. if (ret)
  2571. return ret;
  2572. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2573. ring->gpu_caches_dirty = false;
  2574. return 0;
  2575. }
  2576. void
  2577. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2578. {
  2579. int ret;
  2580. if (!intel_ring_initialized(ring))
  2581. return;
  2582. ret = intel_ring_idle(ring);
  2583. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2584. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2585. ring->name, ret);
  2586. stop_ring(ring);
  2587. }