sdma_v3_0.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  50. {
  51. SDMA0_REGISTER_OFFSET,
  52. SDMA1_REGISTER_OFFSET
  53. };
  54. static const u32 golden_settings_tonga_a11[] =
  55. {
  56. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  58. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  59. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  60. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  62. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  63. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  65. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  66. };
  67. static const u32 tonga_mgcg_cgcg_init[] =
  68. {
  69. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  70. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  71. };
  72. static const u32 cz_golden_settings_a11[] =
  73. {
  74. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  75. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  76. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  77. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  78. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  83. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  84. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  85. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91. };
  92. /*
  93. * sDMA - System DMA
  94. * Starting with CIK, the GPU has new asynchronous
  95. * DMA engines. These engines are used for compute
  96. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  97. * and each one supports 1 ring buffer used for gfx
  98. * and 2 queues used for compute.
  99. *
  100. * The programming model is very similar to the CP
  101. * (ring buffer, IBs, etc.), but sDMA has it's own
  102. * packet format that is different from the PM4 format
  103. * used by the CP. sDMA supports copying data, writing
  104. * embedded data, solid fills, and a number of other
  105. * things. It also has support for tiling/detiling of
  106. * buffers.
  107. */
  108. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  109. {
  110. switch (adev->asic_type) {
  111. case CHIP_TONGA:
  112. amdgpu_program_register_sequence(adev,
  113. tonga_mgcg_cgcg_init,
  114. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  115. amdgpu_program_register_sequence(adev,
  116. golden_settings_tonga_a11,
  117. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  118. break;
  119. case CHIP_CARRIZO:
  120. amdgpu_program_register_sequence(adev,
  121. cz_mgcg_cgcg_init,
  122. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  123. amdgpu_program_register_sequence(adev,
  124. cz_golden_settings_a11,
  125. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  126. break;
  127. default:
  128. break;
  129. }
  130. }
  131. /**
  132. * sdma_v3_0_init_microcode - load ucode images from disk
  133. *
  134. * @adev: amdgpu_device pointer
  135. *
  136. * Use the firmware interface to load the ucode images into
  137. * the driver (not loaded into hw).
  138. * Returns 0 on success, error on failure.
  139. */
  140. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  141. {
  142. const char *chip_name;
  143. char fw_name[30];
  144. int err, i;
  145. struct amdgpu_firmware_info *info = NULL;
  146. const struct common_firmware_header *header = NULL;
  147. DRM_DEBUG("\n");
  148. switch (adev->asic_type) {
  149. case CHIP_TONGA:
  150. chip_name = "tonga";
  151. break;
  152. case CHIP_CARRIZO:
  153. chip_name = "carrizo";
  154. break;
  155. default: BUG();
  156. }
  157. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  158. if (i == 0)
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  160. else
  161. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  162. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  163. if (err)
  164. goto out;
  165. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  166. if (err)
  167. goto out;
  168. if (adev->firmware.smu_load) {
  169. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  170. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  171. info->fw = adev->sdma[i].fw;
  172. header = (const struct common_firmware_header *)info->fw->data;
  173. adev->firmware.fw_size +=
  174. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  175. }
  176. }
  177. out:
  178. if (err) {
  179. printk(KERN_ERR
  180. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  181. fw_name);
  182. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  183. release_firmware(adev->sdma[i].fw);
  184. adev->sdma[i].fw = NULL;
  185. }
  186. }
  187. return err;
  188. }
  189. /**
  190. * sdma_v3_0_ring_get_rptr - get the current read pointer
  191. *
  192. * @ring: amdgpu ring pointer
  193. *
  194. * Get the current rptr from the hardware (VI+).
  195. */
  196. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  197. {
  198. u32 rptr;
  199. /* XXX check if swapping is necessary on BE */
  200. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  201. return rptr;
  202. }
  203. /**
  204. * sdma_v3_0_ring_get_wptr - get the current write pointer
  205. *
  206. * @ring: amdgpu ring pointer
  207. *
  208. * Get the current wptr from the hardware (VI+).
  209. */
  210. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  211. {
  212. struct amdgpu_device *adev = ring->adev;
  213. u32 wptr;
  214. if (ring->use_doorbell) {
  215. /* XXX check if swapping is necessary on BE */
  216. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  217. } else {
  218. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  219. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  220. }
  221. return wptr;
  222. }
  223. /**
  224. * sdma_v3_0_ring_set_wptr - commit the write pointer
  225. *
  226. * @ring: amdgpu ring pointer
  227. *
  228. * Write the wptr back to the hardware (VI+).
  229. */
  230. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  231. {
  232. struct amdgpu_device *adev = ring->adev;
  233. if (ring->use_doorbell) {
  234. /* XXX check if swapping is necessary on BE */
  235. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  236. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  237. } else {
  238. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  239. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  240. }
  241. }
  242. /**
  243. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  244. *
  245. * @ring: amdgpu ring pointer
  246. * @ib: IB object to schedule
  247. *
  248. * Schedule an IB in the DMA ring (VI).
  249. */
  250. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  251. struct amdgpu_ib *ib)
  252. {
  253. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  254. u32 next_rptr = ring->wptr + 5;
  255. while ((next_rptr & 7) != 2)
  256. next_rptr++;
  257. next_rptr += 6;
  258. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  259. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  260. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  261. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  262. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  263. amdgpu_ring_write(ring, next_rptr);
  264. /* IB packet must end on a 8 DW boundary */
  265. while ((ring->wptr & 7) != 2)
  266. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
  267. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  268. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  269. /* base must be 32 byte aligned */
  270. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  271. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  272. amdgpu_ring_write(ring, ib->length_dw);
  273. amdgpu_ring_write(ring, 0);
  274. amdgpu_ring_write(ring, 0);
  275. }
  276. /**
  277. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  278. *
  279. * @ring: amdgpu ring pointer
  280. *
  281. * Emit an hdp flush packet on the requested DMA ring.
  282. */
  283. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  284. {
  285. u32 ref_and_mask = 0;
  286. if (ring == &ring->adev->sdma[0].ring)
  287. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  288. else
  289. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  290. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  291. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  292. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  293. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  294. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  295. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  296. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  297. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  298. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  299. }
  300. /**
  301. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  302. *
  303. * @ring: amdgpu ring pointer
  304. * @fence: amdgpu fence object
  305. *
  306. * Add a DMA fence packet to the ring to write
  307. * the fence seq number and DMA trap packet to generate
  308. * an interrupt if needed (VI).
  309. */
  310. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  311. bool write64bits)
  312. {
  313. /* write the fence */
  314. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  315. amdgpu_ring_write(ring, lower_32_bits(addr));
  316. amdgpu_ring_write(ring, upper_32_bits(addr));
  317. amdgpu_ring_write(ring, lower_32_bits(seq));
  318. /* optionally write high bits as well */
  319. if (write64bits) {
  320. addr += 4;
  321. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  322. amdgpu_ring_write(ring, lower_32_bits(addr));
  323. amdgpu_ring_write(ring, upper_32_bits(addr));
  324. amdgpu_ring_write(ring, upper_32_bits(seq));
  325. }
  326. /* generate an interrupt */
  327. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  328. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  329. }
  330. /**
  331. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  332. *
  333. * @ring: amdgpu_ring structure holding ring information
  334. * @semaphore: amdgpu semaphore object
  335. * @emit_wait: wait or signal semaphore
  336. *
  337. * Add a DMA semaphore packet to the ring wait on or signal
  338. * other rings (VI).
  339. */
  340. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  341. struct amdgpu_semaphore *semaphore,
  342. bool emit_wait)
  343. {
  344. u64 addr = semaphore->gpu_addr;
  345. u32 sig = emit_wait ? 0 : 1;
  346. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  347. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  348. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  349. amdgpu_ring_write(ring, upper_32_bits(addr));
  350. return true;
  351. }
  352. /**
  353. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  354. *
  355. * @adev: amdgpu_device pointer
  356. *
  357. * Stop the gfx async dma ring buffers (VI).
  358. */
  359. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  360. {
  361. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  362. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  363. u32 rb_cntl, ib_cntl;
  364. int i;
  365. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  366. (adev->mman.buffer_funcs_ring == sdma1))
  367. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  368. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  369. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  370. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  371. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  372. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  373. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  374. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  375. }
  376. sdma0->ready = false;
  377. sdma1->ready = false;
  378. }
  379. /**
  380. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  381. *
  382. * @adev: amdgpu_device pointer
  383. *
  384. * Stop the compute async dma queues (VI).
  385. */
  386. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  387. {
  388. /* XXX todo */
  389. }
  390. /**
  391. * sdma_v3_0_enable - stop the async dma engines
  392. *
  393. * @adev: amdgpu_device pointer
  394. * @enable: enable/disable the DMA MEs.
  395. *
  396. * Halt or unhalt the async dma engines (VI).
  397. */
  398. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  399. {
  400. u32 f32_cntl;
  401. int i;
  402. if (enable == false) {
  403. sdma_v3_0_gfx_stop(adev);
  404. sdma_v3_0_rlc_stop(adev);
  405. }
  406. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  407. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  408. if (enable)
  409. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  410. else
  411. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  412. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  413. }
  414. }
  415. /**
  416. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  417. *
  418. * @adev: amdgpu_device pointer
  419. *
  420. * Set up the gfx DMA ring buffers and enable them (VI).
  421. * Returns 0 for success, error for failure.
  422. */
  423. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  424. {
  425. struct amdgpu_ring *ring;
  426. u32 rb_cntl, ib_cntl;
  427. u32 rb_bufsz;
  428. u32 wb_offset;
  429. u32 doorbell;
  430. int i, j, r;
  431. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  432. ring = &adev->sdma[i].ring;
  433. wb_offset = (ring->rptr_offs * 4);
  434. mutex_lock(&adev->srbm_mutex);
  435. for (j = 0; j < 16; j++) {
  436. vi_srbm_select(adev, 0, 0, 0, j);
  437. /* SDMA GFX */
  438. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  439. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  440. }
  441. vi_srbm_select(adev, 0, 0, 0, 0);
  442. mutex_unlock(&adev->srbm_mutex);
  443. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  444. /* Set ring buffer size in dwords */
  445. rb_bufsz = order_base_2(ring->ring_size / 4);
  446. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  447. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  448. #ifdef __BIG_ENDIAN
  449. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  450. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  451. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  452. #endif
  453. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  454. /* Initialize the ring buffer's read and write pointers */
  455. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  456. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  457. /* set the wb address whether it's enabled or not */
  458. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  459. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  460. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  461. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  462. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  463. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  464. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  465. ring->wptr = 0;
  466. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  467. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  468. if (ring->use_doorbell) {
  469. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  470. OFFSET, ring->doorbell_index);
  471. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  472. } else {
  473. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  474. }
  475. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  476. /* enable DMA RB */
  477. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  478. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  479. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  480. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  481. #ifdef __BIG_ENDIAN
  482. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  483. #endif
  484. /* enable DMA IBs */
  485. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  486. ring->ready = true;
  487. r = amdgpu_ring_test_ring(ring);
  488. if (r) {
  489. ring->ready = false;
  490. return r;
  491. }
  492. if (adev->mman.buffer_funcs_ring == ring)
  493. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  494. }
  495. return 0;
  496. }
  497. /**
  498. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  499. *
  500. * @adev: amdgpu_device pointer
  501. *
  502. * Set up the compute DMA queues and enable them (VI).
  503. * Returns 0 for success, error for failure.
  504. */
  505. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  506. {
  507. /* XXX todo */
  508. return 0;
  509. }
  510. /**
  511. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  512. *
  513. * @adev: amdgpu_device pointer
  514. *
  515. * Loads the sDMA0/1 ucode.
  516. * Returns 0 for success, -EINVAL if the ucode is not available.
  517. */
  518. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  519. {
  520. const struct sdma_firmware_header_v1_0 *hdr;
  521. const __le32 *fw_data;
  522. u32 fw_size;
  523. int i, j;
  524. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  525. return -EINVAL;
  526. /* halt the MEs */
  527. sdma_v3_0_enable(adev, false);
  528. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  529. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  530. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  531. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  532. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  533. fw_data = (const __le32 *)
  534. (adev->sdma[i].fw->data +
  535. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  536. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  537. for (j = 0; j < fw_size; j++)
  538. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  539. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  540. }
  541. return 0;
  542. }
  543. /**
  544. * sdma_v3_0_start - setup and start the async dma engines
  545. *
  546. * @adev: amdgpu_device pointer
  547. *
  548. * Set up the DMA engines and enable them (VI).
  549. * Returns 0 for success, error for failure.
  550. */
  551. static int sdma_v3_0_start(struct amdgpu_device *adev)
  552. {
  553. int r;
  554. if (!adev->firmware.smu_load) {
  555. r = sdma_v3_0_load_microcode(adev);
  556. if (r)
  557. return r;
  558. } else {
  559. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  560. AMDGPU_UCODE_ID_SDMA0);
  561. if (r)
  562. return -EINVAL;
  563. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  564. AMDGPU_UCODE_ID_SDMA1);
  565. if (r)
  566. return -EINVAL;
  567. }
  568. /* unhalt the MEs */
  569. sdma_v3_0_enable(adev, true);
  570. /* start the gfx rings and rlc compute queues */
  571. r = sdma_v3_0_gfx_resume(adev);
  572. if (r)
  573. return r;
  574. r = sdma_v3_0_rlc_resume(adev);
  575. if (r)
  576. return r;
  577. return 0;
  578. }
  579. /**
  580. * sdma_v3_0_ring_test_ring - simple async dma engine test
  581. *
  582. * @ring: amdgpu_ring structure holding ring information
  583. *
  584. * Test the DMA engine by writing using it to write an
  585. * value to memory. (VI).
  586. * Returns 0 for success, error for failure.
  587. */
  588. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  589. {
  590. struct amdgpu_device *adev = ring->adev;
  591. unsigned i;
  592. unsigned index;
  593. int r;
  594. u32 tmp;
  595. u64 gpu_addr;
  596. r = amdgpu_wb_get(adev, &index);
  597. if (r) {
  598. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  599. return r;
  600. }
  601. gpu_addr = adev->wb.gpu_addr + (index * 4);
  602. tmp = 0xCAFEDEAD;
  603. adev->wb.wb[index] = cpu_to_le32(tmp);
  604. r = amdgpu_ring_lock(ring, 5);
  605. if (r) {
  606. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  607. amdgpu_wb_free(adev, index);
  608. return r;
  609. }
  610. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  611. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  612. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  613. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  614. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  615. amdgpu_ring_write(ring, 0xDEADBEEF);
  616. amdgpu_ring_unlock_commit(ring);
  617. for (i = 0; i < adev->usec_timeout; i++) {
  618. tmp = le32_to_cpu(adev->wb.wb[index]);
  619. if (tmp == 0xDEADBEEF)
  620. break;
  621. DRM_UDELAY(1);
  622. }
  623. if (i < adev->usec_timeout) {
  624. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  625. } else {
  626. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  627. ring->idx, tmp);
  628. r = -EINVAL;
  629. }
  630. amdgpu_wb_free(adev, index);
  631. return r;
  632. }
  633. /**
  634. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  635. *
  636. * @ring: amdgpu_ring structure holding ring information
  637. *
  638. * Test a simple IB in the DMA ring (VI).
  639. * Returns 0 on success, error on failure.
  640. */
  641. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  642. {
  643. struct amdgpu_device *adev = ring->adev;
  644. struct amdgpu_ib ib;
  645. unsigned i;
  646. unsigned index;
  647. int r;
  648. u32 tmp = 0;
  649. u64 gpu_addr;
  650. r = amdgpu_wb_get(adev, &index);
  651. if (r) {
  652. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  653. return r;
  654. }
  655. gpu_addr = adev->wb.gpu_addr + (index * 4);
  656. tmp = 0xCAFEDEAD;
  657. adev->wb.wb[index] = cpu_to_le32(tmp);
  658. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  659. if (r) {
  660. amdgpu_wb_free(adev, index);
  661. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  662. return r;
  663. }
  664. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  665. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  666. ib.ptr[1] = lower_32_bits(gpu_addr);
  667. ib.ptr[2] = upper_32_bits(gpu_addr);
  668. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  669. ib.ptr[4] = 0xDEADBEEF;
  670. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  671. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  672. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  673. ib.length_dw = 8;
  674. r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_UNDEFINED);
  675. if (r) {
  676. amdgpu_ib_free(adev, &ib);
  677. amdgpu_wb_free(adev, index);
  678. DRM_ERROR("amdgpu: failed to schedule ib (%d).\n", r);
  679. return r;
  680. }
  681. r = amdgpu_fence_wait(ib.fence, false);
  682. if (r) {
  683. amdgpu_ib_free(adev, &ib);
  684. amdgpu_wb_free(adev, index);
  685. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  686. return r;
  687. }
  688. for (i = 0; i < adev->usec_timeout; i++) {
  689. tmp = le32_to_cpu(adev->wb.wb[index]);
  690. if (tmp == 0xDEADBEEF)
  691. break;
  692. DRM_UDELAY(1);
  693. }
  694. if (i < adev->usec_timeout) {
  695. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  696. ib.fence->ring->idx, i);
  697. } else {
  698. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  699. r = -EINVAL;
  700. }
  701. amdgpu_ib_free(adev, &ib);
  702. amdgpu_wb_free(adev, index);
  703. return r;
  704. }
  705. /**
  706. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  707. *
  708. * @ib: indirect buffer to fill with commands
  709. * @pe: addr of the page entry
  710. * @src: src addr to copy from
  711. * @count: number of page entries to update
  712. *
  713. * Update PTEs by copying them from the GART using sDMA (CIK).
  714. */
  715. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  716. uint64_t pe, uint64_t src,
  717. unsigned count)
  718. {
  719. while (count) {
  720. unsigned bytes = count * 8;
  721. if (bytes > 0x1FFFF8)
  722. bytes = 0x1FFFF8;
  723. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  724. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  725. ib->ptr[ib->length_dw++] = bytes;
  726. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  727. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  728. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  729. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  730. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  731. pe += bytes;
  732. src += bytes;
  733. count -= bytes / 8;
  734. }
  735. }
  736. /**
  737. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  738. *
  739. * @ib: indirect buffer to fill with commands
  740. * @pe: addr of the page entry
  741. * @addr: dst addr to write into pe
  742. * @count: number of page entries to update
  743. * @incr: increase next addr by incr bytes
  744. * @flags: access flags
  745. *
  746. * Update PTEs by writing them manually using sDMA (CIK).
  747. */
  748. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  749. uint64_t pe,
  750. uint64_t addr, unsigned count,
  751. uint32_t incr, uint32_t flags)
  752. {
  753. uint64_t value;
  754. unsigned ndw;
  755. while (count) {
  756. ndw = count * 2;
  757. if (ndw > 0xFFFFE)
  758. ndw = 0xFFFFE;
  759. /* for non-physically contiguous pages (system) */
  760. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  761. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  762. ib->ptr[ib->length_dw++] = pe;
  763. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  764. ib->ptr[ib->length_dw++] = ndw;
  765. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  766. if (flags & AMDGPU_PTE_SYSTEM) {
  767. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  768. value &= 0xFFFFFFFFFFFFF000ULL;
  769. } else if (flags & AMDGPU_PTE_VALID) {
  770. value = addr;
  771. } else {
  772. value = 0;
  773. }
  774. addr += incr;
  775. value |= flags;
  776. ib->ptr[ib->length_dw++] = value;
  777. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  778. }
  779. }
  780. }
  781. /**
  782. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  783. *
  784. * @ib: indirect buffer to fill with commands
  785. * @pe: addr of the page entry
  786. * @addr: dst addr to write into pe
  787. * @count: number of page entries to update
  788. * @incr: increase next addr by incr bytes
  789. * @flags: access flags
  790. *
  791. * Update the page tables using sDMA (CIK).
  792. */
  793. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  794. uint64_t pe,
  795. uint64_t addr, unsigned count,
  796. uint32_t incr, uint32_t flags)
  797. {
  798. uint64_t value;
  799. unsigned ndw;
  800. while (count) {
  801. ndw = count;
  802. if (ndw > 0x7FFFF)
  803. ndw = 0x7FFFF;
  804. if (flags & AMDGPU_PTE_VALID)
  805. value = addr;
  806. else
  807. value = 0;
  808. /* for physically contiguous pages (vram) */
  809. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  810. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  811. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  812. ib->ptr[ib->length_dw++] = flags; /* mask */
  813. ib->ptr[ib->length_dw++] = 0;
  814. ib->ptr[ib->length_dw++] = value; /* value */
  815. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  816. ib->ptr[ib->length_dw++] = incr; /* increment size */
  817. ib->ptr[ib->length_dw++] = 0;
  818. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  819. pe += ndw * 8;
  820. addr += ndw * incr;
  821. count -= ndw;
  822. }
  823. }
  824. /**
  825. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  826. *
  827. * @ib: indirect buffer to fill with padding
  828. *
  829. */
  830. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  831. {
  832. while (ib->length_dw & 0x7)
  833. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  834. }
  835. /**
  836. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  837. *
  838. * @ring: amdgpu_ring pointer
  839. * @vm: amdgpu_vm pointer
  840. *
  841. * Update the page table base and flush the VM TLB
  842. * using sDMA (VI).
  843. */
  844. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  845. unsigned vm_id, uint64_t pd_addr)
  846. {
  847. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  848. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  849. if (vm_id < 8) {
  850. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  851. } else {
  852. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  853. }
  854. amdgpu_ring_write(ring, pd_addr >> 12);
  855. /* flush TLB */
  856. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  857. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  858. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  859. amdgpu_ring_write(ring, 1 << vm_id);
  860. /* wait for flush */
  861. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  862. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  863. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  864. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  865. amdgpu_ring_write(ring, 0);
  866. amdgpu_ring_write(ring, 0); /* reference */
  867. amdgpu_ring_write(ring, 0); /* mask */
  868. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  869. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  870. }
  871. static int sdma_v3_0_early_init(void *handle)
  872. {
  873. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  874. sdma_v3_0_set_ring_funcs(adev);
  875. sdma_v3_0_set_buffer_funcs(adev);
  876. sdma_v3_0_set_vm_pte_funcs(adev);
  877. sdma_v3_0_set_irq_funcs(adev);
  878. return 0;
  879. }
  880. static int sdma_v3_0_sw_init(void *handle)
  881. {
  882. struct amdgpu_ring *ring;
  883. int r;
  884. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  885. /* SDMA trap event */
  886. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  887. if (r)
  888. return r;
  889. /* SDMA Privileged inst */
  890. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  891. if (r)
  892. return r;
  893. /* SDMA Privileged inst */
  894. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  895. if (r)
  896. return r;
  897. r = sdma_v3_0_init_microcode(adev);
  898. if (r) {
  899. DRM_ERROR("Failed to load sdma firmware!\n");
  900. return r;
  901. }
  902. ring = &adev->sdma[0].ring;
  903. ring->ring_obj = NULL;
  904. ring->use_doorbell = true;
  905. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  906. ring = &adev->sdma[1].ring;
  907. ring->ring_obj = NULL;
  908. ring->use_doorbell = true;
  909. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  910. ring = &adev->sdma[0].ring;
  911. sprintf(ring->name, "sdma0");
  912. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  913. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  914. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  915. AMDGPU_RING_TYPE_SDMA);
  916. if (r)
  917. return r;
  918. ring = &adev->sdma[1].ring;
  919. sprintf(ring->name, "sdma1");
  920. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  921. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  922. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  923. AMDGPU_RING_TYPE_SDMA);
  924. if (r)
  925. return r;
  926. return r;
  927. }
  928. static int sdma_v3_0_sw_fini(void *handle)
  929. {
  930. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  931. amdgpu_ring_fini(&adev->sdma[0].ring);
  932. amdgpu_ring_fini(&adev->sdma[1].ring);
  933. return 0;
  934. }
  935. static int sdma_v3_0_hw_init(void *handle)
  936. {
  937. int r;
  938. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  939. sdma_v3_0_init_golden_registers(adev);
  940. r = sdma_v3_0_start(adev);
  941. if (r)
  942. return r;
  943. return r;
  944. }
  945. static int sdma_v3_0_hw_fini(void *handle)
  946. {
  947. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  948. sdma_v3_0_enable(adev, false);
  949. return 0;
  950. }
  951. static int sdma_v3_0_suspend(void *handle)
  952. {
  953. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  954. return sdma_v3_0_hw_fini(adev);
  955. }
  956. static int sdma_v3_0_resume(void *handle)
  957. {
  958. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  959. return sdma_v3_0_hw_init(adev);
  960. }
  961. static bool sdma_v3_0_is_idle(void *handle)
  962. {
  963. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  964. u32 tmp = RREG32(mmSRBM_STATUS2);
  965. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  966. SRBM_STATUS2__SDMA1_BUSY_MASK))
  967. return false;
  968. return true;
  969. }
  970. static int sdma_v3_0_wait_for_idle(void *handle)
  971. {
  972. unsigned i;
  973. u32 tmp;
  974. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  975. for (i = 0; i < adev->usec_timeout; i++) {
  976. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  977. SRBM_STATUS2__SDMA1_BUSY_MASK);
  978. if (!tmp)
  979. return 0;
  980. udelay(1);
  981. }
  982. return -ETIMEDOUT;
  983. }
  984. static void sdma_v3_0_print_status(void *handle)
  985. {
  986. int i, j;
  987. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  988. dev_info(adev->dev, "VI SDMA registers\n");
  989. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  990. RREG32(mmSRBM_STATUS2));
  991. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  992. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  993. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  994. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  995. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  996. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  997. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  998. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  999. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1000. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1001. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1002. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1003. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1004. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1005. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1006. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1007. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1008. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1009. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1010. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1011. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1012. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1013. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1014. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1015. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1016. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1017. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1018. mutex_lock(&adev->srbm_mutex);
  1019. for (j = 0; j < 16; j++) {
  1020. vi_srbm_select(adev, 0, 0, 0, j);
  1021. dev_info(adev->dev, " VM %d:\n", j);
  1022. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1023. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1024. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1025. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1026. }
  1027. vi_srbm_select(adev, 0, 0, 0, 0);
  1028. mutex_unlock(&adev->srbm_mutex);
  1029. }
  1030. }
  1031. static int sdma_v3_0_soft_reset(void *handle)
  1032. {
  1033. u32 srbm_soft_reset = 0;
  1034. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1035. u32 tmp = RREG32(mmSRBM_STATUS2);
  1036. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1037. /* sdma0 */
  1038. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1039. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1040. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1041. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1042. }
  1043. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1044. /* sdma1 */
  1045. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1046. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1047. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1048. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1049. }
  1050. if (srbm_soft_reset) {
  1051. sdma_v3_0_print_status((void *)adev);
  1052. tmp = RREG32(mmSRBM_SOFT_RESET);
  1053. tmp |= srbm_soft_reset;
  1054. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1055. WREG32(mmSRBM_SOFT_RESET, tmp);
  1056. tmp = RREG32(mmSRBM_SOFT_RESET);
  1057. udelay(50);
  1058. tmp &= ~srbm_soft_reset;
  1059. WREG32(mmSRBM_SOFT_RESET, tmp);
  1060. tmp = RREG32(mmSRBM_SOFT_RESET);
  1061. /* Wait a little for things to settle down */
  1062. udelay(50);
  1063. sdma_v3_0_print_status((void *)adev);
  1064. }
  1065. return 0;
  1066. }
  1067. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1068. struct amdgpu_irq_src *source,
  1069. unsigned type,
  1070. enum amdgpu_interrupt_state state)
  1071. {
  1072. u32 sdma_cntl;
  1073. switch (type) {
  1074. case AMDGPU_SDMA_IRQ_TRAP0:
  1075. switch (state) {
  1076. case AMDGPU_IRQ_STATE_DISABLE:
  1077. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1078. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1079. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1080. break;
  1081. case AMDGPU_IRQ_STATE_ENABLE:
  1082. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1083. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1084. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1085. break;
  1086. default:
  1087. break;
  1088. }
  1089. break;
  1090. case AMDGPU_SDMA_IRQ_TRAP1:
  1091. switch (state) {
  1092. case AMDGPU_IRQ_STATE_DISABLE:
  1093. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1094. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1095. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1096. break;
  1097. case AMDGPU_IRQ_STATE_ENABLE:
  1098. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1099. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1100. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1101. break;
  1102. default:
  1103. break;
  1104. }
  1105. break;
  1106. default:
  1107. break;
  1108. }
  1109. return 0;
  1110. }
  1111. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1112. struct amdgpu_irq_src *source,
  1113. struct amdgpu_iv_entry *entry)
  1114. {
  1115. u8 instance_id, queue_id;
  1116. instance_id = (entry->ring_id & 0x3) >> 0;
  1117. queue_id = (entry->ring_id & 0xc) >> 2;
  1118. DRM_DEBUG("IH: SDMA trap\n");
  1119. switch (instance_id) {
  1120. case 0:
  1121. switch (queue_id) {
  1122. case 0:
  1123. amdgpu_fence_process(&adev->sdma[0].ring);
  1124. break;
  1125. case 1:
  1126. /* XXX compute */
  1127. break;
  1128. case 2:
  1129. /* XXX compute */
  1130. break;
  1131. }
  1132. break;
  1133. case 1:
  1134. switch (queue_id) {
  1135. case 0:
  1136. amdgpu_fence_process(&adev->sdma[1].ring);
  1137. break;
  1138. case 1:
  1139. /* XXX compute */
  1140. break;
  1141. case 2:
  1142. /* XXX compute */
  1143. break;
  1144. }
  1145. break;
  1146. }
  1147. return 0;
  1148. }
  1149. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1150. struct amdgpu_irq_src *source,
  1151. struct amdgpu_iv_entry *entry)
  1152. {
  1153. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1154. schedule_work(&adev->reset_work);
  1155. return 0;
  1156. }
  1157. static int sdma_v3_0_set_clockgating_state(void *handle,
  1158. enum amd_clockgating_state state)
  1159. {
  1160. return 0;
  1161. }
  1162. static int sdma_v3_0_set_powergating_state(void *handle,
  1163. enum amd_powergating_state state)
  1164. {
  1165. return 0;
  1166. }
  1167. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1168. .early_init = sdma_v3_0_early_init,
  1169. .late_init = NULL,
  1170. .sw_init = sdma_v3_0_sw_init,
  1171. .sw_fini = sdma_v3_0_sw_fini,
  1172. .hw_init = sdma_v3_0_hw_init,
  1173. .hw_fini = sdma_v3_0_hw_fini,
  1174. .suspend = sdma_v3_0_suspend,
  1175. .resume = sdma_v3_0_resume,
  1176. .is_idle = sdma_v3_0_is_idle,
  1177. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1178. .soft_reset = sdma_v3_0_soft_reset,
  1179. .print_status = sdma_v3_0_print_status,
  1180. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1181. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1182. };
  1183. /**
  1184. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1185. *
  1186. * @ring: amdgpu_ring structure holding ring information
  1187. *
  1188. * Check if the async DMA engine is locked up (VI).
  1189. * Returns true if the engine appears to be locked up, false if not.
  1190. */
  1191. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1192. {
  1193. if (sdma_v3_0_is_idle(ring->adev)) {
  1194. amdgpu_ring_lockup_update(ring);
  1195. return false;
  1196. }
  1197. return amdgpu_ring_test_lockup(ring);
  1198. }
  1199. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1200. .get_rptr = sdma_v3_0_ring_get_rptr,
  1201. .get_wptr = sdma_v3_0_ring_get_wptr,
  1202. .set_wptr = sdma_v3_0_ring_set_wptr,
  1203. .parse_cs = NULL,
  1204. .emit_ib = sdma_v3_0_ring_emit_ib,
  1205. .emit_fence = sdma_v3_0_ring_emit_fence,
  1206. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1207. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1208. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1209. .test_ring = sdma_v3_0_ring_test_ring,
  1210. .test_ib = sdma_v3_0_ring_test_ib,
  1211. .is_lockup = sdma_v3_0_ring_is_lockup,
  1212. };
  1213. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1214. {
  1215. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1216. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1217. }
  1218. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1219. .set = sdma_v3_0_set_trap_irq_state,
  1220. .process = sdma_v3_0_process_trap_irq,
  1221. };
  1222. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1223. .process = sdma_v3_0_process_illegal_inst_irq,
  1224. };
  1225. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1226. {
  1227. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1228. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1229. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1230. }
  1231. /**
  1232. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1233. *
  1234. * @ring: amdgpu_ring structure holding ring information
  1235. * @src_offset: src GPU address
  1236. * @dst_offset: dst GPU address
  1237. * @byte_count: number of bytes to xfer
  1238. *
  1239. * Copy GPU buffers using the DMA engine (VI).
  1240. * Used by the amdgpu ttm implementation to move pages if
  1241. * registered as the asic copy callback.
  1242. */
  1243. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ring *ring,
  1244. uint64_t src_offset,
  1245. uint64_t dst_offset,
  1246. uint32_t byte_count)
  1247. {
  1248. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1249. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR));
  1250. amdgpu_ring_write(ring, byte_count);
  1251. amdgpu_ring_write(ring, 0); /* src/dst endian swap */
  1252. amdgpu_ring_write(ring, lower_32_bits(src_offset));
  1253. amdgpu_ring_write(ring, upper_32_bits(src_offset));
  1254. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1255. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1256. }
  1257. /**
  1258. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1259. *
  1260. * @ring: amdgpu_ring structure holding ring information
  1261. * @src_data: value to write to buffer
  1262. * @dst_offset: dst GPU address
  1263. * @byte_count: number of bytes to xfer
  1264. *
  1265. * Fill GPU buffers using the DMA engine (VI).
  1266. */
  1267. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
  1268. uint32_t src_data,
  1269. uint64_t dst_offset,
  1270. uint32_t byte_count)
  1271. {
  1272. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
  1273. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1274. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1275. amdgpu_ring_write(ring, src_data);
  1276. amdgpu_ring_write(ring, byte_count);
  1277. }
  1278. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1279. .copy_max_bytes = 0x1fffff,
  1280. .copy_num_dw = 7,
  1281. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1282. .fill_max_bytes = 0x1fffff,
  1283. .fill_num_dw = 5,
  1284. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1285. };
  1286. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1287. {
  1288. if (adev->mman.buffer_funcs == NULL) {
  1289. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1290. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1291. }
  1292. }
  1293. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1294. .copy_pte = sdma_v3_0_vm_copy_pte,
  1295. .write_pte = sdma_v3_0_vm_write_pte,
  1296. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1297. .pad_ib = sdma_v3_0_vm_pad_ib,
  1298. };
  1299. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1300. {
  1301. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1302. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1303. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1304. }
  1305. }