spi-rspi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/of_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/sh_dma.h>
  32. #include <linux/spi/spi.h>
  33. #include <linux/spi/rspi.h>
  34. #define RSPI_SPCR 0x00 /* Control Register */
  35. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  36. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  37. #define RSPI_SPSR 0x03 /* Status Register */
  38. #define RSPI_SPDR 0x04 /* Data Register */
  39. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  40. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  41. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  42. #define RSPI_SPDCR 0x0b /* Data Control Register */
  43. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  44. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  45. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  46. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  47. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  48. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  49. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  50. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  51. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  52. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  53. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  54. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  55. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  56. #define RSPI_NUM_SPCMD 8
  57. #define RSPI_RZ_NUM_SPCMD 4
  58. #define QSPI_NUM_SPCMD 4
  59. /* RSPI on RZ only */
  60. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  61. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  62. /* QSPI only */
  63. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  64. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  65. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  66. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  67. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  68. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  69. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  70. /* SPCR - Control Register */
  71. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  72. #define SPCR_SPE 0x40 /* Function Enable */
  73. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  74. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  75. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  76. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  77. /* RSPI on SH only */
  78. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  79. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  80. /* QSPI on R-Car Gen2 only */
  81. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  82. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  83. /* SSLP - Slave Select Polarity Register */
  84. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  85. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  86. /* SPPCR - Pin Control Register */
  87. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  88. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  89. #define SPPCR_SPOM 0x04
  90. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  91. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  92. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94. /* SPSR - Status Register */
  95. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  96. #define SPSR_TEND 0x40 /* Transmit End */
  97. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  98. #define SPSR_PERF 0x08 /* Parity Error Flag */
  99. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  100. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  101. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  102. /* SPSCR - Sequence Control Register */
  103. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  104. /* SPSSR - Sequence Status Register */
  105. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  106. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  107. /* SPDCR - Data Control Register */
  108. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  109. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  110. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  111. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  112. #define SPDCR_SPLWORD SPDCR_SPLW1
  113. #define SPDCR_SPLBYTE SPDCR_SPLW0
  114. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  115. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  116. #define SPDCR_SLSEL1 0x08
  117. #define SPDCR_SLSEL0 0x04
  118. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  119. #define SPDCR_SPFC1 0x02
  120. #define SPDCR_SPFC0 0x01
  121. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  122. /* SPCKD - Clock Delay Register */
  123. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  124. /* SSLND - Slave Select Negation Delay Register */
  125. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  126. /* SPND - Next-Access Delay Register */
  127. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  128. /* SPCR2 - Control Register 2 */
  129. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  130. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  131. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  132. #define SPCR2_SPPE 0x01 /* Parity Enable */
  133. /* SPCMDn - Command Registers */
  134. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  135. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  136. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  137. #define SPCMD_LSBF 0x1000 /* LSB First */
  138. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  139. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  140. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  141. #define SPCMD_SPB_16BIT 0x0100
  142. #define SPCMD_SPB_20BIT 0x0000
  143. #define SPCMD_SPB_24BIT 0x0100
  144. #define SPCMD_SPB_32BIT 0x0200
  145. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  146. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  147. #define SPCMD_SPIMOD1 0x0040
  148. #define SPCMD_SPIMOD0 0x0020
  149. #define SPCMD_SPIMOD_SINGLE 0
  150. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  151. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  152. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  153. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  154. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  155. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  156. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  157. /* SPBFCR - Buffer Control Register */
  158. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  159. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  160. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  161. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  162. /* QSPI on R-Car Gen2 */
  163. #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
  164. #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
  165. #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
  166. #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
  167. #define QSPI_BUFFER_SIZE 32u
  168. struct rspi_data {
  169. void __iomem *addr;
  170. u32 max_speed_hz;
  171. struct spi_master *master;
  172. wait_queue_head_t wait;
  173. struct clk *clk;
  174. u16 spcmd;
  175. u8 spsr;
  176. u8 sppcr;
  177. int rx_irq, tx_irq;
  178. const struct spi_ops *ops;
  179. unsigned dma_callbacked:1;
  180. unsigned byte_access:1;
  181. };
  182. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  183. {
  184. iowrite8(data, rspi->addr + offset);
  185. }
  186. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  187. {
  188. iowrite16(data, rspi->addr + offset);
  189. }
  190. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  191. {
  192. iowrite32(data, rspi->addr + offset);
  193. }
  194. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  195. {
  196. return ioread8(rspi->addr + offset);
  197. }
  198. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  199. {
  200. return ioread16(rspi->addr + offset);
  201. }
  202. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  203. {
  204. if (rspi->byte_access)
  205. rspi_write8(rspi, data, RSPI_SPDR);
  206. else /* 16 bit */
  207. rspi_write16(rspi, data, RSPI_SPDR);
  208. }
  209. static u16 rspi_read_data(const struct rspi_data *rspi)
  210. {
  211. if (rspi->byte_access)
  212. return rspi_read8(rspi, RSPI_SPDR);
  213. else /* 16 bit */
  214. return rspi_read16(rspi, RSPI_SPDR);
  215. }
  216. /* optional functions */
  217. struct spi_ops {
  218. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  219. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  220. struct spi_transfer *xfer);
  221. u16 mode_bits;
  222. u16 flags;
  223. u16 fifo_size;
  224. };
  225. /*
  226. * functions for RSPI on legacy SH
  227. */
  228. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  229. {
  230. int spbr;
  231. /* Sets output mode, MOSI signal, and (optionally) loopback */
  232. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  233. /* Sets transfer bit rate */
  234. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  235. 2 * rspi->max_speed_hz) - 1;
  236. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  237. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  238. rspi_write8(rspi, 0, RSPI_SPDCR);
  239. rspi->byte_access = 0;
  240. /* Sets RSPCK, SSL, next-access delay value */
  241. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  242. rspi_write8(rspi, 0x00, RSPI_SSLND);
  243. rspi_write8(rspi, 0x00, RSPI_SPND);
  244. /* Sets parity, interrupt mask */
  245. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  246. /* Sets SPCMD */
  247. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  248. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  249. /* Sets RSPI mode */
  250. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  251. return 0;
  252. }
  253. /*
  254. * functions for RSPI on RZ
  255. */
  256. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  257. {
  258. int spbr;
  259. int div = 0;
  260. unsigned long clksrc;
  261. /* Sets output mode, MOSI signal, and (optionally) loopback */
  262. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  263. clksrc = clk_get_rate(rspi->clk);
  264. while (div < 3) {
  265. if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
  266. break;
  267. div++;
  268. clksrc /= 2;
  269. }
  270. /* Sets transfer bit rate */
  271. spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
  272. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  273. rspi->spcmd |= div << 2;
  274. /* Disable dummy transmission, set byte access */
  275. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  276. rspi->byte_access = 1;
  277. /* Sets RSPCK, SSL, next-access delay value */
  278. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  279. rspi_write8(rspi, 0x00, RSPI_SSLND);
  280. rspi_write8(rspi, 0x00, RSPI_SPND);
  281. /* Sets SPCMD */
  282. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  283. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  284. /* Sets RSPI mode */
  285. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  286. return 0;
  287. }
  288. /*
  289. * functions for QSPI
  290. */
  291. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  292. {
  293. int spbr;
  294. /* Sets output mode, MOSI signal, and (optionally) loopback */
  295. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  296. /* Sets transfer bit rate */
  297. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  298. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  299. /* Disable dummy transmission, set byte access */
  300. rspi_write8(rspi, 0, RSPI_SPDCR);
  301. rspi->byte_access = 1;
  302. /* Sets RSPCK, SSL, next-access delay value */
  303. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  304. rspi_write8(rspi, 0x00, RSPI_SSLND);
  305. rspi_write8(rspi, 0x00, RSPI_SPND);
  306. /* Data Length Setting */
  307. if (access_size == 8)
  308. rspi->spcmd |= SPCMD_SPB_8BIT;
  309. else if (access_size == 16)
  310. rspi->spcmd |= SPCMD_SPB_16BIT;
  311. else
  312. rspi->spcmd |= SPCMD_SPB_32BIT;
  313. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  314. /* Resets transfer data length */
  315. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  316. /* Resets transmit and receive buffer */
  317. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  318. /* Sets buffer to allow normal operation */
  319. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  320. /* Sets SPCMD */
  321. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  322. /* Sets RSPI mode */
  323. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  324. return 0;
  325. }
  326. static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
  327. {
  328. u8 data;
  329. data = rspi_read8(rspi, reg);
  330. data &= ~mask;
  331. data |= (val & mask);
  332. rspi_write8(rspi, data, reg);
  333. }
  334. static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
  335. unsigned int len)
  336. {
  337. unsigned int n;
  338. n = min(len, QSPI_BUFFER_SIZE);
  339. if (len >= QSPI_BUFFER_SIZE) {
  340. /* sets triggering number to 32 bytes */
  341. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  342. SPBFCR_TXTRG_32B, QSPI_SPBFCR);
  343. } else {
  344. /* sets triggering number to 1 byte */
  345. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  346. SPBFCR_TXTRG_1B, QSPI_SPBFCR);
  347. }
  348. return n;
  349. }
  350. static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
  351. {
  352. unsigned int n;
  353. n = min(len, QSPI_BUFFER_SIZE);
  354. if (len >= QSPI_BUFFER_SIZE) {
  355. /* sets triggering number to 32 bytes */
  356. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  357. SPBFCR_RXTRG_32B, QSPI_SPBFCR);
  358. } else {
  359. /* sets triggering number to 1 byte */
  360. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  361. SPBFCR_RXTRG_1B, QSPI_SPBFCR);
  362. }
  363. return n;
  364. }
  365. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  366. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  367. {
  368. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  369. }
  370. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  371. {
  372. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  373. }
  374. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  375. u8 enable_bit)
  376. {
  377. int ret;
  378. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  379. if (rspi->spsr & wait_mask)
  380. return 0;
  381. rspi_enable_irq(rspi, enable_bit);
  382. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  383. if (ret == 0 && !(rspi->spsr & wait_mask))
  384. return -ETIMEDOUT;
  385. return 0;
  386. }
  387. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  388. {
  389. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  390. }
  391. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  392. {
  393. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  394. }
  395. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  396. {
  397. int error = rspi_wait_for_tx_empty(rspi);
  398. if (error < 0) {
  399. dev_err(&rspi->master->dev, "transmit timeout\n");
  400. return error;
  401. }
  402. rspi_write_data(rspi, data);
  403. return 0;
  404. }
  405. static int rspi_data_in(struct rspi_data *rspi)
  406. {
  407. int error;
  408. u8 data;
  409. error = rspi_wait_for_rx_full(rspi);
  410. if (error < 0) {
  411. dev_err(&rspi->master->dev, "receive timeout\n");
  412. return error;
  413. }
  414. data = rspi_read_data(rspi);
  415. return data;
  416. }
  417. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  418. unsigned int n)
  419. {
  420. while (n-- > 0) {
  421. if (tx) {
  422. int ret = rspi_data_out(rspi, *tx++);
  423. if (ret < 0)
  424. return ret;
  425. }
  426. if (rx) {
  427. int ret = rspi_data_in(rspi);
  428. if (ret < 0)
  429. return ret;
  430. *rx++ = ret;
  431. }
  432. }
  433. return 0;
  434. }
  435. static void rspi_dma_complete(void *arg)
  436. {
  437. struct rspi_data *rspi = arg;
  438. rspi->dma_callbacked = 1;
  439. wake_up_interruptible(&rspi->wait);
  440. }
  441. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  442. struct sg_table *rx)
  443. {
  444. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  445. u8 irq_mask = 0;
  446. unsigned int other_irq = 0;
  447. dma_cookie_t cookie;
  448. int ret;
  449. /* First prepare and submit the DMA request(s), as this may fail */
  450. if (rx) {
  451. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  452. rx->sgl, rx->nents, DMA_DEV_TO_MEM,
  453. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  454. if (!desc_rx) {
  455. ret = -EAGAIN;
  456. goto no_dma_rx;
  457. }
  458. desc_rx->callback = rspi_dma_complete;
  459. desc_rx->callback_param = rspi;
  460. cookie = dmaengine_submit(desc_rx);
  461. if (dma_submit_error(cookie)) {
  462. ret = cookie;
  463. goto no_dma_rx;
  464. }
  465. irq_mask |= SPCR_SPRIE;
  466. }
  467. if (tx) {
  468. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  469. tx->sgl, tx->nents, DMA_MEM_TO_DEV,
  470. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  471. if (!desc_tx) {
  472. ret = -EAGAIN;
  473. goto no_dma_tx;
  474. }
  475. if (rx) {
  476. /* No callback */
  477. desc_tx->callback = NULL;
  478. } else {
  479. desc_tx->callback = rspi_dma_complete;
  480. desc_tx->callback_param = rspi;
  481. }
  482. cookie = dmaengine_submit(desc_tx);
  483. if (dma_submit_error(cookie)) {
  484. ret = cookie;
  485. goto no_dma_tx;
  486. }
  487. irq_mask |= SPCR_SPTIE;
  488. }
  489. /*
  490. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  491. * called. So, this driver disables the IRQ while DMA transfer.
  492. */
  493. if (tx)
  494. disable_irq(other_irq = rspi->tx_irq);
  495. if (rx && rspi->rx_irq != other_irq)
  496. disable_irq(rspi->rx_irq);
  497. rspi_enable_irq(rspi, irq_mask);
  498. rspi->dma_callbacked = 0;
  499. /* Now start DMA */
  500. if (rx)
  501. dma_async_issue_pending(rspi->master->dma_rx);
  502. if (tx)
  503. dma_async_issue_pending(rspi->master->dma_tx);
  504. ret = wait_event_interruptible_timeout(rspi->wait,
  505. rspi->dma_callbacked, HZ);
  506. if (ret > 0 && rspi->dma_callbacked)
  507. ret = 0;
  508. else if (!ret) {
  509. dev_err(&rspi->master->dev, "DMA timeout\n");
  510. ret = -ETIMEDOUT;
  511. if (tx)
  512. dmaengine_terminate_all(rspi->master->dma_tx);
  513. if (rx)
  514. dmaengine_terminate_all(rspi->master->dma_rx);
  515. }
  516. rspi_disable_irq(rspi, irq_mask);
  517. if (tx)
  518. enable_irq(rspi->tx_irq);
  519. if (rx && rspi->rx_irq != other_irq)
  520. enable_irq(rspi->rx_irq);
  521. return ret;
  522. no_dma_tx:
  523. if (rx)
  524. dmaengine_terminate_all(rspi->master->dma_rx);
  525. no_dma_rx:
  526. if (ret == -EAGAIN) {
  527. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  528. dev_driver_string(&rspi->master->dev),
  529. dev_name(&rspi->master->dev));
  530. }
  531. return ret;
  532. }
  533. static void rspi_receive_init(const struct rspi_data *rspi)
  534. {
  535. u8 spsr;
  536. spsr = rspi_read8(rspi, RSPI_SPSR);
  537. if (spsr & SPSR_SPRF)
  538. rspi_read_data(rspi); /* dummy read */
  539. if (spsr & SPSR_OVRF)
  540. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  541. RSPI_SPSR);
  542. }
  543. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  544. {
  545. rspi_receive_init(rspi);
  546. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  547. rspi_write8(rspi, 0, RSPI_SPBFCR);
  548. }
  549. static void qspi_receive_init(const struct rspi_data *rspi)
  550. {
  551. u8 spsr;
  552. spsr = rspi_read8(rspi, RSPI_SPSR);
  553. if (spsr & SPSR_SPRF)
  554. rspi_read_data(rspi); /* dummy read */
  555. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  556. rspi_write8(rspi, 0, QSPI_SPBFCR);
  557. }
  558. static bool __rspi_can_dma(const struct rspi_data *rspi,
  559. const struct spi_transfer *xfer)
  560. {
  561. return xfer->len > rspi->ops->fifo_size;
  562. }
  563. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  564. struct spi_transfer *xfer)
  565. {
  566. struct rspi_data *rspi = spi_master_get_devdata(master);
  567. return __rspi_can_dma(rspi, xfer);
  568. }
  569. static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
  570. struct spi_transfer *xfer)
  571. {
  572. if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
  573. return -EAGAIN;
  574. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  575. return rspi_dma_transfer(rspi, &xfer->tx_sg,
  576. xfer->rx_buf ? &xfer->rx_sg : NULL);
  577. }
  578. static int rspi_common_transfer(struct rspi_data *rspi,
  579. struct spi_transfer *xfer)
  580. {
  581. int ret;
  582. ret = rspi_dma_check_then_transfer(rspi, xfer);
  583. if (ret != -EAGAIN)
  584. return ret;
  585. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  586. if (ret < 0)
  587. return ret;
  588. /* Wait for the last transmission */
  589. rspi_wait_for_tx_empty(rspi);
  590. return 0;
  591. }
  592. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  593. struct spi_transfer *xfer)
  594. {
  595. struct rspi_data *rspi = spi_master_get_devdata(master);
  596. u8 spcr;
  597. spcr = rspi_read8(rspi, RSPI_SPCR);
  598. if (xfer->rx_buf) {
  599. rspi_receive_init(rspi);
  600. spcr &= ~SPCR_TXMD;
  601. } else {
  602. spcr |= SPCR_TXMD;
  603. }
  604. rspi_write8(rspi, spcr, RSPI_SPCR);
  605. return rspi_common_transfer(rspi, xfer);
  606. }
  607. static int rspi_rz_transfer_one(struct spi_master *master,
  608. struct spi_device *spi,
  609. struct spi_transfer *xfer)
  610. {
  611. struct rspi_data *rspi = spi_master_get_devdata(master);
  612. rspi_rz_receive_init(rspi);
  613. return rspi_common_transfer(rspi, xfer);
  614. }
  615. static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
  616. u8 *rx, unsigned int len)
  617. {
  618. unsigned int i, n;
  619. int ret;
  620. while (len > 0) {
  621. n = qspi_set_send_trigger(rspi, len);
  622. qspi_set_receive_trigger(rspi, len);
  623. if (n == QSPI_BUFFER_SIZE) {
  624. ret = rspi_wait_for_tx_empty(rspi);
  625. if (ret < 0) {
  626. dev_err(&rspi->master->dev, "transmit timeout\n");
  627. return ret;
  628. }
  629. for (i = 0; i < n; i++)
  630. rspi_write_data(rspi, *tx++);
  631. ret = rspi_wait_for_rx_full(rspi);
  632. if (ret < 0) {
  633. dev_err(&rspi->master->dev, "receive timeout\n");
  634. return ret;
  635. }
  636. for (i = 0; i < n; i++)
  637. *rx++ = rspi_read_data(rspi);
  638. } else {
  639. ret = rspi_pio_transfer(rspi, tx, rx, n);
  640. if (ret < 0)
  641. return ret;
  642. }
  643. len -= n;
  644. }
  645. return 0;
  646. }
  647. static int qspi_transfer_out_in(struct rspi_data *rspi,
  648. struct spi_transfer *xfer)
  649. {
  650. int ret;
  651. qspi_receive_init(rspi);
  652. ret = rspi_dma_check_then_transfer(rspi, xfer);
  653. if (ret != -EAGAIN)
  654. return ret;
  655. return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
  656. xfer->rx_buf, xfer->len);
  657. }
  658. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  659. {
  660. const u8 *tx = xfer->tx_buf;
  661. unsigned int n = xfer->len;
  662. unsigned int i, len;
  663. int ret;
  664. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  665. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  666. if (ret != -EAGAIN)
  667. return ret;
  668. }
  669. while (n > 0) {
  670. len = qspi_set_send_trigger(rspi, n);
  671. if (len == QSPI_BUFFER_SIZE) {
  672. ret = rspi_wait_for_tx_empty(rspi);
  673. if (ret < 0) {
  674. dev_err(&rspi->master->dev, "transmit timeout\n");
  675. return ret;
  676. }
  677. for (i = 0; i < len; i++)
  678. rspi_write_data(rspi, *tx++);
  679. } else {
  680. ret = rspi_pio_transfer(rspi, tx, NULL, len);
  681. if (ret < 0)
  682. return ret;
  683. }
  684. n -= len;
  685. }
  686. /* Wait for the last transmission */
  687. rspi_wait_for_tx_empty(rspi);
  688. return 0;
  689. }
  690. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  691. {
  692. u8 *rx = xfer->rx_buf;
  693. unsigned int n = xfer->len;
  694. unsigned int i, len;
  695. int ret;
  696. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  697. int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  698. if (ret != -EAGAIN)
  699. return ret;
  700. }
  701. while (n > 0) {
  702. len = qspi_set_receive_trigger(rspi, n);
  703. if (len == QSPI_BUFFER_SIZE) {
  704. ret = rspi_wait_for_rx_full(rspi);
  705. if (ret < 0) {
  706. dev_err(&rspi->master->dev, "receive timeout\n");
  707. return ret;
  708. }
  709. for (i = 0; i < len; i++)
  710. *rx++ = rspi_read_data(rspi);
  711. } else {
  712. ret = rspi_pio_transfer(rspi, NULL, rx, len);
  713. if (ret < 0)
  714. return ret;
  715. }
  716. n -= len;
  717. }
  718. return 0;
  719. }
  720. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  721. struct spi_transfer *xfer)
  722. {
  723. struct rspi_data *rspi = spi_master_get_devdata(master);
  724. if (spi->mode & SPI_LOOP) {
  725. return qspi_transfer_out_in(rspi, xfer);
  726. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  727. /* Quad or Dual SPI Write */
  728. return qspi_transfer_out(rspi, xfer);
  729. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  730. /* Quad or Dual SPI Read */
  731. return qspi_transfer_in(rspi, xfer);
  732. } else {
  733. /* Single SPI Transfer */
  734. return qspi_transfer_out_in(rspi, xfer);
  735. }
  736. }
  737. static int rspi_setup(struct spi_device *spi)
  738. {
  739. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  740. rspi->max_speed_hz = spi->max_speed_hz;
  741. rspi->spcmd = SPCMD_SSLKP;
  742. if (spi->mode & SPI_CPOL)
  743. rspi->spcmd |= SPCMD_CPOL;
  744. if (spi->mode & SPI_CPHA)
  745. rspi->spcmd |= SPCMD_CPHA;
  746. /* CMOS output mode and MOSI signal from previous transfer */
  747. rspi->sppcr = 0;
  748. if (spi->mode & SPI_LOOP)
  749. rspi->sppcr |= SPPCR_SPLP;
  750. set_config_register(rspi, 8);
  751. return 0;
  752. }
  753. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  754. {
  755. if (xfer->tx_buf)
  756. switch (xfer->tx_nbits) {
  757. case SPI_NBITS_QUAD:
  758. return SPCMD_SPIMOD_QUAD;
  759. case SPI_NBITS_DUAL:
  760. return SPCMD_SPIMOD_DUAL;
  761. default:
  762. return 0;
  763. }
  764. if (xfer->rx_buf)
  765. switch (xfer->rx_nbits) {
  766. case SPI_NBITS_QUAD:
  767. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  768. case SPI_NBITS_DUAL:
  769. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  770. default:
  771. return 0;
  772. }
  773. return 0;
  774. }
  775. static int qspi_setup_sequencer(struct rspi_data *rspi,
  776. const struct spi_message *msg)
  777. {
  778. const struct spi_transfer *xfer;
  779. unsigned int i = 0, len = 0;
  780. u16 current_mode = 0xffff, mode;
  781. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  782. mode = qspi_transfer_mode(xfer);
  783. if (mode == current_mode) {
  784. len += xfer->len;
  785. continue;
  786. }
  787. /* Transfer mode change */
  788. if (i) {
  789. /* Set transfer data length of previous transfer */
  790. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  791. }
  792. if (i >= QSPI_NUM_SPCMD) {
  793. dev_err(&msg->spi->dev,
  794. "Too many different transfer modes");
  795. return -EINVAL;
  796. }
  797. /* Program transfer mode for this transfer */
  798. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  799. current_mode = mode;
  800. len = xfer->len;
  801. i++;
  802. }
  803. if (i) {
  804. /* Set final transfer data length and sequence length */
  805. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  806. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  807. }
  808. return 0;
  809. }
  810. static int rspi_prepare_message(struct spi_master *master,
  811. struct spi_message *msg)
  812. {
  813. struct rspi_data *rspi = spi_master_get_devdata(master);
  814. int ret;
  815. if (msg->spi->mode &
  816. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  817. /* Setup sequencer for messages with multiple transfer modes */
  818. ret = qspi_setup_sequencer(rspi, msg);
  819. if (ret < 0)
  820. return ret;
  821. }
  822. /* Enable SPI function in master mode */
  823. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  824. return 0;
  825. }
  826. static int rspi_unprepare_message(struct spi_master *master,
  827. struct spi_message *msg)
  828. {
  829. struct rspi_data *rspi = spi_master_get_devdata(master);
  830. /* Disable SPI function */
  831. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  832. /* Reset sequencer for Single SPI Transfers */
  833. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  834. rspi_write8(rspi, 0, RSPI_SPSCR);
  835. return 0;
  836. }
  837. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  838. {
  839. struct rspi_data *rspi = _sr;
  840. u8 spsr;
  841. irqreturn_t ret = IRQ_NONE;
  842. u8 disable_irq = 0;
  843. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  844. if (spsr & SPSR_SPRF)
  845. disable_irq |= SPCR_SPRIE;
  846. if (spsr & SPSR_SPTEF)
  847. disable_irq |= SPCR_SPTIE;
  848. if (disable_irq) {
  849. ret = IRQ_HANDLED;
  850. rspi_disable_irq(rspi, disable_irq);
  851. wake_up(&rspi->wait);
  852. }
  853. return ret;
  854. }
  855. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  856. {
  857. struct rspi_data *rspi = _sr;
  858. u8 spsr;
  859. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  860. if (spsr & SPSR_SPRF) {
  861. rspi_disable_irq(rspi, SPCR_SPRIE);
  862. wake_up(&rspi->wait);
  863. return IRQ_HANDLED;
  864. }
  865. return 0;
  866. }
  867. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  868. {
  869. struct rspi_data *rspi = _sr;
  870. u8 spsr;
  871. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  872. if (spsr & SPSR_SPTEF) {
  873. rspi_disable_irq(rspi, SPCR_SPTIE);
  874. wake_up(&rspi->wait);
  875. return IRQ_HANDLED;
  876. }
  877. return 0;
  878. }
  879. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  880. enum dma_transfer_direction dir,
  881. unsigned int id,
  882. dma_addr_t port_addr)
  883. {
  884. dma_cap_mask_t mask;
  885. struct dma_chan *chan;
  886. struct dma_slave_config cfg;
  887. int ret;
  888. dma_cap_zero(mask);
  889. dma_cap_set(DMA_SLAVE, mask);
  890. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  891. (void *)(unsigned long)id, dev,
  892. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  893. if (!chan) {
  894. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  895. return NULL;
  896. }
  897. memset(&cfg, 0, sizeof(cfg));
  898. cfg.direction = dir;
  899. if (dir == DMA_MEM_TO_DEV) {
  900. cfg.dst_addr = port_addr;
  901. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  902. } else {
  903. cfg.src_addr = port_addr;
  904. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  905. }
  906. ret = dmaengine_slave_config(chan, &cfg);
  907. if (ret) {
  908. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  909. dma_release_channel(chan);
  910. return NULL;
  911. }
  912. return chan;
  913. }
  914. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  915. const struct resource *res)
  916. {
  917. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  918. unsigned int dma_tx_id, dma_rx_id;
  919. if (dev->of_node) {
  920. /* In the OF case we will get the slave IDs from the DT */
  921. dma_tx_id = 0;
  922. dma_rx_id = 0;
  923. } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
  924. dma_tx_id = rspi_pd->dma_tx_id;
  925. dma_rx_id = rspi_pd->dma_rx_id;
  926. } else {
  927. /* The driver assumes no error. */
  928. return 0;
  929. }
  930. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
  931. res->start + RSPI_SPDR);
  932. if (!master->dma_tx)
  933. return -ENODEV;
  934. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
  935. res->start + RSPI_SPDR);
  936. if (!master->dma_rx) {
  937. dma_release_channel(master->dma_tx);
  938. master->dma_tx = NULL;
  939. return -ENODEV;
  940. }
  941. master->can_dma = rspi_can_dma;
  942. dev_info(dev, "DMA available");
  943. return 0;
  944. }
  945. static void rspi_release_dma(struct spi_master *master)
  946. {
  947. if (master->dma_tx)
  948. dma_release_channel(master->dma_tx);
  949. if (master->dma_rx)
  950. dma_release_channel(master->dma_rx);
  951. }
  952. static int rspi_remove(struct platform_device *pdev)
  953. {
  954. struct rspi_data *rspi = platform_get_drvdata(pdev);
  955. rspi_release_dma(rspi->master);
  956. pm_runtime_disable(&pdev->dev);
  957. return 0;
  958. }
  959. static const struct spi_ops rspi_ops = {
  960. .set_config_register = rspi_set_config_register,
  961. .transfer_one = rspi_transfer_one,
  962. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  963. .flags = SPI_MASTER_MUST_TX,
  964. .fifo_size = 8,
  965. };
  966. static const struct spi_ops rspi_rz_ops = {
  967. .set_config_register = rspi_rz_set_config_register,
  968. .transfer_one = rspi_rz_transfer_one,
  969. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  970. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  971. .fifo_size = 8, /* 8 for TX, 32 for RX */
  972. };
  973. static const struct spi_ops qspi_ops = {
  974. .set_config_register = qspi_set_config_register,
  975. .transfer_one = qspi_transfer_one,
  976. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  977. SPI_TX_DUAL | SPI_TX_QUAD |
  978. SPI_RX_DUAL | SPI_RX_QUAD,
  979. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  980. .fifo_size = 32,
  981. };
  982. #ifdef CONFIG_OF
  983. static const struct of_device_id rspi_of_match[] = {
  984. /* RSPI on legacy SH */
  985. { .compatible = "renesas,rspi", .data = &rspi_ops },
  986. /* RSPI on RZ/A1H */
  987. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  988. /* QSPI on R-Car Gen2 */
  989. { .compatible = "renesas,qspi", .data = &qspi_ops },
  990. { /* sentinel */ }
  991. };
  992. MODULE_DEVICE_TABLE(of, rspi_of_match);
  993. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  994. {
  995. u32 num_cs;
  996. int error;
  997. /* Parse DT properties */
  998. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  999. if (error) {
  1000. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  1001. return error;
  1002. }
  1003. master->num_chipselect = num_cs;
  1004. return 0;
  1005. }
  1006. #else
  1007. #define rspi_of_match NULL
  1008. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  1009. {
  1010. return -EINVAL;
  1011. }
  1012. #endif /* CONFIG_OF */
  1013. static int rspi_request_irq(struct device *dev, unsigned int irq,
  1014. irq_handler_t handler, const char *suffix,
  1015. void *dev_id)
  1016. {
  1017. const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
  1018. dev_name(dev), suffix);
  1019. if (!name)
  1020. return -ENOMEM;
  1021. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  1022. }
  1023. static int rspi_probe(struct platform_device *pdev)
  1024. {
  1025. struct resource *res;
  1026. struct spi_master *master;
  1027. struct rspi_data *rspi;
  1028. int ret;
  1029. const struct rspi_plat_data *rspi_pd;
  1030. const struct spi_ops *ops;
  1031. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  1032. if (master == NULL)
  1033. return -ENOMEM;
  1034. ops = of_device_get_match_data(&pdev->dev);
  1035. if (ops) {
  1036. ret = rspi_parse_dt(&pdev->dev, master);
  1037. if (ret)
  1038. goto error1;
  1039. } else {
  1040. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  1041. rspi_pd = dev_get_platdata(&pdev->dev);
  1042. if (rspi_pd && rspi_pd->num_chipselect)
  1043. master->num_chipselect = rspi_pd->num_chipselect;
  1044. else
  1045. master->num_chipselect = 2; /* default */
  1046. }
  1047. /* ops parameter check */
  1048. if (!ops->set_config_register) {
  1049. dev_err(&pdev->dev, "there is no set_config_register\n");
  1050. ret = -ENODEV;
  1051. goto error1;
  1052. }
  1053. rspi = spi_master_get_devdata(master);
  1054. platform_set_drvdata(pdev, rspi);
  1055. rspi->ops = ops;
  1056. rspi->master = master;
  1057. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1058. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  1059. if (IS_ERR(rspi->addr)) {
  1060. ret = PTR_ERR(rspi->addr);
  1061. goto error1;
  1062. }
  1063. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  1064. if (IS_ERR(rspi->clk)) {
  1065. dev_err(&pdev->dev, "cannot get clock\n");
  1066. ret = PTR_ERR(rspi->clk);
  1067. goto error1;
  1068. }
  1069. pm_runtime_enable(&pdev->dev);
  1070. init_waitqueue_head(&rspi->wait);
  1071. master->bus_num = pdev->id;
  1072. master->setup = rspi_setup;
  1073. master->auto_runtime_pm = true;
  1074. master->transfer_one = ops->transfer_one;
  1075. master->prepare_message = rspi_prepare_message;
  1076. master->unprepare_message = rspi_unprepare_message;
  1077. master->mode_bits = ops->mode_bits;
  1078. master->flags = ops->flags;
  1079. master->dev.of_node = pdev->dev.of_node;
  1080. ret = platform_get_irq_byname(pdev, "rx");
  1081. if (ret < 0) {
  1082. ret = platform_get_irq_byname(pdev, "mux");
  1083. if (ret < 0)
  1084. ret = platform_get_irq(pdev, 0);
  1085. if (ret >= 0)
  1086. rspi->rx_irq = rspi->tx_irq = ret;
  1087. } else {
  1088. rspi->rx_irq = ret;
  1089. ret = platform_get_irq_byname(pdev, "tx");
  1090. if (ret >= 0)
  1091. rspi->tx_irq = ret;
  1092. }
  1093. if (ret < 0) {
  1094. dev_err(&pdev->dev, "platform_get_irq error\n");
  1095. goto error2;
  1096. }
  1097. if (rspi->rx_irq == rspi->tx_irq) {
  1098. /* Single multiplexed interrupt */
  1099. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  1100. "mux", rspi);
  1101. } else {
  1102. /* Multi-interrupt mode, only SPRI and SPTI are used */
  1103. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  1104. "rx", rspi);
  1105. if (!ret)
  1106. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  1107. rspi_irq_tx, "tx", rspi);
  1108. }
  1109. if (ret < 0) {
  1110. dev_err(&pdev->dev, "request_irq error\n");
  1111. goto error2;
  1112. }
  1113. ret = rspi_request_dma(&pdev->dev, master, res);
  1114. if (ret < 0)
  1115. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1116. ret = devm_spi_register_master(&pdev->dev, master);
  1117. if (ret < 0) {
  1118. dev_err(&pdev->dev, "spi_register_master error.\n");
  1119. goto error3;
  1120. }
  1121. dev_info(&pdev->dev, "probed\n");
  1122. return 0;
  1123. error3:
  1124. rspi_release_dma(master);
  1125. error2:
  1126. pm_runtime_disable(&pdev->dev);
  1127. error1:
  1128. spi_master_put(master);
  1129. return ret;
  1130. }
  1131. static const struct platform_device_id spi_driver_ids[] = {
  1132. { "rspi", (kernel_ulong_t)&rspi_ops },
  1133. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1134. { "qspi", (kernel_ulong_t)&qspi_ops },
  1135. {},
  1136. };
  1137. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1138. static struct platform_driver rspi_driver = {
  1139. .probe = rspi_probe,
  1140. .remove = rspi_remove,
  1141. .id_table = spi_driver_ids,
  1142. .driver = {
  1143. .name = "renesas_spi",
  1144. .of_match_table = of_match_ptr(rspi_of_match),
  1145. },
  1146. };
  1147. module_platform_driver(rspi_driver);
  1148. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1149. MODULE_LICENSE("GPL v2");
  1150. MODULE_AUTHOR("Yoshihiro Shimoda");
  1151. MODULE_ALIAS("platform:rspi");