spi-s3c64xx.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // Copyright (c) 2009 Samsung Electronics Co., Ltd.
  4. // Jaswinder Singh <jassi.brar@samsung.com>
  5. #include <linux/init.h>
  6. #include <linux/module.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/delay.h>
  9. #include <linux/clk.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/pm_runtime.h>
  14. #include <linux/spi/spi.h>
  15. #include <linux/gpio.h>
  16. #include <linux/of.h>
  17. #include <linux/of_gpio.h>
  18. #include <linux/platform_data/spi-s3c64xx.h>
  19. #define MAX_SPI_PORTS 6
  20. #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
  21. #define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1)
  22. #define AUTOSUSPEND_TIMEOUT 2000
  23. /* Registers and bit-fields */
  24. #define S3C64XX_SPI_CH_CFG 0x00
  25. #define S3C64XX_SPI_CLK_CFG 0x04
  26. #define S3C64XX_SPI_MODE_CFG 0x08
  27. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  28. #define S3C64XX_SPI_INT_EN 0x10
  29. #define S3C64XX_SPI_STATUS 0x14
  30. #define S3C64XX_SPI_TX_DATA 0x18
  31. #define S3C64XX_SPI_RX_DATA 0x1C
  32. #define S3C64XX_SPI_PACKET_CNT 0x20
  33. #define S3C64XX_SPI_PENDING_CLR 0x24
  34. #define S3C64XX_SPI_SWAP_CFG 0x28
  35. #define S3C64XX_SPI_FB_CLK 0x2C
  36. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  37. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  38. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  39. #define S3C64XX_SPI_CPOL_L (1<<3)
  40. #define S3C64XX_SPI_CPHA_B (1<<2)
  41. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  42. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  43. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  44. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  45. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  46. #define S3C64XX_SPI_PSR_MASK 0xff
  47. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  48. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  49. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  50. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  51. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  52. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  53. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  54. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  55. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  56. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  57. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  58. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  59. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  60. #define S3C64XX_SPI_SLAVE_NSC_CNT_2 (2<<4)
  61. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  62. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  63. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  64. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  65. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  66. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  67. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  68. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  69. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  70. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  71. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  72. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  73. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  74. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  75. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  76. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  77. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  78. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  79. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  80. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  81. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  82. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  83. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  84. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  85. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  86. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  87. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  88. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  89. #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
  90. #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
  91. (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
  92. #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
  93. #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
  94. FIFO_LVL_MASK(i))
  95. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  96. #define S3C64XX_SPI_TRAILCNT_OFF 19
  97. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  98. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  99. #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
  100. #define RXBUSY (1<<2)
  101. #define TXBUSY (1<<3)
  102. struct s3c64xx_spi_dma_data {
  103. struct dma_chan *ch;
  104. enum dma_transfer_direction direction;
  105. };
  106. /**
  107. * struct s3c64xx_spi_info - SPI Controller hardware info
  108. * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
  109. * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
  110. * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
  111. * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
  112. * @clk_from_cmu: True, if the controller does not include a clock mux and
  113. * prescaler unit.
  114. *
  115. * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
  116. * differ in some aspects such as the size of the fifo and spi bus clock
  117. * setup. Such differences are specified to the driver using this structure
  118. * which is provided as driver data to the driver.
  119. */
  120. struct s3c64xx_spi_port_config {
  121. int fifo_lvl_mask[MAX_SPI_PORTS];
  122. int rx_lvl_offset;
  123. int tx_st_done;
  124. int quirks;
  125. bool high_speed;
  126. bool clk_from_cmu;
  127. bool clk_ioclk;
  128. };
  129. /**
  130. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  131. * @clk: Pointer to the spi clock.
  132. * @src_clk: Pointer to the clock used to generate SPI signals.
  133. * @ioclk: Pointer to the i/o clock between master and slave
  134. * @master: Pointer to the SPI Protocol master.
  135. * @cntrlr_info: Platform specific data for the controller this driver manages.
  136. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  137. * @lock: Controller specific lock.
  138. * @state: Set of FLAGS to indicate status.
  139. * @rx_dmach: Controller's DMA channel for Rx.
  140. * @tx_dmach: Controller's DMA channel for Tx.
  141. * @sfr_start: BUS address of SPI controller regs.
  142. * @regs: Pointer to ioremap'ed controller registers.
  143. * @irq: interrupt
  144. * @xfer_completion: To indicate completion of xfer task.
  145. * @cur_mode: Stores the active configuration of the controller.
  146. * @cur_bpw: Stores the active bits per word settings.
  147. * @cur_speed: Stores the active xfer clock speed.
  148. */
  149. struct s3c64xx_spi_driver_data {
  150. void __iomem *regs;
  151. struct clk *clk;
  152. struct clk *src_clk;
  153. struct clk *ioclk;
  154. struct platform_device *pdev;
  155. struct spi_master *master;
  156. struct s3c64xx_spi_info *cntrlr_info;
  157. struct spi_device *tgl_spi;
  158. spinlock_t lock;
  159. unsigned long sfr_start;
  160. struct completion xfer_completion;
  161. unsigned state;
  162. unsigned cur_mode, cur_bpw;
  163. unsigned cur_speed;
  164. struct s3c64xx_spi_dma_data rx_dma;
  165. struct s3c64xx_spi_dma_data tx_dma;
  166. struct s3c64xx_spi_port_config *port_conf;
  167. unsigned int port_id;
  168. };
  169. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  170. {
  171. void __iomem *regs = sdd->regs;
  172. unsigned long loops;
  173. u32 val;
  174. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  175. val = readl(regs + S3C64XX_SPI_CH_CFG);
  176. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  177. writel(val, regs + S3C64XX_SPI_CH_CFG);
  178. val = readl(regs + S3C64XX_SPI_CH_CFG);
  179. val |= S3C64XX_SPI_CH_SW_RST;
  180. val &= ~S3C64XX_SPI_CH_HS_EN;
  181. writel(val, regs + S3C64XX_SPI_CH_CFG);
  182. /* Flush TxFIFO*/
  183. loops = msecs_to_loops(1);
  184. do {
  185. val = readl(regs + S3C64XX_SPI_STATUS);
  186. } while (TX_FIFO_LVL(val, sdd) && loops--);
  187. if (loops == 0)
  188. dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
  189. /* Flush RxFIFO*/
  190. loops = msecs_to_loops(1);
  191. do {
  192. val = readl(regs + S3C64XX_SPI_STATUS);
  193. if (RX_FIFO_LVL(val, sdd))
  194. readl(regs + S3C64XX_SPI_RX_DATA);
  195. else
  196. break;
  197. } while (loops--);
  198. if (loops == 0)
  199. dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
  200. val = readl(regs + S3C64XX_SPI_CH_CFG);
  201. val &= ~S3C64XX_SPI_CH_SW_RST;
  202. writel(val, regs + S3C64XX_SPI_CH_CFG);
  203. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  204. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  205. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  206. }
  207. static void s3c64xx_spi_dmacb(void *data)
  208. {
  209. struct s3c64xx_spi_driver_data *sdd;
  210. struct s3c64xx_spi_dma_data *dma = data;
  211. unsigned long flags;
  212. if (dma->direction == DMA_DEV_TO_MEM)
  213. sdd = container_of(data,
  214. struct s3c64xx_spi_driver_data, rx_dma);
  215. else
  216. sdd = container_of(data,
  217. struct s3c64xx_spi_driver_data, tx_dma);
  218. spin_lock_irqsave(&sdd->lock, flags);
  219. if (dma->direction == DMA_DEV_TO_MEM) {
  220. sdd->state &= ~RXBUSY;
  221. if (!(sdd->state & TXBUSY))
  222. complete(&sdd->xfer_completion);
  223. } else {
  224. sdd->state &= ~TXBUSY;
  225. if (!(sdd->state & RXBUSY))
  226. complete(&sdd->xfer_completion);
  227. }
  228. spin_unlock_irqrestore(&sdd->lock, flags);
  229. }
  230. static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
  231. struct sg_table *sgt)
  232. {
  233. struct s3c64xx_spi_driver_data *sdd;
  234. struct dma_slave_config config;
  235. struct dma_async_tx_descriptor *desc;
  236. memset(&config, 0, sizeof(config));
  237. if (dma->direction == DMA_DEV_TO_MEM) {
  238. sdd = container_of((void *)dma,
  239. struct s3c64xx_spi_driver_data, rx_dma);
  240. config.direction = dma->direction;
  241. config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
  242. config.src_addr_width = sdd->cur_bpw / 8;
  243. config.src_maxburst = 1;
  244. dmaengine_slave_config(dma->ch, &config);
  245. } else {
  246. sdd = container_of((void *)dma,
  247. struct s3c64xx_spi_driver_data, tx_dma);
  248. config.direction = dma->direction;
  249. config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
  250. config.dst_addr_width = sdd->cur_bpw / 8;
  251. config.dst_maxburst = 1;
  252. dmaengine_slave_config(dma->ch, &config);
  253. }
  254. desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
  255. dma->direction, DMA_PREP_INTERRUPT);
  256. desc->callback = s3c64xx_spi_dmacb;
  257. desc->callback_param = dma;
  258. dmaengine_submit(desc);
  259. dma_async_issue_pending(dma->ch);
  260. }
  261. static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
  262. {
  263. struct s3c64xx_spi_driver_data *sdd =
  264. spi_master_get_devdata(spi->master);
  265. if (sdd->cntrlr_info->no_cs)
  266. return;
  267. if (enable) {
  268. if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
  269. writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  270. } else {
  271. u32 ssel = readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  272. ssel |= (S3C64XX_SPI_SLAVE_AUTO |
  273. S3C64XX_SPI_SLAVE_NSC_CNT_2);
  274. writel(ssel, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  275. }
  276. } else {
  277. if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
  278. writel(S3C64XX_SPI_SLAVE_SIG_INACT,
  279. sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  280. }
  281. }
  282. static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
  283. {
  284. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
  285. if (is_polling(sdd))
  286. return 0;
  287. spi->dma_rx = sdd->rx_dma.ch;
  288. spi->dma_tx = sdd->tx_dma.ch;
  289. return 0;
  290. }
  291. static bool s3c64xx_spi_can_dma(struct spi_master *master,
  292. struct spi_device *spi,
  293. struct spi_transfer *xfer)
  294. {
  295. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  296. return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
  297. }
  298. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  299. struct spi_device *spi,
  300. struct spi_transfer *xfer, int dma_mode)
  301. {
  302. void __iomem *regs = sdd->regs;
  303. u32 modecfg, chcfg;
  304. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  305. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  306. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  307. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  308. if (dma_mode) {
  309. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  310. } else {
  311. /* Always shift in data in FIFO, even if xfer is Tx only,
  312. * this helps setting PCKT_CNT value for generating clocks
  313. * as exactly needed.
  314. */
  315. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  316. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  317. | S3C64XX_SPI_PACKET_CNT_EN,
  318. regs + S3C64XX_SPI_PACKET_CNT);
  319. }
  320. if (xfer->tx_buf != NULL) {
  321. sdd->state |= TXBUSY;
  322. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  323. if (dma_mode) {
  324. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  325. prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
  326. } else {
  327. switch (sdd->cur_bpw) {
  328. case 32:
  329. iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
  330. xfer->tx_buf, xfer->len / 4);
  331. break;
  332. case 16:
  333. iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
  334. xfer->tx_buf, xfer->len / 2);
  335. break;
  336. default:
  337. iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
  338. xfer->tx_buf, xfer->len);
  339. break;
  340. }
  341. }
  342. }
  343. if (xfer->rx_buf != NULL) {
  344. sdd->state |= RXBUSY;
  345. if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
  346. && !(sdd->cur_mode & SPI_CPHA))
  347. chcfg |= S3C64XX_SPI_CH_HS_EN;
  348. if (dma_mode) {
  349. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  350. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  351. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  352. | S3C64XX_SPI_PACKET_CNT_EN,
  353. regs + S3C64XX_SPI_PACKET_CNT);
  354. prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
  355. }
  356. }
  357. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  358. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  359. }
  360. static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
  361. int timeout_ms)
  362. {
  363. void __iomem *regs = sdd->regs;
  364. unsigned long val = 1;
  365. u32 status;
  366. /* max fifo depth available */
  367. u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
  368. if (timeout_ms)
  369. val = msecs_to_loops(timeout_ms);
  370. do {
  371. status = readl(regs + S3C64XX_SPI_STATUS);
  372. } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
  373. /* return the actual received data length */
  374. return RX_FIFO_LVL(status, sdd);
  375. }
  376. static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
  377. struct spi_transfer *xfer)
  378. {
  379. void __iomem *regs = sdd->regs;
  380. unsigned long val;
  381. u32 status;
  382. int ms;
  383. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  384. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  385. ms += 10; /* some tolerance */
  386. val = msecs_to_jiffies(ms) + 10;
  387. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  388. /*
  389. * If the previous xfer was completed within timeout, then
  390. * proceed further else return -EIO.
  391. * DmaTx returns after simply writing data in the FIFO,
  392. * w/o waiting for real transmission on the bus to finish.
  393. * DmaRx returns only after Dma read data from FIFO which
  394. * needs bus transmission to finish, so we don't worry if
  395. * Xfer involved Rx(with or without Tx).
  396. */
  397. if (val && !xfer->rx_buf) {
  398. val = msecs_to_loops(10);
  399. status = readl(regs + S3C64XX_SPI_STATUS);
  400. while ((TX_FIFO_LVL(status, sdd)
  401. || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
  402. && --val) {
  403. cpu_relax();
  404. status = readl(regs + S3C64XX_SPI_STATUS);
  405. }
  406. }
  407. /* If timed out while checking rx/tx status return error */
  408. if (!val)
  409. return -EIO;
  410. return 0;
  411. }
  412. static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
  413. struct spi_transfer *xfer)
  414. {
  415. void __iomem *regs = sdd->regs;
  416. unsigned long val;
  417. u32 status;
  418. int loops;
  419. u32 cpy_len;
  420. u8 *buf;
  421. int ms;
  422. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  423. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  424. ms += 10; /* some tolerance */
  425. val = msecs_to_loops(ms);
  426. do {
  427. status = readl(regs + S3C64XX_SPI_STATUS);
  428. } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
  429. /* If it was only Tx */
  430. if (!xfer->rx_buf) {
  431. sdd->state &= ~TXBUSY;
  432. return 0;
  433. }
  434. /*
  435. * If the receive length is bigger than the controller fifo
  436. * size, calculate the loops and read the fifo as many times.
  437. * loops = length / max fifo size (calculated by using the
  438. * fifo mask).
  439. * For any size less than the fifo size the below code is
  440. * executed atleast once.
  441. */
  442. loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
  443. buf = xfer->rx_buf;
  444. do {
  445. /* wait for data to be received in the fifo */
  446. cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
  447. (loops ? ms : 0));
  448. switch (sdd->cur_bpw) {
  449. case 32:
  450. ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
  451. buf, cpy_len / 4);
  452. break;
  453. case 16:
  454. ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
  455. buf, cpy_len / 2);
  456. break;
  457. default:
  458. ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
  459. buf, cpy_len);
  460. break;
  461. }
  462. buf = buf + cpy_len;
  463. } while (loops--);
  464. sdd->state &= ~RXBUSY;
  465. return 0;
  466. }
  467. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  468. {
  469. void __iomem *regs = sdd->regs;
  470. u32 val;
  471. /* Disable Clock */
  472. if (!sdd->port_conf->clk_from_cmu) {
  473. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  474. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  475. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  476. }
  477. /* Set Polarity and Phase */
  478. val = readl(regs + S3C64XX_SPI_CH_CFG);
  479. val &= ~(S3C64XX_SPI_CH_SLAVE |
  480. S3C64XX_SPI_CPOL_L |
  481. S3C64XX_SPI_CPHA_B);
  482. if (sdd->cur_mode & SPI_CPOL)
  483. val |= S3C64XX_SPI_CPOL_L;
  484. if (sdd->cur_mode & SPI_CPHA)
  485. val |= S3C64XX_SPI_CPHA_B;
  486. writel(val, regs + S3C64XX_SPI_CH_CFG);
  487. /* Set Channel & DMA Mode */
  488. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  489. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  490. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  491. switch (sdd->cur_bpw) {
  492. case 32:
  493. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  494. val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
  495. break;
  496. case 16:
  497. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  498. val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
  499. break;
  500. default:
  501. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  502. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
  503. break;
  504. }
  505. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  506. if (sdd->port_conf->clk_from_cmu) {
  507. /* The src_clk clock is divided internally by 2 */
  508. clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
  509. } else {
  510. /* Configure Clock */
  511. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  512. val &= ~S3C64XX_SPI_PSR_MASK;
  513. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  514. & S3C64XX_SPI_PSR_MASK);
  515. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  516. /* Enable Clock */
  517. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  518. val |= S3C64XX_SPI_ENCLK_ENABLE;
  519. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  520. }
  521. }
  522. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  523. static int s3c64xx_spi_prepare_message(struct spi_master *master,
  524. struct spi_message *msg)
  525. {
  526. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  527. struct spi_device *spi = msg->spi;
  528. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  529. /* Configure feedback delay */
  530. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  531. return 0;
  532. }
  533. static int s3c64xx_spi_transfer_one(struct spi_master *master,
  534. struct spi_device *spi,
  535. struct spi_transfer *xfer)
  536. {
  537. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  538. int status;
  539. u32 speed;
  540. u8 bpw;
  541. unsigned long flags;
  542. int use_dma;
  543. reinit_completion(&sdd->xfer_completion);
  544. /* Only BPW and Speed may change across transfers */
  545. bpw = xfer->bits_per_word;
  546. speed = xfer->speed_hz;
  547. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  548. sdd->cur_bpw = bpw;
  549. sdd->cur_speed = speed;
  550. sdd->cur_mode = spi->mode;
  551. s3c64xx_spi_config(sdd);
  552. }
  553. /* Polling method for xfers not bigger than FIFO capacity */
  554. use_dma = 0;
  555. if (!is_polling(sdd) &&
  556. (sdd->rx_dma.ch && sdd->tx_dma.ch &&
  557. (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
  558. use_dma = 1;
  559. spin_lock_irqsave(&sdd->lock, flags);
  560. /* Pending only which is to be done */
  561. sdd->state &= ~RXBUSY;
  562. sdd->state &= ~TXBUSY;
  563. enable_datapath(sdd, spi, xfer, use_dma);
  564. /* Start the signals */
  565. s3c64xx_spi_set_cs(spi, true);
  566. spin_unlock_irqrestore(&sdd->lock, flags);
  567. if (use_dma)
  568. status = wait_for_dma(sdd, xfer);
  569. else
  570. status = wait_for_pio(sdd, xfer);
  571. if (status) {
  572. dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  573. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  574. (sdd->state & RXBUSY) ? 'f' : 'p',
  575. (sdd->state & TXBUSY) ? 'f' : 'p',
  576. xfer->len);
  577. if (use_dma) {
  578. if (xfer->tx_buf != NULL
  579. && (sdd->state & TXBUSY))
  580. dmaengine_terminate_all(sdd->tx_dma.ch);
  581. if (xfer->rx_buf != NULL
  582. && (sdd->state & RXBUSY))
  583. dmaengine_terminate_all(sdd->rx_dma.ch);
  584. }
  585. } else {
  586. flush_fifo(sdd);
  587. }
  588. return status;
  589. }
  590. static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
  591. struct spi_device *spi)
  592. {
  593. struct s3c64xx_spi_csinfo *cs;
  594. struct device_node *slave_np, *data_np = NULL;
  595. u32 fb_delay = 0;
  596. slave_np = spi->dev.of_node;
  597. if (!slave_np) {
  598. dev_err(&spi->dev, "device node not found\n");
  599. return ERR_PTR(-EINVAL);
  600. }
  601. data_np = of_get_child_by_name(slave_np, "controller-data");
  602. if (!data_np) {
  603. dev_err(&spi->dev, "child node 'controller-data' not found\n");
  604. return ERR_PTR(-EINVAL);
  605. }
  606. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  607. if (!cs) {
  608. of_node_put(data_np);
  609. return ERR_PTR(-ENOMEM);
  610. }
  611. of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
  612. cs->fb_delay = fb_delay;
  613. of_node_put(data_np);
  614. return cs;
  615. }
  616. /*
  617. * Here we only check the validity of requested configuration
  618. * and save the configuration in a local data-structure.
  619. * The controller is actually configured only just before we
  620. * get a message to transfer.
  621. */
  622. static int s3c64xx_spi_setup(struct spi_device *spi)
  623. {
  624. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  625. struct s3c64xx_spi_driver_data *sdd;
  626. int err;
  627. sdd = spi_master_get_devdata(spi->master);
  628. if (spi->dev.of_node) {
  629. cs = s3c64xx_get_slave_ctrldata(spi);
  630. spi->controller_data = cs;
  631. } else if (cs) {
  632. /* On non-DT platforms the SPI core will set spi->cs_gpio
  633. * to -ENOENT. The GPIO pin used to drive the chip select
  634. * is defined by using platform data so spi->cs_gpio value
  635. * has to be override to have the proper GPIO pin number.
  636. */
  637. spi->cs_gpio = cs->line;
  638. }
  639. if (IS_ERR_OR_NULL(cs)) {
  640. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  641. return -ENODEV;
  642. }
  643. if (!spi_get_ctldata(spi)) {
  644. if (gpio_is_valid(spi->cs_gpio)) {
  645. err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
  646. dev_name(&spi->dev));
  647. if (err) {
  648. dev_err(&spi->dev,
  649. "Failed to get /CS gpio [%d]: %d\n",
  650. spi->cs_gpio, err);
  651. goto err_gpio_req;
  652. }
  653. }
  654. spi_set_ctldata(spi, cs);
  655. }
  656. pm_runtime_get_sync(&sdd->pdev->dev);
  657. /* Check if we can provide the requested rate */
  658. if (!sdd->port_conf->clk_from_cmu) {
  659. u32 psr, speed;
  660. /* Max possible */
  661. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
  662. if (spi->max_speed_hz > speed)
  663. spi->max_speed_hz = speed;
  664. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  665. psr &= S3C64XX_SPI_PSR_MASK;
  666. if (psr == S3C64XX_SPI_PSR_MASK)
  667. psr--;
  668. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  669. if (spi->max_speed_hz < speed) {
  670. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  671. psr++;
  672. } else {
  673. err = -EINVAL;
  674. goto setup_exit;
  675. }
  676. }
  677. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  678. if (spi->max_speed_hz >= speed) {
  679. spi->max_speed_hz = speed;
  680. } else {
  681. dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
  682. spi->max_speed_hz);
  683. err = -EINVAL;
  684. goto setup_exit;
  685. }
  686. }
  687. pm_runtime_mark_last_busy(&sdd->pdev->dev);
  688. pm_runtime_put_autosuspend(&sdd->pdev->dev);
  689. s3c64xx_spi_set_cs(spi, false);
  690. return 0;
  691. setup_exit:
  692. pm_runtime_mark_last_busy(&sdd->pdev->dev);
  693. pm_runtime_put_autosuspend(&sdd->pdev->dev);
  694. /* setup() returns with device de-selected */
  695. s3c64xx_spi_set_cs(spi, false);
  696. if (gpio_is_valid(spi->cs_gpio))
  697. gpio_free(spi->cs_gpio);
  698. spi_set_ctldata(spi, NULL);
  699. err_gpio_req:
  700. if (spi->dev.of_node)
  701. kfree(cs);
  702. return err;
  703. }
  704. static void s3c64xx_spi_cleanup(struct spi_device *spi)
  705. {
  706. struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
  707. if (gpio_is_valid(spi->cs_gpio)) {
  708. gpio_free(spi->cs_gpio);
  709. if (spi->dev.of_node)
  710. kfree(cs);
  711. else {
  712. /* On non-DT platforms, the SPI core sets
  713. * spi->cs_gpio to -ENOENT and .setup()
  714. * overrides it with the GPIO pin value
  715. * passed using platform data.
  716. */
  717. spi->cs_gpio = -ENOENT;
  718. }
  719. }
  720. spi_set_ctldata(spi, NULL);
  721. }
  722. static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
  723. {
  724. struct s3c64xx_spi_driver_data *sdd = data;
  725. struct spi_master *spi = sdd->master;
  726. unsigned int val, clr = 0;
  727. val = readl(sdd->regs + S3C64XX_SPI_STATUS);
  728. if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
  729. clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
  730. dev_err(&spi->dev, "RX overrun\n");
  731. }
  732. if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
  733. clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
  734. dev_err(&spi->dev, "RX underrun\n");
  735. }
  736. if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
  737. clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
  738. dev_err(&spi->dev, "TX overrun\n");
  739. }
  740. if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
  741. clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  742. dev_err(&spi->dev, "TX underrun\n");
  743. }
  744. /* Clear the pending irq by setting and then clearing it */
  745. writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  746. writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
  747. return IRQ_HANDLED;
  748. }
  749. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  750. {
  751. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  752. void __iomem *regs = sdd->regs;
  753. unsigned int val;
  754. sdd->cur_speed = 0;
  755. if (sci->no_cs)
  756. writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  757. else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
  758. writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
  759. /* Disable Interrupts - we use Polling if not DMA mode */
  760. writel(0, regs + S3C64XX_SPI_INT_EN);
  761. if (!sdd->port_conf->clk_from_cmu)
  762. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  763. regs + S3C64XX_SPI_CLK_CFG);
  764. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  765. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  766. /* Clear any irq pending bits, should set and clear the bits */
  767. val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
  768. S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
  769. S3C64XX_SPI_PND_TX_OVERRUN_CLR |
  770. S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
  771. writel(val, regs + S3C64XX_SPI_PENDING_CLR);
  772. writel(0, regs + S3C64XX_SPI_PENDING_CLR);
  773. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  774. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  775. val &= ~S3C64XX_SPI_MODE_4BURST;
  776. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  777. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  778. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  779. flush_fifo(sdd);
  780. }
  781. #ifdef CONFIG_OF
  782. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  783. {
  784. struct s3c64xx_spi_info *sci;
  785. u32 temp;
  786. sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
  787. if (!sci)
  788. return ERR_PTR(-ENOMEM);
  789. if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
  790. dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
  791. sci->src_clk_nr = 0;
  792. } else {
  793. sci->src_clk_nr = temp;
  794. }
  795. if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
  796. dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
  797. sci->num_cs = 1;
  798. } else {
  799. sci->num_cs = temp;
  800. }
  801. sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
  802. return sci;
  803. }
  804. #else
  805. static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
  806. {
  807. return dev_get_platdata(dev);
  808. }
  809. #endif
  810. static const struct of_device_id s3c64xx_spi_dt_match[];
  811. static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
  812. struct platform_device *pdev)
  813. {
  814. #ifdef CONFIG_OF
  815. if (pdev->dev.of_node) {
  816. const struct of_device_id *match;
  817. match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
  818. return (struct s3c64xx_spi_port_config *)match->data;
  819. }
  820. #endif
  821. return (struct s3c64xx_spi_port_config *)
  822. platform_get_device_id(pdev)->driver_data;
  823. }
  824. static int s3c64xx_spi_probe(struct platform_device *pdev)
  825. {
  826. struct resource *mem_res;
  827. struct s3c64xx_spi_driver_data *sdd;
  828. struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
  829. struct spi_master *master;
  830. int ret, irq;
  831. char clk_name[16];
  832. if (!sci && pdev->dev.of_node) {
  833. sci = s3c64xx_spi_parse_dt(&pdev->dev);
  834. if (IS_ERR(sci))
  835. return PTR_ERR(sci);
  836. }
  837. if (!sci) {
  838. dev_err(&pdev->dev, "platform_data missing!\n");
  839. return -ENODEV;
  840. }
  841. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  842. if (mem_res == NULL) {
  843. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  844. return -ENXIO;
  845. }
  846. irq = platform_get_irq(pdev, 0);
  847. if (irq < 0) {
  848. dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
  849. return irq;
  850. }
  851. master = spi_alloc_master(&pdev->dev,
  852. sizeof(struct s3c64xx_spi_driver_data));
  853. if (master == NULL) {
  854. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  855. return -ENOMEM;
  856. }
  857. platform_set_drvdata(pdev, master);
  858. sdd = spi_master_get_devdata(master);
  859. sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
  860. sdd->master = master;
  861. sdd->cntrlr_info = sci;
  862. sdd->pdev = pdev;
  863. sdd->sfr_start = mem_res->start;
  864. if (pdev->dev.of_node) {
  865. ret = of_alias_get_id(pdev->dev.of_node, "spi");
  866. if (ret < 0) {
  867. dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
  868. ret);
  869. goto err_deref_master;
  870. }
  871. sdd->port_id = ret;
  872. } else {
  873. sdd->port_id = pdev->id;
  874. }
  875. sdd->cur_bpw = 8;
  876. sdd->tx_dma.direction = DMA_MEM_TO_DEV;
  877. sdd->rx_dma.direction = DMA_DEV_TO_MEM;
  878. master->dev.of_node = pdev->dev.of_node;
  879. master->bus_num = sdd->port_id;
  880. master->setup = s3c64xx_spi_setup;
  881. master->cleanup = s3c64xx_spi_cleanup;
  882. master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
  883. master->prepare_message = s3c64xx_spi_prepare_message;
  884. master->transfer_one = s3c64xx_spi_transfer_one;
  885. master->num_chipselect = sci->num_cs;
  886. master->dma_alignment = 8;
  887. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  888. SPI_BPW_MASK(8);
  889. /* the spi->mode bits understood by this driver: */
  890. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  891. master->auto_runtime_pm = true;
  892. if (!is_polling(sdd))
  893. master->can_dma = s3c64xx_spi_can_dma;
  894. sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
  895. if (IS_ERR(sdd->regs)) {
  896. ret = PTR_ERR(sdd->regs);
  897. goto err_deref_master;
  898. }
  899. if (sci->cfg_gpio && sci->cfg_gpio()) {
  900. dev_err(&pdev->dev, "Unable to config gpio\n");
  901. ret = -EBUSY;
  902. goto err_deref_master;
  903. }
  904. /* Setup clocks */
  905. sdd->clk = devm_clk_get(&pdev->dev, "spi");
  906. if (IS_ERR(sdd->clk)) {
  907. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  908. ret = PTR_ERR(sdd->clk);
  909. goto err_deref_master;
  910. }
  911. ret = clk_prepare_enable(sdd->clk);
  912. if (ret) {
  913. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  914. goto err_deref_master;
  915. }
  916. sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
  917. sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
  918. if (IS_ERR(sdd->src_clk)) {
  919. dev_err(&pdev->dev,
  920. "Unable to acquire clock '%s'\n", clk_name);
  921. ret = PTR_ERR(sdd->src_clk);
  922. goto err_disable_clk;
  923. }
  924. ret = clk_prepare_enable(sdd->src_clk);
  925. if (ret) {
  926. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
  927. goto err_disable_clk;
  928. }
  929. if (sdd->port_conf->clk_ioclk) {
  930. sdd->ioclk = devm_clk_get(&pdev->dev, "spi_ioclk");
  931. if (IS_ERR(sdd->ioclk)) {
  932. dev_err(&pdev->dev, "Unable to acquire 'ioclk'\n");
  933. ret = PTR_ERR(sdd->ioclk);
  934. goto err_disable_src_clk;
  935. }
  936. ret = clk_prepare_enable(sdd->ioclk);
  937. if (ret) {
  938. dev_err(&pdev->dev, "Couldn't enable clock 'ioclk'\n");
  939. goto err_disable_src_clk;
  940. }
  941. }
  942. if (!is_polling(sdd)) {
  943. /* Acquire DMA channels */
  944. sdd->rx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
  945. "rx");
  946. if (IS_ERR(sdd->rx_dma.ch)) {
  947. dev_err(&pdev->dev, "Failed to get RX DMA channel\n");
  948. ret = PTR_ERR(sdd->rx_dma.ch);
  949. goto err_disable_io_clk;
  950. }
  951. sdd->tx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
  952. "tx");
  953. if (IS_ERR(sdd->tx_dma.ch)) {
  954. dev_err(&pdev->dev, "Failed to get TX DMA channel\n");
  955. ret = PTR_ERR(sdd->tx_dma.ch);
  956. goto err_release_rx_dma;
  957. }
  958. }
  959. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
  960. pm_runtime_use_autosuspend(&pdev->dev);
  961. pm_runtime_set_active(&pdev->dev);
  962. pm_runtime_enable(&pdev->dev);
  963. pm_runtime_get_sync(&pdev->dev);
  964. /* Setup Deufult Mode */
  965. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  966. spin_lock_init(&sdd->lock);
  967. init_completion(&sdd->xfer_completion);
  968. ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
  969. "spi-s3c64xx", sdd);
  970. if (ret != 0) {
  971. dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
  972. irq, ret);
  973. goto err_pm_put;
  974. }
  975. writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
  976. S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
  977. sdd->regs + S3C64XX_SPI_INT_EN);
  978. ret = devm_spi_register_master(&pdev->dev, master);
  979. if (ret != 0) {
  980. dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
  981. goto err_pm_put;
  982. }
  983. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
  984. sdd->port_id, master->num_chipselect);
  985. dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
  986. mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
  987. pm_runtime_mark_last_busy(&pdev->dev);
  988. pm_runtime_put_autosuspend(&pdev->dev);
  989. return 0;
  990. err_pm_put:
  991. pm_runtime_put_noidle(&pdev->dev);
  992. pm_runtime_disable(&pdev->dev);
  993. pm_runtime_set_suspended(&pdev->dev);
  994. if (!is_polling(sdd))
  995. dma_release_channel(sdd->tx_dma.ch);
  996. err_release_rx_dma:
  997. if (!is_polling(sdd))
  998. dma_release_channel(sdd->rx_dma.ch);
  999. err_disable_io_clk:
  1000. clk_disable_unprepare(sdd->ioclk);
  1001. err_disable_src_clk:
  1002. clk_disable_unprepare(sdd->src_clk);
  1003. err_disable_clk:
  1004. clk_disable_unprepare(sdd->clk);
  1005. err_deref_master:
  1006. spi_master_put(master);
  1007. return ret;
  1008. }
  1009. static int s3c64xx_spi_remove(struct platform_device *pdev)
  1010. {
  1011. struct spi_master *master = platform_get_drvdata(pdev);
  1012. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1013. pm_runtime_get_sync(&pdev->dev);
  1014. writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
  1015. if (!is_polling(sdd)) {
  1016. dma_release_channel(sdd->rx_dma.ch);
  1017. dma_release_channel(sdd->tx_dma.ch);
  1018. }
  1019. clk_disable_unprepare(sdd->ioclk);
  1020. clk_disable_unprepare(sdd->src_clk);
  1021. clk_disable_unprepare(sdd->clk);
  1022. pm_runtime_put_noidle(&pdev->dev);
  1023. pm_runtime_disable(&pdev->dev);
  1024. pm_runtime_set_suspended(&pdev->dev);
  1025. return 0;
  1026. }
  1027. #ifdef CONFIG_PM_SLEEP
  1028. static int s3c64xx_spi_suspend(struct device *dev)
  1029. {
  1030. struct spi_master *master = dev_get_drvdata(dev);
  1031. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1032. int ret = spi_master_suspend(master);
  1033. if (ret)
  1034. return ret;
  1035. ret = pm_runtime_force_suspend(dev);
  1036. if (ret < 0)
  1037. return ret;
  1038. sdd->cur_speed = 0; /* Output Clock is stopped */
  1039. return 0;
  1040. }
  1041. static int s3c64xx_spi_resume(struct device *dev)
  1042. {
  1043. struct spi_master *master = dev_get_drvdata(dev);
  1044. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1045. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  1046. int ret;
  1047. if (sci->cfg_gpio)
  1048. sci->cfg_gpio();
  1049. ret = pm_runtime_force_resume(dev);
  1050. if (ret < 0)
  1051. return ret;
  1052. s3c64xx_spi_hwinit(sdd, sdd->port_id);
  1053. return spi_master_resume(master);
  1054. }
  1055. #endif /* CONFIG_PM_SLEEP */
  1056. #ifdef CONFIG_PM
  1057. static int s3c64xx_spi_runtime_suspend(struct device *dev)
  1058. {
  1059. struct spi_master *master = dev_get_drvdata(dev);
  1060. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1061. clk_disable_unprepare(sdd->clk);
  1062. clk_disable_unprepare(sdd->src_clk);
  1063. clk_disable_unprepare(sdd->ioclk);
  1064. return 0;
  1065. }
  1066. static int s3c64xx_spi_runtime_resume(struct device *dev)
  1067. {
  1068. struct spi_master *master = dev_get_drvdata(dev);
  1069. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  1070. int ret;
  1071. if (sdd->port_conf->clk_ioclk) {
  1072. ret = clk_prepare_enable(sdd->ioclk);
  1073. if (ret != 0)
  1074. return ret;
  1075. }
  1076. ret = clk_prepare_enable(sdd->src_clk);
  1077. if (ret != 0)
  1078. goto err_disable_ioclk;
  1079. ret = clk_prepare_enable(sdd->clk);
  1080. if (ret != 0)
  1081. goto err_disable_src_clk;
  1082. return 0;
  1083. err_disable_src_clk:
  1084. clk_disable_unprepare(sdd->src_clk);
  1085. err_disable_ioclk:
  1086. clk_disable_unprepare(sdd->ioclk);
  1087. return ret;
  1088. }
  1089. #endif /* CONFIG_PM */
  1090. static const struct dev_pm_ops s3c64xx_spi_pm = {
  1091. SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
  1092. SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
  1093. s3c64xx_spi_runtime_resume, NULL)
  1094. };
  1095. static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
  1096. .fifo_lvl_mask = { 0x7f },
  1097. .rx_lvl_offset = 13,
  1098. .tx_st_done = 21,
  1099. .high_speed = true,
  1100. };
  1101. static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
  1102. .fifo_lvl_mask = { 0x7f, 0x7F },
  1103. .rx_lvl_offset = 13,
  1104. .tx_st_done = 21,
  1105. };
  1106. static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
  1107. .fifo_lvl_mask = { 0x1ff, 0x7F },
  1108. .rx_lvl_offset = 15,
  1109. .tx_st_done = 25,
  1110. .high_speed = true,
  1111. };
  1112. static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
  1113. .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
  1114. .rx_lvl_offset = 15,
  1115. .tx_st_done = 25,
  1116. .high_speed = true,
  1117. .clk_from_cmu = true,
  1118. };
  1119. static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
  1120. .fifo_lvl_mask = { 0x1ff },
  1121. .rx_lvl_offset = 15,
  1122. .tx_st_done = 25,
  1123. .high_speed = true,
  1124. .clk_from_cmu = true,
  1125. .quirks = S3C64XX_SPI_QUIRK_POLL,
  1126. };
  1127. static struct s3c64xx_spi_port_config exynos7_spi_port_config = {
  1128. .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
  1129. .rx_lvl_offset = 15,
  1130. .tx_st_done = 25,
  1131. .high_speed = true,
  1132. .clk_from_cmu = true,
  1133. .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
  1134. };
  1135. static struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
  1136. .fifo_lvl_mask = { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
  1137. .rx_lvl_offset = 15,
  1138. .tx_st_done = 25,
  1139. .high_speed = true,
  1140. .clk_from_cmu = true,
  1141. .clk_ioclk = true,
  1142. .quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
  1143. };
  1144. static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
  1145. {
  1146. .name = "s3c2443-spi",
  1147. .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
  1148. }, {
  1149. .name = "s3c6410-spi",
  1150. .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
  1151. },
  1152. { },
  1153. };
  1154. static const struct of_device_id s3c64xx_spi_dt_match[] = {
  1155. { .compatible = "samsung,s3c2443-spi",
  1156. .data = (void *)&s3c2443_spi_port_config,
  1157. },
  1158. { .compatible = "samsung,s3c6410-spi",
  1159. .data = (void *)&s3c6410_spi_port_config,
  1160. },
  1161. { .compatible = "samsung,s5pv210-spi",
  1162. .data = (void *)&s5pv210_spi_port_config,
  1163. },
  1164. { .compatible = "samsung,exynos4210-spi",
  1165. .data = (void *)&exynos4_spi_port_config,
  1166. },
  1167. { .compatible = "samsung,exynos5440-spi",
  1168. .data = (void *)&exynos5440_spi_port_config,
  1169. },
  1170. { .compatible = "samsung,exynos7-spi",
  1171. .data = (void *)&exynos7_spi_port_config,
  1172. },
  1173. { .compatible = "samsung,exynos5433-spi",
  1174. .data = (void *)&exynos5433_spi_port_config,
  1175. },
  1176. { },
  1177. };
  1178. MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
  1179. static struct platform_driver s3c64xx_spi_driver = {
  1180. .driver = {
  1181. .name = "s3c64xx-spi",
  1182. .pm = &s3c64xx_spi_pm,
  1183. .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
  1184. },
  1185. .probe = s3c64xx_spi_probe,
  1186. .remove = s3c64xx_spi_remove,
  1187. .id_table = s3c64xx_spi_driver_ids,
  1188. };
  1189. MODULE_ALIAS("platform:s3c64xx-spi");
  1190. module_platform_driver(s3c64xx_spi_driver);
  1191. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  1192. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  1193. MODULE_LICENSE("GPL");