sdma_v4_0.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "vega10/NBIO/nbio_6_1_offset.h"
  37. #include "raven1/SDMA0/sdma0_4_1_default.h"
  38. #include "soc15_common.h"
  39. #include "soc15.h"
  40. #include "vega10_sdma_pkt_open.h"
  41. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  42. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  43. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  44. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  45. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  46. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  48. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  49. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  50. static const u32 golden_settings_sdma_4[] = {
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  58. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  59. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  60. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  61. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  62. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  70. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  71. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  72. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  73. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  74. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  75. };
  76. static const u32 golden_settings_sdma_vg10[] = {
  77. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  78. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  79. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  80. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  81. };
  82. static const u32 golden_settings_sdma_4_1[] =
  83. {
  84. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  85. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xffffffff, 0x3f000100,
  86. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0111, 0x00000100,
  87. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  88. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0xfc3fffff, 0x40000051,
  89. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0111, 0x00000100,
  90. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  91. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0111, 0x00000100,
  92. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  93. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0
  94. };
  95. static const u32 golden_settings_sdma_rv1[] =
  96. {
  97. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00000002,
  98. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00000002
  99. };
  100. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  101. {
  102. u32 base = 0;
  103. switch (instance) {
  104. case 0:
  105. base = SDMA0_BASE.instance[0].segment[0];
  106. break;
  107. case 1:
  108. base = SDMA1_BASE.instance[0].segment[0];
  109. break;
  110. default:
  111. BUG();
  112. break;
  113. }
  114. return base + internal_offset;
  115. }
  116. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  117. {
  118. switch (adev->asic_type) {
  119. case CHIP_VEGA10:
  120. amdgpu_program_register_sequence(adev,
  121. golden_settings_sdma_4,
  122. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  123. amdgpu_program_register_sequence(adev,
  124. golden_settings_sdma_vg10,
  125. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  126. break;
  127. case CHIP_RAVEN:
  128. amdgpu_program_register_sequence(adev,
  129. golden_settings_sdma_4_1,
  130. (const u32)ARRAY_SIZE(golden_settings_sdma_4_1));
  131. amdgpu_program_register_sequence(adev,
  132. golden_settings_sdma_rv1,
  133. (const u32)ARRAY_SIZE(golden_settings_sdma_rv1));
  134. break;
  135. default:
  136. break;
  137. }
  138. }
  139. /**
  140. * sdma_v4_0_init_microcode - load ucode images from disk
  141. *
  142. * @adev: amdgpu_device pointer
  143. *
  144. * Use the firmware interface to load the ucode images into
  145. * the driver (not loaded into hw).
  146. * Returns 0 on success, error on failure.
  147. */
  148. // emulation only, won't work on real chip
  149. // vega10 real chip need to use PSP to load firmware
  150. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  151. {
  152. const char *chip_name;
  153. char fw_name[30];
  154. int err = 0, i;
  155. struct amdgpu_firmware_info *info = NULL;
  156. const struct common_firmware_header *header = NULL;
  157. const struct sdma_firmware_header_v1_0 *hdr;
  158. DRM_DEBUG("\n");
  159. switch (adev->asic_type) {
  160. case CHIP_VEGA10:
  161. chip_name = "vega10";
  162. break;
  163. case CHIP_RAVEN:
  164. chip_name = "raven";
  165. break;
  166. default:
  167. BUG();
  168. }
  169. for (i = 0; i < adev->sdma.num_instances; i++) {
  170. if (i == 0)
  171. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  172. else
  173. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  174. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  175. if (err)
  176. goto out;
  177. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  178. if (err)
  179. goto out;
  180. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  181. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  182. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  183. if (adev->sdma.instance[i].feature_version >= 20)
  184. adev->sdma.instance[i].burst_nop = true;
  185. DRM_DEBUG("psp_load == '%s'\n",
  186. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  187. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  188. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  189. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  190. info->fw = adev->sdma.instance[i].fw;
  191. header = (const struct common_firmware_header *)info->fw->data;
  192. adev->firmware.fw_size +=
  193. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  194. }
  195. }
  196. out:
  197. if (err) {
  198. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  199. for (i = 0; i < adev->sdma.num_instances; i++) {
  200. release_firmware(adev->sdma.instance[i].fw);
  201. adev->sdma.instance[i].fw = NULL;
  202. }
  203. }
  204. return err;
  205. }
  206. /**
  207. * sdma_v4_0_ring_get_rptr - get the current read pointer
  208. *
  209. * @ring: amdgpu ring pointer
  210. *
  211. * Get the current rptr from the hardware (VEGA10+).
  212. */
  213. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  214. {
  215. u64 *rptr;
  216. /* XXX check if swapping is necessary on BE */
  217. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  218. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  219. return ((*rptr) >> 2);
  220. }
  221. /**
  222. * sdma_v4_0_ring_get_wptr - get the current write pointer
  223. *
  224. * @ring: amdgpu ring pointer
  225. *
  226. * Get the current wptr from the hardware (VEGA10+).
  227. */
  228. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  229. {
  230. struct amdgpu_device *adev = ring->adev;
  231. u64 *wptr = NULL;
  232. uint64_t local_wptr = 0;
  233. if (ring->use_doorbell) {
  234. /* XXX check if swapping is necessary on BE */
  235. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  236. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  237. *wptr = (*wptr) >> 2;
  238. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  239. } else {
  240. u32 lowbit, highbit;
  241. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  242. wptr = &local_wptr;
  243. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  244. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  245. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  246. me, highbit, lowbit);
  247. *wptr = highbit;
  248. *wptr = (*wptr) << 32;
  249. *wptr |= lowbit;
  250. }
  251. return *wptr;
  252. }
  253. /**
  254. * sdma_v4_0_ring_set_wptr - commit the write pointer
  255. *
  256. * @ring: amdgpu ring pointer
  257. *
  258. * Write the wptr back to the hardware (VEGA10+).
  259. */
  260. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  261. {
  262. int i;
  263. u32 offset;
  264. struct amdgpu_device *adev = ring->adev;
  265. DRM_DEBUG("Setting write pointer\n");
  266. if (ring->use_doorbell) {
  267. DRM_DEBUG("Using doorbell -- "
  268. "wptr_offs == 0x%08x "
  269. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  270. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  271. ring->wptr_offs,
  272. lower_32_bits(ring->wptr << 2),
  273. upper_32_bits(ring->wptr << 2));
  274. /* XXX check if swapping is necessary on BE */
  275. adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
  276. adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
  277. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  278. ring->doorbell_index, ring->wptr << 2);
  279. if (amdgpu_sriov_vf(adev)) {
  280. for (i = 0; i < adev->sdma.num_instances; i++) {
  281. if (&adev->sdma.instance[i].ring == ring) {
  282. offset = adev->sdma.instance[i].poll_mem_offs;
  283. atomic64_set((atomic64_t *)&adev->wb.wb[offset],
  284. (ring->wptr << 2));
  285. nbio_v6_1_hdp_flush(adev);
  286. }
  287. }
  288. }
  289. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  290. } else {
  291. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  292. DRM_DEBUG("Not using doorbell -- "
  293. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  294. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  295. me,
  296. lower_32_bits(ring->wptr << 2),
  297. me,
  298. upper_32_bits(ring->wptr << 2));
  299. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  300. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  301. }
  302. }
  303. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  304. {
  305. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  306. int i;
  307. for (i = 0; i < count; i++)
  308. if (sdma && sdma->burst_nop && (i == 0))
  309. amdgpu_ring_write(ring, ring->funcs->nop |
  310. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  311. else
  312. amdgpu_ring_write(ring, ring->funcs->nop);
  313. }
  314. /**
  315. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  316. *
  317. * @ring: amdgpu ring pointer
  318. * @ib: IB object to schedule
  319. *
  320. * Schedule an IB in the DMA ring (VEGA10).
  321. */
  322. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  323. struct amdgpu_ib *ib,
  324. unsigned vm_id, bool ctx_switch)
  325. {
  326. u32 vmid = vm_id & 0xf;
  327. /* IB packet must end on a 8 DW boundary */
  328. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  329. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  330. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  331. /* base must be 32 byte aligned */
  332. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  333. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  334. amdgpu_ring_write(ring, ib->length_dw);
  335. amdgpu_ring_write(ring, 0);
  336. amdgpu_ring_write(ring, 0);
  337. }
  338. /**
  339. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  340. *
  341. * @ring: amdgpu ring pointer
  342. *
  343. * Emit an hdp flush packet on the requested DMA ring.
  344. */
  345. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  346. {
  347. u32 ref_and_mask = 0;
  348. struct nbio_hdp_flush_reg *nbio_hf_reg;
  349. if (ring->adev->flags & AMD_IS_APU)
  350. nbio_hf_reg = &nbio_v7_0_hdp_flush_reg;
  351. else
  352. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  353. if (ring == &ring->adev->sdma.instance[0].ring)
  354. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  355. else
  356. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  357. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  358. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  359. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  360. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  361. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  362. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  363. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  364. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  365. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  366. }
  367. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  368. {
  369. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  370. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  371. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  372. amdgpu_ring_write(ring, 1);
  373. }
  374. /**
  375. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  376. *
  377. * @ring: amdgpu ring pointer
  378. * @fence: amdgpu fence object
  379. *
  380. * Add a DMA fence packet to the ring to write
  381. * the fence seq number and DMA trap packet to generate
  382. * an interrupt if needed (VEGA10).
  383. */
  384. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  385. unsigned flags)
  386. {
  387. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  388. /* write the fence */
  389. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  390. /* zero in first two bits */
  391. BUG_ON(addr & 0x3);
  392. amdgpu_ring_write(ring, lower_32_bits(addr));
  393. amdgpu_ring_write(ring, upper_32_bits(addr));
  394. amdgpu_ring_write(ring, lower_32_bits(seq));
  395. /* optionally write high bits as well */
  396. if (write64bit) {
  397. addr += 4;
  398. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  399. /* zero in first two bits */
  400. BUG_ON(addr & 0x3);
  401. amdgpu_ring_write(ring, lower_32_bits(addr));
  402. amdgpu_ring_write(ring, upper_32_bits(addr));
  403. amdgpu_ring_write(ring, upper_32_bits(seq));
  404. }
  405. /* generate an interrupt */
  406. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  407. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  408. }
  409. /**
  410. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  411. *
  412. * @adev: amdgpu_device pointer
  413. *
  414. * Stop the gfx async dma ring buffers (VEGA10).
  415. */
  416. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  417. {
  418. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  419. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  420. u32 rb_cntl, ib_cntl;
  421. int i;
  422. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  423. (adev->mman.buffer_funcs_ring == sdma1))
  424. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  425. for (i = 0; i < adev->sdma.num_instances; i++) {
  426. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  427. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  428. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  429. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  430. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  431. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  432. }
  433. sdma0->ready = false;
  434. sdma1->ready = false;
  435. }
  436. /**
  437. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  438. *
  439. * @adev: amdgpu_device pointer
  440. *
  441. * Stop the compute async dma queues (VEGA10).
  442. */
  443. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  444. {
  445. /* XXX todo */
  446. }
  447. /**
  448. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  449. *
  450. * @adev: amdgpu_device pointer
  451. * @enable: enable/disable the DMA MEs context switch.
  452. *
  453. * Halt or unhalt the async dma engines context switch (VEGA10).
  454. */
  455. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  456. {
  457. u32 f32_cntl, phase_quantum = 0;
  458. int i;
  459. if (amdgpu_sdma_phase_quantum) {
  460. unsigned value = amdgpu_sdma_phase_quantum;
  461. unsigned unit = 0;
  462. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  463. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  464. value = (value + 1) >> 1;
  465. unit++;
  466. }
  467. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  468. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  469. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  470. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  471. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  472. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  473. WARN_ONCE(1,
  474. "clamping sdma_phase_quantum to %uK clock cycles\n",
  475. value << unit);
  476. }
  477. phase_quantum =
  478. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  479. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  480. }
  481. for (i = 0; i < adev->sdma.num_instances; i++) {
  482. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  483. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  484. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  485. if (enable && amdgpu_sdma_phase_quantum) {
  486. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE0_QUANTUM),
  487. phase_quantum);
  488. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE1_QUANTUM),
  489. phase_quantum);
  490. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE2_QUANTUM),
  491. phase_quantum);
  492. }
  493. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  494. }
  495. }
  496. /**
  497. * sdma_v4_0_enable - stop the async dma engines
  498. *
  499. * @adev: amdgpu_device pointer
  500. * @enable: enable/disable the DMA MEs.
  501. *
  502. * Halt or unhalt the async dma engines (VEGA10).
  503. */
  504. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  505. {
  506. u32 f32_cntl;
  507. int i;
  508. if (enable == false) {
  509. sdma_v4_0_gfx_stop(adev);
  510. sdma_v4_0_rlc_stop(adev);
  511. }
  512. for (i = 0; i < adev->sdma.num_instances; i++) {
  513. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  514. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  515. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  516. }
  517. }
  518. /**
  519. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  520. *
  521. * @adev: amdgpu_device pointer
  522. *
  523. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  524. * Returns 0 for success, error for failure.
  525. */
  526. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  527. {
  528. struct amdgpu_ring *ring;
  529. u32 rb_cntl, ib_cntl, wptr_poll_addr_lo, wptr_poll_addr_hi, wptr_poll_cntl;
  530. u32 rb_bufsz;
  531. u32 wb_offset, poll_offset;
  532. u32 doorbell;
  533. u32 doorbell_offset;
  534. u32 temp;
  535. int i, r;
  536. for (i = 0; i < adev->sdma.num_instances; i++) {
  537. ring = &adev->sdma.instance[i].ring;
  538. wb_offset = (ring->rptr_offs * 4);
  539. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  540. /* Set ring buffer size in dwords */
  541. rb_bufsz = order_base_2(ring->ring_size / 4);
  542. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  543. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  544. #ifdef __BIG_ENDIAN
  545. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  546. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  547. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  548. #endif
  549. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  550. /* Initialize the ring buffer's read and write pointers */
  551. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  552. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  553. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  554. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  555. /* set the wb address whether it's enabled or not */
  556. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  557. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  558. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  559. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  560. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  561. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  562. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  563. ring->wptr = 0;
  564. /* before programing wptr to a less value, need set minor_ptr_update first */
  565. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  566. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  567. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  568. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  569. }
  570. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  571. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  572. if (ring->use_doorbell) {
  573. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  574. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  575. OFFSET, ring->doorbell_index);
  576. } else {
  577. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  578. }
  579. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  580. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  581. if (adev->flags & AMD_IS_APU)
  582. nbio_v7_0_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  583. else
  584. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  585. if (amdgpu_sriov_vf(adev))
  586. sdma_v4_0_ring_set_wptr(ring);
  587. /* set minor_ptr_update to 0 after wptr programed */
  588. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  589. /* set utc l1 enable flag always to 1 */
  590. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  591. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  592. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  593. if (!amdgpu_sriov_vf(adev)) {
  594. /* unhalt engine */
  595. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  596. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  597. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  598. }
  599. /* enable DMA RB */
  600. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  601. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  602. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  603. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  604. #ifdef __BIG_ENDIAN
  605. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  606. #endif
  607. /* enable DMA IBs */
  608. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  609. ring->ready = true;
  610. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  611. sdma_v4_0_ctx_switch_enable(adev, true);
  612. sdma_v4_0_enable(adev, true);
  613. }
  614. r = amdgpu_ring_test_ring(ring);
  615. if (r) {
  616. ring->ready = false;
  617. return r;
  618. }
  619. if (adev->mman.buffer_funcs_ring == ring)
  620. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  621. if (amdgpu_sriov_vf(adev)) {
  622. poll_offset = adev->sdma.instance[i].poll_mem_offs * 4;
  623. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  624. wptr_poll_addr_lo = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO));
  625. wptr_poll_addr_lo = REG_SET_FIELD(wptr_poll_addr_lo, SDMA0_GFX_RB_WPTR_POLL_ADDR_LO, ADDR,
  626. lower_32_bits(adev->wb.gpu_addr + poll_offset) >> 2);
  627. wptr_poll_addr_hi = upper_32_bits(adev->wb.gpu_addr + poll_offset);
  628. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  629. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO), wptr_poll_addr_lo);
  630. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI), wptr_poll_addr_hi);
  631. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  632. }
  633. }
  634. return 0;
  635. }
  636. static void
  637. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  638. {
  639. uint32_t def, data;
  640. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  641. /* disable idle interrupt */
  642. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  643. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  644. if (data != def)
  645. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  646. } else {
  647. /* disable idle interrupt */
  648. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  649. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  650. if (data != def)
  651. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  652. }
  653. }
  654. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  655. {
  656. uint32_t def, data;
  657. /* Enable HW based PG. */
  658. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  659. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  660. if (data != def)
  661. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  662. /* enable interrupt */
  663. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  664. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  665. if (data != def)
  666. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  667. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  668. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  669. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  670. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  671. /* Configure switch time for hysteresis purpose. Use default right now */
  672. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  673. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  674. if(data != def)
  675. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  676. }
  677. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  678. {
  679. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  680. return;
  681. switch (adev->asic_type) {
  682. case CHIP_RAVEN:
  683. sdma_v4_1_init_power_gating(adev);
  684. sdma_v4_1_update_power_gating(adev, true);
  685. break;
  686. default:
  687. break;
  688. }
  689. }
  690. /**
  691. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  692. *
  693. * @adev: amdgpu_device pointer
  694. *
  695. * Set up the compute DMA queues and enable them (VEGA10).
  696. * Returns 0 for success, error for failure.
  697. */
  698. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  699. {
  700. sdma_v4_0_init_pg(adev);
  701. return 0;
  702. }
  703. /**
  704. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  705. *
  706. * @adev: amdgpu_device pointer
  707. *
  708. * Loads the sDMA0/1 ucode.
  709. * Returns 0 for success, -EINVAL if the ucode is not available.
  710. */
  711. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  712. {
  713. const struct sdma_firmware_header_v1_0 *hdr;
  714. const __le32 *fw_data;
  715. u32 fw_size;
  716. u32 digest_size = 0;
  717. int i, j;
  718. /* halt the MEs */
  719. sdma_v4_0_enable(adev, false);
  720. for (i = 0; i < adev->sdma.num_instances; i++) {
  721. uint16_t version_major;
  722. uint16_t version_minor;
  723. if (!adev->sdma.instance[i].fw)
  724. return -EINVAL;
  725. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  726. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  727. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  728. version_major = le16_to_cpu(hdr->header.header_version_major);
  729. version_minor = le16_to_cpu(hdr->header.header_version_minor);
  730. if (version_major == 1 && version_minor >= 1) {
  731. const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
  732. digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
  733. }
  734. fw_size -= digest_size;
  735. fw_data = (const __le32 *)
  736. (adev->sdma.instance[i].fw->data +
  737. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  738. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  739. for (j = 0; j < fw_size; j++)
  740. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  741. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  742. }
  743. return 0;
  744. }
  745. /**
  746. * sdma_v4_0_start - setup and start the async dma engines
  747. *
  748. * @adev: amdgpu_device pointer
  749. *
  750. * Set up the DMA engines and enable them (VEGA10).
  751. * Returns 0 for success, error for failure.
  752. */
  753. static int sdma_v4_0_start(struct amdgpu_device *adev)
  754. {
  755. int r = 0;
  756. if (amdgpu_sriov_vf(adev)) {
  757. sdma_v4_0_ctx_switch_enable(adev, false);
  758. sdma_v4_0_enable(adev, false);
  759. /* set RB registers */
  760. r = sdma_v4_0_gfx_resume(adev);
  761. return r;
  762. }
  763. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  764. r = sdma_v4_0_load_microcode(adev);
  765. if (r)
  766. return r;
  767. }
  768. /* unhalt the MEs */
  769. sdma_v4_0_enable(adev, true);
  770. /* enable sdma ring preemption */
  771. sdma_v4_0_ctx_switch_enable(adev, true);
  772. /* start the gfx rings and rlc compute queues */
  773. r = sdma_v4_0_gfx_resume(adev);
  774. if (r)
  775. return r;
  776. r = sdma_v4_0_rlc_resume(adev);
  777. return r;
  778. }
  779. /**
  780. * sdma_v4_0_ring_test_ring - simple async dma engine test
  781. *
  782. * @ring: amdgpu_ring structure holding ring information
  783. *
  784. * Test the DMA engine by writing using it to write an
  785. * value to memory. (VEGA10).
  786. * Returns 0 for success, error for failure.
  787. */
  788. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  789. {
  790. struct amdgpu_device *adev = ring->adev;
  791. unsigned i;
  792. unsigned index;
  793. int r;
  794. u32 tmp;
  795. u64 gpu_addr;
  796. r = amdgpu_wb_get(adev, &index);
  797. if (r) {
  798. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  799. return r;
  800. }
  801. gpu_addr = adev->wb.gpu_addr + (index * 4);
  802. tmp = 0xCAFEDEAD;
  803. adev->wb.wb[index] = cpu_to_le32(tmp);
  804. r = amdgpu_ring_alloc(ring, 5);
  805. if (r) {
  806. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  807. amdgpu_wb_free(adev, index);
  808. return r;
  809. }
  810. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  811. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  812. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  813. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  814. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  815. amdgpu_ring_write(ring, 0xDEADBEEF);
  816. amdgpu_ring_commit(ring);
  817. for (i = 0; i < adev->usec_timeout; i++) {
  818. tmp = le32_to_cpu(adev->wb.wb[index]);
  819. if (tmp == 0xDEADBEEF)
  820. break;
  821. DRM_UDELAY(1);
  822. }
  823. if (i < adev->usec_timeout) {
  824. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  825. } else {
  826. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  827. ring->idx, tmp);
  828. r = -EINVAL;
  829. }
  830. amdgpu_wb_free(adev, index);
  831. return r;
  832. }
  833. /**
  834. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  835. *
  836. * @ring: amdgpu_ring structure holding ring information
  837. *
  838. * Test a simple IB in the DMA ring (VEGA10).
  839. * Returns 0 on success, error on failure.
  840. */
  841. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  842. {
  843. struct amdgpu_device *adev = ring->adev;
  844. struct amdgpu_ib ib;
  845. struct dma_fence *f = NULL;
  846. unsigned index;
  847. long r;
  848. u32 tmp = 0;
  849. u64 gpu_addr;
  850. r = amdgpu_wb_get(adev, &index);
  851. if (r) {
  852. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  853. return r;
  854. }
  855. gpu_addr = adev->wb.gpu_addr + (index * 4);
  856. tmp = 0xCAFEDEAD;
  857. adev->wb.wb[index] = cpu_to_le32(tmp);
  858. memset(&ib, 0, sizeof(ib));
  859. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  860. if (r) {
  861. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  862. goto err0;
  863. }
  864. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  865. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  866. ib.ptr[1] = lower_32_bits(gpu_addr);
  867. ib.ptr[2] = upper_32_bits(gpu_addr);
  868. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  869. ib.ptr[4] = 0xDEADBEEF;
  870. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  871. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  872. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  873. ib.length_dw = 8;
  874. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  875. if (r)
  876. goto err1;
  877. r = dma_fence_wait_timeout(f, false, timeout);
  878. if (r == 0) {
  879. DRM_ERROR("amdgpu: IB test timed out\n");
  880. r = -ETIMEDOUT;
  881. goto err1;
  882. } else if (r < 0) {
  883. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  884. goto err1;
  885. }
  886. tmp = le32_to_cpu(adev->wb.wb[index]);
  887. if (tmp == 0xDEADBEEF) {
  888. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  889. r = 0;
  890. } else {
  891. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  892. r = -EINVAL;
  893. }
  894. err1:
  895. amdgpu_ib_free(adev, &ib, NULL);
  896. dma_fence_put(f);
  897. err0:
  898. amdgpu_wb_free(adev, index);
  899. return r;
  900. }
  901. /**
  902. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  903. *
  904. * @ib: indirect buffer to fill with commands
  905. * @pe: addr of the page entry
  906. * @src: src addr to copy from
  907. * @count: number of page entries to update
  908. *
  909. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  910. */
  911. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  912. uint64_t pe, uint64_t src,
  913. unsigned count)
  914. {
  915. unsigned bytes = count * 8;
  916. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  917. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  918. ib->ptr[ib->length_dw++] = bytes - 1;
  919. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  920. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  921. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  922. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  923. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  924. }
  925. /**
  926. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  927. *
  928. * @ib: indirect buffer to fill with commands
  929. * @pe: addr of the page entry
  930. * @addr: dst addr to write into pe
  931. * @count: number of page entries to update
  932. * @incr: increase next addr by incr bytes
  933. * @flags: access flags
  934. *
  935. * Update PTEs by writing them manually using sDMA (VEGA10).
  936. */
  937. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  938. uint64_t value, unsigned count,
  939. uint32_t incr)
  940. {
  941. unsigned ndw = count * 2;
  942. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  943. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  944. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  945. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  946. ib->ptr[ib->length_dw++] = ndw - 1;
  947. for (; ndw > 0; ndw -= 2) {
  948. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  949. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  950. value += incr;
  951. }
  952. }
  953. /**
  954. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  955. *
  956. * @ib: indirect buffer to fill with commands
  957. * @pe: addr of the page entry
  958. * @addr: dst addr to write into pe
  959. * @count: number of page entries to update
  960. * @incr: increase next addr by incr bytes
  961. * @flags: access flags
  962. *
  963. * Update the page tables using sDMA (VEGA10).
  964. */
  965. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  966. uint64_t pe,
  967. uint64_t addr, unsigned count,
  968. uint32_t incr, uint64_t flags)
  969. {
  970. /* for physically contiguous pages (vram) */
  971. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  972. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  973. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  974. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  975. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  976. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  977. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  978. ib->ptr[ib->length_dw++] = incr; /* increment size */
  979. ib->ptr[ib->length_dw++] = 0;
  980. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  981. }
  982. /**
  983. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  984. *
  985. * @ib: indirect buffer to fill with padding
  986. *
  987. */
  988. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  989. {
  990. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  991. u32 pad_count;
  992. int i;
  993. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  994. for (i = 0; i < pad_count; i++)
  995. if (sdma && sdma->burst_nop && (i == 0))
  996. ib->ptr[ib->length_dw++] =
  997. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  998. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  999. else
  1000. ib->ptr[ib->length_dw++] =
  1001. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  1002. }
  1003. /**
  1004. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  1005. *
  1006. * @ring: amdgpu_ring pointer
  1007. *
  1008. * Make sure all previous operations are completed (CIK).
  1009. */
  1010. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  1011. {
  1012. uint32_t seq = ring->fence_drv.sync_seq;
  1013. uint64_t addr = ring->fence_drv.gpu_addr;
  1014. /* wait for idle */
  1015. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1016. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1017. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  1018. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  1019. amdgpu_ring_write(ring, addr & 0xfffffffc);
  1020. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1021. amdgpu_ring_write(ring, seq); /* reference */
  1022. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1023. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1024. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1025. }
  1026. /**
  1027. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  1028. *
  1029. * @ring: amdgpu_ring pointer
  1030. * @vm: amdgpu_vm pointer
  1031. *
  1032. * Update the page table base and flush the VM TLB
  1033. * using sDMA (VEGA10).
  1034. */
  1035. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1036. unsigned vm_id, uint64_t pd_addr)
  1037. {
  1038. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  1039. uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
  1040. unsigned eng = ring->vm_inv_eng;
  1041. pd_addr = amdgpu_gart_get_vm_pde(ring->adev, pd_addr);
  1042. pd_addr |= AMDGPU_PTE_VALID;
  1043. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1044. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1045. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  1046. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  1047. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1048. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1049. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  1050. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  1051. /* flush TLB */
  1052. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1053. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1054. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  1055. amdgpu_ring_write(ring, req);
  1056. /* wait for flush */
  1057. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1058. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1059. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1060. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  1061. amdgpu_ring_write(ring, 0);
  1062. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  1063. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  1064. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1065. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1066. }
  1067. static int sdma_v4_0_early_init(void *handle)
  1068. {
  1069. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1070. if (adev->asic_type == CHIP_RAVEN)
  1071. adev->sdma.num_instances = 1;
  1072. else
  1073. adev->sdma.num_instances = 2;
  1074. sdma_v4_0_set_ring_funcs(adev);
  1075. sdma_v4_0_set_buffer_funcs(adev);
  1076. sdma_v4_0_set_vm_pte_funcs(adev);
  1077. sdma_v4_0_set_irq_funcs(adev);
  1078. return 0;
  1079. }
  1080. static int sdma_v4_0_sw_init(void *handle)
  1081. {
  1082. struct amdgpu_ring *ring;
  1083. int r, i;
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. /* SDMA trap event */
  1086. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  1087. &adev->sdma.trap_irq);
  1088. if (r)
  1089. return r;
  1090. /* SDMA trap event */
  1091. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  1092. &adev->sdma.trap_irq);
  1093. if (r)
  1094. return r;
  1095. r = sdma_v4_0_init_microcode(adev);
  1096. if (r) {
  1097. DRM_ERROR("Failed to load sdma firmware!\n");
  1098. return r;
  1099. }
  1100. for (i = 0; i < adev->sdma.num_instances; i++) {
  1101. ring = &adev->sdma.instance[i].ring;
  1102. ring->ring_obj = NULL;
  1103. ring->use_doorbell = true;
  1104. DRM_INFO("use_doorbell being set to: [%s]\n",
  1105. ring->use_doorbell?"true":"false");
  1106. ring->doorbell_index = (i == 0) ?
  1107. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1108. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1109. sprintf(ring->name, "sdma%d", i);
  1110. r = amdgpu_ring_init(adev, ring, 1024,
  1111. &adev->sdma.trap_irq,
  1112. (i == 0) ?
  1113. AMDGPU_SDMA_IRQ_TRAP0 :
  1114. AMDGPU_SDMA_IRQ_TRAP1);
  1115. if (amdgpu_sriov_vf(adev)) {
  1116. r = amdgpu_wb_get_64bit(adev,
  1117. &adev->sdma.instance[i].poll_mem_offs);
  1118. if (r) {
  1119. dev_err(adev->dev, "(%d) failed to allocate SDMA poll mem wb.\n", r);
  1120. return r;
  1121. }
  1122. }
  1123. if (r)
  1124. return r;
  1125. }
  1126. return r;
  1127. }
  1128. static int sdma_v4_0_sw_fini(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. int i;
  1132. for (i = 0; i < adev->sdma.num_instances; i++) {
  1133. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1134. if (amdgpu_sriov_vf(adev))
  1135. amdgpu_wb_free_64bit(adev,
  1136. adev->sdma.instance[i].poll_mem_offs);
  1137. }
  1138. return 0;
  1139. }
  1140. static int sdma_v4_0_hw_init(void *handle)
  1141. {
  1142. int r;
  1143. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1144. sdma_v4_0_init_golden_registers(adev);
  1145. r = sdma_v4_0_start(adev);
  1146. return r;
  1147. }
  1148. static int sdma_v4_0_hw_fini(void *handle)
  1149. {
  1150. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1151. if (amdgpu_sriov_vf(adev))
  1152. return 0;
  1153. sdma_v4_0_ctx_switch_enable(adev, false);
  1154. sdma_v4_0_enable(adev, false);
  1155. return 0;
  1156. }
  1157. static int sdma_v4_0_suspend(void *handle)
  1158. {
  1159. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1160. return sdma_v4_0_hw_fini(adev);
  1161. }
  1162. static int sdma_v4_0_resume(void *handle)
  1163. {
  1164. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1165. return sdma_v4_0_hw_init(adev);
  1166. }
  1167. static bool sdma_v4_0_is_idle(void *handle)
  1168. {
  1169. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1170. u32 i;
  1171. for (i = 0; i < adev->sdma.num_instances; i++) {
  1172. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1173. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1174. return false;
  1175. }
  1176. return true;
  1177. }
  1178. static int sdma_v4_0_wait_for_idle(void *handle)
  1179. {
  1180. unsigned i;
  1181. u32 sdma0, sdma1;
  1182. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1183. for (i = 0; i < adev->usec_timeout; i++) {
  1184. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1185. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1186. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1187. return 0;
  1188. udelay(1);
  1189. }
  1190. return -ETIMEDOUT;
  1191. }
  1192. static int sdma_v4_0_soft_reset(void *handle)
  1193. {
  1194. /* todo */
  1195. return 0;
  1196. }
  1197. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1198. struct amdgpu_irq_src *source,
  1199. unsigned type,
  1200. enum amdgpu_interrupt_state state)
  1201. {
  1202. u32 sdma_cntl;
  1203. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1204. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1205. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1206. sdma_cntl = RREG32(reg_offset);
  1207. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1208. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1209. WREG32(reg_offset, sdma_cntl);
  1210. return 0;
  1211. }
  1212. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1213. struct amdgpu_irq_src *source,
  1214. struct amdgpu_iv_entry *entry)
  1215. {
  1216. DRM_DEBUG("IH: SDMA trap\n");
  1217. switch (entry->client_id) {
  1218. case AMDGPU_IH_CLIENTID_SDMA0:
  1219. switch (entry->ring_id) {
  1220. case 0:
  1221. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1222. break;
  1223. case 1:
  1224. /* XXX compute */
  1225. break;
  1226. case 2:
  1227. /* XXX compute */
  1228. break;
  1229. case 3:
  1230. /* XXX page queue*/
  1231. break;
  1232. }
  1233. break;
  1234. case AMDGPU_IH_CLIENTID_SDMA1:
  1235. switch (entry->ring_id) {
  1236. case 0:
  1237. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1238. break;
  1239. case 1:
  1240. /* XXX compute */
  1241. break;
  1242. case 2:
  1243. /* XXX compute */
  1244. break;
  1245. case 3:
  1246. /* XXX page queue*/
  1247. break;
  1248. }
  1249. break;
  1250. }
  1251. return 0;
  1252. }
  1253. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1254. struct amdgpu_irq_src *source,
  1255. struct amdgpu_iv_entry *entry)
  1256. {
  1257. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1258. schedule_work(&adev->reset_work);
  1259. return 0;
  1260. }
  1261. static void sdma_v4_0_update_medium_grain_clock_gating(
  1262. struct amdgpu_device *adev,
  1263. bool enable)
  1264. {
  1265. uint32_t data, def;
  1266. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1267. /* enable sdma0 clock gating */
  1268. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1269. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1270. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1271. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1272. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1273. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1274. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1275. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1276. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1277. if (def != data)
  1278. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1279. if (adev->asic_type == CHIP_VEGA10) {
  1280. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1281. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1282. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1283. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1284. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1285. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1286. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1287. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1288. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1289. if (def != data)
  1290. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1291. }
  1292. } else {
  1293. /* disable sdma0 clock gating */
  1294. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1295. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1296. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1297. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1303. if (def != data)
  1304. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1305. if (adev->asic_type == CHIP_VEGA10) {
  1306. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1307. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1308. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1309. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1310. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1311. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1312. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1313. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1314. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1315. if (def != data)
  1316. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1317. }
  1318. }
  1319. }
  1320. static void sdma_v4_0_update_medium_grain_light_sleep(
  1321. struct amdgpu_device *adev,
  1322. bool enable)
  1323. {
  1324. uint32_t data, def;
  1325. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1326. /* 1-not override: enable sdma0 mem light sleep */
  1327. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1328. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1329. if (def != data)
  1330. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1331. /* 1-not override: enable sdma1 mem light sleep */
  1332. if (adev->asic_type == CHIP_VEGA10) {
  1333. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1334. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1335. if (def != data)
  1336. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1337. }
  1338. } else {
  1339. /* 0-override:disable sdma0 mem light sleep */
  1340. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1341. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1342. if (def != data)
  1343. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1344. /* 0-override:disable sdma1 mem light sleep */
  1345. if (adev->asic_type == CHIP_VEGA10) {
  1346. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1347. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1348. if (def != data)
  1349. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1350. }
  1351. }
  1352. }
  1353. static int sdma_v4_0_set_clockgating_state(void *handle,
  1354. enum amd_clockgating_state state)
  1355. {
  1356. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1357. if (amdgpu_sriov_vf(adev))
  1358. return 0;
  1359. switch (adev->asic_type) {
  1360. case CHIP_VEGA10:
  1361. case CHIP_RAVEN:
  1362. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1363. state == AMD_CG_STATE_GATE ? true : false);
  1364. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1365. state == AMD_CG_STATE_GATE ? true : false);
  1366. break;
  1367. default:
  1368. break;
  1369. }
  1370. return 0;
  1371. }
  1372. static int sdma_v4_0_set_powergating_state(void *handle,
  1373. enum amd_powergating_state state)
  1374. {
  1375. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1376. switch (adev->asic_type) {
  1377. case CHIP_RAVEN:
  1378. sdma_v4_1_update_power_gating(adev,
  1379. state == AMD_PG_STATE_GATE ? true : false);
  1380. break;
  1381. default:
  1382. break;
  1383. }
  1384. return 0;
  1385. }
  1386. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1387. {
  1388. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1389. int data;
  1390. if (amdgpu_sriov_vf(adev))
  1391. *flags = 0;
  1392. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1393. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1394. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1395. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1396. /* AMD_CG_SUPPORT_SDMA_LS */
  1397. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1398. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1399. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1400. }
  1401. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1402. .name = "sdma_v4_0",
  1403. .early_init = sdma_v4_0_early_init,
  1404. .late_init = NULL,
  1405. .sw_init = sdma_v4_0_sw_init,
  1406. .sw_fini = sdma_v4_0_sw_fini,
  1407. .hw_init = sdma_v4_0_hw_init,
  1408. .hw_fini = sdma_v4_0_hw_fini,
  1409. .suspend = sdma_v4_0_suspend,
  1410. .resume = sdma_v4_0_resume,
  1411. .is_idle = sdma_v4_0_is_idle,
  1412. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1413. .soft_reset = sdma_v4_0_soft_reset,
  1414. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1415. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1416. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1417. };
  1418. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1419. .type = AMDGPU_RING_TYPE_SDMA,
  1420. .align_mask = 0xf,
  1421. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1422. .support_64bit_ptrs = true,
  1423. .vmhub = AMDGPU_MMHUB,
  1424. .get_rptr = sdma_v4_0_ring_get_rptr,
  1425. .get_wptr = sdma_v4_0_ring_get_wptr,
  1426. .set_wptr = sdma_v4_0_ring_set_wptr,
  1427. .emit_frame_size =
  1428. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1429. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1430. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1431. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1432. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1433. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1434. .emit_ib = sdma_v4_0_ring_emit_ib,
  1435. .emit_fence = sdma_v4_0_ring_emit_fence,
  1436. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1437. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1438. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1439. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1440. .test_ring = sdma_v4_0_ring_test_ring,
  1441. .test_ib = sdma_v4_0_ring_test_ib,
  1442. .insert_nop = sdma_v4_0_ring_insert_nop,
  1443. .pad_ib = sdma_v4_0_ring_pad_ib,
  1444. };
  1445. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1446. {
  1447. int i;
  1448. for (i = 0; i < adev->sdma.num_instances; i++)
  1449. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1450. }
  1451. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1452. .set = sdma_v4_0_set_trap_irq_state,
  1453. .process = sdma_v4_0_process_trap_irq,
  1454. };
  1455. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1456. .process = sdma_v4_0_process_illegal_inst_irq,
  1457. };
  1458. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1459. {
  1460. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1461. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1462. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1463. }
  1464. /**
  1465. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1466. *
  1467. * @ring: amdgpu_ring structure holding ring information
  1468. * @src_offset: src GPU address
  1469. * @dst_offset: dst GPU address
  1470. * @byte_count: number of bytes to xfer
  1471. *
  1472. * Copy GPU buffers using the DMA engine (VEGA10).
  1473. * Used by the amdgpu ttm implementation to move pages if
  1474. * registered as the asic copy callback.
  1475. */
  1476. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1477. uint64_t src_offset,
  1478. uint64_t dst_offset,
  1479. uint32_t byte_count)
  1480. {
  1481. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1482. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1483. ib->ptr[ib->length_dw++] = byte_count - 1;
  1484. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1485. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1486. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1487. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1488. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1489. }
  1490. /**
  1491. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1492. *
  1493. * @ring: amdgpu_ring structure holding ring information
  1494. * @src_data: value to write to buffer
  1495. * @dst_offset: dst GPU address
  1496. * @byte_count: number of bytes to xfer
  1497. *
  1498. * Fill GPU buffers using the DMA engine (VEGA10).
  1499. */
  1500. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1501. uint32_t src_data,
  1502. uint64_t dst_offset,
  1503. uint32_t byte_count)
  1504. {
  1505. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1506. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1507. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1508. ib->ptr[ib->length_dw++] = src_data;
  1509. ib->ptr[ib->length_dw++] = byte_count - 1;
  1510. }
  1511. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1512. .copy_max_bytes = 0x400000,
  1513. .copy_num_dw = 7,
  1514. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1515. .fill_max_bytes = 0x400000,
  1516. .fill_num_dw = 5,
  1517. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1518. };
  1519. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1520. {
  1521. if (adev->mman.buffer_funcs == NULL) {
  1522. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1523. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1524. }
  1525. }
  1526. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1527. .copy_pte = sdma_v4_0_vm_copy_pte,
  1528. .write_pte = sdma_v4_0_vm_write_pte,
  1529. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1530. };
  1531. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1532. {
  1533. unsigned i;
  1534. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1535. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1536. for (i = 0; i < adev->sdma.num_instances; i++)
  1537. adev->vm_manager.vm_pte_rings[i] =
  1538. &adev->sdma.instance[i].ring;
  1539. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1540. }
  1541. }
  1542. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1543. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1544. .major = 4,
  1545. .minor = 0,
  1546. .rev = 0,
  1547. .funcs = &sdma_v4_0_ip_funcs,
  1548. };