disk-io.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #include "qgroup.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. static struct extent_io_ops btree_extent_io_ops;
  56. static void end_workqueue_fn(struct btrfs_work *work);
  57. static void free_fs_root(struct btrfs_root *root);
  58. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  59. int read_only);
  60. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  63. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  64. struct btrfs_root *root);
  65. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67. struct extent_io_tree *dirty_pages,
  68. int mark);
  69. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70. struct extent_io_tree *pinned_extents);
  71. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72. static void btrfs_error_commit_super(struct btrfs_root *root);
  73. /*
  74. * end_io_wq structs are used to do processing in task context when an IO is
  75. * complete. This is used during reads to verify checksums, and it is used
  76. * by writes to insert metadata for new file extents after IO is complete.
  77. */
  78. struct end_io_wq {
  79. struct bio *bio;
  80. bio_end_io_t *end_io;
  81. void *private;
  82. struct btrfs_fs_info *info;
  83. int error;
  84. int metadata;
  85. struct list_head list;
  86. struct btrfs_work work;
  87. };
  88. /*
  89. * async submit bios are used to offload expensive checksumming
  90. * onto the worker threads. They checksum file and metadata bios
  91. * just before they are sent down the IO stack.
  92. */
  93. struct async_submit_bio {
  94. struct inode *inode;
  95. struct bio *bio;
  96. struct list_head list;
  97. extent_submit_bio_hook_t *submit_bio_start;
  98. extent_submit_bio_hook_t *submit_bio_done;
  99. int rw;
  100. int mirror_num;
  101. unsigned long bio_flags;
  102. /*
  103. * bio_offset is optional, can be used if the pages in the bio
  104. * can't tell us where in the file the bio should go
  105. */
  106. u64 bio_offset;
  107. struct btrfs_work work;
  108. int error;
  109. };
  110. /*
  111. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  112. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  113. * the level the eb occupies in the tree.
  114. *
  115. * Different roots are used for different purposes and may nest inside each
  116. * other and they require separate keysets. As lockdep keys should be
  117. * static, assign keysets according to the purpose of the root as indicated
  118. * by btrfs_root->objectid. This ensures that all special purpose roots
  119. * have separate keysets.
  120. *
  121. * Lock-nesting across peer nodes is always done with the immediate parent
  122. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  123. * subclass to avoid triggering lockdep warning in such cases.
  124. *
  125. * The key is set by the readpage_end_io_hook after the buffer has passed
  126. * csum validation but before the pages are unlocked. It is also set by
  127. * btrfs_init_new_buffer on freshly allocated blocks.
  128. *
  129. * We also add a check to make sure the highest level of the tree is the
  130. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  131. * needs update as well.
  132. */
  133. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  134. # if BTRFS_MAX_LEVEL != 8
  135. # error
  136. # endif
  137. static struct btrfs_lockdep_keyset {
  138. u64 id; /* root objectid */
  139. const char *name_stem; /* lock name stem */
  140. char names[BTRFS_MAX_LEVEL + 1][20];
  141. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  142. } btrfs_lockdep_keysets[] = {
  143. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  144. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  145. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  146. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  147. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  148. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  149. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  150. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  151. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  152. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  153. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  154. { .id = 0, .name_stem = "tree" },
  155. };
  156. void __init btrfs_init_lockdep(void)
  157. {
  158. int i, j;
  159. /* initialize lockdep class names */
  160. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  161. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  162. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  163. snprintf(ks->names[j], sizeof(ks->names[j]),
  164. "btrfs-%s-%02d", ks->name_stem, j);
  165. }
  166. }
  167. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  168. int level)
  169. {
  170. struct btrfs_lockdep_keyset *ks;
  171. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  172. /* find the matching keyset, id 0 is the default entry */
  173. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  174. if (ks->id == objectid)
  175. break;
  176. lockdep_set_class_and_name(&eb->lock,
  177. &ks->keys[level], ks->names[level]);
  178. }
  179. #endif
  180. /*
  181. * extents on the btree inode are pretty simple, there's one extent
  182. * that covers the entire device
  183. */
  184. static struct extent_map *btree_get_extent(struct inode *inode,
  185. struct page *page, size_t pg_offset, u64 start, u64 len,
  186. int create)
  187. {
  188. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  189. struct extent_map *em;
  190. int ret;
  191. read_lock(&em_tree->lock);
  192. em = lookup_extent_mapping(em_tree, start, len);
  193. if (em) {
  194. em->bdev =
  195. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  196. read_unlock(&em_tree->lock);
  197. goto out;
  198. }
  199. read_unlock(&em_tree->lock);
  200. em = alloc_extent_map();
  201. if (!em) {
  202. em = ERR_PTR(-ENOMEM);
  203. goto out;
  204. }
  205. em->start = 0;
  206. em->len = (u64)-1;
  207. em->block_len = (u64)-1;
  208. em->block_start = 0;
  209. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. write_lock(&em_tree->lock);
  211. ret = add_extent_mapping(em_tree, em, 0);
  212. if (ret == -EEXIST) {
  213. free_extent_map(em);
  214. em = lookup_extent_mapping(em_tree, start, len);
  215. if (!em)
  216. em = ERR_PTR(-EIO);
  217. } else if (ret) {
  218. free_extent_map(em);
  219. em = ERR_PTR(ret);
  220. }
  221. write_unlock(&em_tree->lock);
  222. out:
  223. return em;
  224. }
  225. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  226. {
  227. return btrfs_crc32c(seed, data, len);
  228. }
  229. void btrfs_csum_final(u32 crc, char *result)
  230. {
  231. put_unaligned_le32(~crc, result);
  232. }
  233. /*
  234. * compute the csum for a btree block, and either verify it or write it
  235. * into the csum field of the block.
  236. */
  237. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  238. int verify)
  239. {
  240. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  241. char *result = NULL;
  242. unsigned long len;
  243. unsigned long cur_len;
  244. unsigned long offset = BTRFS_CSUM_SIZE;
  245. char *kaddr;
  246. unsigned long map_start;
  247. unsigned long map_len;
  248. int err;
  249. u32 crc = ~(u32)0;
  250. unsigned long inline_result;
  251. len = buf->len - offset;
  252. while (len > 0) {
  253. err = map_private_extent_buffer(buf, offset, 32,
  254. &kaddr, &map_start, &map_len);
  255. if (err)
  256. return 1;
  257. cur_len = min(len, map_len - (offset - map_start));
  258. crc = btrfs_csum_data(kaddr + offset - map_start,
  259. crc, cur_len);
  260. len -= cur_len;
  261. offset += cur_len;
  262. }
  263. if (csum_size > sizeof(inline_result)) {
  264. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  265. if (!result)
  266. return 1;
  267. } else {
  268. result = (char *)&inline_result;
  269. }
  270. btrfs_csum_final(crc, result);
  271. if (verify) {
  272. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  273. u32 val;
  274. u32 found = 0;
  275. memcpy(&found, result, csum_size);
  276. read_extent_buffer(buf, &val, 0, csum_size);
  277. printk_ratelimited(KERN_INFO
  278. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  279. "level %d\n",
  280. root->fs_info->sb->s_id, buf->start,
  281. val, found, btrfs_header_level(buf));
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 1;
  285. }
  286. } else {
  287. write_extent_buffer(buf, result, 0, csum_size);
  288. }
  289. if (result != (char *)&inline_result)
  290. kfree(result);
  291. return 0;
  292. }
  293. /*
  294. * we can't consider a given block up to date unless the transid of the
  295. * block matches the transid in the parent node's pointer. This is how we
  296. * detect blocks that either didn't get written at all or got written
  297. * in the wrong place.
  298. */
  299. static int verify_parent_transid(struct extent_io_tree *io_tree,
  300. struct extent_buffer *eb, u64 parent_transid,
  301. int atomic)
  302. {
  303. struct extent_state *cached_state = NULL;
  304. int ret;
  305. bool need_lock = (current->journal_info ==
  306. (void *)BTRFS_SEND_TRANS_STUB);
  307. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  308. return 0;
  309. if (atomic)
  310. return -EAGAIN;
  311. if (need_lock) {
  312. btrfs_tree_read_lock(eb);
  313. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  314. }
  315. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  316. 0, &cached_state);
  317. if (extent_buffer_uptodate(eb) &&
  318. btrfs_header_generation(eb) == parent_transid) {
  319. ret = 0;
  320. goto out;
  321. }
  322. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  323. "found %llu\n",
  324. eb->start, parent_transid, btrfs_header_generation(eb));
  325. ret = 1;
  326. /*
  327. * Things reading via commit roots that don't have normal protection,
  328. * like send, can have a really old block in cache that may point at a
  329. * block that has been free'd and re-allocated. So don't clear uptodate
  330. * if we find an eb that is under IO (dirty/writeback) because we could
  331. * end up reading in the stale data and then writing it back out and
  332. * making everybody very sad.
  333. */
  334. if (!extent_buffer_under_io(eb))
  335. clear_extent_buffer_uptodate(eb);
  336. out:
  337. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  338. &cached_state, GFP_NOFS);
  339. if (need_lock)
  340. btrfs_tree_read_unlock_blocking(eb);
  341. return ret;
  342. }
  343. /*
  344. * Return 0 if the superblock checksum type matches the checksum value of that
  345. * algorithm. Pass the raw disk superblock data.
  346. */
  347. static int btrfs_check_super_csum(char *raw_disk_sb)
  348. {
  349. struct btrfs_super_block *disk_sb =
  350. (struct btrfs_super_block *)raw_disk_sb;
  351. u16 csum_type = btrfs_super_csum_type(disk_sb);
  352. int ret = 0;
  353. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  354. u32 crc = ~(u32)0;
  355. const int csum_size = sizeof(crc);
  356. char result[csum_size];
  357. /*
  358. * The super_block structure does not span the whole
  359. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  360. * is filled with zeros and is included in the checkum.
  361. */
  362. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  363. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  364. btrfs_csum_final(crc, result);
  365. if (memcmp(raw_disk_sb, result, csum_size))
  366. ret = 1;
  367. if (ret && btrfs_super_generation(disk_sb) < 10) {
  368. printk(KERN_WARNING
  369. "BTRFS: super block crcs don't match, older mkfs detected\n");
  370. ret = 0;
  371. }
  372. }
  373. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  374. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  375. csum_type);
  376. ret = 1;
  377. }
  378. return ret;
  379. }
  380. /*
  381. * helper to read a given tree block, doing retries as required when
  382. * the checksums don't match and we have alternate mirrors to try.
  383. */
  384. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  385. struct extent_buffer *eb,
  386. u64 start, u64 parent_transid)
  387. {
  388. struct extent_io_tree *io_tree;
  389. int failed = 0;
  390. int ret;
  391. int num_copies = 0;
  392. int mirror_num = 0;
  393. int failed_mirror = 0;
  394. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  395. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  396. while (1) {
  397. ret = read_extent_buffer_pages(io_tree, eb, start,
  398. WAIT_COMPLETE,
  399. btree_get_extent, mirror_num);
  400. if (!ret) {
  401. if (!verify_parent_transid(io_tree, eb,
  402. parent_transid, 0))
  403. break;
  404. else
  405. ret = -EIO;
  406. }
  407. /*
  408. * This buffer's crc is fine, but its contents are corrupted, so
  409. * there is no reason to read the other copies, they won't be
  410. * any less wrong.
  411. */
  412. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  413. break;
  414. num_copies = btrfs_num_copies(root->fs_info,
  415. eb->start, eb->len);
  416. if (num_copies == 1)
  417. break;
  418. if (!failed_mirror) {
  419. failed = 1;
  420. failed_mirror = eb->read_mirror;
  421. }
  422. mirror_num++;
  423. if (mirror_num == failed_mirror)
  424. mirror_num++;
  425. if (mirror_num > num_copies)
  426. break;
  427. }
  428. if (failed && !ret && failed_mirror)
  429. repair_eb_io_failure(root, eb, failed_mirror);
  430. return ret;
  431. }
  432. /*
  433. * checksum a dirty tree block before IO. This has extra checks to make sure
  434. * we only fill in the checksum field in the first page of a multi-page block
  435. */
  436. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  437. {
  438. u64 start = page_offset(page);
  439. u64 found_start;
  440. struct extent_buffer *eb;
  441. eb = (struct extent_buffer *)page->private;
  442. if (page != eb->pages[0])
  443. return 0;
  444. found_start = btrfs_header_bytenr(eb);
  445. if (WARN_ON(found_start != start || !PageUptodate(page)))
  446. return 0;
  447. csum_tree_block(root, eb, 0);
  448. return 0;
  449. }
  450. static int check_tree_block_fsid(struct btrfs_root *root,
  451. struct extent_buffer *eb)
  452. {
  453. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  454. u8 fsid[BTRFS_UUID_SIZE];
  455. int ret = 1;
  456. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  457. while (fs_devices) {
  458. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  459. ret = 0;
  460. break;
  461. }
  462. fs_devices = fs_devices->seed;
  463. }
  464. return ret;
  465. }
  466. #define CORRUPT(reason, eb, root, slot) \
  467. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  468. "root=%llu, slot=%d", reason, \
  469. btrfs_header_bytenr(eb), root->objectid, slot)
  470. static noinline int check_leaf(struct btrfs_root *root,
  471. struct extent_buffer *leaf)
  472. {
  473. struct btrfs_key key;
  474. struct btrfs_key leaf_key;
  475. u32 nritems = btrfs_header_nritems(leaf);
  476. int slot;
  477. if (nritems == 0)
  478. return 0;
  479. /* Check the 0 item */
  480. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  481. BTRFS_LEAF_DATA_SIZE(root)) {
  482. CORRUPT("invalid item offset size pair", leaf, root, 0);
  483. return -EIO;
  484. }
  485. /*
  486. * Check to make sure each items keys are in the correct order and their
  487. * offsets make sense. We only have to loop through nritems-1 because
  488. * we check the current slot against the next slot, which verifies the
  489. * next slot's offset+size makes sense and that the current's slot
  490. * offset is correct.
  491. */
  492. for (slot = 0; slot < nritems - 1; slot++) {
  493. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  494. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  495. /* Make sure the keys are in the right order */
  496. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  497. CORRUPT("bad key order", leaf, root, slot);
  498. return -EIO;
  499. }
  500. /*
  501. * Make sure the offset and ends are right, remember that the
  502. * item data starts at the end of the leaf and grows towards the
  503. * front.
  504. */
  505. if (btrfs_item_offset_nr(leaf, slot) !=
  506. btrfs_item_end_nr(leaf, slot + 1)) {
  507. CORRUPT("slot offset bad", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Check to make sure that we don't point outside of the leaf,
  512. * just incase all the items are consistent to eachother, but
  513. * all point outside of the leaf.
  514. */
  515. if (btrfs_item_end_nr(leaf, slot) >
  516. BTRFS_LEAF_DATA_SIZE(root)) {
  517. CORRUPT("slot end outside of leaf", leaf, root, slot);
  518. return -EIO;
  519. }
  520. }
  521. return 0;
  522. }
  523. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  524. u64 phy_offset, struct page *page,
  525. u64 start, u64 end, int mirror)
  526. {
  527. u64 found_start;
  528. int found_level;
  529. struct extent_buffer *eb;
  530. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  531. int ret = 0;
  532. int reads_done;
  533. if (!page->private)
  534. goto out;
  535. eb = (struct extent_buffer *)page->private;
  536. /* the pending IO might have been the only thing that kept this buffer
  537. * in memory. Make sure we have a ref for all this other checks
  538. */
  539. extent_buffer_get(eb);
  540. reads_done = atomic_dec_and_test(&eb->io_pages);
  541. if (!reads_done)
  542. goto err;
  543. eb->read_mirror = mirror;
  544. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  545. ret = -EIO;
  546. goto err;
  547. }
  548. found_start = btrfs_header_bytenr(eb);
  549. if (found_start != eb->start) {
  550. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  551. "%llu %llu\n",
  552. found_start, eb->start);
  553. ret = -EIO;
  554. goto err;
  555. }
  556. if (check_tree_block_fsid(root, eb)) {
  557. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  558. eb->start);
  559. ret = -EIO;
  560. goto err;
  561. }
  562. found_level = btrfs_header_level(eb);
  563. if (found_level >= BTRFS_MAX_LEVEL) {
  564. btrfs_info(root->fs_info, "bad tree block level %d",
  565. (int)btrfs_header_level(eb));
  566. ret = -EIO;
  567. goto err;
  568. }
  569. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  570. eb, found_level);
  571. ret = csum_tree_block(root, eb, 1);
  572. if (ret) {
  573. ret = -EIO;
  574. goto err;
  575. }
  576. /*
  577. * If this is a leaf block and it is corrupt, set the corrupt bit so
  578. * that we don't try and read the other copies of this block, just
  579. * return -EIO.
  580. */
  581. if (found_level == 0 && check_leaf(root, eb)) {
  582. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  583. ret = -EIO;
  584. }
  585. if (!ret)
  586. set_extent_buffer_uptodate(eb);
  587. err:
  588. if (reads_done &&
  589. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  590. btree_readahead_hook(root, eb, eb->start, ret);
  591. if (ret) {
  592. /*
  593. * our io error hook is going to dec the io pages
  594. * again, we have to make sure it has something
  595. * to decrement
  596. */
  597. atomic_inc(&eb->io_pages);
  598. clear_extent_buffer_uptodate(eb);
  599. }
  600. free_extent_buffer(eb);
  601. out:
  602. return ret;
  603. }
  604. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  605. {
  606. struct extent_buffer *eb;
  607. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  608. eb = (struct extent_buffer *)page->private;
  609. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  610. eb->read_mirror = failed_mirror;
  611. atomic_dec(&eb->io_pages);
  612. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  613. btree_readahead_hook(root, eb, eb->start, -EIO);
  614. return -EIO; /* we fixed nothing */
  615. }
  616. static void end_workqueue_bio(struct bio *bio, int err)
  617. {
  618. struct end_io_wq *end_io_wq = bio->bi_private;
  619. struct btrfs_fs_info *fs_info;
  620. fs_info = end_io_wq->info;
  621. end_io_wq->error = err;
  622. btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
  623. if (bio->bi_rw & REQ_WRITE) {
  624. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  625. btrfs_queue_work(fs_info->endio_meta_write_workers,
  626. &end_io_wq->work);
  627. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  628. btrfs_queue_work(fs_info->endio_freespace_worker,
  629. &end_io_wq->work);
  630. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  631. btrfs_queue_work(fs_info->endio_raid56_workers,
  632. &end_io_wq->work);
  633. else
  634. btrfs_queue_work(fs_info->endio_write_workers,
  635. &end_io_wq->work);
  636. } else {
  637. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  638. btrfs_queue_work(fs_info->endio_raid56_workers,
  639. &end_io_wq->work);
  640. else if (end_io_wq->metadata)
  641. btrfs_queue_work(fs_info->endio_meta_workers,
  642. &end_io_wq->work);
  643. else
  644. btrfs_queue_work(fs_info->endio_workers,
  645. &end_io_wq->work);
  646. }
  647. }
  648. /*
  649. * For the metadata arg you want
  650. *
  651. * 0 - if data
  652. * 1 - if normal metadta
  653. * 2 - if writing to the free space cache area
  654. * 3 - raid parity work
  655. */
  656. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  657. int metadata)
  658. {
  659. struct end_io_wq *end_io_wq;
  660. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  661. if (!end_io_wq)
  662. return -ENOMEM;
  663. end_io_wq->private = bio->bi_private;
  664. end_io_wq->end_io = bio->bi_end_io;
  665. end_io_wq->info = info;
  666. end_io_wq->error = 0;
  667. end_io_wq->bio = bio;
  668. end_io_wq->metadata = metadata;
  669. bio->bi_private = end_io_wq;
  670. bio->bi_end_io = end_workqueue_bio;
  671. return 0;
  672. }
  673. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  674. {
  675. unsigned long limit = min_t(unsigned long,
  676. info->thread_pool_size,
  677. info->fs_devices->open_devices);
  678. return 256 * limit;
  679. }
  680. static void run_one_async_start(struct btrfs_work *work)
  681. {
  682. struct async_submit_bio *async;
  683. int ret;
  684. async = container_of(work, struct async_submit_bio, work);
  685. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  686. async->mirror_num, async->bio_flags,
  687. async->bio_offset);
  688. if (ret)
  689. async->error = ret;
  690. }
  691. static void run_one_async_done(struct btrfs_work *work)
  692. {
  693. struct btrfs_fs_info *fs_info;
  694. struct async_submit_bio *async;
  695. int limit;
  696. async = container_of(work, struct async_submit_bio, work);
  697. fs_info = BTRFS_I(async->inode)->root->fs_info;
  698. limit = btrfs_async_submit_limit(fs_info);
  699. limit = limit * 2 / 3;
  700. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  701. waitqueue_active(&fs_info->async_submit_wait))
  702. wake_up(&fs_info->async_submit_wait);
  703. /* If an error occured we just want to clean up the bio and move on */
  704. if (async->error) {
  705. bio_endio(async->bio, async->error);
  706. return;
  707. }
  708. async->submit_bio_done(async->inode, async->rw, async->bio,
  709. async->mirror_num, async->bio_flags,
  710. async->bio_offset);
  711. }
  712. static void run_one_async_free(struct btrfs_work *work)
  713. {
  714. struct async_submit_bio *async;
  715. async = container_of(work, struct async_submit_bio, work);
  716. kfree(async);
  717. }
  718. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  719. int rw, struct bio *bio, int mirror_num,
  720. unsigned long bio_flags,
  721. u64 bio_offset,
  722. extent_submit_bio_hook_t *submit_bio_start,
  723. extent_submit_bio_hook_t *submit_bio_done)
  724. {
  725. struct async_submit_bio *async;
  726. async = kmalloc(sizeof(*async), GFP_NOFS);
  727. if (!async)
  728. return -ENOMEM;
  729. async->inode = inode;
  730. async->rw = rw;
  731. async->bio = bio;
  732. async->mirror_num = mirror_num;
  733. async->submit_bio_start = submit_bio_start;
  734. async->submit_bio_done = submit_bio_done;
  735. btrfs_init_work(&async->work, run_one_async_start,
  736. run_one_async_done, run_one_async_free);
  737. async->bio_flags = bio_flags;
  738. async->bio_offset = bio_offset;
  739. async->error = 0;
  740. atomic_inc(&fs_info->nr_async_submits);
  741. if (rw & REQ_SYNC)
  742. btrfs_set_work_high_priority(&async->work);
  743. btrfs_queue_work(fs_info->workers, &async->work);
  744. while (atomic_read(&fs_info->async_submit_draining) &&
  745. atomic_read(&fs_info->nr_async_submits)) {
  746. wait_event(fs_info->async_submit_wait,
  747. (atomic_read(&fs_info->nr_async_submits) == 0));
  748. }
  749. return 0;
  750. }
  751. static int btree_csum_one_bio(struct bio *bio)
  752. {
  753. struct bio_vec *bvec;
  754. struct btrfs_root *root;
  755. int i, ret = 0;
  756. bio_for_each_segment_all(bvec, bio, i) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. }
  762. return ret;
  763. }
  764. static int __btree_submit_bio_start(struct inode *inode, int rw,
  765. struct bio *bio, int mirror_num,
  766. unsigned long bio_flags,
  767. u64 bio_offset)
  768. {
  769. /*
  770. * when we're called for a write, we're already in the async
  771. * submission context. Just jump into btrfs_map_bio
  772. */
  773. return btree_csum_one_bio(bio);
  774. }
  775. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  776. int mirror_num, unsigned long bio_flags,
  777. u64 bio_offset)
  778. {
  779. int ret;
  780. /*
  781. * when we're called for a write, we're already in the async
  782. * submission context. Just jump into btrfs_map_bio
  783. */
  784. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  785. if (ret)
  786. bio_endio(bio, ret);
  787. return ret;
  788. }
  789. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  790. {
  791. if (bio_flags & EXTENT_BIO_TREE_LOG)
  792. return 0;
  793. #ifdef CONFIG_X86
  794. if (cpu_has_xmm4_2)
  795. return 0;
  796. #endif
  797. return 1;
  798. }
  799. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  800. int mirror_num, unsigned long bio_flags,
  801. u64 bio_offset)
  802. {
  803. int async = check_async_write(inode, bio_flags);
  804. int ret;
  805. if (!(rw & REQ_WRITE)) {
  806. /*
  807. * called for a read, do the setup so that checksum validation
  808. * can happen in the async kernel threads
  809. */
  810. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  811. bio, 1);
  812. if (ret)
  813. goto out_w_error;
  814. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  815. mirror_num, 0);
  816. } else if (!async) {
  817. ret = btree_csum_one_bio(bio);
  818. if (ret)
  819. goto out_w_error;
  820. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  821. mirror_num, 0);
  822. } else {
  823. /*
  824. * kthread helpers are used to submit writes so that
  825. * checksumming can happen in parallel across all CPUs
  826. */
  827. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  828. inode, rw, bio, mirror_num, 0,
  829. bio_offset,
  830. __btree_submit_bio_start,
  831. __btree_submit_bio_done);
  832. }
  833. if (ret) {
  834. out_w_error:
  835. bio_endio(bio, ret);
  836. }
  837. return ret;
  838. }
  839. #ifdef CONFIG_MIGRATION
  840. static int btree_migratepage(struct address_space *mapping,
  841. struct page *newpage, struct page *page,
  842. enum migrate_mode mode)
  843. {
  844. /*
  845. * we can't safely write a btree page from here,
  846. * we haven't done the locking hook
  847. */
  848. if (PageDirty(page))
  849. return -EAGAIN;
  850. /*
  851. * Buffers may be managed in a filesystem specific way.
  852. * We must have no buffers or drop them.
  853. */
  854. if (page_has_private(page) &&
  855. !try_to_release_page(page, GFP_KERNEL))
  856. return -EAGAIN;
  857. return migrate_page(mapping, newpage, page, mode);
  858. }
  859. #endif
  860. static int btree_writepages(struct address_space *mapping,
  861. struct writeback_control *wbc)
  862. {
  863. struct btrfs_fs_info *fs_info;
  864. int ret;
  865. if (wbc->sync_mode == WB_SYNC_NONE) {
  866. if (wbc->for_kupdate)
  867. return 0;
  868. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  869. /* this is a bit racy, but that's ok */
  870. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  871. BTRFS_DIRTY_METADATA_THRESH);
  872. if (ret < 0)
  873. return 0;
  874. }
  875. return btree_write_cache_pages(mapping, wbc);
  876. }
  877. static int btree_readpage(struct file *file, struct page *page)
  878. {
  879. struct extent_io_tree *tree;
  880. tree = &BTRFS_I(page->mapping->host)->io_tree;
  881. return extent_read_full_page(tree, page, btree_get_extent, 0);
  882. }
  883. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  884. {
  885. if (PageWriteback(page) || PageDirty(page))
  886. return 0;
  887. return try_release_extent_buffer(page);
  888. }
  889. static void btree_invalidatepage(struct page *page, unsigned int offset,
  890. unsigned int length)
  891. {
  892. struct extent_io_tree *tree;
  893. tree = &BTRFS_I(page->mapping->host)->io_tree;
  894. extent_invalidatepage(tree, page, offset);
  895. btree_releasepage(page, GFP_NOFS);
  896. if (PagePrivate(page)) {
  897. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  898. "page private not zero on page %llu",
  899. (unsigned long long)page_offset(page));
  900. ClearPagePrivate(page);
  901. set_page_private(page, 0);
  902. page_cache_release(page);
  903. }
  904. }
  905. static int btree_set_page_dirty(struct page *page)
  906. {
  907. #ifdef DEBUG
  908. struct extent_buffer *eb;
  909. BUG_ON(!PagePrivate(page));
  910. eb = (struct extent_buffer *)page->private;
  911. BUG_ON(!eb);
  912. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  913. BUG_ON(!atomic_read(&eb->refs));
  914. btrfs_assert_tree_locked(eb);
  915. #endif
  916. return __set_page_dirty_nobuffers(page);
  917. }
  918. static const struct address_space_operations btree_aops = {
  919. .readpage = btree_readpage,
  920. .writepages = btree_writepages,
  921. .releasepage = btree_releasepage,
  922. .invalidatepage = btree_invalidatepage,
  923. #ifdef CONFIG_MIGRATION
  924. .migratepage = btree_migratepage,
  925. #endif
  926. .set_page_dirty = btree_set_page_dirty,
  927. };
  928. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. u64 parent_transid)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. int ret = 0;
  934. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  935. if (!buf)
  936. return 0;
  937. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  938. buf, 0, WAIT_NONE, btree_get_extent, 0);
  939. free_extent_buffer(buf);
  940. return ret;
  941. }
  942. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  943. int mirror_num, struct extent_buffer **eb)
  944. {
  945. struct extent_buffer *buf = NULL;
  946. struct inode *btree_inode = root->fs_info->btree_inode;
  947. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  948. int ret;
  949. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  950. if (!buf)
  951. return 0;
  952. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  953. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  954. btree_get_extent, mirror_num);
  955. if (ret) {
  956. free_extent_buffer(buf);
  957. return ret;
  958. }
  959. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  960. free_extent_buffer(buf);
  961. return -EIO;
  962. } else if (extent_buffer_uptodate(buf)) {
  963. *eb = buf;
  964. } else {
  965. free_extent_buffer(buf);
  966. }
  967. return 0;
  968. }
  969. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  970. u64 bytenr, u32 blocksize)
  971. {
  972. return find_extent_buffer(root->fs_info, bytenr);
  973. }
  974. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  975. u64 bytenr, u32 blocksize)
  976. {
  977. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  978. if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
  979. return alloc_test_extent_buffer(root->fs_info, bytenr,
  980. blocksize);
  981. #endif
  982. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  983. }
  984. int btrfs_write_tree_block(struct extent_buffer *buf)
  985. {
  986. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  987. buf->start + buf->len - 1);
  988. }
  989. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawait_range(buf->pages[0]->mapping,
  992. buf->start, buf->start + buf->len - 1);
  993. }
  994. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  995. u32 blocksize, u64 parent_transid)
  996. {
  997. struct extent_buffer *buf = NULL;
  998. int ret;
  999. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1000. if (!buf)
  1001. return NULL;
  1002. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1003. if (ret) {
  1004. free_extent_buffer(buf);
  1005. return NULL;
  1006. }
  1007. return buf;
  1008. }
  1009. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1010. struct extent_buffer *buf)
  1011. {
  1012. struct btrfs_fs_info *fs_info = root->fs_info;
  1013. if (btrfs_header_generation(buf) ==
  1014. fs_info->running_transaction->transid) {
  1015. btrfs_assert_tree_locked(buf);
  1016. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1017. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1018. -buf->len,
  1019. fs_info->dirty_metadata_batch);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1027. {
  1028. struct btrfs_subvolume_writers *writers;
  1029. int ret;
  1030. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1031. if (!writers)
  1032. return ERR_PTR(-ENOMEM);
  1033. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1034. if (ret < 0) {
  1035. kfree(writers);
  1036. return ERR_PTR(ret);
  1037. }
  1038. init_waitqueue_head(&writers->wait);
  1039. return writers;
  1040. }
  1041. static void
  1042. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1043. {
  1044. percpu_counter_destroy(&writers->counter);
  1045. kfree(writers);
  1046. }
  1047. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1048. u32 stripesize, struct btrfs_root *root,
  1049. struct btrfs_fs_info *fs_info,
  1050. u64 objectid)
  1051. {
  1052. root->node = NULL;
  1053. root->commit_root = NULL;
  1054. root->sectorsize = sectorsize;
  1055. root->nodesize = nodesize;
  1056. root->leafsize = leafsize;
  1057. root->stripesize = stripesize;
  1058. root->state = 0;
  1059. root->orphan_cleanup_state = 0;
  1060. root->objectid = objectid;
  1061. root->last_trans = 0;
  1062. root->highest_objectid = 0;
  1063. root->nr_delalloc_inodes = 0;
  1064. root->nr_ordered_extents = 0;
  1065. root->name = NULL;
  1066. root->inode_tree = RB_ROOT;
  1067. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1068. root->block_rsv = NULL;
  1069. root->orphan_block_rsv = NULL;
  1070. INIT_LIST_HEAD(&root->dirty_list);
  1071. INIT_LIST_HEAD(&root->root_list);
  1072. INIT_LIST_HEAD(&root->delalloc_inodes);
  1073. INIT_LIST_HEAD(&root->delalloc_root);
  1074. INIT_LIST_HEAD(&root->ordered_extents);
  1075. INIT_LIST_HEAD(&root->ordered_root);
  1076. INIT_LIST_HEAD(&root->logged_list[0]);
  1077. INIT_LIST_HEAD(&root->logged_list[1]);
  1078. spin_lock_init(&root->orphan_lock);
  1079. spin_lock_init(&root->inode_lock);
  1080. spin_lock_init(&root->delalloc_lock);
  1081. spin_lock_init(&root->ordered_extent_lock);
  1082. spin_lock_init(&root->accounting_lock);
  1083. spin_lock_init(&root->log_extents_lock[0]);
  1084. spin_lock_init(&root->log_extents_lock[1]);
  1085. mutex_init(&root->objectid_mutex);
  1086. mutex_init(&root->log_mutex);
  1087. mutex_init(&root->ordered_extent_mutex);
  1088. mutex_init(&root->delalloc_mutex);
  1089. init_waitqueue_head(&root->log_writer_wait);
  1090. init_waitqueue_head(&root->log_commit_wait[0]);
  1091. init_waitqueue_head(&root->log_commit_wait[1]);
  1092. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1093. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1094. atomic_set(&root->log_commit[0], 0);
  1095. atomic_set(&root->log_commit[1], 0);
  1096. atomic_set(&root->log_writers, 0);
  1097. atomic_set(&root->log_batch, 0);
  1098. atomic_set(&root->orphan_inodes, 0);
  1099. atomic_set(&root->refs, 1);
  1100. atomic_set(&root->will_be_snapshoted, 0);
  1101. root->log_transid = 0;
  1102. root->log_transid_committed = -1;
  1103. root->last_log_commit = 0;
  1104. if (fs_info)
  1105. extent_io_tree_init(&root->dirty_log_pages,
  1106. fs_info->btree_inode->i_mapping);
  1107. memset(&root->root_key, 0, sizeof(root->root_key));
  1108. memset(&root->root_item, 0, sizeof(root->root_item));
  1109. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1110. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1111. if (fs_info)
  1112. root->defrag_trans_start = fs_info->generation;
  1113. else
  1114. root->defrag_trans_start = 0;
  1115. init_completion(&root->kobj_unregister);
  1116. root->root_key.objectid = objectid;
  1117. root->anon_dev = 0;
  1118. spin_lock_init(&root->root_item_lock);
  1119. }
  1120. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1121. {
  1122. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1123. if (root)
  1124. root->fs_info = fs_info;
  1125. return root;
  1126. }
  1127. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1128. /* Should only be used by the testing infrastructure */
  1129. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1130. {
  1131. struct btrfs_root *root;
  1132. root = btrfs_alloc_root(NULL);
  1133. if (!root)
  1134. return ERR_PTR(-ENOMEM);
  1135. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1136. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1137. root->alloc_bytenr = 0;
  1138. return root;
  1139. }
  1140. #endif
  1141. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1142. struct btrfs_fs_info *fs_info,
  1143. u64 objectid)
  1144. {
  1145. struct extent_buffer *leaf;
  1146. struct btrfs_root *tree_root = fs_info->tree_root;
  1147. struct btrfs_root *root;
  1148. struct btrfs_key key;
  1149. int ret = 0;
  1150. uuid_le uuid;
  1151. root = btrfs_alloc_root(fs_info);
  1152. if (!root)
  1153. return ERR_PTR(-ENOMEM);
  1154. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1155. tree_root->sectorsize, tree_root->stripesize,
  1156. root, fs_info, objectid);
  1157. root->root_key.objectid = objectid;
  1158. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1159. root->root_key.offset = 0;
  1160. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1161. 0, objectid, NULL, 0, 0, 0);
  1162. if (IS_ERR(leaf)) {
  1163. ret = PTR_ERR(leaf);
  1164. leaf = NULL;
  1165. goto fail;
  1166. }
  1167. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1168. btrfs_set_header_bytenr(leaf, leaf->start);
  1169. btrfs_set_header_generation(leaf, trans->transid);
  1170. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1171. btrfs_set_header_owner(leaf, objectid);
  1172. root->node = leaf;
  1173. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1174. BTRFS_FSID_SIZE);
  1175. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1176. btrfs_header_chunk_tree_uuid(leaf),
  1177. BTRFS_UUID_SIZE);
  1178. btrfs_mark_buffer_dirty(leaf);
  1179. root->commit_root = btrfs_root_node(root);
  1180. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1181. root->root_item.flags = 0;
  1182. root->root_item.byte_limit = 0;
  1183. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1184. btrfs_set_root_generation(&root->root_item, trans->transid);
  1185. btrfs_set_root_level(&root->root_item, 0);
  1186. btrfs_set_root_refs(&root->root_item, 1);
  1187. btrfs_set_root_used(&root->root_item, leaf->len);
  1188. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1189. btrfs_set_root_dirid(&root->root_item, 0);
  1190. uuid_le_gen(&uuid);
  1191. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1192. root->root_item.drop_level = 0;
  1193. key.objectid = objectid;
  1194. key.type = BTRFS_ROOT_ITEM_KEY;
  1195. key.offset = 0;
  1196. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1197. if (ret)
  1198. goto fail;
  1199. btrfs_tree_unlock(leaf);
  1200. return root;
  1201. fail:
  1202. if (leaf) {
  1203. btrfs_tree_unlock(leaf);
  1204. free_extent_buffer(root->commit_root);
  1205. free_extent_buffer(leaf);
  1206. }
  1207. kfree(root);
  1208. return ERR_PTR(ret);
  1209. }
  1210. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *root;
  1214. struct btrfs_root *tree_root = fs_info->tree_root;
  1215. struct extent_buffer *leaf;
  1216. root = btrfs_alloc_root(fs_info);
  1217. if (!root)
  1218. return ERR_PTR(-ENOMEM);
  1219. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1220. tree_root->sectorsize, tree_root->stripesize,
  1221. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1222. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1223. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1224. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1225. /*
  1226. * DON'T set REF_COWS for log trees
  1227. *
  1228. * log trees do not get reference counted because they go away
  1229. * before a real commit is actually done. They do store pointers
  1230. * to file data extents, and those reference counts still get
  1231. * updated (along with back refs to the log tree).
  1232. */
  1233. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1234. BTRFS_TREE_LOG_OBJECTID, NULL,
  1235. 0, 0, 0);
  1236. if (IS_ERR(leaf)) {
  1237. kfree(root);
  1238. return ERR_CAST(leaf);
  1239. }
  1240. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1241. btrfs_set_header_bytenr(leaf, leaf->start);
  1242. btrfs_set_header_generation(leaf, trans->transid);
  1243. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1244. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1245. root->node = leaf;
  1246. write_extent_buffer(root->node, root->fs_info->fsid,
  1247. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1248. btrfs_mark_buffer_dirty(root->node);
  1249. btrfs_tree_unlock(root->node);
  1250. return root;
  1251. }
  1252. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1253. struct btrfs_fs_info *fs_info)
  1254. {
  1255. struct btrfs_root *log_root;
  1256. log_root = alloc_log_tree(trans, fs_info);
  1257. if (IS_ERR(log_root))
  1258. return PTR_ERR(log_root);
  1259. WARN_ON(fs_info->log_root_tree);
  1260. fs_info->log_root_tree = log_root;
  1261. return 0;
  1262. }
  1263. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1264. struct btrfs_root *root)
  1265. {
  1266. struct btrfs_root *log_root;
  1267. struct btrfs_inode_item *inode_item;
  1268. log_root = alloc_log_tree(trans, root->fs_info);
  1269. if (IS_ERR(log_root))
  1270. return PTR_ERR(log_root);
  1271. log_root->last_trans = trans->transid;
  1272. log_root->root_key.offset = root->root_key.objectid;
  1273. inode_item = &log_root->root_item.inode;
  1274. btrfs_set_stack_inode_generation(inode_item, 1);
  1275. btrfs_set_stack_inode_size(inode_item, 3);
  1276. btrfs_set_stack_inode_nlink(inode_item, 1);
  1277. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1278. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1279. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1280. WARN_ON(root->log_root);
  1281. root->log_root = log_root;
  1282. root->log_transid = 0;
  1283. root->log_transid_committed = -1;
  1284. root->last_log_commit = 0;
  1285. return 0;
  1286. }
  1287. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1288. struct btrfs_key *key)
  1289. {
  1290. struct btrfs_root *root;
  1291. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1292. struct btrfs_path *path;
  1293. u64 generation;
  1294. u32 blocksize;
  1295. int ret;
  1296. path = btrfs_alloc_path();
  1297. if (!path)
  1298. return ERR_PTR(-ENOMEM);
  1299. root = btrfs_alloc_root(fs_info);
  1300. if (!root) {
  1301. ret = -ENOMEM;
  1302. goto alloc_fail;
  1303. }
  1304. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1305. tree_root->sectorsize, tree_root->stripesize,
  1306. root, fs_info, key->objectid);
  1307. ret = btrfs_find_root(tree_root, key, path,
  1308. &root->root_item, &root->root_key);
  1309. if (ret) {
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. goto find_fail;
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. blocksize, generation);
  1318. if (!root->node) {
  1319. ret = -ENOMEM;
  1320. goto find_fail;
  1321. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1322. ret = -EIO;
  1323. goto read_fail;
  1324. }
  1325. root->commit_root = btrfs_root_node(root);
  1326. out:
  1327. btrfs_free_path(path);
  1328. return root;
  1329. read_fail:
  1330. free_extent_buffer(root->node);
  1331. find_fail:
  1332. kfree(root);
  1333. alloc_fail:
  1334. root = ERR_PTR(ret);
  1335. goto out;
  1336. }
  1337. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1338. struct btrfs_key *location)
  1339. {
  1340. struct btrfs_root *root;
  1341. root = btrfs_read_tree_root(tree_root, location);
  1342. if (IS_ERR(root))
  1343. return root;
  1344. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1345. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1346. btrfs_check_and_init_root_item(&root->root_item);
  1347. }
  1348. return root;
  1349. }
  1350. int btrfs_init_fs_root(struct btrfs_root *root)
  1351. {
  1352. int ret;
  1353. struct btrfs_subvolume_writers *writers;
  1354. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1355. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1356. GFP_NOFS);
  1357. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1358. ret = -ENOMEM;
  1359. goto fail;
  1360. }
  1361. writers = btrfs_alloc_subvolume_writers();
  1362. if (IS_ERR(writers)) {
  1363. ret = PTR_ERR(writers);
  1364. goto fail;
  1365. }
  1366. root->subv_writers = writers;
  1367. btrfs_init_free_ino_ctl(root);
  1368. spin_lock_init(&root->cache_lock);
  1369. init_waitqueue_head(&root->cache_wait);
  1370. ret = get_anon_bdev(&root->anon_dev);
  1371. if (ret)
  1372. goto free_writers;
  1373. return 0;
  1374. free_writers:
  1375. btrfs_free_subvolume_writers(root->subv_writers);
  1376. fail:
  1377. kfree(root->free_ino_ctl);
  1378. kfree(root->free_ino_pinned);
  1379. return ret;
  1380. }
  1381. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1382. u64 root_id)
  1383. {
  1384. struct btrfs_root *root;
  1385. spin_lock(&fs_info->fs_roots_radix_lock);
  1386. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1387. (unsigned long)root_id);
  1388. spin_unlock(&fs_info->fs_roots_radix_lock);
  1389. return root;
  1390. }
  1391. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1392. struct btrfs_root *root)
  1393. {
  1394. int ret;
  1395. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1396. if (ret)
  1397. return ret;
  1398. spin_lock(&fs_info->fs_roots_radix_lock);
  1399. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1400. (unsigned long)root->root_key.objectid,
  1401. root);
  1402. if (ret == 0)
  1403. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1404. spin_unlock(&fs_info->fs_roots_radix_lock);
  1405. radix_tree_preload_end();
  1406. return ret;
  1407. }
  1408. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1409. struct btrfs_key *location,
  1410. bool check_ref)
  1411. {
  1412. struct btrfs_root *root;
  1413. int ret;
  1414. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1415. return fs_info->tree_root;
  1416. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1417. return fs_info->extent_root;
  1418. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1419. return fs_info->chunk_root;
  1420. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1421. return fs_info->dev_root;
  1422. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1423. return fs_info->csum_root;
  1424. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1425. return fs_info->quota_root ? fs_info->quota_root :
  1426. ERR_PTR(-ENOENT);
  1427. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1428. return fs_info->uuid_root ? fs_info->uuid_root :
  1429. ERR_PTR(-ENOENT);
  1430. again:
  1431. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1432. if (root) {
  1433. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1434. return ERR_PTR(-ENOENT);
  1435. return root;
  1436. }
  1437. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1438. if (IS_ERR(root))
  1439. return root;
  1440. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1441. ret = -ENOENT;
  1442. goto fail;
  1443. }
  1444. ret = btrfs_init_fs_root(root);
  1445. if (ret)
  1446. goto fail;
  1447. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1448. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1449. if (ret < 0)
  1450. goto fail;
  1451. if (ret == 0)
  1452. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1453. ret = btrfs_insert_fs_root(fs_info, root);
  1454. if (ret) {
  1455. if (ret == -EEXIST) {
  1456. free_fs_root(root);
  1457. goto again;
  1458. }
  1459. goto fail;
  1460. }
  1461. return root;
  1462. fail:
  1463. free_fs_root(root);
  1464. return ERR_PTR(ret);
  1465. }
  1466. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1467. {
  1468. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1469. int ret = 0;
  1470. struct btrfs_device *device;
  1471. struct backing_dev_info *bdi;
  1472. rcu_read_lock();
  1473. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1474. if (!device->bdev)
  1475. continue;
  1476. bdi = blk_get_backing_dev_info(device->bdev);
  1477. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1478. ret = 1;
  1479. break;
  1480. }
  1481. }
  1482. rcu_read_unlock();
  1483. return ret;
  1484. }
  1485. /*
  1486. * If this fails, caller must call bdi_destroy() to get rid of the
  1487. * bdi again.
  1488. */
  1489. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1490. {
  1491. int err;
  1492. bdi->capabilities = BDI_CAP_MAP_COPY;
  1493. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1494. if (err)
  1495. return err;
  1496. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1497. bdi->congested_fn = btrfs_congested_fn;
  1498. bdi->congested_data = info;
  1499. return 0;
  1500. }
  1501. /*
  1502. * called by the kthread helper functions to finally call the bio end_io
  1503. * functions. This is where read checksum verification actually happens
  1504. */
  1505. static void end_workqueue_fn(struct btrfs_work *work)
  1506. {
  1507. struct bio *bio;
  1508. struct end_io_wq *end_io_wq;
  1509. int error;
  1510. end_io_wq = container_of(work, struct end_io_wq, work);
  1511. bio = end_io_wq->bio;
  1512. error = end_io_wq->error;
  1513. bio->bi_private = end_io_wq->private;
  1514. bio->bi_end_io = end_io_wq->end_io;
  1515. kfree(end_io_wq);
  1516. bio_endio_nodec(bio, error);
  1517. }
  1518. static int cleaner_kthread(void *arg)
  1519. {
  1520. struct btrfs_root *root = arg;
  1521. int again;
  1522. do {
  1523. again = 0;
  1524. /* Make the cleaner go to sleep early. */
  1525. if (btrfs_need_cleaner_sleep(root))
  1526. goto sleep;
  1527. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1528. goto sleep;
  1529. /*
  1530. * Avoid the problem that we change the status of the fs
  1531. * during the above check and trylock.
  1532. */
  1533. if (btrfs_need_cleaner_sleep(root)) {
  1534. mutex_unlock(&root->fs_info->cleaner_mutex);
  1535. goto sleep;
  1536. }
  1537. btrfs_run_delayed_iputs(root);
  1538. again = btrfs_clean_one_deleted_snapshot(root);
  1539. mutex_unlock(&root->fs_info->cleaner_mutex);
  1540. /*
  1541. * The defragger has dealt with the R/O remount and umount,
  1542. * needn't do anything special here.
  1543. */
  1544. btrfs_run_defrag_inodes(root->fs_info);
  1545. sleep:
  1546. if (!try_to_freeze() && !again) {
  1547. set_current_state(TASK_INTERRUPTIBLE);
  1548. if (!kthread_should_stop())
  1549. schedule();
  1550. __set_current_state(TASK_RUNNING);
  1551. }
  1552. } while (!kthread_should_stop());
  1553. return 0;
  1554. }
  1555. static int transaction_kthread(void *arg)
  1556. {
  1557. struct btrfs_root *root = arg;
  1558. struct btrfs_trans_handle *trans;
  1559. struct btrfs_transaction *cur;
  1560. u64 transid;
  1561. unsigned long now;
  1562. unsigned long delay;
  1563. bool cannot_commit;
  1564. do {
  1565. cannot_commit = false;
  1566. delay = HZ * root->fs_info->commit_interval;
  1567. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1568. spin_lock(&root->fs_info->trans_lock);
  1569. cur = root->fs_info->running_transaction;
  1570. if (!cur) {
  1571. spin_unlock(&root->fs_info->trans_lock);
  1572. goto sleep;
  1573. }
  1574. now = get_seconds();
  1575. if (cur->state < TRANS_STATE_BLOCKED &&
  1576. (now < cur->start_time ||
  1577. now - cur->start_time < root->fs_info->commit_interval)) {
  1578. spin_unlock(&root->fs_info->trans_lock);
  1579. delay = HZ * 5;
  1580. goto sleep;
  1581. }
  1582. transid = cur->transid;
  1583. spin_unlock(&root->fs_info->trans_lock);
  1584. /* If the file system is aborted, this will always fail. */
  1585. trans = btrfs_attach_transaction(root);
  1586. if (IS_ERR(trans)) {
  1587. if (PTR_ERR(trans) != -ENOENT)
  1588. cannot_commit = true;
  1589. goto sleep;
  1590. }
  1591. if (transid == trans->transid) {
  1592. btrfs_commit_transaction(trans, root);
  1593. } else {
  1594. btrfs_end_transaction(trans, root);
  1595. }
  1596. sleep:
  1597. wake_up_process(root->fs_info->cleaner_kthread);
  1598. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1599. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1600. &root->fs_info->fs_state)))
  1601. btrfs_cleanup_transaction(root);
  1602. if (!try_to_freeze()) {
  1603. set_current_state(TASK_INTERRUPTIBLE);
  1604. if (!kthread_should_stop() &&
  1605. (!btrfs_transaction_blocked(root->fs_info) ||
  1606. cannot_commit))
  1607. schedule_timeout(delay);
  1608. __set_current_state(TASK_RUNNING);
  1609. }
  1610. } while (!kthread_should_stop());
  1611. return 0;
  1612. }
  1613. /*
  1614. * this will find the highest generation in the array of
  1615. * root backups. The index of the highest array is returned,
  1616. * or -1 if we can't find anything.
  1617. *
  1618. * We check to make sure the array is valid by comparing the
  1619. * generation of the latest root in the array with the generation
  1620. * in the super block. If they don't match we pitch it.
  1621. */
  1622. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1623. {
  1624. u64 cur;
  1625. int newest_index = -1;
  1626. struct btrfs_root_backup *root_backup;
  1627. int i;
  1628. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1629. root_backup = info->super_copy->super_roots + i;
  1630. cur = btrfs_backup_tree_root_gen(root_backup);
  1631. if (cur == newest_gen)
  1632. newest_index = i;
  1633. }
  1634. /* check to see if we actually wrapped around */
  1635. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1636. root_backup = info->super_copy->super_roots;
  1637. cur = btrfs_backup_tree_root_gen(root_backup);
  1638. if (cur == newest_gen)
  1639. newest_index = 0;
  1640. }
  1641. return newest_index;
  1642. }
  1643. /*
  1644. * find the oldest backup so we know where to store new entries
  1645. * in the backup array. This will set the backup_root_index
  1646. * field in the fs_info struct
  1647. */
  1648. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1649. u64 newest_gen)
  1650. {
  1651. int newest_index = -1;
  1652. newest_index = find_newest_super_backup(info, newest_gen);
  1653. /* if there was garbage in there, just move along */
  1654. if (newest_index == -1) {
  1655. info->backup_root_index = 0;
  1656. } else {
  1657. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1658. }
  1659. }
  1660. /*
  1661. * copy all the root pointers into the super backup array.
  1662. * this will bump the backup pointer by one when it is
  1663. * done
  1664. */
  1665. static void backup_super_roots(struct btrfs_fs_info *info)
  1666. {
  1667. int next_backup;
  1668. struct btrfs_root_backup *root_backup;
  1669. int last_backup;
  1670. next_backup = info->backup_root_index;
  1671. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1672. BTRFS_NUM_BACKUP_ROOTS;
  1673. /*
  1674. * just overwrite the last backup if we're at the same generation
  1675. * this happens only at umount
  1676. */
  1677. root_backup = info->super_for_commit->super_roots + last_backup;
  1678. if (btrfs_backup_tree_root_gen(root_backup) ==
  1679. btrfs_header_generation(info->tree_root->node))
  1680. next_backup = last_backup;
  1681. root_backup = info->super_for_commit->super_roots + next_backup;
  1682. /*
  1683. * make sure all of our padding and empty slots get zero filled
  1684. * regardless of which ones we use today
  1685. */
  1686. memset(root_backup, 0, sizeof(*root_backup));
  1687. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1688. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1689. btrfs_set_backup_tree_root_gen(root_backup,
  1690. btrfs_header_generation(info->tree_root->node));
  1691. btrfs_set_backup_tree_root_level(root_backup,
  1692. btrfs_header_level(info->tree_root->node));
  1693. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1694. btrfs_set_backup_chunk_root_gen(root_backup,
  1695. btrfs_header_generation(info->chunk_root->node));
  1696. btrfs_set_backup_chunk_root_level(root_backup,
  1697. btrfs_header_level(info->chunk_root->node));
  1698. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1699. btrfs_set_backup_extent_root_gen(root_backup,
  1700. btrfs_header_generation(info->extent_root->node));
  1701. btrfs_set_backup_extent_root_level(root_backup,
  1702. btrfs_header_level(info->extent_root->node));
  1703. /*
  1704. * we might commit during log recovery, which happens before we set
  1705. * the fs_root. Make sure it is valid before we fill it in.
  1706. */
  1707. if (info->fs_root && info->fs_root->node) {
  1708. btrfs_set_backup_fs_root(root_backup,
  1709. info->fs_root->node->start);
  1710. btrfs_set_backup_fs_root_gen(root_backup,
  1711. btrfs_header_generation(info->fs_root->node));
  1712. btrfs_set_backup_fs_root_level(root_backup,
  1713. btrfs_header_level(info->fs_root->node));
  1714. }
  1715. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1716. btrfs_set_backup_dev_root_gen(root_backup,
  1717. btrfs_header_generation(info->dev_root->node));
  1718. btrfs_set_backup_dev_root_level(root_backup,
  1719. btrfs_header_level(info->dev_root->node));
  1720. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1721. btrfs_set_backup_csum_root_gen(root_backup,
  1722. btrfs_header_generation(info->csum_root->node));
  1723. btrfs_set_backup_csum_root_level(root_backup,
  1724. btrfs_header_level(info->csum_root->node));
  1725. btrfs_set_backup_total_bytes(root_backup,
  1726. btrfs_super_total_bytes(info->super_copy));
  1727. btrfs_set_backup_bytes_used(root_backup,
  1728. btrfs_super_bytes_used(info->super_copy));
  1729. btrfs_set_backup_num_devices(root_backup,
  1730. btrfs_super_num_devices(info->super_copy));
  1731. /*
  1732. * if we don't copy this out to the super_copy, it won't get remembered
  1733. * for the next commit
  1734. */
  1735. memcpy(&info->super_copy->super_roots,
  1736. &info->super_for_commit->super_roots,
  1737. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1738. }
  1739. /*
  1740. * this copies info out of the root backup array and back into
  1741. * the in-memory super block. It is meant to help iterate through
  1742. * the array, so you send it the number of backups you've already
  1743. * tried and the last backup index you used.
  1744. *
  1745. * this returns -1 when it has tried all the backups
  1746. */
  1747. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1748. struct btrfs_super_block *super,
  1749. int *num_backups_tried, int *backup_index)
  1750. {
  1751. struct btrfs_root_backup *root_backup;
  1752. int newest = *backup_index;
  1753. if (*num_backups_tried == 0) {
  1754. u64 gen = btrfs_super_generation(super);
  1755. newest = find_newest_super_backup(info, gen);
  1756. if (newest == -1)
  1757. return -1;
  1758. *backup_index = newest;
  1759. *num_backups_tried = 1;
  1760. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1761. /* we've tried all the backups, all done */
  1762. return -1;
  1763. } else {
  1764. /* jump to the next oldest backup */
  1765. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1766. BTRFS_NUM_BACKUP_ROOTS;
  1767. *backup_index = newest;
  1768. *num_backups_tried += 1;
  1769. }
  1770. root_backup = super->super_roots + newest;
  1771. btrfs_set_super_generation(super,
  1772. btrfs_backup_tree_root_gen(root_backup));
  1773. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1774. btrfs_set_super_root_level(super,
  1775. btrfs_backup_tree_root_level(root_backup));
  1776. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1777. /*
  1778. * fixme: the total bytes and num_devices need to match or we should
  1779. * need a fsck
  1780. */
  1781. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1782. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1783. return 0;
  1784. }
  1785. /* helper to cleanup workers */
  1786. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1787. {
  1788. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1789. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1790. btrfs_destroy_workqueue(fs_info->workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1794. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1795. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1798. btrfs_destroy_workqueue(fs_info->submit_workers);
  1799. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1800. btrfs_destroy_workqueue(fs_info->caching_workers);
  1801. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1802. btrfs_destroy_workqueue(fs_info->flush_workers);
  1803. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1804. btrfs_destroy_workqueue(fs_info->extent_workers);
  1805. }
  1806. static void free_root_extent_buffers(struct btrfs_root *root)
  1807. {
  1808. if (root) {
  1809. free_extent_buffer(root->node);
  1810. free_extent_buffer(root->commit_root);
  1811. root->node = NULL;
  1812. root->commit_root = NULL;
  1813. }
  1814. }
  1815. /* helper to cleanup tree roots */
  1816. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1817. {
  1818. free_root_extent_buffers(info->tree_root);
  1819. free_root_extent_buffers(info->dev_root);
  1820. free_root_extent_buffers(info->extent_root);
  1821. free_root_extent_buffers(info->csum_root);
  1822. free_root_extent_buffers(info->quota_root);
  1823. free_root_extent_buffers(info->uuid_root);
  1824. if (chunk_root)
  1825. free_root_extent_buffers(info->chunk_root);
  1826. }
  1827. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1828. {
  1829. int ret;
  1830. struct btrfs_root *gang[8];
  1831. int i;
  1832. while (!list_empty(&fs_info->dead_roots)) {
  1833. gang[0] = list_entry(fs_info->dead_roots.next,
  1834. struct btrfs_root, root_list);
  1835. list_del(&gang[0]->root_list);
  1836. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1837. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1838. } else {
  1839. free_extent_buffer(gang[0]->node);
  1840. free_extent_buffer(gang[0]->commit_root);
  1841. btrfs_put_fs_root(gang[0]);
  1842. }
  1843. }
  1844. while (1) {
  1845. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1846. (void **)gang, 0,
  1847. ARRAY_SIZE(gang));
  1848. if (!ret)
  1849. break;
  1850. for (i = 0; i < ret; i++)
  1851. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1852. }
  1853. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1854. btrfs_free_log_root_tree(NULL, fs_info);
  1855. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1856. fs_info->pinned_extents);
  1857. }
  1858. }
  1859. int open_ctree(struct super_block *sb,
  1860. struct btrfs_fs_devices *fs_devices,
  1861. char *options)
  1862. {
  1863. u32 sectorsize;
  1864. u32 nodesize;
  1865. u32 leafsize;
  1866. u32 blocksize;
  1867. u32 stripesize;
  1868. u64 generation;
  1869. u64 features;
  1870. struct btrfs_key location;
  1871. struct buffer_head *bh;
  1872. struct btrfs_super_block *disk_super;
  1873. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1874. struct btrfs_root *tree_root;
  1875. struct btrfs_root *extent_root;
  1876. struct btrfs_root *csum_root;
  1877. struct btrfs_root *chunk_root;
  1878. struct btrfs_root *dev_root;
  1879. struct btrfs_root *quota_root;
  1880. struct btrfs_root *uuid_root;
  1881. struct btrfs_root *log_tree_root;
  1882. int ret;
  1883. int err = -EINVAL;
  1884. int num_backups_tried = 0;
  1885. int backup_index = 0;
  1886. int max_active;
  1887. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1888. bool create_uuid_tree;
  1889. bool check_uuid_tree;
  1890. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1891. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1892. if (!tree_root || !chunk_root) {
  1893. err = -ENOMEM;
  1894. goto fail;
  1895. }
  1896. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1897. if (ret) {
  1898. err = ret;
  1899. goto fail;
  1900. }
  1901. ret = setup_bdi(fs_info, &fs_info->bdi);
  1902. if (ret) {
  1903. err = ret;
  1904. goto fail_srcu;
  1905. }
  1906. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  1907. if (ret) {
  1908. err = ret;
  1909. goto fail_bdi;
  1910. }
  1911. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1912. (1 + ilog2(nr_cpu_ids));
  1913. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  1914. if (ret) {
  1915. err = ret;
  1916. goto fail_dirty_metadata_bytes;
  1917. }
  1918. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  1919. if (ret) {
  1920. err = ret;
  1921. goto fail_delalloc_bytes;
  1922. }
  1923. fs_info->btree_inode = new_inode(sb);
  1924. if (!fs_info->btree_inode) {
  1925. err = -ENOMEM;
  1926. goto fail_bio_counter;
  1927. }
  1928. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1929. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1930. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1931. INIT_LIST_HEAD(&fs_info->trans_list);
  1932. INIT_LIST_HEAD(&fs_info->dead_roots);
  1933. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1934. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1935. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1936. spin_lock_init(&fs_info->delalloc_root_lock);
  1937. spin_lock_init(&fs_info->trans_lock);
  1938. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1939. spin_lock_init(&fs_info->delayed_iput_lock);
  1940. spin_lock_init(&fs_info->defrag_inodes_lock);
  1941. spin_lock_init(&fs_info->free_chunk_lock);
  1942. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1943. spin_lock_init(&fs_info->super_lock);
  1944. spin_lock_init(&fs_info->qgroup_op_lock);
  1945. spin_lock_init(&fs_info->buffer_lock);
  1946. rwlock_init(&fs_info->tree_mod_log_lock);
  1947. mutex_init(&fs_info->reloc_mutex);
  1948. mutex_init(&fs_info->delalloc_root_mutex);
  1949. seqlock_init(&fs_info->profiles_lock);
  1950. init_completion(&fs_info->kobj_unregister);
  1951. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1952. INIT_LIST_HEAD(&fs_info->space_info);
  1953. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1954. btrfs_mapping_init(&fs_info->mapping_tree);
  1955. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1956. BTRFS_BLOCK_RSV_GLOBAL);
  1957. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1958. BTRFS_BLOCK_RSV_DELALLOC);
  1959. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1960. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1961. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1962. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1963. BTRFS_BLOCK_RSV_DELOPS);
  1964. atomic_set(&fs_info->nr_async_submits, 0);
  1965. atomic_set(&fs_info->async_delalloc_pages, 0);
  1966. atomic_set(&fs_info->async_submit_draining, 0);
  1967. atomic_set(&fs_info->nr_async_bios, 0);
  1968. atomic_set(&fs_info->defrag_running, 0);
  1969. atomic_set(&fs_info->qgroup_op_seq, 0);
  1970. atomic64_set(&fs_info->tree_mod_seq, 0);
  1971. fs_info->sb = sb;
  1972. fs_info->max_inline = 8192 * 1024;
  1973. fs_info->metadata_ratio = 0;
  1974. fs_info->defrag_inodes = RB_ROOT;
  1975. fs_info->free_chunk_space = 0;
  1976. fs_info->tree_mod_log = RB_ROOT;
  1977. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1978. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1979. /* readahead state */
  1980. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1981. spin_lock_init(&fs_info->reada_lock);
  1982. fs_info->thread_pool_size = min_t(unsigned long,
  1983. num_online_cpus() + 2, 8);
  1984. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1985. spin_lock_init(&fs_info->ordered_root_lock);
  1986. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1987. GFP_NOFS);
  1988. if (!fs_info->delayed_root) {
  1989. err = -ENOMEM;
  1990. goto fail_iput;
  1991. }
  1992. btrfs_init_delayed_root(fs_info->delayed_root);
  1993. mutex_init(&fs_info->scrub_lock);
  1994. atomic_set(&fs_info->scrubs_running, 0);
  1995. atomic_set(&fs_info->scrub_pause_req, 0);
  1996. atomic_set(&fs_info->scrubs_paused, 0);
  1997. atomic_set(&fs_info->scrub_cancel_req, 0);
  1998. init_waitqueue_head(&fs_info->replace_wait);
  1999. init_waitqueue_head(&fs_info->scrub_pause_wait);
  2000. fs_info->scrub_workers_refcnt = 0;
  2001. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2002. fs_info->check_integrity_print_mask = 0;
  2003. #endif
  2004. spin_lock_init(&fs_info->balance_lock);
  2005. mutex_init(&fs_info->balance_mutex);
  2006. atomic_set(&fs_info->balance_running, 0);
  2007. atomic_set(&fs_info->balance_pause_req, 0);
  2008. atomic_set(&fs_info->balance_cancel_req, 0);
  2009. fs_info->balance_ctl = NULL;
  2010. init_waitqueue_head(&fs_info->balance_wait_q);
  2011. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2012. sb->s_blocksize = 4096;
  2013. sb->s_blocksize_bits = blksize_bits(4096);
  2014. sb->s_bdi = &fs_info->bdi;
  2015. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2016. set_nlink(fs_info->btree_inode, 1);
  2017. /*
  2018. * we set the i_size on the btree inode to the max possible int.
  2019. * the real end of the address space is determined by all of
  2020. * the devices in the system
  2021. */
  2022. fs_info->btree_inode->i_size = OFFSET_MAX;
  2023. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2024. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  2025. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2026. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2027. fs_info->btree_inode->i_mapping);
  2028. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2029. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2030. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2031. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2032. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2033. sizeof(struct btrfs_key));
  2034. set_bit(BTRFS_INODE_DUMMY,
  2035. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2036. btrfs_insert_inode_hash(fs_info->btree_inode);
  2037. spin_lock_init(&fs_info->block_group_cache_lock);
  2038. fs_info->block_group_cache_tree = RB_ROOT;
  2039. fs_info->first_logical_byte = (u64)-1;
  2040. extent_io_tree_init(&fs_info->freed_extents[0],
  2041. fs_info->btree_inode->i_mapping);
  2042. extent_io_tree_init(&fs_info->freed_extents[1],
  2043. fs_info->btree_inode->i_mapping);
  2044. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2045. fs_info->do_barriers = 1;
  2046. mutex_init(&fs_info->ordered_operations_mutex);
  2047. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2048. mutex_init(&fs_info->tree_log_mutex);
  2049. mutex_init(&fs_info->chunk_mutex);
  2050. mutex_init(&fs_info->transaction_kthread_mutex);
  2051. mutex_init(&fs_info->cleaner_mutex);
  2052. mutex_init(&fs_info->volume_mutex);
  2053. init_rwsem(&fs_info->commit_root_sem);
  2054. init_rwsem(&fs_info->cleanup_work_sem);
  2055. init_rwsem(&fs_info->subvol_sem);
  2056. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2057. fs_info->dev_replace.lock_owner = 0;
  2058. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2059. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2060. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2061. mutex_init(&fs_info->dev_replace.lock);
  2062. spin_lock_init(&fs_info->qgroup_lock);
  2063. mutex_init(&fs_info->qgroup_ioctl_lock);
  2064. fs_info->qgroup_tree = RB_ROOT;
  2065. fs_info->qgroup_op_tree = RB_ROOT;
  2066. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2067. fs_info->qgroup_seq = 1;
  2068. fs_info->quota_enabled = 0;
  2069. fs_info->pending_quota_state = 0;
  2070. fs_info->qgroup_ulist = NULL;
  2071. mutex_init(&fs_info->qgroup_rescan_lock);
  2072. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2073. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2074. init_waitqueue_head(&fs_info->transaction_throttle);
  2075. init_waitqueue_head(&fs_info->transaction_wait);
  2076. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2077. init_waitqueue_head(&fs_info->async_submit_wait);
  2078. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2079. if (ret) {
  2080. err = ret;
  2081. goto fail_alloc;
  2082. }
  2083. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2084. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2085. invalidate_bdev(fs_devices->latest_bdev);
  2086. /*
  2087. * Read super block and check the signature bytes only
  2088. */
  2089. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2090. if (!bh) {
  2091. err = -EINVAL;
  2092. goto fail_alloc;
  2093. }
  2094. /*
  2095. * We want to check superblock checksum, the type is stored inside.
  2096. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2097. */
  2098. if (btrfs_check_super_csum(bh->b_data)) {
  2099. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2100. err = -EINVAL;
  2101. goto fail_alloc;
  2102. }
  2103. /*
  2104. * super_copy is zeroed at allocation time and we never touch the
  2105. * following bytes up to INFO_SIZE, the checksum is calculated from
  2106. * the whole block of INFO_SIZE
  2107. */
  2108. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2109. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2110. sizeof(*fs_info->super_for_commit));
  2111. brelse(bh);
  2112. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2113. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2114. if (ret) {
  2115. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2116. err = -EINVAL;
  2117. goto fail_alloc;
  2118. }
  2119. disk_super = fs_info->super_copy;
  2120. if (!btrfs_super_root(disk_super))
  2121. goto fail_alloc;
  2122. /* check FS state, whether FS is broken. */
  2123. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2124. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2125. /*
  2126. * run through our array of backup supers and setup
  2127. * our ring pointer to the oldest one
  2128. */
  2129. generation = btrfs_super_generation(disk_super);
  2130. find_oldest_super_backup(fs_info, generation);
  2131. /*
  2132. * In the long term, we'll store the compression type in the super
  2133. * block, and it'll be used for per file compression control.
  2134. */
  2135. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2136. ret = btrfs_parse_options(tree_root, options);
  2137. if (ret) {
  2138. err = ret;
  2139. goto fail_alloc;
  2140. }
  2141. features = btrfs_super_incompat_flags(disk_super) &
  2142. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2143. if (features) {
  2144. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2145. "unsupported optional features (%Lx).\n",
  2146. features);
  2147. err = -EINVAL;
  2148. goto fail_alloc;
  2149. }
  2150. if (btrfs_super_leafsize(disk_super) !=
  2151. btrfs_super_nodesize(disk_super)) {
  2152. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2153. "blocksizes don't match. node %d leaf %d\n",
  2154. btrfs_super_nodesize(disk_super),
  2155. btrfs_super_leafsize(disk_super));
  2156. err = -EINVAL;
  2157. goto fail_alloc;
  2158. }
  2159. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2160. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2161. "blocksize (%d) was too large\n",
  2162. btrfs_super_leafsize(disk_super));
  2163. err = -EINVAL;
  2164. goto fail_alloc;
  2165. }
  2166. features = btrfs_super_incompat_flags(disk_super);
  2167. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2168. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2169. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2170. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2171. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2172. /*
  2173. * flag our filesystem as having big metadata blocks if
  2174. * they are bigger than the page size
  2175. */
  2176. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2177. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2178. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2179. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2180. }
  2181. nodesize = btrfs_super_nodesize(disk_super);
  2182. leafsize = btrfs_super_leafsize(disk_super);
  2183. sectorsize = btrfs_super_sectorsize(disk_super);
  2184. stripesize = btrfs_super_stripesize(disk_super);
  2185. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2186. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2187. /*
  2188. * mixed block groups end up with duplicate but slightly offset
  2189. * extent buffers for the same range. It leads to corruptions
  2190. */
  2191. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2192. (sectorsize != leafsize)) {
  2193. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2194. "are not allowed for mixed block groups on %s\n",
  2195. sb->s_id);
  2196. goto fail_alloc;
  2197. }
  2198. /*
  2199. * Needn't use the lock because there is no other task which will
  2200. * update the flag.
  2201. */
  2202. btrfs_set_super_incompat_flags(disk_super, features);
  2203. features = btrfs_super_compat_ro_flags(disk_super) &
  2204. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2205. if (!(sb->s_flags & MS_RDONLY) && features) {
  2206. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2207. "unsupported option features (%Lx).\n",
  2208. features);
  2209. err = -EINVAL;
  2210. goto fail_alloc;
  2211. }
  2212. max_active = fs_info->thread_pool_size;
  2213. fs_info->workers =
  2214. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2215. max_active, 16);
  2216. fs_info->delalloc_workers =
  2217. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2218. fs_info->flush_workers =
  2219. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2220. fs_info->caching_workers =
  2221. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2222. /*
  2223. * a higher idle thresh on the submit workers makes it much more
  2224. * likely that bios will be send down in a sane order to the
  2225. * devices
  2226. */
  2227. fs_info->submit_workers =
  2228. btrfs_alloc_workqueue("submit", flags,
  2229. min_t(u64, fs_devices->num_devices,
  2230. max_active), 64);
  2231. fs_info->fixup_workers =
  2232. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2233. /*
  2234. * endios are largely parallel and should have a very
  2235. * low idle thresh
  2236. */
  2237. fs_info->endio_workers =
  2238. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2239. fs_info->endio_meta_workers =
  2240. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2241. fs_info->endio_meta_write_workers =
  2242. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2243. fs_info->endio_raid56_workers =
  2244. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2245. fs_info->rmw_workers =
  2246. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2247. fs_info->endio_write_workers =
  2248. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2249. fs_info->endio_freespace_worker =
  2250. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2251. fs_info->delayed_workers =
  2252. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2253. fs_info->readahead_workers =
  2254. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2255. fs_info->qgroup_rescan_workers =
  2256. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2257. fs_info->extent_workers =
  2258. btrfs_alloc_workqueue("extent-refs", flags,
  2259. min_t(u64, fs_devices->num_devices,
  2260. max_active), 8);
  2261. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2262. fs_info->submit_workers && fs_info->flush_workers &&
  2263. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2264. fs_info->endio_meta_write_workers &&
  2265. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2266. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2267. fs_info->caching_workers && fs_info->readahead_workers &&
  2268. fs_info->fixup_workers && fs_info->delayed_workers &&
  2269. fs_info->fixup_workers && fs_info->extent_workers &&
  2270. fs_info->qgroup_rescan_workers)) {
  2271. err = -ENOMEM;
  2272. goto fail_sb_buffer;
  2273. }
  2274. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2275. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2276. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2277. tree_root->nodesize = nodesize;
  2278. tree_root->leafsize = leafsize;
  2279. tree_root->sectorsize = sectorsize;
  2280. tree_root->stripesize = stripesize;
  2281. sb->s_blocksize = sectorsize;
  2282. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2283. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2284. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2285. goto fail_sb_buffer;
  2286. }
  2287. if (sectorsize != PAGE_SIZE) {
  2288. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2289. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2290. goto fail_sb_buffer;
  2291. }
  2292. mutex_lock(&fs_info->chunk_mutex);
  2293. ret = btrfs_read_sys_array(tree_root);
  2294. mutex_unlock(&fs_info->chunk_mutex);
  2295. if (ret) {
  2296. printk(KERN_WARNING "BTRFS: failed to read the system "
  2297. "array on %s\n", sb->s_id);
  2298. goto fail_sb_buffer;
  2299. }
  2300. blocksize = btrfs_level_size(tree_root,
  2301. btrfs_super_chunk_root_level(disk_super));
  2302. generation = btrfs_super_chunk_root_generation(disk_super);
  2303. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2304. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2305. chunk_root->node = read_tree_block(chunk_root,
  2306. btrfs_super_chunk_root(disk_super),
  2307. blocksize, generation);
  2308. if (!chunk_root->node ||
  2309. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2310. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2311. sb->s_id);
  2312. goto fail_tree_roots;
  2313. }
  2314. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2315. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2316. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2317. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2318. ret = btrfs_read_chunk_tree(chunk_root);
  2319. if (ret) {
  2320. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2321. sb->s_id);
  2322. goto fail_tree_roots;
  2323. }
  2324. /*
  2325. * keep the device that is marked to be the target device for the
  2326. * dev_replace procedure
  2327. */
  2328. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2329. if (!fs_devices->latest_bdev) {
  2330. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2331. sb->s_id);
  2332. goto fail_tree_roots;
  2333. }
  2334. retry_root_backup:
  2335. blocksize = btrfs_level_size(tree_root,
  2336. btrfs_super_root_level(disk_super));
  2337. generation = btrfs_super_generation(disk_super);
  2338. tree_root->node = read_tree_block(tree_root,
  2339. btrfs_super_root(disk_super),
  2340. blocksize, generation);
  2341. if (!tree_root->node ||
  2342. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2343. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2344. sb->s_id);
  2345. goto recovery_tree_root;
  2346. }
  2347. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2348. tree_root->commit_root = btrfs_root_node(tree_root);
  2349. btrfs_set_root_refs(&tree_root->root_item, 1);
  2350. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2351. location.type = BTRFS_ROOT_ITEM_KEY;
  2352. location.offset = 0;
  2353. extent_root = btrfs_read_tree_root(tree_root, &location);
  2354. if (IS_ERR(extent_root)) {
  2355. ret = PTR_ERR(extent_root);
  2356. goto recovery_tree_root;
  2357. }
  2358. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2359. fs_info->extent_root = extent_root;
  2360. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2361. dev_root = btrfs_read_tree_root(tree_root, &location);
  2362. if (IS_ERR(dev_root)) {
  2363. ret = PTR_ERR(dev_root);
  2364. goto recovery_tree_root;
  2365. }
  2366. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2367. fs_info->dev_root = dev_root;
  2368. btrfs_init_devices_late(fs_info);
  2369. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2370. csum_root = btrfs_read_tree_root(tree_root, &location);
  2371. if (IS_ERR(csum_root)) {
  2372. ret = PTR_ERR(csum_root);
  2373. goto recovery_tree_root;
  2374. }
  2375. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2376. fs_info->csum_root = csum_root;
  2377. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2378. quota_root = btrfs_read_tree_root(tree_root, &location);
  2379. if (!IS_ERR(quota_root)) {
  2380. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2381. fs_info->quota_enabled = 1;
  2382. fs_info->pending_quota_state = 1;
  2383. fs_info->quota_root = quota_root;
  2384. }
  2385. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2386. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2387. if (IS_ERR(uuid_root)) {
  2388. ret = PTR_ERR(uuid_root);
  2389. if (ret != -ENOENT)
  2390. goto recovery_tree_root;
  2391. create_uuid_tree = true;
  2392. check_uuid_tree = false;
  2393. } else {
  2394. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2395. fs_info->uuid_root = uuid_root;
  2396. create_uuid_tree = false;
  2397. check_uuid_tree =
  2398. generation != btrfs_super_uuid_tree_generation(disk_super);
  2399. }
  2400. fs_info->generation = generation;
  2401. fs_info->last_trans_committed = generation;
  2402. ret = btrfs_recover_balance(fs_info);
  2403. if (ret) {
  2404. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2405. goto fail_block_groups;
  2406. }
  2407. ret = btrfs_init_dev_stats(fs_info);
  2408. if (ret) {
  2409. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2410. ret);
  2411. goto fail_block_groups;
  2412. }
  2413. ret = btrfs_init_dev_replace(fs_info);
  2414. if (ret) {
  2415. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2416. goto fail_block_groups;
  2417. }
  2418. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2419. ret = btrfs_sysfs_add_one(fs_info);
  2420. if (ret) {
  2421. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2422. goto fail_block_groups;
  2423. }
  2424. ret = btrfs_init_space_info(fs_info);
  2425. if (ret) {
  2426. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2427. goto fail_sysfs;
  2428. }
  2429. ret = btrfs_read_block_groups(extent_root);
  2430. if (ret) {
  2431. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2432. goto fail_sysfs;
  2433. }
  2434. fs_info->num_tolerated_disk_barrier_failures =
  2435. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2436. if (fs_info->fs_devices->missing_devices >
  2437. fs_info->num_tolerated_disk_barrier_failures &&
  2438. !(sb->s_flags & MS_RDONLY)) {
  2439. printk(KERN_WARNING "BTRFS: "
  2440. "too many missing devices, writeable mount is not allowed\n");
  2441. goto fail_sysfs;
  2442. }
  2443. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2444. "btrfs-cleaner");
  2445. if (IS_ERR(fs_info->cleaner_kthread))
  2446. goto fail_sysfs;
  2447. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2448. tree_root,
  2449. "btrfs-transaction");
  2450. if (IS_ERR(fs_info->transaction_kthread))
  2451. goto fail_cleaner;
  2452. if (!btrfs_test_opt(tree_root, SSD) &&
  2453. !btrfs_test_opt(tree_root, NOSSD) &&
  2454. !fs_info->fs_devices->rotating) {
  2455. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2456. "mode\n");
  2457. btrfs_set_opt(fs_info->mount_opt, SSD);
  2458. }
  2459. /* Set the real inode map cache flag */
  2460. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2461. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2462. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2463. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2464. ret = btrfsic_mount(tree_root, fs_devices,
  2465. btrfs_test_opt(tree_root,
  2466. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2467. 1 : 0,
  2468. fs_info->check_integrity_print_mask);
  2469. if (ret)
  2470. printk(KERN_WARNING "BTRFS: failed to initialize"
  2471. " integrity check module %s\n", sb->s_id);
  2472. }
  2473. #endif
  2474. ret = btrfs_read_qgroup_config(fs_info);
  2475. if (ret)
  2476. goto fail_trans_kthread;
  2477. /* do not make disk changes in broken FS */
  2478. if (btrfs_super_log_root(disk_super) != 0) {
  2479. u64 bytenr = btrfs_super_log_root(disk_super);
  2480. if (fs_devices->rw_devices == 0) {
  2481. printk(KERN_WARNING "BTRFS: log replay required "
  2482. "on RO media\n");
  2483. err = -EIO;
  2484. goto fail_qgroup;
  2485. }
  2486. blocksize =
  2487. btrfs_level_size(tree_root,
  2488. btrfs_super_log_root_level(disk_super));
  2489. log_tree_root = btrfs_alloc_root(fs_info);
  2490. if (!log_tree_root) {
  2491. err = -ENOMEM;
  2492. goto fail_qgroup;
  2493. }
  2494. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2495. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2496. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2497. blocksize,
  2498. generation + 1);
  2499. if (!log_tree_root->node ||
  2500. !extent_buffer_uptodate(log_tree_root->node)) {
  2501. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2502. free_extent_buffer(log_tree_root->node);
  2503. kfree(log_tree_root);
  2504. goto fail_qgroup;
  2505. }
  2506. /* returns with log_tree_root freed on success */
  2507. ret = btrfs_recover_log_trees(log_tree_root);
  2508. if (ret) {
  2509. btrfs_error(tree_root->fs_info, ret,
  2510. "Failed to recover log tree");
  2511. free_extent_buffer(log_tree_root->node);
  2512. kfree(log_tree_root);
  2513. goto fail_qgroup;
  2514. }
  2515. if (sb->s_flags & MS_RDONLY) {
  2516. ret = btrfs_commit_super(tree_root);
  2517. if (ret)
  2518. goto fail_qgroup;
  2519. }
  2520. }
  2521. ret = btrfs_find_orphan_roots(tree_root);
  2522. if (ret)
  2523. goto fail_qgroup;
  2524. if (!(sb->s_flags & MS_RDONLY)) {
  2525. ret = btrfs_cleanup_fs_roots(fs_info);
  2526. if (ret)
  2527. goto fail_qgroup;
  2528. mutex_lock(&fs_info->cleaner_mutex);
  2529. ret = btrfs_recover_relocation(tree_root);
  2530. mutex_unlock(&fs_info->cleaner_mutex);
  2531. if (ret < 0) {
  2532. printk(KERN_WARNING
  2533. "BTRFS: failed to recover relocation\n");
  2534. err = -EINVAL;
  2535. goto fail_qgroup;
  2536. }
  2537. }
  2538. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2539. location.type = BTRFS_ROOT_ITEM_KEY;
  2540. location.offset = 0;
  2541. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2542. if (IS_ERR(fs_info->fs_root)) {
  2543. err = PTR_ERR(fs_info->fs_root);
  2544. goto fail_qgroup;
  2545. }
  2546. if (sb->s_flags & MS_RDONLY)
  2547. return 0;
  2548. down_read(&fs_info->cleanup_work_sem);
  2549. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2550. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2551. up_read(&fs_info->cleanup_work_sem);
  2552. close_ctree(tree_root);
  2553. return ret;
  2554. }
  2555. up_read(&fs_info->cleanup_work_sem);
  2556. ret = btrfs_resume_balance_async(fs_info);
  2557. if (ret) {
  2558. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2559. close_ctree(tree_root);
  2560. return ret;
  2561. }
  2562. ret = btrfs_resume_dev_replace_async(fs_info);
  2563. if (ret) {
  2564. pr_warn("BTRFS: failed to resume dev_replace\n");
  2565. close_ctree(tree_root);
  2566. return ret;
  2567. }
  2568. btrfs_qgroup_rescan_resume(fs_info);
  2569. if (create_uuid_tree) {
  2570. pr_info("BTRFS: creating UUID tree\n");
  2571. ret = btrfs_create_uuid_tree(fs_info);
  2572. if (ret) {
  2573. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2574. ret);
  2575. close_ctree(tree_root);
  2576. return ret;
  2577. }
  2578. } else if (check_uuid_tree ||
  2579. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2580. pr_info("BTRFS: checking UUID tree\n");
  2581. ret = btrfs_check_uuid_tree(fs_info);
  2582. if (ret) {
  2583. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2584. ret);
  2585. close_ctree(tree_root);
  2586. return ret;
  2587. }
  2588. } else {
  2589. fs_info->update_uuid_tree_gen = 1;
  2590. }
  2591. return 0;
  2592. fail_qgroup:
  2593. btrfs_free_qgroup_config(fs_info);
  2594. fail_trans_kthread:
  2595. kthread_stop(fs_info->transaction_kthread);
  2596. btrfs_cleanup_transaction(fs_info->tree_root);
  2597. btrfs_free_fs_roots(fs_info);
  2598. fail_cleaner:
  2599. kthread_stop(fs_info->cleaner_kthread);
  2600. /*
  2601. * make sure we're done with the btree inode before we stop our
  2602. * kthreads
  2603. */
  2604. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2605. fail_sysfs:
  2606. btrfs_sysfs_remove_one(fs_info);
  2607. fail_block_groups:
  2608. btrfs_put_block_group_cache(fs_info);
  2609. btrfs_free_block_groups(fs_info);
  2610. fail_tree_roots:
  2611. free_root_pointers(fs_info, 1);
  2612. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2613. fail_sb_buffer:
  2614. btrfs_stop_all_workers(fs_info);
  2615. fail_alloc:
  2616. fail_iput:
  2617. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2618. iput(fs_info->btree_inode);
  2619. fail_bio_counter:
  2620. percpu_counter_destroy(&fs_info->bio_counter);
  2621. fail_delalloc_bytes:
  2622. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2623. fail_dirty_metadata_bytes:
  2624. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2625. fail_bdi:
  2626. bdi_destroy(&fs_info->bdi);
  2627. fail_srcu:
  2628. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2629. fail:
  2630. btrfs_free_stripe_hash_table(fs_info);
  2631. btrfs_close_devices(fs_info->fs_devices);
  2632. return err;
  2633. recovery_tree_root:
  2634. if (!btrfs_test_opt(tree_root, RECOVERY))
  2635. goto fail_tree_roots;
  2636. free_root_pointers(fs_info, 0);
  2637. /* don't use the log in recovery mode, it won't be valid */
  2638. btrfs_set_super_log_root(disk_super, 0);
  2639. /* we can't trust the free space cache either */
  2640. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2641. ret = next_root_backup(fs_info, fs_info->super_copy,
  2642. &num_backups_tried, &backup_index);
  2643. if (ret == -1)
  2644. goto fail_block_groups;
  2645. goto retry_root_backup;
  2646. }
  2647. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2648. {
  2649. if (uptodate) {
  2650. set_buffer_uptodate(bh);
  2651. } else {
  2652. struct btrfs_device *device = (struct btrfs_device *)
  2653. bh->b_private;
  2654. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2655. "I/O error on %s\n",
  2656. rcu_str_deref(device->name));
  2657. /* note, we dont' set_buffer_write_io_error because we have
  2658. * our own ways of dealing with the IO errors
  2659. */
  2660. clear_buffer_uptodate(bh);
  2661. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2662. }
  2663. unlock_buffer(bh);
  2664. put_bh(bh);
  2665. }
  2666. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2667. {
  2668. struct buffer_head *bh;
  2669. struct buffer_head *latest = NULL;
  2670. struct btrfs_super_block *super;
  2671. int i;
  2672. u64 transid = 0;
  2673. u64 bytenr;
  2674. /* we would like to check all the supers, but that would make
  2675. * a btrfs mount succeed after a mkfs from a different FS.
  2676. * So, we need to add a special mount option to scan for
  2677. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2678. */
  2679. for (i = 0; i < 1; i++) {
  2680. bytenr = btrfs_sb_offset(i);
  2681. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2682. i_size_read(bdev->bd_inode))
  2683. break;
  2684. bh = __bread(bdev, bytenr / 4096,
  2685. BTRFS_SUPER_INFO_SIZE);
  2686. if (!bh)
  2687. continue;
  2688. super = (struct btrfs_super_block *)bh->b_data;
  2689. if (btrfs_super_bytenr(super) != bytenr ||
  2690. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2691. brelse(bh);
  2692. continue;
  2693. }
  2694. if (!latest || btrfs_super_generation(super) > transid) {
  2695. brelse(latest);
  2696. latest = bh;
  2697. transid = btrfs_super_generation(super);
  2698. } else {
  2699. brelse(bh);
  2700. }
  2701. }
  2702. return latest;
  2703. }
  2704. /*
  2705. * this should be called twice, once with wait == 0 and
  2706. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2707. * we write are pinned.
  2708. *
  2709. * They are released when wait == 1 is done.
  2710. * max_mirrors must be the same for both runs, and it indicates how
  2711. * many supers on this one device should be written.
  2712. *
  2713. * max_mirrors == 0 means to write them all.
  2714. */
  2715. static int write_dev_supers(struct btrfs_device *device,
  2716. struct btrfs_super_block *sb,
  2717. int do_barriers, int wait, int max_mirrors)
  2718. {
  2719. struct buffer_head *bh;
  2720. int i;
  2721. int ret;
  2722. int errors = 0;
  2723. u32 crc;
  2724. u64 bytenr;
  2725. if (max_mirrors == 0)
  2726. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2727. for (i = 0; i < max_mirrors; i++) {
  2728. bytenr = btrfs_sb_offset(i);
  2729. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2730. break;
  2731. if (wait) {
  2732. bh = __find_get_block(device->bdev, bytenr / 4096,
  2733. BTRFS_SUPER_INFO_SIZE);
  2734. if (!bh) {
  2735. errors++;
  2736. continue;
  2737. }
  2738. wait_on_buffer(bh);
  2739. if (!buffer_uptodate(bh))
  2740. errors++;
  2741. /* drop our reference */
  2742. brelse(bh);
  2743. /* drop the reference from the wait == 0 run */
  2744. brelse(bh);
  2745. continue;
  2746. } else {
  2747. btrfs_set_super_bytenr(sb, bytenr);
  2748. crc = ~(u32)0;
  2749. crc = btrfs_csum_data((char *)sb +
  2750. BTRFS_CSUM_SIZE, crc,
  2751. BTRFS_SUPER_INFO_SIZE -
  2752. BTRFS_CSUM_SIZE);
  2753. btrfs_csum_final(crc, sb->csum);
  2754. /*
  2755. * one reference for us, and we leave it for the
  2756. * caller
  2757. */
  2758. bh = __getblk(device->bdev, bytenr / 4096,
  2759. BTRFS_SUPER_INFO_SIZE);
  2760. if (!bh) {
  2761. printk(KERN_ERR "BTRFS: couldn't get super "
  2762. "buffer head for bytenr %Lu\n", bytenr);
  2763. errors++;
  2764. continue;
  2765. }
  2766. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2767. /* one reference for submit_bh */
  2768. get_bh(bh);
  2769. set_buffer_uptodate(bh);
  2770. lock_buffer(bh);
  2771. bh->b_end_io = btrfs_end_buffer_write_sync;
  2772. bh->b_private = device;
  2773. }
  2774. /*
  2775. * we fua the first super. The others we allow
  2776. * to go down lazy.
  2777. */
  2778. if (i == 0)
  2779. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2780. else
  2781. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2782. if (ret)
  2783. errors++;
  2784. }
  2785. return errors < i ? 0 : -1;
  2786. }
  2787. /*
  2788. * endio for the write_dev_flush, this will wake anyone waiting
  2789. * for the barrier when it is done
  2790. */
  2791. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2792. {
  2793. if (err) {
  2794. if (err == -EOPNOTSUPP)
  2795. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2796. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2797. }
  2798. if (bio->bi_private)
  2799. complete(bio->bi_private);
  2800. bio_put(bio);
  2801. }
  2802. /*
  2803. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2804. * sent down. With wait == 1, it waits for the previous flush.
  2805. *
  2806. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2807. * capable
  2808. */
  2809. static int write_dev_flush(struct btrfs_device *device, int wait)
  2810. {
  2811. struct bio *bio;
  2812. int ret = 0;
  2813. if (device->nobarriers)
  2814. return 0;
  2815. if (wait) {
  2816. bio = device->flush_bio;
  2817. if (!bio)
  2818. return 0;
  2819. wait_for_completion(&device->flush_wait);
  2820. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2821. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2822. rcu_str_deref(device->name));
  2823. device->nobarriers = 1;
  2824. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2825. ret = -EIO;
  2826. btrfs_dev_stat_inc_and_print(device,
  2827. BTRFS_DEV_STAT_FLUSH_ERRS);
  2828. }
  2829. /* drop the reference from the wait == 0 run */
  2830. bio_put(bio);
  2831. device->flush_bio = NULL;
  2832. return ret;
  2833. }
  2834. /*
  2835. * one reference for us, and we leave it for the
  2836. * caller
  2837. */
  2838. device->flush_bio = NULL;
  2839. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2840. if (!bio)
  2841. return -ENOMEM;
  2842. bio->bi_end_io = btrfs_end_empty_barrier;
  2843. bio->bi_bdev = device->bdev;
  2844. init_completion(&device->flush_wait);
  2845. bio->bi_private = &device->flush_wait;
  2846. device->flush_bio = bio;
  2847. bio_get(bio);
  2848. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2849. return 0;
  2850. }
  2851. /*
  2852. * send an empty flush down to each device in parallel,
  2853. * then wait for them
  2854. */
  2855. static int barrier_all_devices(struct btrfs_fs_info *info)
  2856. {
  2857. struct list_head *head;
  2858. struct btrfs_device *dev;
  2859. int errors_send = 0;
  2860. int errors_wait = 0;
  2861. int ret;
  2862. /* send down all the barriers */
  2863. head = &info->fs_devices->devices;
  2864. list_for_each_entry_rcu(dev, head, dev_list) {
  2865. if (dev->missing)
  2866. continue;
  2867. if (!dev->bdev) {
  2868. errors_send++;
  2869. continue;
  2870. }
  2871. if (!dev->in_fs_metadata || !dev->writeable)
  2872. continue;
  2873. ret = write_dev_flush(dev, 0);
  2874. if (ret)
  2875. errors_send++;
  2876. }
  2877. /* wait for all the barriers */
  2878. list_for_each_entry_rcu(dev, head, dev_list) {
  2879. if (dev->missing)
  2880. continue;
  2881. if (!dev->bdev) {
  2882. errors_wait++;
  2883. continue;
  2884. }
  2885. if (!dev->in_fs_metadata || !dev->writeable)
  2886. continue;
  2887. ret = write_dev_flush(dev, 1);
  2888. if (ret)
  2889. errors_wait++;
  2890. }
  2891. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2892. errors_wait > info->num_tolerated_disk_barrier_failures)
  2893. return -EIO;
  2894. return 0;
  2895. }
  2896. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2897. struct btrfs_fs_info *fs_info)
  2898. {
  2899. struct btrfs_ioctl_space_info space;
  2900. struct btrfs_space_info *sinfo;
  2901. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2902. BTRFS_BLOCK_GROUP_SYSTEM,
  2903. BTRFS_BLOCK_GROUP_METADATA,
  2904. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2905. int num_types = 4;
  2906. int i;
  2907. int c;
  2908. int num_tolerated_disk_barrier_failures =
  2909. (int)fs_info->fs_devices->num_devices;
  2910. for (i = 0; i < num_types; i++) {
  2911. struct btrfs_space_info *tmp;
  2912. sinfo = NULL;
  2913. rcu_read_lock();
  2914. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2915. if (tmp->flags == types[i]) {
  2916. sinfo = tmp;
  2917. break;
  2918. }
  2919. }
  2920. rcu_read_unlock();
  2921. if (!sinfo)
  2922. continue;
  2923. down_read(&sinfo->groups_sem);
  2924. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2925. if (!list_empty(&sinfo->block_groups[c])) {
  2926. u64 flags;
  2927. btrfs_get_block_group_info(
  2928. &sinfo->block_groups[c], &space);
  2929. if (space.total_bytes == 0 ||
  2930. space.used_bytes == 0)
  2931. continue;
  2932. flags = space.flags;
  2933. /*
  2934. * return
  2935. * 0: if dup, single or RAID0 is configured for
  2936. * any of metadata, system or data, else
  2937. * 1: if RAID5 is configured, or if RAID1 or
  2938. * RAID10 is configured and only two mirrors
  2939. * are used, else
  2940. * 2: if RAID6 is configured, else
  2941. * num_mirrors - 1: if RAID1 or RAID10 is
  2942. * configured and more than
  2943. * 2 mirrors are used.
  2944. */
  2945. if (num_tolerated_disk_barrier_failures > 0 &&
  2946. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2947. BTRFS_BLOCK_GROUP_RAID0)) ||
  2948. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2949. == 0)))
  2950. num_tolerated_disk_barrier_failures = 0;
  2951. else if (num_tolerated_disk_barrier_failures > 1) {
  2952. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2953. BTRFS_BLOCK_GROUP_RAID5 |
  2954. BTRFS_BLOCK_GROUP_RAID10)) {
  2955. num_tolerated_disk_barrier_failures = 1;
  2956. } else if (flags &
  2957. BTRFS_BLOCK_GROUP_RAID6) {
  2958. num_tolerated_disk_barrier_failures = 2;
  2959. }
  2960. }
  2961. }
  2962. }
  2963. up_read(&sinfo->groups_sem);
  2964. }
  2965. return num_tolerated_disk_barrier_failures;
  2966. }
  2967. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2968. {
  2969. struct list_head *head;
  2970. struct btrfs_device *dev;
  2971. struct btrfs_super_block *sb;
  2972. struct btrfs_dev_item *dev_item;
  2973. int ret;
  2974. int do_barriers;
  2975. int max_errors;
  2976. int total_errors = 0;
  2977. u64 flags;
  2978. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2979. backup_super_roots(root->fs_info);
  2980. sb = root->fs_info->super_for_commit;
  2981. dev_item = &sb->dev_item;
  2982. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2983. head = &root->fs_info->fs_devices->devices;
  2984. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2985. if (do_barriers) {
  2986. ret = barrier_all_devices(root->fs_info);
  2987. if (ret) {
  2988. mutex_unlock(
  2989. &root->fs_info->fs_devices->device_list_mutex);
  2990. btrfs_error(root->fs_info, ret,
  2991. "errors while submitting device barriers.");
  2992. return ret;
  2993. }
  2994. }
  2995. list_for_each_entry_rcu(dev, head, dev_list) {
  2996. if (!dev->bdev) {
  2997. total_errors++;
  2998. continue;
  2999. }
  3000. if (!dev->in_fs_metadata || !dev->writeable)
  3001. continue;
  3002. btrfs_set_stack_device_generation(dev_item, 0);
  3003. btrfs_set_stack_device_type(dev_item, dev->type);
  3004. btrfs_set_stack_device_id(dev_item, dev->devid);
  3005. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  3006. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  3007. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3008. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3009. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3010. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3011. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3012. flags = btrfs_super_flags(sb);
  3013. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3014. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3015. if (ret)
  3016. total_errors++;
  3017. }
  3018. if (total_errors > max_errors) {
  3019. btrfs_err(root->fs_info, "%d errors while writing supers",
  3020. total_errors);
  3021. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3022. /* FUA is masked off if unsupported and can't be the reason */
  3023. btrfs_error(root->fs_info, -EIO,
  3024. "%d errors while writing supers", total_errors);
  3025. return -EIO;
  3026. }
  3027. total_errors = 0;
  3028. list_for_each_entry_rcu(dev, head, dev_list) {
  3029. if (!dev->bdev)
  3030. continue;
  3031. if (!dev->in_fs_metadata || !dev->writeable)
  3032. continue;
  3033. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3034. if (ret)
  3035. total_errors++;
  3036. }
  3037. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3038. if (total_errors > max_errors) {
  3039. btrfs_error(root->fs_info, -EIO,
  3040. "%d errors while writing supers", total_errors);
  3041. return -EIO;
  3042. }
  3043. return 0;
  3044. }
  3045. int write_ctree_super(struct btrfs_trans_handle *trans,
  3046. struct btrfs_root *root, int max_mirrors)
  3047. {
  3048. return write_all_supers(root, max_mirrors);
  3049. }
  3050. /* Drop a fs root from the radix tree and free it. */
  3051. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3052. struct btrfs_root *root)
  3053. {
  3054. spin_lock(&fs_info->fs_roots_radix_lock);
  3055. radix_tree_delete(&fs_info->fs_roots_radix,
  3056. (unsigned long)root->root_key.objectid);
  3057. spin_unlock(&fs_info->fs_roots_radix_lock);
  3058. if (btrfs_root_refs(&root->root_item) == 0)
  3059. synchronize_srcu(&fs_info->subvol_srcu);
  3060. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3061. btrfs_free_log(NULL, root);
  3062. if (root->free_ino_pinned)
  3063. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3064. if (root->free_ino_ctl)
  3065. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3066. free_fs_root(root);
  3067. }
  3068. static void free_fs_root(struct btrfs_root *root)
  3069. {
  3070. iput(root->cache_inode);
  3071. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3072. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3073. root->orphan_block_rsv = NULL;
  3074. if (root->anon_dev)
  3075. free_anon_bdev(root->anon_dev);
  3076. if (root->subv_writers)
  3077. btrfs_free_subvolume_writers(root->subv_writers);
  3078. free_extent_buffer(root->node);
  3079. free_extent_buffer(root->commit_root);
  3080. kfree(root->free_ino_ctl);
  3081. kfree(root->free_ino_pinned);
  3082. kfree(root->name);
  3083. btrfs_put_fs_root(root);
  3084. }
  3085. void btrfs_free_fs_root(struct btrfs_root *root)
  3086. {
  3087. free_fs_root(root);
  3088. }
  3089. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3090. {
  3091. u64 root_objectid = 0;
  3092. struct btrfs_root *gang[8];
  3093. int i = 0;
  3094. int err = 0;
  3095. unsigned int ret = 0;
  3096. int index;
  3097. while (1) {
  3098. index = srcu_read_lock(&fs_info->subvol_srcu);
  3099. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3100. (void **)gang, root_objectid,
  3101. ARRAY_SIZE(gang));
  3102. if (!ret) {
  3103. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3104. break;
  3105. }
  3106. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3107. for (i = 0; i < ret; i++) {
  3108. /* Avoid to grab roots in dead_roots */
  3109. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3110. gang[i] = NULL;
  3111. continue;
  3112. }
  3113. /* grab all the search result for later use */
  3114. gang[i] = btrfs_grab_fs_root(gang[i]);
  3115. }
  3116. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3117. for (i = 0; i < ret; i++) {
  3118. if (!gang[i])
  3119. continue;
  3120. root_objectid = gang[i]->root_key.objectid;
  3121. err = btrfs_orphan_cleanup(gang[i]);
  3122. if (err)
  3123. break;
  3124. btrfs_put_fs_root(gang[i]);
  3125. }
  3126. root_objectid++;
  3127. }
  3128. /* release the uncleaned roots due to error */
  3129. for (; i < ret; i++) {
  3130. if (gang[i])
  3131. btrfs_put_fs_root(gang[i]);
  3132. }
  3133. return err;
  3134. }
  3135. int btrfs_commit_super(struct btrfs_root *root)
  3136. {
  3137. struct btrfs_trans_handle *trans;
  3138. mutex_lock(&root->fs_info->cleaner_mutex);
  3139. btrfs_run_delayed_iputs(root);
  3140. mutex_unlock(&root->fs_info->cleaner_mutex);
  3141. wake_up_process(root->fs_info->cleaner_kthread);
  3142. /* wait until ongoing cleanup work done */
  3143. down_write(&root->fs_info->cleanup_work_sem);
  3144. up_write(&root->fs_info->cleanup_work_sem);
  3145. trans = btrfs_join_transaction(root);
  3146. if (IS_ERR(trans))
  3147. return PTR_ERR(trans);
  3148. return btrfs_commit_transaction(trans, root);
  3149. }
  3150. int close_ctree(struct btrfs_root *root)
  3151. {
  3152. struct btrfs_fs_info *fs_info = root->fs_info;
  3153. int ret;
  3154. fs_info->closing = 1;
  3155. smp_mb();
  3156. /* wait for the uuid_scan task to finish */
  3157. down(&fs_info->uuid_tree_rescan_sem);
  3158. /* avoid complains from lockdep et al., set sem back to initial state */
  3159. up(&fs_info->uuid_tree_rescan_sem);
  3160. /* pause restriper - we want to resume on mount */
  3161. btrfs_pause_balance(fs_info);
  3162. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3163. btrfs_scrub_cancel(fs_info);
  3164. /* wait for any defraggers to finish */
  3165. wait_event(fs_info->transaction_wait,
  3166. (atomic_read(&fs_info->defrag_running) == 0));
  3167. /* clear out the rbtree of defraggable inodes */
  3168. btrfs_cleanup_defrag_inodes(fs_info);
  3169. cancel_work_sync(&fs_info->async_reclaim_work);
  3170. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3171. ret = btrfs_commit_super(root);
  3172. if (ret)
  3173. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3174. }
  3175. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3176. btrfs_error_commit_super(root);
  3177. kthread_stop(fs_info->transaction_kthread);
  3178. kthread_stop(fs_info->cleaner_kthread);
  3179. fs_info->closing = 2;
  3180. smp_mb();
  3181. btrfs_free_qgroup_config(root->fs_info);
  3182. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3183. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3184. percpu_counter_sum(&fs_info->delalloc_bytes));
  3185. }
  3186. btrfs_sysfs_remove_one(fs_info);
  3187. btrfs_free_fs_roots(fs_info);
  3188. btrfs_put_block_group_cache(fs_info);
  3189. btrfs_free_block_groups(fs_info);
  3190. /*
  3191. * we must make sure there is not any read request to
  3192. * submit after we stopping all workers.
  3193. */
  3194. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3195. btrfs_stop_all_workers(fs_info);
  3196. free_root_pointers(fs_info, 1);
  3197. iput(fs_info->btree_inode);
  3198. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3199. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3200. btrfsic_unmount(root, fs_info->fs_devices);
  3201. #endif
  3202. btrfs_close_devices(fs_info->fs_devices);
  3203. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3204. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3205. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3206. percpu_counter_destroy(&fs_info->bio_counter);
  3207. bdi_destroy(&fs_info->bdi);
  3208. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3209. btrfs_free_stripe_hash_table(fs_info);
  3210. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3211. root->orphan_block_rsv = NULL;
  3212. return 0;
  3213. }
  3214. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3215. int atomic)
  3216. {
  3217. int ret;
  3218. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3219. ret = extent_buffer_uptodate(buf);
  3220. if (!ret)
  3221. return ret;
  3222. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3223. parent_transid, atomic);
  3224. if (ret == -EAGAIN)
  3225. return ret;
  3226. return !ret;
  3227. }
  3228. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3229. {
  3230. return set_extent_buffer_uptodate(buf);
  3231. }
  3232. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3233. {
  3234. struct btrfs_root *root;
  3235. u64 transid = btrfs_header_generation(buf);
  3236. int was_dirty;
  3237. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3238. /*
  3239. * This is a fast path so only do this check if we have sanity tests
  3240. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3241. * outside of the sanity tests.
  3242. */
  3243. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3244. return;
  3245. #endif
  3246. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3247. btrfs_assert_tree_locked(buf);
  3248. if (transid != root->fs_info->generation)
  3249. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3250. "found %llu running %llu\n",
  3251. buf->start, transid, root->fs_info->generation);
  3252. was_dirty = set_extent_buffer_dirty(buf);
  3253. if (!was_dirty)
  3254. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3255. buf->len,
  3256. root->fs_info->dirty_metadata_batch);
  3257. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3258. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3259. btrfs_print_leaf(root, buf);
  3260. ASSERT(0);
  3261. }
  3262. #endif
  3263. }
  3264. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3265. int flush_delayed)
  3266. {
  3267. /*
  3268. * looks as though older kernels can get into trouble with
  3269. * this code, they end up stuck in balance_dirty_pages forever
  3270. */
  3271. int ret;
  3272. if (current->flags & PF_MEMALLOC)
  3273. return;
  3274. if (flush_delayed)
  3275. btrfs_balance_delayed_items(root);
  3276. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3277. BTRFS_DIRTY_METADATA_THRESH);
  3278. if (ret > 0) {
  3279. balance_dirty_pages_ratelimited(
  3280. root->fs_info->btree_inode->i_mapping);
  3281. }
  3282. return;
  3283. }
  3284. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3285. {
  3286. __btrfs_btree_balance_dirty(root, 1);
  3287. }
  3288. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3289. {
  3290. __btrfs_btree_balance_dirty(root, 0);
  3291. }
  3292. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3293. {
  3294. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3295. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3296. }
  3297. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3298. int read_only)
  3299. {
  3300. /*
  3301. * Placeholder for checks
  3302. */
  3303. return 0;
  3304. }
  3305. static void btrfs_error_commit_super(struct btrfs_root *root)
  3306. {
  3307. mutex_lock(&root->fs_info->cleaner_mutex);
  3308. btrfs_run_delayed_iputs(root);
  3309. mutex_unlock(&root->fs_info->cleaner_mutex);
  3310. down_write(&root->fs_info->cleanup_work_sem);
  3311. up_write(&root->fs_info->cleanup_work_sem);
  3312. /* cleanup FS via transaction */
  3313. btrfs_cleanup_transaction(root);
  3314. }
  3315. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3316. struct btrfs_root *root)
  3317. {
  3318. struct btrfs_inode *btrfs_inode;
  3319. struct list_head splice;
  3320. INIT_LIST_HEAD(&splice);
  3321. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3322. spin_lock(&root->fs_info->ordered_root_lock);
  3323. list_splice_init(&t->ordered_operations, &splice);
  3324. while (!list_empty(&splice)) {
  3325. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3326. ordered_operations);
  3327. list_del_init(&btrfs_inode->ordered_operations);
  3328. spin_unlock(&root->fs_info->ordered_root_lock);
  3329. btrfs_invalidate_inodes(btrfs_inode->root);
  3330. spin_lock(&root->fs_info->ordered_root_lock);
  3331. }
  3332. spin_unlock(&root->fs_info->ordered_root_lock);
  3333. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3334. }
  3335. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3336. {
  3337. struct btrfs_ordered_extent *ordered;
  3338. spin_lock(&root->ordered_extent_lock);
  3339. /*
  3340. * This will just short circuit the ordered completion stuff which will
  3341. * make sure the ordered extent gets properly cleaned up.
  3342. */
  3343. list_for_each_entry(ordered, &root->ordered_extents,
  3344. root_extent_list)
  3345. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3346. spin_unlock(&root->ordered_extent_lock);
  3347. }
  3348. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3349. {
  3350. struct btrfs_root *root;
  3351. struct list_head splice;
  3352. INIT_LIST_HEAD(&splice);
  3353. spin_lock(&fs_info->ordered_root_lock);
  3354. list_splice_init(&fs_info->ordered_roots, &splice);
  3355. while (!list_empty(&splice)) {
  3356. root = list_first_entry(&splice, struct btrfs_root,
  3357. ordered_root);
  3358. list_move_tail(&root->ordered_root,
  3359. &fs_info->ordered_roots);
  3360. spin_unlock(&fs_info->ordered_root_lock);
  3361. btrfs_destroy_ordered_extents(root);
  3362. cond_resched();
  3363. spin_lock(&fs_info->ordered_root_lock);
  3364. }
  3365. spin_unlock(&fs_info->ordered_root_lock);
  3366. }
  3367. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3368. struct btrfs_root *root)
  3369. {
  3370. struct rb_node *node;
  3371. struct btrfs_delayed_ref_root *delayed_refs;
  3372. struct btrfs_delayed_ref_node *ref;
  3373. int ret = 0;
  3374. delayed_refs = &trans->delayed_refs;
  3375. spin_lock(&delayed_refs->lock);
  3376. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3377. spin_unlock(&delayed_refs->lock);
  3378. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3379. return ret;
  3380. }
  3381. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3382. struct btrfs_delayed_ref_head *head;
  3383. bool pin_bytes = false;
  3384. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3385. href_node);
  3386. if (!mutex_trylock(&head->mutex)) {
  3387. atomic_inc(&head->node.refs);
  3388. spin_unlock(&delayed_refs->lock);
  3389. mutex_lock(&head->mutex);
  3390. mutex_unlock(&head->mutex);
  3391. btrfs_put_delayed_ref(&head->node);
  3392. spin_lock(&delayed_refs->lock);
  3393. continue;
  3394. }
  3395. spin_lock(&head->lock);
  3396. while ((node = rb_first(&head->ref_root)) != NULL) {
  3397. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3398. rb_node);
  3399. ref->in_tree = 0;
  3400. rb_erase(&ref->rb_node, &head->ref_root);
  3401. atomic_dec(&delayed_refs->num_entries);
  3402. btrfs_put_delayed_ref(ref);
  3403. }
  3404. if (head->must_insert_reserved)
  3405. pin_bytes = true;
  3406. btrfs_free_delayed_extent_op(head->extent_op);
  3407. delayed_refs->num_heads--;
  3408. if (head->processing == 0)
  3409. delayed_refs->num_heads_ready--;
  3410. atomic_dec(&delayed_refs->num_entries);
  3411. head->node.in_tree = 0;
  3412. rb_erase(&head->href_node, &delayed_refs->href_root);
  3413. spin_unlock(&head->lock);
  3414. spin_unlock(&delayed_refs->lock);
  3415. mutex_unlock(&head->mutex);
  3416. if (pin_bytes)
  3417. btrfs_pin_extent(root, head->node.bytenr,
  3418. head->node.num_bytes, 1);
  3419. btrfs_put_delayed_ref(&head->node);
  3420. cond_resched();
  3421. spin_lock(&delayed_refs->lock);
  3422. }
  3423. spin_unlock(&delayed_refs->lock);
  3424. return ret;
  3425. }
  3426. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3427. {
  3428. struct btrfs_inode *btrfs_inode;
  3429. struct list_head splice;
  3430. INIT_LIST_HEAD(&splice);
  3431. spin_lock(&root->delalloc_lock);
  3432. list_splice_init(&root->delalloc_inodes, &splice);
  3433. while (!list_empty(&splice)) {
  3434. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3435. delalloc_inodes);
  3436. list_del_init(&btrfs_inode->delalloc_inodes);
  3437. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3438. &btrfs_inode->runtime_flags);
  3439. spin_unlock(&root->delalloc_lock);
  3440. btrfs_invalidate_inodes(btrfs_inode->root);
  3441. spin_lock(&root->delalloc_lock);
  3442. }
  3443. spin_unlock(&root->delalloc_lock);
  3444. }
  3445. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3446. {
  3447. struct btrfs_root *root;
  3448. struct list_head splice;
  3449. INIT_LIST_HEAD(&splice);
  3450. spin_lock(&fs_info->delalloc_root_lock);
  3451. list_splice_init(&fs_info->delalloc_roots, &splice);
  3452. while (!list_empty(&splice)) {
  3453. root = list_first_entry(&splice, struct btrfs_root,
  3454. delalloc_root);
  3455. list_del_init(&root->delalloc_root);
  3456. root = btrfs_grab_fs_root(root);
  3457. BUG_ON(!root);
  3458. spin_unlock(&fs_info->delalloc_root_lock);
  3459. btrfs_destroy_delalloc_inodes(root);
  3460. btrfs_put_fs_root(root);
  3461. spin_lock(&fs_info->delalloc_root_lock);
  3462. }
  3463. spin_unlock(&fs_info->delalloc_root_lock);
  3464. }
  3465. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3466. struct extent_io_tree *dirty_pages,
  3467. int mark)
  3468. {
  3469. int ret;
  3470. struct extent_buffer *eb;
  3471. u64 start = 0;
  3472. u64 end;
  3473. while (1) {
  3474. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3475. mark, NULL);
  3476. if (ret)
  3477. break;
  3478. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3479. while (start <= end) {
  3480. eb = btrfs_find_tree_block(root, start,
  3481. root->leafsize);
  3482. start += root->leafsize;
  3483. if (!eb)
  3484. continue;
  3485. wait_on_extent_buffer_writeback(eb);
  3486. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3487. &eb->bflags))
  3488. clear_extent_buffer_dirty(eb);
  3489. free_extent_buffer_stale(eb);
  3490. }
  3491. }
  3492. return ret;
  3493. }
  3494. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3495. struct extent_io_tree *pinned_extents)
  3496. {
  3497. struct extent_io_tree *unpin;
  3498. u64 start;
  3499. u64 end;
  3500. int ret;
  3501. bool loop = true;
  3502. unpin = pinned_extents;
  3503. again:
  3504. while (1) {
  3505. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3506. EXTENT_DIRTY, NULL);
  3507. if (ret)
  3508. break;
  3509. /* opt_discard */
  3510. if (btrfs_test_opt(root, DISCARD))
  3511. ret = btrfs_error_discard_extent(root, start,
  3512. end + 1 - start,
  3513. NULL);
  3514. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3515. btrfs_error_unpin_extent_range(root, start, end);
  3516. cond_resched();
  3517. }
  3518. if (loop) {
  3519. if (unpin == &root->fs_info->freed_extents[0])
  3520. unpin = &root->fs_info->freed_extents[1];
  3521. else
  3522. unpin = &root->fs_info->freed_extents[0];
  3523. loop = false;
  3524. goto again;
  3525. }
  3526. return 0;
  3527. }
  3528. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3529. struct btrfs_root *root)
  3530. {
  3531. btrfs_destroy_ordered_operations(cur_trans, root);
  3532. btrfs_destroy_delayed_refs(cur_trans, root);
  3533. cur_trans->state = TRANS_STATE_COMMIT_START;
  3534. wake_up(&root->fs_info->transaction_blocked_wait);
  3535. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3536. wake_up(&root->fs_info->transaction_wait);
  3537. btrfs_destroy_delayed_inodes(root);
  3538. btrfs_assert_delayed_root_empty(root);
  3539. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3540. EXTENT_DIRTY);
  3541. btrfs_destroy_pinned_extent(root,
  3542. root->fs_info->pinned_extents);
  3543. cur_trans->state =TRANS_STATE_COMPLETED;
  3544. wake_up(&cur_trans->commit_wait);
  3545. /*
  3546. memset(cur_trans, 0, sizeof(*cur_trans));
  3547. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3548. */
  3549. }
  3550. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3551. {
  3552. struct btrfs_transaction *t;
  3553. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3554. spin_lock(&root->fs_info->trans_lock);
  3555. while (!list_empty(&root->fs_info->trans_list)) {
  3556. t = list_first_entry(&root->fs_info->trans_list,
  3557. struct btrfs_transaction, list);
  3558. if (t->state >= TRANS_STATE_COMMIT_START) {
  3559. atomic_inc(&t->use_count);
  3560. spin_unlock(&root->fs_info->trans_lock);
  3561. btrfs_wait_for_commit(root, t->transid);
  3562. btrfs_put_transaction(t);
  3563. spin_lock(&root->fs_info->trans_lock);
  3564. continue;
  3565. }
  3566. if (t == root->fs_info->running_transaction) {
  3567. t->state = TRANS_STATE_COMMIT_DOING;
  3568. spin_unlock(&root->fs_info->trans_lock);
  3569. /*
  3570. * We wait for 0 num_writers since we don't hold a trans
  3571. * handle open currently for this transaction.
  3572. */
  3573. wait_event(t->writer_wait,
  3574. atomic_read(&t->num_writers) == 0);
  3575. } else {
  3576. spin_unlock(&root->fs_info->trans_lock);
  3577. }
  3578. btrfs_cleanup_one_transaction(t, root);
  3579. spin_lock(&root->fs_info->trans_lock);
  3580. if (t == root->fs_info->running_transaction)
  3581. root->fs_info->running_transaction = NULL;
  3582. list_del_init(&t->list);
  3583. spin_unlock(&root->fs_info->trans_lock);
  3584. btrfs_put_transaction(t);
  3585. trace_btrfs_transaction_commit(root);
  3586. spin_lock(&root->fs_info->trans_lock);
  3587. }
  3588. spin_unlock(&root->fs_info->trans_lock);
  3589. btrfs_destroy_all_ordered_extents(root->fs_info);
  3590. btrfs_destroy_delayed_inodes(root);
  3591. btrfs_assert_delayed_root_empty(root);
  3592. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3593. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3594. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3595. return 0;
  3596. }
  3597. static struct extent_io_ops btree_extent_io_ops = {
  3598. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3599. .readpage_io_failed_hook = btree_io_failed_hook,
  3600. .submit_bio_hook = btree_submit_bio_hook,
  3601. /* note we're sharing with inode.c for the merge bio hook */
  3602. .merge_bio_hook = btrfs_merge_bio_hook,
  3603. };