mips.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/errno.h>
  13. #include <linux/err.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/fs.h>
  18. #include <linux/bootmem.h>
  19. #include <asm/fpu.h>
  20. #include <asm/page.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/mmu_context.h>
  23. #include <asm/pgtable.h>
  24. #include <linux/kvm_host.h>
  25. #include "interrupt.h"
  26. #include "commpage.h"
  27. #define CREATE_TRACE_POINTS
  28. #include "trace.h"
  29. #ifndef VECTORSPACING
  30. #define VECTORSPACING 0x100 /* for EI/VI mode */
  31. #endif
  32. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  33. struct kvm_stats_debugfs_item debugfs_entries[] = {
  34. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  35. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  36. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  37. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  38. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  39. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  41. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  43. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  44. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  45. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  46. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  47. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  48. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  49. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  50. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  51. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  52. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  53. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  54. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  55. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  56. {NULL}
  57. };
  58. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  59. {
  60. int i;
  61. for_each_possible_cpu(i) {
  62. vcpu->arch.guest_kernel_asid[i] = 0;
  63. vcpu->arch.guest_user_asid[i] = 0;
  64. }
  65. return 0;
  66. }
  67. /*
  68. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  69. * Config7, so we are "runnable" if interrupts are pending
  70. */
  71. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  72. {
  73. return !!(vcpu->arch.pending_exceptions);
  74. }
  75. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  76. {
  77. return 1;
  78. }
  79. int kvm_arch_hardware_enable(void)
  80. {
  81. return 0;
  82. }
  83. int kvm_arch_hardware_setup(void)
  84. {
  85. return 0;
  86. }
  87. void kvm_arch_check_processor_compat(void *rtn)
  88. {
  89. *(int *)rtn = 0;
  90. }
  91. static void kvm_mips_init_tlbs(struct kvm *kvm)
  92. {
  93. unsigned long wired;
  94. /*
  95. * Add a wired entry to the TLB, it is used to map the commpage to
  96. * the Guest kernel
  97. */
  98. wired = read_c0_wired();
  99. write_c0_wired(wired + 1);
  100. mtc0_tlbw_hazard();
  101. kvm->arch.commpage_tlb = wired;
  102. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  103. kvm->arch.commpage_tlb);
  104. }
  105. static void kvm_mips_init_vm_percpu(void *arg)
  106. {
  107. struct kvm *kvm = (struct kvm *)arg;
  108. kvm_mips_init_tlbs(kvm);
  109. kvm_mips_callbacks->vm_init(kvm);
  110. }
  111. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  112. {
  113. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  114. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  115. __func__);
  116. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  117. }
  118. return 0;
  119. }
  120. void kvm_mips_free_vcpus(struct kvm *kvm)
  121. {
  122. unsigned int i;
  123. struct kvm_vcpu *vcpu;
  124. /* Put the pages we reserved for the guest pmap */
  125. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  126. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  127. kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
  128. }
  129. kfree(kvm->arch.guest_pmap);
  130. kvm_for_each_vcpu(i, vcpu, kvm) {
  131. kvm_arch_vcpu_free(vcpu);
  132. }
  133. mutex_lock(&kvm->lock);
  134. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  135. kvm->vcpus[i] = NULL;
  136. atomic_set(&kvm->online_vcpus, 0);
  137. mutex_unlock(&kvm->lock);
  138. }
  139. static void kvm_mips_uninit_tlbs(void *arg)
  140. {
  141. /* Restore wired count */
  142. write_c0_wired(0);
  143. mtc0_tlbw_hazard();
  144. /* Clear out all the TLBs */
  145. kvm_local_flush_tlb_all();
  146. }
  147. void kvm_arch_destroy_vm(struct kvm *kvm)
  148. {
  149. kvm_mips_free_vcpus(kvm);
  150. /* If this is the last instance, restore wired count */
  151. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  152. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  153. __func__);
  154. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  155. }
  156. }
  157. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  158. unsigned long arg)
  159. {
  160. return -ENOIOCTLCMD;
  161. }
  162. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  163. unsigned long npages)
  164. {
  165. return 0;
  166. }
  167. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  168. struct kvm_memory_slot *memslot,
  169. const struct kvm_userspace_memory_region *mem,
  170. enum kvm_mr_change change)
  171. {
  172. return 0;
  173. }
  174. void kvm_arch_commit_memory_region(struct kvm *kvm,
  175. const struct kvm_userspace_memory_region *mem,
  176. const struct kvm_memory_slot *old,
  177. const struct kvm_memory_slot *new,
  178. enum kvm_mr_change change)
  179. {
  180. unsigned long npages = 0;
  181. int i;
  182. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  183. __func__, kvm, mem->slot, mem->guest_phys_addr,
  184. mem->memory_size, mem->userspace_addr);
  185. /* Setup Guest PMAP table */
  186. if (!kvm->arch.guest_pmap) {
  187. if (mem->slot == 0)
  188. npages = mem->memory_size >> PAGE_SHIFT;
  189. if (npages) {
  190. kvm->arch.guest_pmap_npages = npages;
  191. kvm->arch.guest_pmap =
  192. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  193. if (!kvm->arch.guest_pmap) {
  194. kvm_err("Failed to allocate guest PMAP\n");
  195. return;
  196. }
  197. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  198. npages, kvm->arch.guest_pmap);
  199. /* Now setup the page table */
  200. for (i = 0; i < npages; i++)
  201. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  202. }
  203. }
  204. }
  205. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  206. {
  207. int err, size;
  208. void *gebase, *p;
  209. int i;
  210. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  211. if (!vcpu) {
  212. err = -ENOMEM;
  213. goto out;
  214. }
  215. err = kvm_vcpu_init(vcpu, kvm, id);
  216. if (err)
  217. goto out_free_cpu;
  218. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  219. /*
  220. * Allocate space for host mode exception handlers that handle
  221. * guest mode exits
  222. */
  223. if (cpu_has_veic || cpu_has_vint)
  224. size = 0x200 + VECTORSPACING * 64;
  225. else
  226. size = 0x4000;
  227. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  228. if (!gebase) {
  229. err = -ENOMEM;
  230. goto out_uninit_cpu;
  231. }
  232. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  233. ALIGN(size, PAGE_SIZE), gebase);
  234. /* Save new ebase */
  235. vcpu->arch.guest_ebase = gebase;
  236. /* Build guest exception vectors dynamically in unmapped memory */
  237. /* TLB Refill, EXL = 0 */
  238. kvm_mips_build_exception(gebase);
  239. /* General Exception Entry point */
  240. kvm_mips_build_exception(gebase + 0x180);
  241. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  242. for (i = 0; i < 8; i++) {
  243. kvm_debug("L1 Vectored handler @ %p\n",
  244. gebase + 0x200 + (i * VECTORSPACING));
  245. kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING);
  246. }
  247. /* General exit handler */
  248. p = gebase + 0x2000;
  249. p = kvm_mips_build_exit(p);
  250. /* Guest entry routine */
  251. vcpu->arch.vcpu_run = p;
  252. p = kvm_mips_build_vcpu_run(p);
  253. /* Invalidate the icache for these ranges */
  254. local_flush_icache_range((unsigned long)gebase,
  255. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  256. /*
  257. * Allocate comm page for guest kernel, a TLB will be reserved for
  258. * mapping GVA @ 0xFFFF8000 to this page
  259. */
  260. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  261. if (!vcpu->arch.kseg0_commpage) {
  262. err = -ENOMEM;
  263. goto out_free_gebase;
  264. }
  265. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  266. kvm_mips_commpage_init(vcpu);
  267. /* Init */
  268. vcpu->arch.last_sched_cpu = -1;
  269. /* Start off the timer */
  270. kvm_mips_init_count(vcpu);
  271. return vcpu;
  272. out_free_gebase:
  273. kfree(gebase);
  274. out_uninit_cpu:
  275. kvm_vcpu_uninit(vcpu);
  276. out_free_cpu:
  277. kfree(vcpu);
  278. out:
  279. return ERR_PTR(err);
  280. }
  281. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  282. {
  283. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  284. kvm_vcpu_uninit(vcpu);
  285. kvm_mips_dump_stats(vcpu);
  286. kfree(vcpu->arch.guest_ebase);
  287. kfree(vcpu->arch.kseg0_commpage);
  288. kfree(vcpu);
  289. }
  290. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  291. {
  292. kvm_arch_vcpu_free(vcpu);
  293. }
  294. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  295. struct kvm_guest_debug *dbg)
  296. {
  297. return -ENOIOCTLCMD;
  298. }
  299. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  300. {
  301. int r = 0;
  302. sigset_t sigsaved;
  303. if (vcpu->sigset_active)
  304. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  305. if (vcpu->mmio_needed) {
  306. if (!vcpu->mmio_is_write)
  307. kvm_mips_complete_mmio_load(vcpu, run);
  308. vcpu->mmio_needed = 0;
  309. }
  310. lose_fpu(1);
  311. local_irq_disable();
  312. /* Check if we have any exceptions/interrupts pending */
  313. kvm_mips_deliver_interrupts(vcpu,
  314. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  315. guest_enter_irqoff();
  316. /* Disable hardware page table walking while in guest */
  317. htw_stop();
  318. trace_kvm_enter(vcpu);
  319. r = vcpu->arch.vcpu_run(run, vcpu);
  320. trace_kvm_out(vcpu);
  321. /* Re-enable HTW before enabling interrupts */
  322. htw_start();
  323. guest_exit_irqoff();
  324. local_irq_enable();
  325. if (vcpu->sigset_active)
  326. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  327. return r;
  328. }
  329. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  330. struct kvm_mips_interrupt *irq)
  331. {
  332. int intr = (int)irq->irq;
  333. struct kvm_vcpu *dvcpu = NULL;
  334. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  335. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  336. (int)intr);
  337. if (irq->cpu == -1)
  338. dvcpu = vcpu;
  339. else
  340. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  341. if (intr == 2 || intr == 3 || intr == 4) {
  342. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  343. } else if (intr == -2 || intr == -3 || intr == -4) {
  344. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  345. } else {
  346. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  347. irq->cpu, irq->irq);
  348. return -EINVAL;
  349. }
  350. dvcpu->arch.wait = 0;
  351. if (swait_active(&dvcpu->wq))
  352. swake_up(&dvcpu->wq);
  353. return 0;
  354. }
  355. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  356. struct kvm_mp_state *mp_state)
  357. {
  358. return -ENOIOCTLCMD;
  359. }
  360. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  361. struct kvm_mp_state *mp_state)
  362. {
  363. return -ENOIOCTLCMD;
  364. }
  365. static u64 kvm_mips_get_one_regs[] = {
  366. KVM_REG_MIPS_R0,
  367. KVM_REG_MIPS_R1,
  368. KVM_REG_MIPS_R2,
  369. KVM_REG_MIPS_R3,
  370. KVM_REG_MIPS_R4,
  371. KVM_REG_MIPS_R5,
  372. KVM_REG_MIPS_R6,
  373. KVM_REG_MIPS_R7,
  374. KVM_REG_MIPS_R8,
  375. KVM_REG_MIPS_R9,
  376. KVM_REG_MIPS_R10,
  377. KVM_REG_MIPS_R11,
  378. KVM_REG_MIPS_R12,
  379. KVM_REG_MIPS_R13,
  380. KVM_REG_MIPS_R14,
  381. KVM_REG_MIPS_R15,
  382. KVM_REG_MIPS_R16,
  383. KVM_REG_MIPS_R17,
  384. KVM_REG_MIPS_R18,
  385. KVM_REG_MIPS_R19,
  386. KVM_REG_MIPS_R20,
  387. KVM_REG_MIPS_R21,
  388. KVM_REG_MIPS_R22,
  389. KVM_REG_MIPS_R23,
  390. KVM_REG_MIPS_R24,
  391. KVM_REG_MIPS_R25,
  392. KVM_REG_MIPS_R26,
  393. KVM_REG_MIPS_R27,
  394. KVM_REG_MIPS_R28,
  395. KVM_REG_MIPS_R29,
  396. KVM_REG_MIPS_R30,
  397. KVM_REG_MIPS_R31,
  398. KVM_REG_MIPS_HI,
  399. KVM_REG_MIPS_LO,
  400. KVM_REG_MIPS_PC,
  401. KVM_REG_MIPS_CP0_INDEX,
  402. KVM_REG_MIPS_CP0_CONTEXT,
  403. KVM_REG_MIPS_CP0_USERLOCAL,
  404. KVM_REG_MIPS_CP0_PAGEMASK,
  405. KVM_REG_MIPS_CP0_WIRED,
  406. KVM_REG_MIPS_CP0_HWRENA,
  407. KVM_REG_MIPS_CP0_BADVADDR,
  408. KVM_REG_MIPS_CP0_COUNT,
  409. KVM_REG_MIPS_CP0_ENTRYHI,
  410. KVM_REG_MIPS_CP0_COMPARE,
  411. KVM_REG_MIPS_CP0_STATUS,
  412. KVM_REG_MIPS_CP0_CAUSE,
  413. KVM_REG_MIPS_CP0_EPC,
  414. KVM_REG_MIPS_CP0_PRID,
  415. KVM_REG_MIPS_CP0_CONFIG,
  416. KVM_REG_MIPS_CP0_CONFIG1,
  417. KVM_REG_MIPS_CP0_CONFIG2,
  418. KVM_REG_MIPS_CP0_CONFIG3,
  419. KVM_REG_MIPS_CP0_CONFIG4,
  420. KVM_REG_MIPS_CP0_CONFIG5,
  421. KVM_REG_MIPS_CP0_CONFIG7,
  422. KVM_REG_MIPS_CP0_ERROREPC,
  423. KVM_REG_MIPS_COUNT_CTL,
  424. KVM_REG_MIPS_COUNT_RESUME,
  425. KVM_REG_MIPS_COUNT_HZ,
  426. };
  427. static u64 kvm_mips_get_one_regs_fpu[] = {
  428. KVM_REG_MIPS_FCR_IR,
  429. KVM_REG_MIPS_FCR_CSR,
  430. };
  431. static u64 kvm_mips_get_one_regs_msa[] = {
  432. KVM_REG_MIPS_MSA_IR,
  433. KVM_REG_MIPS_MSA_CSR,
  434. };
  435. static u64 kvm_mips_get_one_regs_kscratch[] = {
  436. KVM_REG_MIPS_CP0_KSCRATCH1,
  437. KVM_REG_MIPS_CP0_KSCRATCH2,
  438. KVM_REG_MIPS_CP0_KSCRATCH3,
  439. KVM_REG_MIPS_CP0_KSCRATCH4,
  440. KVM_REG_MIPS_CP0_KSCRATCH5,
  441. KVM_REG_MIPS_CP0_KSCRATCH6,
  442. };
  443. static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
  444. {
  445. unsigned long ret;
  446. ret = ARRAY_SIZE(kvm_mips_get_one_regs);
  447. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  448. ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
  449. /* odd doubles */
  450. if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
  451. ret += 16;
  452. }
  453. if (kvm_mips_guest_can_have_msa(&vcpu->arch))
  454. ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
  455. ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
  456. ret += kvm_mips_callbacks->num_regs(vcpu);
  457. return ret;
  458. }
  459. static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
  460. {
  461. u64 index;
  462. unsigned int i;
  463. if (copy_to_user(indices, kvm_mips_get_one_regs,
  464. sizeof(kvm_mips_get_one_regs)))
  465. return -EFAULT;
  466. indices += ARRAY_SIZE(kvm_mips_get_one_regs);
  467. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  468. if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
  469. sizeof(kvm_mips_get_one_regs_fpu)))
  470. return -EFAULT;
  471. indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
  472. for (i = 0; i < 32; ++i) {
  473. index = KVM_REG_MIPS_FPR_32(i);
  474. if (copy_to_user(indices, &index, sizeof(index)))
  475. return -EFAULT;
  476. ++indices;
  477. /* skip odd doubles if no F64 */
  478. if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
  479. continue;
  480. index = KVM_REG_MIPS_FPR_64(i);
  481. if (copy_to_user(indices, &index, sizeof(index)))
  482. return -EFAULT;
  483. ++indices;
  484. }
  485. }
  486. if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
  487. if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
  488. sizeof(kvm_mips_get_one_regs_msa)))
  489. return -EFAULT;
  490. indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
  491. for (i = 0; i < 32; ++i) {
  492. index = KVM_REG_MIPS_VEC_128(i);
  493. if (copy_to_user(indices, &index, sizeof(index)))
  494. return -EFAULT;
  495. ++indices;
  496. }
  497. }
  498. for (i = 0; i < 6; ++i) {
  499. if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
  500. continue;
  501. if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
  502. sizeof(kvm_mips_get_one_regs_kscratch[i])))
  503. return -EFAULT;
  504. ++indices;
  505. }
  506. return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
  507. }
  508. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  509. const struct kvm_one_reg *reg)
  510. {
  511. struct mips_coproc *cop0 = vcpu->arch.cop0;
  512. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  513. int ret;
  514. s64 v;
  515. s64 vs[2];
  516. unsigned int idx;
  517. switch (reg->id) {
  518. /* General purpose registers */
  519. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  520. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  521. break;
  522. case KVM_REG_MIPS_HI:
  523. v = (long)vcpu->arch.hi;
  524. break;
  525. case KVM_REG_MIPS_LO:
  526. v = (long)vcpu->arch.lo;
  527. break;
  528. case KVM_REG_MIPS_PC:
  529. v = (long)vcpu->arch.pc;
  530. break;
  531. /* Floating point registers */
  532. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  533. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  534. return -EINVAL;
  535. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  536. /* Odd singles in top of even double when FR=0 */
  537. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  538. v = get_fpr32(&fpu->fpr[idx], 0);
  539. else
  540. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  541. break;
  542. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  543. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  544. return -EINVAL;
  545. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  546. /* Can't access odd doubles in FR=0 mode */
  547. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  548. return -EINVAL;
  549. v = get_fpr64(&fpu->fpr[idx], 0);
  550. break;
  551. case KVM_REG_MIPS_FCR_IR:
  552. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  553. return -EINVAL;
  554. v = boot_cpu_data.fpu_id;
  555. break;
  556. case KVM_REG_MIPS_FCR_CSR:
  557. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  558. return -EINVAL;
  559. v = fpu->fcr31;
  560. break;
  561. /* MIPS SIMD Architecture (MSA) registers */
  562. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  563. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  564. return -EINVAL;
  565. /* Can't access MSA registers in FR=0 mode */
  566. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  567. return -EINVAL;
  568. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  569. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  570. /* least significant byte first */
  571. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  572. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  573. #else
  574. /* most significant byte first */
  575. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  576. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  577. #endif
  578. break;
  579. case KVM_REG_MIPS_MSA_IR:
  580. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  581. return -EINVAL;
  582. v = boot_cpu_data.msa_id;
  583. break;
  584. case KVM_REG_MIPS_MSA_CSR:
  585. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  586. return -EINVAL;
  587. v = fpu->msacsr;
  588. break;
  589. /* Co-processor 0 registers */
  590. case KVM_REG_MIPS_CP0_INDEX:
  591. v = (long)kvm_read_c0_guest_index(cop0);
  592. break;
  593. case KVM_REG_MIPS_CP0_CONTEXT:
  594. v = (long)kvm_read_c0_guest_context(cop0);
  595. break;
  596. case KVM_REG_MIPS_CP0_USERLOCAL:
  597. v = (long)kvm_read_c0_guest_userlocal(cop0);
  598. break;
  599. case KVM_REG_MIPS_CP0_PAGEMASK:
  600. v = (long)kvm_read_c0_guest_pagemask(cop0);
  601. break;
  602. case KVM_REG_MIPS_CP0_WIRED:
  603. v = (long)kvm_read_c0_guest_wired(cop0);
  604. break;
  605. case KVM_REG_MIPS_CP0_HWRENA:
  606. v = (long)kvm_read_c0_guest_hwrena(cop0);
  607. break;
  608. case KVM_REG_MIPS_CP0_BADVADDR:
  609. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  610. break;
  611. case KVM_REG_MIPS_CP0_ENTRYHI:
  612. v = (long)kvm_read_c0_guest_entryhi(cop0);
  613. break;
  614. case KVM_REG_MIPS_CP0_COMPARE:
  615. v = (long)kvm_read_c0_guest_compare(cop0);
  616. break;
  617. case KVM_REG_MIPS_CP0_STATUS:
  618. v = (long)kvm_read_c0_guest_status(cop0);
  619. break;
  620. case KVM_REG_MIPS_CP0_CAUSE:
  621. v = (long)kvm_read_c0_guest_cause(cop0);
  622. break;
  623. case KVM_REG_MIPS_CP0_EPC:
  624. v = (long)kvm_read_c0_guest_epc(cop0);
  625. break;
  626. case KVM_REG_MIPS_CP0_PRID:
  627. v = (long)kvm_read_c0_guest_prid(cop0);
  628. break;
  629. case KVM_REG_MIPS_CP0_CONFIG:
  630. v = (long)kvm_read_c0_guest_config(cop0);
  631. break;
  632. case KVM_REG_MIPS_CP0_CONFIG1:
  633. v = (long)kvm_read_c0_guest_config1(cop0);
  634. break;
  635. case KVM_REG_MIPS_CP0_CONFIG2:
  636. v = (long)kvm_read_c0_guest_config2(cop0);
  637. break;
  638. case KVM_REG_MIPS_CP0_CONFIG3:
  639. v = (long)kvm_read_c0_guest_config3(cop0);
  640. break;
  641. case KVM_REG_MIPS_CP0_CONFIG4:
  642. v = (long)kvm_read_c0_guest_config4(cop0);
  643. break;
  644. case KVM_REG_MIPS_CP0_CONFIG5:
  645. v = (long)kvm_read_c0_guest_config5(cop0);
  646. break;
  647. case KVM_REG_MIPS_CP0_CONFIG7:
  648. v = (long)kvm_read_c0_guest_config7(cop0);
  649. break;
  650. case KVM_REG_MIPS_CP0_ERROREPC:
  651. v = (long)kvm_read_c0_guest_errorepc(cop0);
  652. break;
  653. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  654. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  655. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  656. return -EINVAL;
  657. switch (idx) {
  658. case 2:
  659. v = (long)kvm_read_c0_guest_kscratch1(cop0);
  660. break;
  661. case 3:
  662. v = (long)kvm_read_c0_guest_kscratch2(cop0);
  663. break;
  664. case 4:
  665. v = (long)kvm_read_c0_guest_kscratch3(cop0);
  666. break;
  667. case 5:
  668. v = (long)kvm_read_c0_guest_kscratch4(cop0);
  669. break;
  670. case 6:
  671. v = (long)kvm_read_c0_guest_kscratch5(cop0);
  672. break;
  673. case 7:
  674. v = (long)kvm_read_c0_guest_kscratch6(cop0);
  675. break;
  676. }
  677. break;
  678. /* registers to be handled specially */
  679. default:
  680. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  681. if (ret)
  682. return ret;
  683. break;
  684. }
  685. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  686. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  687. return put_user(v, uaddr64);
  688. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  689. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  690. u32 v32 = (u32)v;
  691. return put_user(v32, uaddr32);
  692. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  693. void __user *uaddr = (void __user *)(long)reg->addr;
  694. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  695. } else {
  696. return -EINVAL;
  697. }
  698. }
  699. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  700. const struct kvm_one_reg *reg)
  701. {
  702. struct mips_coproc *cop0 = vcpu->arch.cop0;
  703. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  704. s64 v;
  705. s64 vs[2];
  706. unsigned int idx;
  707. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  708. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  709. if (get_user(v, uaddr64) != 0)
  710. return -EFAULT;
  711. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  712. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  713. s32 v32;
  714. if (get_user(v32, uaddr32) != 0)
  715. return -EFAULT;
  716. v = (s64)v32;
  717. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  718. void __user *uaddr = (void __user *)(long)reg->addr;
  719. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  720. } else {
  721. return -EINVAL;
  722. }
  723. switch (reg->id) {
  724. /* General purpose registers */
  725. case KVM_REG_MIPS_R0:
  726. /* Silently ignore requests to set $0 */
  727. break;
  728. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  729. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  730. break;
  731. case KVM_REG_MIPS_HI:
  732. vcpu->arch.hi = v;
  733. break;
  734. case KVM_REG_MIPS_LO:
  735. vcpu->arch.lo = v;
  736. break;
  737. case KVM_REG_MIPS_PC:
  738. vcpu->arch.pc = v;
  739. break;
  740. /* Floating point registers */
  741. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  742. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  743. return -EINVAL;
  744. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  745. /* Odd singles in top of even double when FR=0 */
  746. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  747. set_fpr32(&fpu->fpr[idx], 0, v);
  748. else
  749. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  750. break;
  751. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  752. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  753. return -EINVAL;
  754. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  755. /* Can't access odd doubles in FR=0 mode */
  756. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  757. return -EINVAL;
  758. set_fpr64(&fpu->fpr[idx], 0, v);
  759. break;
  760. case KVM_REG_MIPS_FCR_IR:
  761. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  762. return -EINVAL;
  763. /* Read-only */
  764. break;
  765. case KVM_REG_MIPS_FCR_CSR:
  766. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  767. return -EINVAL;
  768. fpu->fcr31 = v;
  769. break;
  770. /* MIPS SIMD Architecture (MSA) registers */
  771. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  772. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  773. return -EINVAL;
  774. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  775. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  776. /* least significant byte first */
  777. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  778. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  779. #else
  780. /* most significant byte first */
  781. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  782. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  783. #endif
  784. break;
  785. case KVM_REG_MIPS_MSA_IR:
  786. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  787. return -EINVAL;
  788. /* Read-only */
  789. break;
  790. case KVM_REG_MIPS_MSA_CSR:
  791. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  792. return -EINVAL;
  793. fpu->msacsr = v;
  794. break;
  795. /* Co-processor 0 registers */
  796. case KVM_REG_MIPS_CP0_INDEX:
  797. kvm_write_c0_guest_index(cop0, v);
  798. break;
  799. case KVM_REG_MIPS_CP0_CONTEXT:
  800. kvm_write_c0_guest_context(cop0, v);
  801. break;
  802. case KVM_REG_MIPS_CP0_USERLOCAL:
  803. kvm_write_c0_guest_userlocal(cop0, v);
  804. break;
  805. case KVM_REG_MIPS_CP0_PAGEMASK:
  806. kvm_write_c0_guest_pagemask(cop0, v);
  807. break;
  808. case KVM_REG_MIPS_CP0_WIRED:
  809. kvm_write_c0_guest_wired(cop0, v);
  810. break;
  811. case KVM_REG_MIPS_CP0_HWRENA:
  812. kvm_write_c0_guest_hwrena(cop0, v);
  813. break;
  814. case KVM_REG_MIPS_CP0_BADVADDR:
  815. kvm_write_c0_guest_badvaddr(cop0, v);
  816. break;
  817. case KVM_REG_MIPS_CP0_ENTRYHI:
  818. kvm_write_c0_guest_entryhi(cop0, v);
  819. break;
  820. case KVM_REG_MIPS_CP0_STATUS:
  821. kvm_write_c0_guest_status(cop0, v);
  822. break;
  823. case KVM_REG_MIPS_CP0_EPC:
  824. kvm_write_c0_guest_epc(cop0, v);
  825. break;
  826. case KVM_REG_MIPS_CP0_PRID:
  827. kvm_write_c0_guest_prid(cop0, v);
  828. break;
  829. case KVM_REG_MIPS_CP0_ERROREPC:
  830. kvm_write_c0_guest_errorepc(cop0, v);
  831. break;
  832. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  833. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  834. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  835. return -EINVAL;
  836. switch (idx) {
  837. case 2:
  838. kvm_write_c0_guest_kscratch1(cop0, v);
  839. break;
  840. case 3:
  841. kvm_write_c0_guest_kscratch2(cop0, v);
  842. break;
  843. case 4:
  844. kvm_write_c0_guest_kscratch3(cop0, v);
  845. break;
  846. case 5:
  847. kvm_write_c0_guest_kscratch4(cop0, v);
  848. break;
  849. case 6:
  850. kvm_write_c0_guest_kscratch5(cop0, v);
  851. break;
  852. case 7:
  853. kvm_write_c0_guest_kscratch6(cop0, v);
  854. break;
  855. }
  856. break;
  857. /* registers to be handled specially */
  858. default:
  859. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  860. }
  861. return 0;
  862. }
  863. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  864. struct kvm_enable_cap *cap)
  865. {
  866. int r = 0;
  867. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  868. return -EINVAL;
  869. if (cap->flags)
  870. return -EINVAL;
  871. if (cap->args[0])
  872. return -EINVAL;
  873. switch (cap->cap) {
  874. case KVM_CAP_MIPS_FPU:
  875. vcpu->arch.fpu_enabled = true;
  876. break;
  877. case KVM_CAP_MIPS_MSA:
  878. vcpu->arch.msa_enabled = true;
  879. break;
  880. default:
  881. r = -EINVAL;
  882. break;
  883. }
  884. return r;
  885. }
  886. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  887. unsigned long arg)
  888. {
  889. struct kvm_vcpu *vcpu = filp->private_data;
  890. void __user *argp = (void __user *)arg;
  891. long r;
  892. switch (ioctl) {
  893. case KVM_SET_ONE_REG:
  894. case KVM_GET_ONE_REG: {
  895. struct kvm_one_reg reg;
  896. if (copy_from_user(&reg, argp, sizeof(reg)))
  897. return -EFAULT;
  898. if (ioctl == KVM_SET_ONE_REG)
  899. return kvm_mips_set_reg(vcpu, &reg);
  900. else
  901. return kvm_mips_get_reg(vcpu, &reg);
  902. }
  903. case KVM_GET_REG_LIST: {
  904. struct kvm_reg_list __user *user_list = argp;
  905. struct kvm_reg_list reg_list;
  906. unsigned n;
  907. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  908. return -EFAULT;
  909. n = reg_list.n;
  910. reg_list.n = kvm_mips_num_regs(vcpu);
  911. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  912. return -EFAULT;
  913. if (n < reg_list.n)
  914. return -E2BIG;
  915. return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
  916. }
  917. case KVM_NMI:
  918. /* Treat the NMI as a CPU reset */
  919. r = kvm_mips_reset_vcpu(vcpu);
  920. break;
  921. case KVM_INTERRUPT:
  922. {
  923. struct kvm_mips_interrupt irq;
  924. r = -EFAULT;
  925. if (copy_from_user(&irq, argp, sizeof(irq)))
  926. goto out;
  927. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  928. irq.irq);
  929. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  930. break;
  931. }
  932. case KVM_ENABLE_CAP: {
  933. struct kvm_enable_cap cap;
  934. r = -EFAULT;
  935. if (copy_from_user(&cap, argp, sizeof(cap)))
  936. goto out;
  937. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  938. break;
  939. }
  940. default:
  941. r = -ENOIOCTLCMD;
  942. }
  943. out:
  944. return r;
  945. }
  946. /* Get (and clear) the dirty memory log for a memory slot. */
  947. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  948. {
  949. struct kvm_memslots *slots;
  950. struct kvm_memory_slot *memslot;
  951. unsigned long ga, ga_end;
  952. int is_dirty = 0;
  953. int r;
  954. unsigned long n;
  955. mutex_lock(&kvm->slots_lock);
  956. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  957. if (r)
  958. goto out;
  959. /* If nothing is dirty, don't bother messing with page tables. */
  960. if (is_dirty) {
  961. slots = kvm_memslots(kvm);
  962. memslot = id_to_memslot(slots, log->slot);
  963. ga = memslot->base_gfn << PAGE_SHIFT;
  964. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  965. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  966. ga_end);
  967. n = kvm_dirty_bitmap_bytes(memslot);
  968. memset(memslot->dirty_bitmap, 0, n);
  969. }
  970. r = 0;
  971. out:
  972. mutex_unlock(&kvm->slots_lock);
  973. return r;
  974. }
  975. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  976. {
  977. long r;
  978. switch (ioctl) {
  979. default:
  980. r = -ENOIOCTLCMD;
  981. }
  982. return r;
  983. }
  984. int kvm_arch_init(void *opaque)
  985. {
  986. if (kvm_mips_callbacks) {
  987. kvm_err("kvm: module already exists\n");
  988. return -EEXIST;
  989. }
  990. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  991. }
  992. void kvm_arch_exit(void)
  993. {
  994. kvm_mips_callbacks = NULL;
  995. }
  996. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  997. struct kvm_sregs *sregs)
  998. {
  999. return -ENOIOCTLCMD;
  1000. }
  1001. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1002. struct kvm_sregs *sregs)
  1003. {
  1004. return -ENOIOCTLCMD;
  1005. }
  1006. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1007. {
  1008. }
  1009. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1010. {
  1011. return -ENOIOCTLCMD;
  1012. }
  1013. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1014. {
  1015. return -ENOIOCTLCMD;
  1016. }
  1017. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1018. {
  1019. return VM_FAULT_SIGBUS;
  1020. }
  1021. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  1022. {
  1023. int r;
  1024. switch (ext) {
  1025. case KVM_CAP_ONE_REG:
  1026. case KVM_CAP_ENABLE_CAP:
  1027. r = 1;
  1028. break;
  1029. case KVM_CAP_COALESCED_MMIO:
  1030. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1031. break;
  1032. case KVM_CAP_MIPS_FPU:
  1033. /* We don't handle systems with inconsistent cpu_has_fpu */
  1034. r = !!raw_cpu_has_fpu;
  1035. break;
  1036. case KVM_CAP_MIPS_MSA:
  1037. /*
  1038. * We don't support MSA vector partitioning yet:
  1039. * 1) It would require explicit support which can't be tested
  1040. * yet due to lack of support in current hardware.
  1041. * 2) It extends the state that would need to be saved/restored
  1042. * by e.g. QEMU for migration.
  1043. *
  1044. * When vector partitioning hardware becomes available, support
  1045. * could be added by requiring a flag when enabling
  1046. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  1047. * to save/restore the appropriate extra state.
  1048. */
  1049. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  1050. break;
  1051. default:
  1052. r = 0;
  1053. break;
  1054. }
  1055. return r;
  1056. }
  1057. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1058. {
  1059. return kvm_mips_pending_timer(vcpu);
  1060. }
  1061. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  1062. {
  1063. int i;
  1064. struct mips_coproc *cop0;
  1065. if (!vcpu)
  1066. return -1;
  1067. kvm_debug("VCPU Register Dump:\n");
  1068. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  1069. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  1070. for (i = 0; i < 32; i += 4) {
  1071. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  1072. vcpu->arch.gprs[i],
  1073. vcpu->arch.gprs[i + 1],
  1074. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  1075. }
  1076. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  1077. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  1078. cop0 = vcpu->arch.cop0;
  1079. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  1080. kvm_read_c0_guest_status(cop0),
  1081. kvm_read_c0_guest_cause(cop0));
  1082. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  1083. return 0;
  1084. }
  1085. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1086. {
  1087. int i;
  1088. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1089. vcpu->arch.gprs[i] = regs->gpr[i];
  1090. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  1091. vcpu->arch.hi = regs->hi;
  1092. vcpu->arch.lo = regs->lo;
  1093. vcpu->arch.pc = regs->pc;
  1094. return 0;
  1095. }
  1096. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1097. {
  1098. int i;
  1099. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1100. regs->gpr[i] = vcpu->arch.gprs[i];
  1101. regs->hi = vcpu->arch.hi;
  1102. regs->lo = vcpu->arch.lo;
  1103. regs->pc = vcpu->arch.pc;
  1104. return 0;
  1105. }
  1106. static void kvm_mips_comparecount_func(unsigned long data)
  1107. {
  1108. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1109. kvm_mips_callbacks->queue_timer_int(vcpu);
  1110. vcpu->arch.wait = 0;
  1111. if (swait_active(&vcpu->wq))
  1112. swake_up(&vcpu->wq);
  1113. }
  1114. /* low level hrtimer wake routine */
  1115. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1116. {
  1117. struct kvm_vcpu *vcpu;
  1118. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1119. kvm_mips_comparecount_func((unsigned long) vcpu);
  1120. return kvm_mips_count_timeout(vcpu);
  1121. }
  1122. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1123. {
  1124. kvm_mips_callbacks->vcpu_init(vcpu);
  1125. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1126. HRTIMER_MODE_REL);
  1127. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1128. return 0;
  1129. }
  1130. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1131. struct kvm_translation *tr)
  1132. {
  1133. return 0;
  1134. }
  1135. /* Initial guest state */
  1136. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1137. {
  1138. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1139. }
  1140. static void kvm_mips_set_c0_status(void)
  1141. {
  1142. u32 status = read_c0_status();
  1143. if (cpu_has_dsp)
  1144. status |= (ST0_MX);
  1145. write_c0_status(status);
  1146. ehb();
  1147. }
  1148. /*
  1149. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1150. */
  1151. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1152. {
  1153. u32 cause = vcpu->arch.host_cp0_cause;
  1154. u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1155. u32 __user *opc = (u32 __user *) vcpu->arch.pc;
  1156. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1157. enum emulation_result er = EMULATE_DONE;
  1158. int ret = RESUME_GUEST;
  1159. /* re-enable HTW before enabling interrupts */
  1160. htw_start();
  1161. /* Set a default exit reason */
  1162. run->exit_reason = KVM_EXIT_UNKNOWN;
  1163. run->ready_for_interrupt_injection = 1;
  1164. /*
  1165. * Set the appropriate status bits based on host CPU features,
  1166. * before we hit the scheduler
  1167. */
  1168. kvm_mips_set_c0_status();
  1169. local_irq_enable();
  1170. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1171. cause, opc, run, vcpu);
  1172. trace_kvm_exit(vcpu, exccode);
  1173. /*
  1174. * Do a privilege check, if in UM most of these exit conditions end up
  1175. * causing an exception to be delivered to the Guest Kernel
  1176. */
  1177. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1178. if (er == EMULATE_PRIV_FAIL) {
  1179. goto skip_emul;
  1180. } else if (er == EMULATE_FAIL) {
  1181. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1182. ret = RESUME_HOST;
  1183. goto skip_emul;
  1184. }
  1185. switch (exccode) {
  1186. case EXCCODE_INT:
  1187. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1188. ++vcpu->stat.int_exits;
  1189. if (need_resched())
  1190. cond_resched();
  1191. ret = RESUME_GUEST;
  1192. break;
  1193. case EXCCODE_CPU:
  1194. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1195. ++vcpu->stat.cop_unusable_exits;
  1196. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1197. /* XXXKYMA: Might need to return to user space */
  1198. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1199. ret = RESUME_HOST;
  1200. break;
  1201. case EXCCODE_MOD:
  1202. ++vcpu->stat.tlbmod_exits;
  1203. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1204. break;
  1205. case EXCCODE_TLBS:
  1206. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1207. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1208. badvaddr);
  1209. ++vcpu->stat.tlbmiss_st_exits;
  1210. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1211. break;
  1212. case EXCCODE_TLBL:
  1213. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1214. cause, opc, badvaddr);
  1215. ++vcpu->stat.tlbmiss_ld_exits;
  1216. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1217. break;
  1218. case EXCCODE_ADES:
  1219. ++vcpu->stat.addrerr_st_exits;
  1220. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1221. break;
  1222. case EXCCODE_ADEL:
  1223. ++vcpu->stat.addrerr_ld_exits;
  1224. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1225. break;
  1226. case EXCCODE_SYS:
  1227. ++vcpu->stat.syscall_exits;
  1228. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1229. break;
  1230. case EXCCODE_RI:
  1231. ++vcpu->stat.resvd_inst_exits;
  1232. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1233. break;
  1234. case EXCCODE_BP:
  1235. ++vcpu->stat.break_inst_exits;
  1236. ret = kvm_mips_callbacks->handle_break(vcpu);
  1237. break;
  1238. case EXCCODE_TR:
  1239. ++vcpu->stat.trap_inst_exits;
  1240. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1241. break;
  1242. case EXCCODE_MSAFPE:
  1243. ++vcpu->stat.msa_fpe_exits;
  1244. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1245. break;
  1246. case EXCCODE_FPE:
  1247. ++vcpu->stat.fpe_exits;
  1248. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1249. break;
  1250. case EXCCODE_MSADIS:
  1251. ++vcpu->stat.msa_disabled_exits;
  1252. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1253. break;
  1254. default:
  1255. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1256. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1257. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1258. kvm_arch_vcpu_dump_regs(vcpu);
  1259. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1260. ret = RESUME_HOST;
  1261. break;
  1262. }
  1263. skip_emul:
  1264. local_irq_disable();
  1265. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1266. kvm_mips_deliver_interrupts(vcpu, cause);
  1267. if (!(ret & RESUME_HOST)) {
  1268. /* Only check for signals if not already exiting to userspace */
  1269. if (signal_pending(current)) {
  1270. run->exit_reason = KVM_EXIT_INTR;
  1271. ret = (-EINTR << 2) | RESUME_HOST;
  1272. ++vcpu->stat.signal_exits;
  1273. trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
  1274. }
  1275. }
  1276. if (ret == RESUME_GUEST) {
  1277. trace_kvm_reenter(vcpu);
  1278. /*
  1279. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1280. * is live), restore FCR31 / MSACSR.
  1281. *
  1282. * This should be before returning to the guest exception
  1283. * vector, as it may well cause an [MSA] FP exception if there
  1284. * are pending exception bits unmasked. (see
  1285. * kvm_mips_csr_die_notifier() for how that is handled).
  1286. */
  1287. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1288. read_c0_status() & ST0_CU1)
  1289. __kvm_restore_fcsr(&vcpu->arch);
  1290. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1291. read_c0_config5() & MIPS_CONF5_MSAEN)
  1292. __kvm_restore_msacsr(&vcpu->arch);
  1293. }
  1294. /* Disable HTW before returning to guest or host */
  1295. htw_stop();
  1296. return ret;
  1297. }
  1298. /* Enable FPU for guest and restore context */
  1299. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1300. {
  1301. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1302. unsigned int sr, cfg5;
  1303. preempt_disable();
  1304. sr = kvm_read_c0_guest_status(cop0);
  1305. /*
  1306. * If MSA state is already live, it is undefined how it interacts with
  1307. * FR=0 FPU state, and we don't want to hit reserved instruction
  1308. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1309. * play it safe and save it first.
  1310. *
  1311. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1312. * get called when guest CU1 is set, however we can't trust the guest
  1313. * not to clobber the status register directly via the commpage.
  1314. */
  1315. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1316. vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
  1317. kvm_lose_fpu(vcpu);
  1318. /*
  1319. * Enable FPU for guest
  1320. * We set FR and FRE according to guest context
  1321. */
  1322. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1323. if (cpu_has_fre) {
  1324. cfg5 = kvm_read_c0_guest_config5(cop0);
  1325. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1326. }
  1327. enable_fpu_hazard();
  1328. /* If guest FPU state not active, restore it now */
  1329. if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
  1330. __kvm_restore_fpu(&vcpu->arch);
  1331. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1332. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1333. } else {
  1334. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
  1335. }
  1336. preempt_enable();
  1337. }
  1338. #ifdef CONFIG_CPU_HAS_MSA
  1339. /* Enable MSA for guest and restore context */
  1340. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1341. {
  1342. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1343. unsigned int sr, cfg5;
  1344. preempt_disable();
  1345. /*
  1346. * Enable FPU if enabled in guest, since we're restoring FPU context
  1347. * anyway. We set FR and FRE according to guest context.
  1348. */
  1349. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1350. sr = kvm_read_c0_guest_status(cop0);
  1351. /*
  1352. * If FR=0 FPU state is already live, it is undefined how it
  1353. * interacts with MSA state, so play it safe and save it first.
  1354. */
  1355. if (!(sr & ST0_FR) &&
  1356. (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
  1357. KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
  1358. kvm_lose_fpu(vcpu);
  1359. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1360. if (sr & ST0_CU1 && cpu_has_fre) {
  1361. cfg5 = kvm_read_c0_guest_config5(cop0);
  1362. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1363. }
  1364. }
  1365. /* Enable MSA for guest */
  1366. set_c0_config5(MIPS_CONF5_MSAEN);
  1367. enable_fpu_hazard();
  1368. switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
  1369. case KVM_MIPS_AUX_FPU:
  1370. /*
  1371. * Guest FPU state already loaded, only restore upper MSA state
  1372. */
  1373. __kvm_restore_msa_upper(&vcpu->arch);
  1374. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1375. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
  1376. break;
  1377. case 0:
  1378. /* Neither FPU or MSA already active, restore full MSA state */
  1379. __kvm_restore_msa(&vcpu->arch);
  1380. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1381. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1382. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1383. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
  1384. KVM_TRACE_AUX_FPU_MSA);
  1385. break;
  1386. default:
  1387. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
  1388. break;
  1389. }
  1390. preempt_enable();
  1391. }
  1392. #endif
  1393. /* Drop FPU & MSA without saving it */
  1394. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1395. {
  1396. preempt_disable();
  1397. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1398. disable_msa();
  1399. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
  1400. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
  1401. }
  1402. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1403. clear_c0_status(ST0_CU1 | ST0_FR);
  1404. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
  1405. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1406. }
  1407. preempt_enable();
  1408. }
  1409. /* Save and disable FPU & MSA */
  1410. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1411. {
  1412. /*
  1413. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1414. * in guest context (software), but the register state in the hardware
  1415. * may still be in use. This is why we explicitly re-enable the hardware
  1416. * before saving.
  1417. */
  1418. preempt_disable();
  1419. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1420. set_c0_config5(MIPS_CONF5_MSAEN);
  1421. enable_fpu_hazard();
  1422. __kvm_save_msa(&vcpu->arch);
  1423. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
  1424. /* Disable MSA & FPU */
  1425. disable_msa();
  1426. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1427. clear_c0_status(ST0_CU1 | ST0_FR);
  1428. disable_fpu_hazard();
  1429. }
  1430. vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
  1431. } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1432. set_c0_status(ST0_CU1);
  1433. enable_fpu_hazard();
  1434. __kvm_save_fpu(&vcpu->arch);
  1435. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1436. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1437. /* Disable FPU */
  1438. clear_c0_status(ST0_CU1 | ST0_FR);
  1439. disable_fpu_hazard();
  1440. }
  1441. preempt_enable();
  1442. }
  1443. /*
  1444. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1445. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1446. * exception if cause bits are set in the value being written.
  1447. */
  1448. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1449. unsigned long cmd, void *ptr)
  1450. {
  1451. struct die_args *args = (struct die_args *)ptr;
  1452. struct pt_regs *regs = args->regs;
  1453. unsigned long pc;
  1454. /* Only interested in FPE and MSAFPE */
  1455. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1456. return NOTIFY_DONE;
  1457. /* Return immediately if guest context isn't active */
  1458. if (!(current->flags & PF_VCPU))
  1459. return NOTIFY_DONE;
  1460. /* Should never get here from user mode */
  1461. BUG_ON(user_mode(regs));
  1462. pc = instruction_pointer(regs);
  1463. switch (cmd) {
  1464. case DIE_FP:
  1465. /* match 2nd instruction in __kvm_restore_fcsr */
  1466. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1467. return NOTIFY_DONE;
  1468. break;
  1469. case DIE_MSAFP:
  1470. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1471. if (!cpu_has_msa ||
  1472. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1473. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1474. return NOTIFY_DONE;
  1475. break;
  1476. }
  1477. /* Move PC forward a little and continue executing */
  1478. instruction_pointer(regs) += 4;
  1479. return NOTIFY_STOP;
  1480. }
  1481. static struct notifier_block kvm_mips_csr_die_notifier = {
  1482. .notifier_call = kvm_mips_csr_die_notify,
  1483. };
  1484. static int __init kvm_mips_init(void)
  1485. {
  1486. int ret;
  1487. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1488. if (ret)
  1489. return ret;
  1490. register_die_notifier(&kvm_mips_csr_die_notifier);
  1491. return 0;
  1492. }
  1493. static void __exit kvm_mips_exit(void)
  1494. {
  1495. kvm_exit();
  1496. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1497. }
  1498. module_init(kvm_mips_init);
  1499. module_exit(kvm_mips_exit);
  1500. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);