spi-sh-msiof.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Renesas Electronics Corporation
  6. * Copyright (C) 2014-2017 Glider bvba
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/bitmap.h>
  14. #include <linux/clk.h>
  15. #include <linux/completion.h>
  16. #include <linux/delay.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/err.h>
  20. #include <linux/gpio.h>
  21. #include <linux/gpio/consumer.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/of.h>
  27. #include <linux/of_device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/sh_dma.h>
  31. #include <linux/spi/sh_msiof.h>
  32. #include <linux/spi/spi.h>
  33. #include <asm/unaligned.h>
  34. struct sh_msiof_chipdata {
  35. u16 tx_fifo_size;
  36. u16 rx_fifo_size;
  37. u16 master_flags;
  38. u16 min_div;
  39. };
  40. struct sh_msiof_spi_priv {
  41. struct spi_master *master;
  42. void __iomem *mapbase;
  43. struct clk *clk;
  44. struct platform_device *pdev;
  45. struct sh_msiof_spi_info *info;
  46. struct completion done;
  47. unsigned int tx_fifo_size;
  48. unsigned int rx_fifo_size;
  49. unsigned int min_div;
  50. void *tx_dma_page;
  51. void *rx_dma_page;
  52. dma_addr_t tx_dma_addr;
  53. dma_addr_t rx_dma_addr;
  54. unsigned short unused_ss;
  55. bool native_cs_inited;
  56. bool native_cs_high;
  57. bool slave_aborted;
  58. };
  59. #define MAX_SS 3 /* Maximum number of native chip selects */
  60. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  61. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  62. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  63. #define RMDR1 0x10 /* Receive Mode Register 1 */
  64. #define RMDR2 0x14 /* Receive Mode Register 2 */
  65. #define RMDR3 0x18 /* Receive Mode Register 3 */
  66. #define TSCR 0x20 /* Transmit Clock Select Register */
  67. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  68. #define CTR 0x28 /* Control Register */
  69. #define FCTR 0x30 /* FIFO Control Register */
  70. #define STR 0x40 /* Status Register */
  71. #define IER 0x44 /* Interrupt Enable Register */
  72. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  73. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  74. #define TFDR 0x50 /* Transmit FIFO Data Register */
  75. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  76. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  77. #define RFDR 0x60 /* Receive FIFO Data Register */
  78. /* TMDR1 and RMDR1 */
  79. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  80. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  81. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  82. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  83. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  84. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  85. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  86. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  87. #define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
  88. #define MDR1_FLD_SHIFT 2
  89. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  90. /* TMDR1 */
  91. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  92. #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
  93. #define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  94. /* TMDR2 and RMDR2 */
  95. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  96. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  97. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  98. /* TSCR and RSCR */
  99. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  100. #define SCR_BRPS(i) (((i) - 1) << 8)
  101. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  102. #define SCR_BRDV_DIV_2 0x0000
  103. #define SCR_BRDV_DIV_4 0x0001
  104. #define SCR_BRDV_DIV_8 0x0002
  105. #define SCR_BRDV_DIV_16 0x0003
  106. #define SCR_BRDV_DIV_32 0x0004
  107. #define SCR_BRDV_DIV_1 0x0007
  108. /* CTR */
  109. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  110. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  111. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  112. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  113. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  114. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  115. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  116. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  117. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  118. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  119. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  120. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  121. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  122. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  123. #define CTR_TXE 0x00000200 /* Transmit Enable */
  124. #define CTR_RXE 0x00000100 /* Receive Enable */
  125. /* FCTR */
  126. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  127. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  128. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  129. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  130. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  131. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  132. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  133. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  134. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  135. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  136. #define FCTR_TFUA_SHIFT 20
  137. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  138. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  139. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  140. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  141. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  142. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  143. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  144. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  145. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  146. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  147. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  148. #define FCTR_RFUA_SHIFT 4
  149. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  150. /* STR */
  151. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  152. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  153. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  154. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  155. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  156. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  157. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  158. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  159. #define STR_REOF 0x00000080 /* Frame Reception End */
  160. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  161. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  162. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  163. /* IER */
  164. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  165. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  166. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  167. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  168. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  169. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  170. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  171. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  172. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  173. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  174. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  175. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  176. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  177. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  178. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  179. {
  180. switch (reg_offs) {
  181. case TSCR:
  182. case RSCR:
  183. return ioread16(p->mapbase + reg_offs);
  184. default:
  185. return ioread32(p->mapbase + reg_offs);
  186. }
  187. }
  188. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  189. u32 value)
  190. {
  191. switch (reg_offs) {
  192. case TSCR:
  193. case RSCR:
  194. iowrite16(value, p->mapbase + reg_offs);
  195. break;
  196. default:
  197. iowrite32(value, p->mapbase + reg_offs);
  198. break;
  199. }
  200. }
  201. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  202. u32 clr, u32 set)
  203. {
  204. u32 mask = clr | set;
  205. u32 data;
  206. int k;
  207. data = sh_msiof_read(p, CTR);
  208. data &= ~clr;
  209. data |= set;
  210. sh_msiof_write(p, CTR, data);
  211. for (k = 100; k > 0; k--) {
  212. if ((sh_msiof_read(p, CTR) & mask) == set)
  213. break;
  214. udelay(10);
  215. }
  216. return k > 0 ? 0 : -ETIMEDOUT;
  217. }
  218. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  219. {
  220. struct sh_msiof_spi_priv *p = data;
  221. /* just disable the interrupt and wake up */
  222. sh_msiof_write(p, IER, 0);
  223. complete(&p->done);
  224. return IRQ_HANDLED;
  225. }
  226. static struct {
  227. unsigned short div;
  228. unsigned short brdv;
  229. } const sh_msiof_spi_div_table[] = {
  230. { 1, SCR_BRDV_DIV_1 },
  231. { 2, SCR_BRDV_DIV_2 },
  232. { 4, SCR_BRDV_DIV_4 },
  233. { 8, SCR_BRDV_DIV_8 },
  234. { 16, SCR_BRDV_DIV_16 },
  235. { 32, SCR_BRDV_DIV_32 },
  236. };
  237. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  238. unsigned long parent_rate, u32 spi_hz)
  239. {
  240. unsigned long div = 1024;
  241. u32 brps, scr;
  242. size_t k;
  243. if (!WARN_ON(!spi_hz || !parent_rate))
  244. div = DIV_ROUND_UP(parent_rate, spi_hz);
  245. div = max_t(unsigned long, div, p->min_div);
  246. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
  247. brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
  248. /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
  249. if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
  250. continue;
  251. if (brps <= 32) /* max of brdv is 32 */
  252. break;
  253. }
  254. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
  255. scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
  256. sh_msiof_write(p, TSCR, scr);
  257. if (!(p->master->flags & SPI_MASTER_MUST_TX))
  258. sh_msiof_write(p, RSCR, scr);
  259. }
  260. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  261. {
  262. /*
  263. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  264. * b'000 : 0
  265. * b'001 : 100
  266. * b'010 : 200
  267. * b'011 (SYNCDL only) : 300
  268. * b'101 : 50
  269. * b'110 : 150
  270. */
  271. if (dtdl_or_syncdl % 100)
  272. return dtdl_or_syncdl / 100 + 5;
  273. else
  274. return dtdl_or_syncdl / 100;
  275. }
  276. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  277. {
  278. u32 val;
  279. if (!p->info)
  280. return 0;
  281. /* check if DTDL and SYNCDL is allowed value */
  282. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  283. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  284. return 0;
  285. }
  286. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  287. if ((p->info->dtdl + p->info->syncdl) % 100) {
  288. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  289. return 0;
  290. }
  291. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  292. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  293. return val;
  294. }
  295. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
  296. u32 cpol, u32 cpha,
  297. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  298. {
  299. u32 tmp;
  300. int edge;
  301. /*
  302. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  303. * 0 0 10 10 1 1
  304. * 0 1 10 10 0 0
  305. * 1 0 11 11 0 0
  306. * 1 1 11 11 1 1
  307. */
  308. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  309. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  310. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  311. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  312. if (spi_controller_is_slave(p->master)) {
  313. sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
  314. } else {
  315. sh_msiof_write(p, TMDR1,
  316. tmp | MDR1_TRMD | TMDR1_PCON |
  317. (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
  318. }
  319. if (p->master->flags & SPI_MASTER_MUST_TX) {
  320. /* These bits are reserved if RX needs TX */
  321. tmp &= ~0x0000ffff;
  322. }
  323. sh_msiof_write(p, RMDR1, tmp);
  324. tmp = 0;
  325. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  326. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  327. edge = cpol ^ !cpha;
  328. tmp |= edge << CTR_TEDG_SHIFT;
  329. tmp |= edge << CTR_REDG_SHIFT;
  330. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  331. sh_msiof_write(p, CTR, tmp);
  332. }
  333. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  334. const void *tx_buf, void *rx_buf,
  335. u32 bits, u32 words)
  336. {
  337. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  338. if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
  339. sh_msiof_write(p, TMDR2, dr2);
  340. else
  341. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  342. if (rx_buf)
  343. sh_msiof_write(p, RMDR2, dr2);
  344. }
  345. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  346. {
  347. sh_msiof_write(p, STR, sh_msiof_read(p, STR));
  348. }
  349. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  350. const void *tx_buf, int words, int fs)
  351. {
  352. const u8 *buf_8 = tx_buf;
  353. int k;
  354. for (k = 0; k < words; k++)
  355. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  356. }
  357. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  358. const void *tx_buf, int words, int fs)
  359. {
  360. const u16 *buf_16 = tx_buf;
  361. int k;
  362. for (k = 0; k < words; k++)
  363. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  364. }
  365. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  366. const void *tx_buf, int words, int fs)
  367. {
  368. const u16 *buf_16 = tx_buf;
  369. int k;
  370. for (k = 0; k < words; k++)
  371. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  372. }
  373. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  374. const void *tx_buf, int words, int fs)
  375. {
  376. const u32 *buf_32 = tx_buf;
  377. int k;
  378. for (k = 0; k < words; k++)
  379. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  380. }
  381. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  382. const void *tx_buf, int words, int fs)
  383. {
  384. const u32 *buf_32 = tx_buf;
  385. int k;
  386. for (k = 0; k < words; k++)
  387. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  388. }
  389. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  390. const void *tx_buf, int words, int fs)
  391. {
  392. const u32 *buf_32 = tx_buf;
  393. int k;
  394. for (k = 0; k < words; k++)
  395. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  396. }
  397. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  398. const void *tx_buf, int words, int fs)
  399. {
  400. const u32 *buf_32 = tx_buf;
  401. int k;
  402. for (k = 0; k < words; k++)
  403. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  404. }
  405. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  406. void *rx_buf, int words, int fs)
  407. {
  408. u8 *buf_8 = rx_buf;
  409. int k;
  410. for (k = 0; k < words; k++)
  411. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  412. }
  413. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  414. void *rx_buf, int words, int fs)
  415. {
  416. u16 *buf_16 = rx_buf;
  417. int k;
  418. for (k = 0; k < words; k++)
  419. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  420. }
  421. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  422. void *rx_buf, int words, int fs)
  423. {
  424. u16 *buf_16 = rx_buf;
  425. int k;
  426. for (k = 0; k < words; k++)
  427. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  428. }
  429. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  430. void *rx_buf, int words, int fs)
  431. {
  432. u32 *buf_32 = rx_buf;
  433. int k;
  434. for (k = 0; k < words; k++)
  435. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  436. }
  437. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  438. void *rx_buf, int words, int fs)
  439. {
  440. u32 *buf_32 = rx_buf;
  441. int k;
  442. for (k = 0; k < words; k++)
  443. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  444. }
  445. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  446. void *rx_buf, int words, int fs)
  447. {
  448. u32 *buf_32 = rx_buf;
  449. int k;
  450. for (k = 0; k < words; k++)
  451. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  452. }
  453. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  454. void *rx_buf, int words, int fs)
  455. {
  456. u32 *buf_32 = rx_buf;
  457. int k;
  458. for (k = 0; k < words; k++)
  459. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  460. }
  461. static int sh_msiof_spi_setup(struct spi_device *spi)
  462. {
  463. struct device_node *np = spi->master->dev.of_node;
  464. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  465. u32 clr, set, tmp;
  466. if (!np) {
  467. /*
  468. * Use spi->controller_data for CS (same strategy as spi_gpio),
  469. * if any. otherwise let HW control CS
  470. */
  471. spi->cs_gpio = (uintptr_t)spi->controller_data;
  472. }
  473. if (gpio_is_valid(spi->cs_gpio)) {
  474. gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  475. return 0;
  476. }
  477. if (spi_controller_is_slave(p->master))
  478. return 0;
  479. if (p->native_cs_inited &&
  480. (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
  481. return 0;
  482. /* Configure native chip select mode/polarity early */
  483. clr = MDR1_SYNCMD_MASK;
  484. set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
  485. if (spi->mode & SPI_CS_HIGH)
  486. clr |= BIT(MDR1_SYNCAC_SHIFT);
  487. else
  488. set |= BIT(MDR1_SYNCAC_SHIFT);
  489. pm_runtime_get_sync(&p->pdev->dev);
  490. tmp = sh_msiof_read(p, TMDR1) & ~clr;
  491. sh_msiof_write(p, TMDR1, tmp | set);
  492. pm_runtime_put(&p->pdev->dev);
  493. p->native_cs_high = spi->mode & SPI_CS_HIGH;
  494. p->native_cs_inited = true;
  495. return 0;
  496. }
  497. static int sh_msiof_prepare_message(struct spi_master *master,
  498. struct spi_message *msg)
  499. {
  500. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  501. const struct spi_device *spi = msg->spi;
  502. u32 ss, cs_high;
  503. /* Configure pins before asserting CS */
  504. if (gpio_is_valid(spi->cs_gpio)) {
  505. ss = p->unused_ss;
  506. cs_high = p->native_cs_high;
  507. } else {
  508. ss = spi->chip_select;
  509. cs_high = !!(spi->mode & SPI_CS_HIGH);
  510. }
  511. sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
  512. !!(spi->mode & SPI_CPHA),
  513. !!(spi->mode & SPI_3WIRE),
  514. !!(spi->mode & SPI_LSB_FIRST), cs_high);
  515. return 0;
  516. }
  517. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  518. {
  519. bool slave = spi_controller_is_slave(p->master);
  520. int ret = 0;
  521. /* setup clock and rx/tx signals */
  522. if (!slave)
  523. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  524. if (rx_buf && !ret)
  525. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  526. if (!ret)
  527. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  528. /* start by setting frame bit */
  529. if (!ret && !slave)
  530. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  531. return ret;
  532. }
  533. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  534. {
  535. bool slave = spi_controller_is_slave(p->master);
  536. int ret = 0;
  537. /* shut down frame, rx/tx and clock signals */
  538. if (!slave)
  539. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  540. if (!ret)
  541. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  542. if (rx_buf && !ret)
  543. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  544. if (!ret && !slave)
  545. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  546. return ret;
  547. }
  548. static int sh_msiof_slave_abort(struct spi_master *master)
  549. {
  550. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  551. p->slave_aborted = true;
  552. complete(&p->done);
  553. return 0;
  554. }
  555. static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
  556. {
  557. if (spi_controller_is_slave(p->master)) {
  558. if (wait_for_completion_interruptible(&p->done) ||
  559. p->slave_aborted) {
  560. dev_dbg(&p->pdev->dev, "interrupted\n");
  561. return -EINTR;
  562. }
  563. } else {
  564. if (!wait_for_completion_timeout(&p->done, HZ)) {
  565. dev_err(&p->pdev->dev, "timeout\n");
  566. return -ETIMEDOUT;
  567. }
  568. }
  569. return 0;
  570. }
  571. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  572. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  573. const void *, int, int),
  574. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  575. void *, int, int),
  576. const void *tx_buf, void *rx_buf,
  577. int words, int bits)
  578. {
  579. int fifo_shift;
  580. int ret;
  581. /* limit maximum word transfer to rx/tx fifo size */
  582. if (tx_buf)
  583. words = min_t(int, words, p->tx_fifo_size);
  584. if (rx_buf)
  585. words = min_t(int, words, p->rx_fifo_size);
  586. /* the fifo contents need shifting */
  587. fifo_shift = 32 - bits;
  588. /* default FIFO watermarks for PIO */
  589. sh_msiof_write(p, FCTR, 0);
  590. /* setup msiof transfer mode registers */
  591. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  592. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  593. /* write tx fifo */
  594. if (tx_buf)
  595. tx_fifo(p, tx_buf, words, fifo_shift);
  596. reinit_completion(&p->done);
  597. p->slave_aborted = false;
  598. ret = sh_msiof_spi_start(p, rx_buf);
  599. if (ret) {
  600. dev_err(&p->pdev->dev, "failed to start hardware\n");
  601. goto stop_ier;
  602. }
  603. /* wait for tx fifo to be emptied / rx fifo to be filled */
  604. ret = sh_msiof_wait_for_completion(p);
  605. if (ret)
  606. goto stop_reset;
  607. /* read rx fifo */
  608. if (rx_buf)
  609. rx_fifo(p, rx_buf, words, fifo_shift);
  610. /* clear status bits */
  611. sh_msiof_reset_str(p);
  612. ret = sh_msiof_spi_stop(p, rx_buf);
  613. if (ret) {
  614. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  615. return ret;
  616. }
  617. return words;
  618. stop_reset:
  619. sh_msiof_reset_str(p);
  620. sh_msiof_spi_stop(p, rx_buf);
  621. stop_ier:
  622. sh_msiof_write(p, IER, 0);
  623. return ret;
  624. }
  625. static void sh_msiof_dma_complete(void *arg)
  626. {
  627. struct sh_msiof_spi_priv *p = arg;
  628. sh_msiof_write(p, IER, 0);
  629. complete(&p->done);
  630. }
  631. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  632. void *rx, unsigned int len)
  633. {
  634. u32 ier_bits = 0;
  635. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  636. dma_cookie_t cookie;
  637. int ret;
  638. /* First prepare and submit the DMA request(s), as this may fail */
  639. if (rx) {
  640. ier_bits |= IER_RDREQE | IER_RDMAE;
  641. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  642. p->rx_dma_addr, len, DMA_DEV_TO_MEM,
  643. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  644. if (!desc_rx)
  645. return -EAGAIN;
  646. desc_rx->callback = sh_msiof_dma_complete;
  647. desc_rx->callback_param = p;
  648. cookie = dmaengine_submit(desc_rx);
  649. if (dma_submit_error(cookie))
  650. return cookie;
  651. }
  652. if (tx) {
  653. ier_bits |= IER_TDREQE | IER_TDMAE;
  654. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  655. p->tx_dma_addr, len, DMA_TO_DEVICE);
  656. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  657. p->tx_dma_addr, len, DMA_MEM_TO_DEV,
  658. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  659. if (!desc_tx) {
  660. ret = -EAGAIN;
  661. goto no_dma_tx;
  662. }
  663. if (rx) {
  664. /* No callback */
  665. desc_tx->callback = NULL;
  666. } else {
  667. desc_tx->callback = sh_msiof_dma_complete;
  668. desc_tx->callback_param = p;
  669. }
  670. cookie = dmaengine_submit(desc_tx);
  671. if (dma_submit_error(cookie)) {
  672. ret = cookie;
  673. goto no_dma_tx;
  674. }
  675. }
  676. /* 1 stage FIFO watermarks for DMA */
  677. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  678. /* setup msiof transfer mode registers (32-bit words) */
  679. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  680. sh_msiof_write(p, IER, ier_bits);
  681. reinit_completion(&p->done);
  682. p->slave_aborted = false;
  683. /* Now start DMA */
  684. if (rx)
  685. dma_async_issue_pending(p->master->dma_rx);
  686. if (tx)
  687. dma_async_issue_pending(p->master->dma_tx);
  688. ret = sh_msiof_spi_start(p, rx);
  689. if (ret) {
  690. dev_err(&p->pdev->dev, "failed to start hardware\n");
  691. goto stop_dma;
  692. }
  693. /* wait for tx/rx DMA completion */
  694. ret = sh_msiof_wait_for_completion(p);
  695. if (ret)
  696. goto stop_reset;
  697. if (!rx) {
  698. reinit_completion(&p->done);
  699. sh_msiof_write(p, IER, IER_TEOFE);
  700. /* wait for tx fifo to be emptied */
  701. ret = sh_msiof_wait_for_completion(p);
  702. if (ret)
  703. goto stop_reset;
  704. }
  705. /* clear status bits */
  706. sh_msiof_reset_str(p);
  707. ret = sh_msiof_spi_stop(p, rx);
  708. if (ret) {
  709. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  710. return ret;
  711. }
  712. if (rx)
  713. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  714. p->rx_dma_addr, len,
  715. DMA_FROM_DEVICE);
  716. return 0;
  717. stop_reset:
  718. sh_msiof_reset_str(p);
  719. sh_msiof_spi_stop(p, rx);
  720. stop_dma:
  721. if (tx)
  722. dmaengine_terminate_all(p->master->dma_tx);
  723. no_dma_tx:
  724. if (rx)
  725. dmaengine_terminate_all(p->master->dma_rx);
  726. sh_msiof_write(p, IER, 0);
  727. return ret;
  728. }
  729. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  730. {
  731. /* src or dst can be unaligned, but not both */
  732. if ((unsigned long)src & 3) {
  733. while (words--) {
  734. *dst++ = swab32(get_unaligned(src));
  735. src++;
  736. }
  737. } else if ((unsigned long)dst & 3) {
  738. while (words--) {
  739. put_unaligned(swab32(*src++), dst);
  740. dst++;
  741. }
  742. } else {
  743. while (words--)
  744. *dst++ = swab32(*src++);
  745. }
  746. }
  747. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  748. {
  749. /* src or dst can be unaligned, but not both */
  750. if ((unsigned long)src & 3) {
  751. while (words--) {
  752. *dst++ = swahw32(get_unaligned(src));
  753. src++;
  754. }
  755. } else if ((unsigned long)dst & 3) {
  756. while (words--) {
  757. put_unaligned(swahw32(*src++), dst);
  758. dst++;
  759. }
  760. } else {
  761. while (words--)
  762. *dst++ = swahw32(*src++);
  763. }
  764. }
  765. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  766. {
  767. memcpy(dst, src, words * 4);
  768. }
  769. static int sh_msiof_transfer_one(struct spi_master *master,
  770. struct spi_device *spi,
  771. struct spi_transfer *t)
  772. {
  773. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  774. void (*copy32)(u32 *, const u32 *, unsigned int);
  775. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  776. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  777. const void *tx_buf = t->tx_buf;
  778. void *rx_buf = t->rx_buf;
  779. unsigned int len = t->len;
  780. unsigned int bits = t->bits_per_word;
  781. unsigned int bytes_per_word;
  782. unsigned int words;
  783. int n;
  784. bool swab;
  785. int ret;
  786. /* setup clocks (clock already enabled in chipselect()) */
  787. if (!spi_controller_is_slave(p->master))
  788. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  789. while (master->dma_tx && len > 15) {
  790. /*
  791. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  792. * words, with byte resp. word swapping.
  793. */
  794. unsigned int l = 0;
  795. if (tx_buf)
  796. l = min(len, p->tx_fifo_size * 4);
  797. if (rx_buf)
  798. l = min(len, p->rx_fifo_size * 4);
  799. if (bits <= 8) {
  800. if (l & 3)
  801. break;
  802. copy32 = copy_bswap32;
  803. } else if (bits <= 16) {
  804. if (l & 3)
  805. break;
  806. copy32 = copy_wswap32;
  807. } else {
  808. copy32 = copy_plain32;
  809. }
  810. if (tx_buf)
  811. copy32(p->tx_dma_page, tx_buf, l / 4);
  812. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  813. if (ret == -EAGAIN) {
  814. dev_warn_once(&p->pdev->dev,
  815. "DMA not available, falling back to PIO\n");
  816. break;
  817. }
  818. if (ret)
  819. return ret;
  820. if (rx_buf) {
  821. copy32(rx_buf, p->rx_dma_page, l / 4);
  822. rx_buf += l;
  823. }
  824. if (tx_buf)
  825. tx_buf += l;
  826. len -= l;
  827. if (!len)
  828. return 0;
  829. }
  830. if (bits <= 8 && len > 15 && !(len & 3)) {
  831. bits = 32;
  832. swab = true;
  833. } else {
  834. swab = false;
  835. }
  836. /* setup bytes per word and fifo read/write functions */
  837. if (bits <= 8) {
  838. bytes_per_word = 1;
  839. tx_fifo = sh_msiof_spi_write_fifo_8;
  840. rx_fifo = sh_msiof_spi_read_fifo_8;
  841. } else if (bits <= 16) {
  842. bytes_per_word = 2;
  843. if ((unsigned long)tx_buf & 0x01)
  844. tx_fifo = sh_msiof_spi_write_fifo_16u;
  845. else
  846. tx_fifo = sh_msiof_spi_write_fifo_16;
  847. if ((unsigned long)rx_buf & 0x01)
  848. rx_fifo = sh_msiof_spi_read_fifo_16u;
  849. else
  850. rx_fifo = sh_msiof_spi_read_fifo_16;
  851. } else if (swab) {
  852. bytes_per_word = 4;
  853. if ((unsigned long)tx_buf & 0x03)
  854. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  855. else
  856. tx_fifo = sh_msiof_spi_write_fifo_s32;
  857. if ((unsigned long)rx_buf & 0x03)
  858. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  859. else
  860. rx_fifo = sh_msiof_spi_read_fifo_s32;
  861. } else {
  862. bytes_per_word = 4;
  863. if ((unsigned long)tx_buf & 0x03)
  864. tx_fifo = sh_msiof_spi_write_fifo_32u;
  865. else
  866. tx_fifo = sh_msiof_spi_write_fifo_32;
  867. if ((unsigned long)rx_buf & 0x03)
  868. rx_fifo = sh_msiof_spi_read_fifo_32u;
  869. else
  870. rx_fifo = sh_msiof_spi_read_fifo_32;
  871. }
  872. /* transfer in fifo sized chunks */
  873. words = len / bytes_per_word;
  874. while (words > 0) {
  875. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  876. words, bits);
  877. if (n < 0)
  878. return n;
  879. if (tx_buf)
  880. tx_buf += n * bytes_per_word;
  881. if (rx_buf)
  882. rx_buf += n * bytes_per_word;
  883. words -= n;
  884. }
  885. return 0;
  886. }
  887. static const struct sh_msiof_chipdata sh_data = {
  888. .tx_fifo_size = 64,
  889. .rx_fifo_size = 64,
  890. .master_flags = 0,
  891. .min_div = 1,
  892. };
  893. static const struct sh_msiof_chipdata rcar_gen2_data = {
  894. .tx_fifo_size = 64,
  895. .rx_fifo_size = 64,
  896. .master_flags = SPI_MASTER_MUST_TX,
  897. .min_div = 1,
  898. };
  899. static const struct sh_msiof_chipdata rcar_gen3_data = {
  900. .tx_fifo_size = 64,
  901. .rx_fifo_size = 64,
  902. .master_flags = SPI_MASTER_MUST_TX,
  903. .min_div = 2,
  904. };
  905. static const struct of_device_id sh_msiof_match[] = {
  906. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  907. { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
  908. { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
  909. { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
  910. { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
  911. { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
  912. { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
  913. { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
  914. { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
  915. { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
  916. { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
  917. { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
  918. {},
  919. };
  920. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  921. #ifdef CONFIG_OF
  922. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  923. {
  924. struct sh_msiof_spi_info *info;
  925. struct device_node *np = dev->of_node;
  926. u32 num_cs = 1;
  927. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  928. if (!info)
  929. return NULL;
  930. info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
  931. : MSIOF_SPI_MASTER;
  932. /* Parse the MSIOF properties */
  933. if (info->mode == MSIOF_SPI_MASTER)
  934. of_property_read_u32(np, "num-cs", &num_cs);
  935. of_property_read_u32(np, "renesas,tx-fifo-size",
  936. &info->tx_fifo_override);
  937. of_property_read_u32(np, "renesas,rx-fifo-size",
  938. &info->rx_fifo_override);
  939. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  940. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  941. info->num_chipselect = num_cs;
  942. return info;
  943. }
  944. #else
  945. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  946. {
  947. return NULL;
  948. }
  949. #endif
  950. static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
  951. {
  952. struct device *dev = &p->pdev->dev;
  953. unsigned int used_ss_mask = 0;
  954. unsigned int cs_gpios = 0;
  955. unsigned int num_cs, i;
  956. int ret;
  957. ret = gpiod_count(dev, "cs");
  958. if (ret <= 0)
  959. return 0;
  960. num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
  961. for (i = 0; i < num_cs; i++) {
  962. struct gpio_desc *gpiod;
  963. gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
  964. if (!IS_ERR(gpiod)) {
  965. cs_gpios++;
  966. continue;
  967. }
  968. if (PTR_ERR(gpiod) != -ENOENT)
  969. return PTR_ERR(gpiod);
  970. if (i >= MAX_SS) {
  971. dev_err(dev, "Invalid native chip select %d\n", i);
  972. return -EINVAL;
  973. }
  974. used_ss_mask |= BIT(i);
  975. }
  976. p->unused_ss = ffz(used_ss_mask);
  977. if (cs_gpios && p->unused_ss >= MAX_SS) {
  978. dev_err(dev, "No unused native chip select available\n");
  979. return -EINVAL;
  980. }
  981. return 0;
  982. }
  983. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  984. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  985. {
  986. dma_cap_mask_t mask;
  987. struct dma_chan *chan;
  988. struct dma_slave_config cfg;
  989. int ret;
  990. dma_cap_zero(mask);
  991. dma_cap_set(DMA_SLAVE, mask);
  992. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  993. (void *)(unsigned long)id, dev,
  994. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  995. if (!chan) {
  996. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  997. return NULL;
  998. }
  999. memset(&cfg, 0, sizeof(cfg));
  1000. cfg.direction = dir;
  1001. if (dir == DMA_MEM_TO_DEV) {
  1002. cfg.dst_addr = port_addr;
  1003. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1004. } else {
  1005. cfg.src_addr = port_addr;
  1006. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1007. }
  1008. ret = dmaengine_slave_config(chan, &cfg);
  1009. if (ret) {
  1010. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  1011. dma_release_channel(chan);
  1012. return NULL;
  1013. }
  1014. return chan;
  1015. }
  1016. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  1017. {
  1018. struct platform_device *pdev = p->pdev;
  1019. struct device *dev = &pdev->dev;
  1020. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  1021. unsigned int dma_tx_id, dma_rx_id;
  1022. const struct resource *res;
  1023. struct spi_master *master;
  1024. struct device *tx_dev, *rx_dev;
  1025. if (dev->of_node) {
  1026. /* In the OF case we will get the slave IDs from the DT */
  1027. dma_tx_id = 0;
  1028. dma_rx_id = 0;
  1029. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  1030. dma_tx_id = info->dma_tx_id;
  1031. dma_rx_id = info->dma_rx_id;
  1032. } else {
  1033. /* The driver assumes no error */
  1034. return 0;
  1035. }
  1036. /* The DMA engine uses the second register set, if present */
  1037. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1038. if (!res)
  1039. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1040. master = p->master;
  1041. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  1042. dma_tx_id,
  1043. res->start + TFDR);
  1044. if (!master->dma_tx)
  1045. return -ENODEV;
  1046. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  1047. dma_rx_id,
  1048. res->start + RFDR);
  1049. if (!master->dma_rx)
  1050. goto free_tx_chan;
  1051. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1052. if (!p->tx_dma_page)
  1053. goto free_rx_chan;
  1054. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1055. if (!p->rx_dma_page)
  1056. goto free_tx_page;
  1057. tx_dev = master->dma_tx->device->dev;
  1058. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  1059. DMA_TO_DEVICE);
  1060. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  1061. goto free_rx_page;
  1062. rx_dev = master->dma_rx->device->dev;
  1063. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  1064. DMA_FROM_DEVICE);
  1065. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  1066. goto unmap_tx_page;
  1067. dev_info(dev, "DMA available");
  1068. return 0;
  1069. unmap_tx_page:
  1070. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  1071. free_rx_page:
  1072. free_page((unsigned long)p->rx_dma_page);
  1073. free_tx_page:
  1074. free_page((unsigned long)p->tx_dma_page);
  1075. free_rx_chan:
  1076. dma_release_channel(master->dma_rx);
  1077. free_tx_chan:
  1078. dma_release_channel(master->dma_tx);
  1079. master->dma_tx = NULL;
  1080. return -ENODEV;
  1081. }
  1082. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  1083. {
  1084. struct spi_master *master = p->master;
  1085. if (!master->dma_tx)
  1086. return;
  1087. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  1088. PAGE_SIZE, DMA_FROM_DEVICE);
  1089. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  1090. PAGE_SIZE, DMA_TO_DEVICE);
  1091. free_page((unsigned long)p->rx_dma_page);
  1092. free_page((unsigned long)p->tx_dma_page);
  1093. dma_release_channel(master->dma_rx);
  1094. dma_release_channel(master->dma_tx);
  1095. }
  1096. static int sh_msiof_spi_probe(struct platform_device *pdev)
  1097. {
  1098. struct resource *r;
  1099. struct spi_master *master;
  1100. const struct sh_msiof_chipdata *chipdata;
  1101. struct sh_msiof_spi_info *info;
  1102. struct sh_msiof_spi_priv *p;
  1103. int i;
  1104. int ret;
  1105. chipdata = of_device_get_match_data(&pdev->dev);
  1106. if (chipdata) {
  1107. info = sh_msiof_spi_parse_dt(&pdev->dev);
  1108. } else {
  1109. chipdata = (const void *)pdev->id_entry->driver_data;
  1110. info = dev_get_platdata(&pdev->dev);
  1111. }
  1112. if (!info) {
  1113. dev_err(&pdev->dev, "failed to obtain device info\n");
  1114. return -ENXIO;
  1115. }
  1116. if (info->mode == MSIOF_SPI_SLAVE)
  1117. master = spi_alloc_slave(&pdev->dev,
  1118. sizeof(struct sh_msiof_spi_priv));
  1119. else
  1120. master = spi_alloc_master(&pdev->dev,
  1121. sizeof(struct sh_msiof_spi_priv));
  1122. if (master == NULL)
  1123. return -ENOMEM;
  1124. p = spi_master_get_devdata(master);
  1125. platform_set_drvdata(pdev, p);
  1126. p->master = master;
  1127. p->info = info;
  1128. p->min_div = chipdata->min_div;
  1129. init_completion(&p->done);
  1130. p->clk = devm_clk_get(&pdev->dev, NULL);
  1131. if (IS_ERR(p->clk)) {
  1132. dev_err(&pdev->dev, "cannot get clock\n");
  1133. ret = PTR_ERR(p->clk);
  1134. goto err1;
  1135. }
  1136. i = platform_get_irq(pdev, 0);
  1137. if (i < 0) {
  1138. dev_err(&pdev->dev, "cannot get platform IRQ\n");
  1139. ret = -ENOENT;
  1140. goto err1;
  1141. }
  1142. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1143. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1144. if (IS_ERR(p->mapbase)) {
  1145. ret = PTR_ERR(p->mapbase);
  1146. goto err1;
  1147. }
  1148. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1149. dev_name(&pdev->dev), p);
  1150. if (ret) {
  1151. dev_err(&pdev->dev, "unable to request irq\n");
  1152. goto err1;
  1153. }
  1154. p->pdev = pdev;
  1155. pm_runtime_enable(&pdev->dev);
  1156. /* Platform data may override FIFO sizes */
  1157. p->tx_fifo_size = chipdata->tx_fifo_size;
  1158. p->rx_fifo_size = chipdata->rx_fifo_size;
  1159. if (p->info->tx_fifo_override)
  1160. p->tx_fifo_size = p->info->tx_fifo_override;
  1161. if (p->info->rx_fifo_override)
  1162. p->rx_fifo_size = p->info->rx_fifo_override;
  1163. /* Setup GPIO chip selects */
  1164. master->num_chipselect = p->info->num_chipselect;
  1165. ret = sh_msiof_get_cs_gpios(p);
  1166. if (ret)
  1167. goto err1;
  1168. /* init master code */
  1169. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1170. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1171. master->flags = chipdata->master_flags;
  1172. master->bus_num = pdev->id;
  1173. master->dev.of_node = pdev->dev.of_node;
  1174. master->setup = sh_msiof_spi_setup;
  1175. master->prepare_message = sh_msiof_prepare_message;
  1176. master->slave_abort = sh_msiof_slave_abort;
  1177. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1178. master->auto_runtime_pm = true;
  1179. master->transfer_one = sh_msiof_transfer_one;
  1180. ret = sh_msiof_request_dma(p);
  1181. if (ret < 0)
  1182. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1183. ret = devm_spi_register_master(&pdev->dev, master);
  1184. if (ret < 0) {
  1185. dev_err(&pdev->dev, "spi_register_master error.\n");
  1186. goto err2;
  1187. }
  1188. return 0;
  1189. err2:
  1190. sh_msiof_release_dma(p);
  1191. pm_runtime_disable(&pdev->dev);
  1192. err1:
  1193. spi_master_put(master);
  1194. return ret;
  1195. }
  1196. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1197. {
  1198. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1199. sh_msiof_release_dma(p);
  1200. pm_runtime_disable(&pdev->dev);
  1201. return 0;
  1202. }
  1203. static const struct platform_device_id spi_driver_ids[] = {
  1204. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1205. {},
  1206. };
  1207. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1208. static struct platform_driver sh_msiof_spi_drv = {
  1209. .probe = sh_msiof_spi_probe,
  1210. .remove = sh_msiof_spi_remove,
  1211. .id_table = spi_driver_ids,
  1212. .driver = {
  1213. .name = "spi_sh_msiof",
  1214. .of_match_table = of_match_ptr(sh_msiof_match),
  1215. },
  1216. };
  1217. module_platform_driver(sh_msiof_spi_drv);
  1218. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1219. MODULE_AUTHOR("Magnus Damm");
  1220. MODULE_LICENSE("GPL v2");
  1221. MODULE_ALIAS("platform:spi_sh_msiof");