spi-mxs.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/ioport.h>
  32. #include <linux/of.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of_gpio.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/delay.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/dmaengine.h>
  40. #include <linux/highmem.h>
  41. #include <linux/clk.h>
  42. #include <linux/err.h>
  43. #include <linux/completion.h>
  44. #include <linux/gpio.h>
  45. #include <linux/regulator/consumer.h>
  46. #include <linux/pm_runtime.h>
  47. #include <linux/module.h>
  48. #include <linux/stmp_device.h>
  49. #include <linux/spi/spi.h>
  50. #include <linux/spi/mxs-spi.h>
  51. #define DRIVER_NAME "mxs-spi"
  52. /* Use 10S timeout for very long transfers, it should suffice. */
  53. #define SSP_TIMEOUT 10000
  54. #define SG_MAXLEN 0xff00
  55. /*
  56. * Flags for txrx functions. More efficient that using an argument register for
  57. * each one.
  58. */
  59. #define TXRX_WRITE (1<<0) /* This is a write */
  60. #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */
  61. struct mxs_spi {
  62. struct mxs_ssp ssp;
  63. struct completion c;
  64. unsigned int sck; /* Rate requested (vs actual) */
  65. };
  66. static int mxs_spi_setup_transfer(struct spi_device *dev,
  67. const struct spi_transfer *t)
  68. {
  69. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  70. struct mxs_ssp *ssp = &spi->ssp;
  71. const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
  72. if (hz == 0) {
  73. dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
  74. return -EINVAL;
  75. }
  76. if (hz != spi->sck) {
  77. mxs_ssp_set_clk_rate(ssp, hz);
  78. /*
  79. * Save requested rate, hz, rather than the actual rate,
  80. * ssp->clk_rate. Otherwise we would set the rate every transfer
  81. * when the actual rate is not quite the same as requested rate.
  82. */
  83. spi->sck = hz;
  84. /*
  85. * Perhaps we should return an error if the actual clock is
  86. * nowhere close to what was requested?
  87. */
  88. }
  89. writel(BM_SSP_CTRL0_LOCK_CS,
  90. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  91. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  92. BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  93. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  94. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  95. ssp->base + HW_SSP_CTRL1(ssp));
  96. writel(0x0, ssp->base + HW_SSP_CMD0);
  97. writel(0x0, ssp->base + HW_SSP_CMD1);
  98. return 0;
  99. }
  100. static u32 mxs_spi_cs_to_reg(unsigned cs)
  101. {
  102. u32 select = 0;
  103. /*
  104. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  105. *
  106. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  107. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  108. * the datasheet for further details. In SPI mode, they are used to
  109. * toggle the chip-select lines (nCS pins).
  110. */
  111. if (cs & 1)
  112. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  113. if (cs & 2)
  114. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  115. return select;
  116. }
  117. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  118. {
  119. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  120. struct mxs_ssp *ssp = &spi->ssp;
  121. u32 reg;
  122. do {
  123. reg = readl_relaxed(ssp->base + offset);
  124. if (!set)
  125. reg = ~reg;
  126. reg &= mask;
  127. if (reg == mask)
  128. return 0;
  129. } while (time_before(jiffies, timeout));
  130. return -ETIMEDOUT;
  131. }
  132. static void mxs_ssp_dma_irq_callback(void *param)
  133. {
  134. struct mxs_spi *spi = param;
  135. complete(&spi->c);
  136. }
  137. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  138. {
  139. struct mxs_ssp *ssp = dev_id;
  140. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  141. __func__, __LINE__,
  142. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  143. readl(ssp->base + HW_SSP_STATUS(ssp)));
  144. return IRQ_HANDLED;
  145. }
  146. static int mxs_spi_txrx_dma(struct mxs_spi *spi,
  147. unsigned char *buf, int len,
  148. unsigned int flags)
  149. {
  150. struct mxs_ssp *ssp = &spi->ssp;
  151. struct dma_async_tx_descriptor *desc = NULL;
  152. const bool vmalloced_buf = is_vmalloc_addr(buf);
  153. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  154. const int sgs = DIV_ROUND_UP(len, desc_len);
  155. int sg_count;
  156. int min, ret;
  157. u32 ctrl0;
  158. struct page *vm_page;
  159. struct {
  160. u32 pio[4];
  161. struct scatterlist sg;
  162. } *dma_xfer;
  163. if (!len)
  164. return -EINVAL;
  165. dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
  166. if (!dma_xfer)
  167. return -ENOMEM;
  168. reinit_completion(&spi->c);
  169. /* Chip select was already programmed into CTRL0 */
  170. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  171. ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
  172. BM_SSP_CTRL0_READ);
  173. ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
  174. if (!(flags & TXRX_WRITE))
  175. ctrl0 |= BM_SSP_CTRL0_READ;
  176. /* Queue the DMA data transfer. */
  177. for (sg_count = 0; sg_count < sgs; sg_count++) {
  178. /* Prepare the transfer descriptor. */
  179. min = min(len, desc_len);
  180. /*
  181. * De-assert CS on last segment if flag is set (i.e., no more
  182. * transfers will follow)
  183. */
  184. if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
  185. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  186. if (ssp->devid == IMX23_SSP) {
  187. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  188. ctrl0 |= min;
  189. }
  190. dma_xfer[sg_count].pio[0] = ctrl0;
  191. dma_xfer[sg_count].pio[3] = min;
  192. if (vmalloced_buf) {
  193. vm_page = vmalloc_to_page(buf);
  194. if (!vm_page) {
  195. ret = -ENOMEM;
  196. goto err_vmalloc;
  197. }
  198. sg_init_table(&dma_xfer[sg_count].sg, 1);
  199. sg_set_page(&dma_xfer[sg_count].sg, vm_page,
  200. min, offset_in_page(buf));
  201. } else {
  202. sg_init_one(&dma_xfer[sg_count].sg, buf, min);
  203. }
  204. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  205. (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  206. len -= min;
  207. buf += min;
  208. /* Queue the PIO register write transfer. */
  209. desc = dmaengine_prep_slave_sg(ssp->dmach,
  210. (struct scatterlist *)dma_xfer[sg_count].pio,
  211. (ssp->devid == IMX23_SSP) ? 1 : 4,
  212. DMA_TRANS_NONE,
  213. sg_count ? DMA_PREP_INTERRUPT : 0);
  214. if (!desc) {
  215. dev_err(ssp->dev,
  216. "Failed to get PIO reg. write descriptor.\n");
  217. ret = -EINVAL;
  218. goto err_mapped;
  219. }
  220. desc = dmaengine_prep_slave_sg(ssp->dmach,
  221. &dma_xfer[sg_count].sg, 1,
  222. (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  223. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  224. if (!desc) {
  225. dev_err(ssp->dev,
  226. "Failed to get DMA data write descriptor.\n");
  227. ret = -EINVAL;
  228. goto err_mapped;
  229. }
  230. }
  231. /*
  232. * The last descriptor must have this callback,
  233. * to finish the DMA transaction.
  234. */
  235. desc->callback = mxs_ssp_dma_irq_callback;
  236. desc->callback_param = spi;
  237. /* Start the transfer. */
  238. dmaengine_submit(desc);
  239. dma_async_issue_pending(ssp->dmach);
  240. if (!wait_for_completion_timeout(&spi->c,
  241. msecs_to_jiffies(SSP_TIMEOUT))) {
  242. dev_err(ssp->dev, "DMA transfer timeout\n");
  243. ret = -ETIMEDOUT;
  244. dmaengine_terminate_all(ssp->dmach);
  245. goto err_vmalloc;
  246. }
  247. ret = 0;
  248. err_vmalloc:
  249. while (--sg_count >= 0) {
  250. err_mapped:
  251. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  252. (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  253. }
  254. kfree(dma_xfer);
  255. return ret;
  256. }
  257. static int mxs_spi_txrx_pio(struct mxs_spi *spi,
  258. unsigned char *buf, int len,
  259. unsigned int flags)
  260. {
  261. struct mxs_ssp *ssp = &spi->ssp;
  262. writel(BM_SSP_CTRL0_IGNORE_CRC,
  263. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  264. while (len--) {
  265. if (len == 0 && (flags & TXRX_DEASSERT_CS))
  266. writel(BM_SSP_CTRL0_IGNORE_CRC,
  267. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  268. if (ssp->devid == IMX23_SSP) {
  269. writel(BM_SSP_CTRL0_XFER_COUNT,
  270. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  271. writel(1,
  272. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  273. } else {
  274. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  275. }
  276. if (flags & TXRX_WRITE)
  277. writel(BM_SSP_CTRL0_READ,
  278. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  279. else
  280. writel(BM_SSP_CTRL0_READ,
  281. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  282. writel(BM_SSP_CTRL0_RUN,
  283. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  284. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  285. return -ETIMEDOUT;
  286. if (flags & TXRX_WRITE)
  287. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  288. writel(BM_SSP_CTRL0_DATA_XFER,
  289. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  290. if (!(flags & TXRX_WRITE)) {
  291. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  292. BM_SSP_STATUS_FIFO_EMPTY, 0))
  293. return -ETIMEDOUT;
  294. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  295. }
  296. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  297. return -ETIMEDOUT;
  298. buf++;
  299. }
  300. if (len <= 0)
  301. return 0;
  302. return -ETIMEDOUT;
  303. }
  304. static int mxs_spi_transfer_one(struct spi_master *master,
  305. struct spi_message *m)
  306. {
  307. struct mxs_spi *spi = spi_master_get_devdata(master);
  308. struct mxs_ssp *ssp = &spi->ssp;
  309. struct spi_transfer *t;
  310. unsigned int flag;
  311. int status = 0;
  312. /* Program CS register bits here, it will be used for all transfers. */
  313. writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
  314. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  315. writel(mxs_spi_cs_to_reg(m->spi->chip_select),
  316. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  317. list_for_each_entry(t, &m->transfers, transfer_list) {
  318. status = mxs_spi_setup_transfer(m->spi, t);
  319. if (status)
  320. break;
  321. /* De-assert on last transfer, inverted by cs_change flag */
  322. flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
  323. TXRX_DEASSERT_CS : 0;
  324. /*
  325. * Small blocks can be transfered via PIO.
  326. * Measured by empiric means:
  327. *
  328. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  329. *
  330. * DMA only: 2.164808 seconds, 473.0KB/s
  331. * Combined: 1.676276 seconds, 610.9KB/s
  332. */
  333. if (t->len < 32) {
  334. writel(BM_SSP_CTRL1_DMA_ENABLE,
  335. ssp->base + HW_SSP_CTRL1(ssp) +
  336. STMP_OFFSET_REG_CLR);
  337. if (t->tx_buf)
  338. status = mxs_spi_txrx_pio(spi,
  339. (void *)t->tx_buf,
  340. t->len, flag | TXRX_WRITE);
  341. if (t->rx_buf)
  342. status = mxs_spi_txrx_pio(spi,
  343. t->rx_buf, t->len,
  344. flag);
  345. } else {
  346. writel(BM_SSP_CTRL1_DMA_ENABLE,
  347. ssp->base + HW_SSP_CTRL1(ssp) +
  348. STMP_OFFSET_REG_SET);
  349. if (t->tx_buf)
  350. status = mxs_spi_txrx_dma(spi,
  351. (void *)t->tx_buf, t->len,
  352. flag | TXRX_WRITE);
  353. if (t->rx_buf)
  354. status = mxs_spi_txrx_dma(spi,
  355. t->rx_buf, t->len,
  356. flag);
  357. }
  358. if (status) {
  359. stmp_reset_block(ssp->base);
  360. break;
  361. }
  362. m->actual_length += t->len;
  363. }
  364. m->status = status;
  365. spi_finalize_current_message(master);
  366. return status;
  367. }
  368. static int mxs_spi_runtime_suspend(struct device *dev)
  369. {
  370. struct spi_master *master = dev_get_drvdata(dev);
  371. struct mxs_spi *spi = spi_master_get_devdata(master);
  372. struct mxs_ssp *ssp = &spi->ssp;
  373. int ret;
  374. clk_disable_unprepare(ssp->clk);
  375. ret = pinctrl_pm_select_idle_state(dev);
  376. if (ret) {
  377. int ret2 = clk_prepare_enable(ssp->clk);
  378. if (ret2)
  379. dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
  380. ret, ret2);
  381. }
  382. return ret;
  383. }
  384. static int mxs_spi_runtime_resume(struct device *dev)
  385. {
  386. struct spi_master *master = dev_get_drvdata(dev);
  387. struct mxs_spi *spi = spi_master_get_devdata(master);
  388. struct mxs_ssp *ssp = &spi->ssp;
  389. int ret;
  390. ret = pinctrl_pm_select_default_state(dev);
  391. if (ret)
  392. return ret;
  393. ret = clk_prepare_enable(ssp->clk);
  394. if (ret)
  395. pinctrl_pm_select_idle_state(dev);
  396. return ret;
  397. }
  398. static int __maybe_unused mxs_spi_suspend(struct device *dev)
  399. {
  400. struct spi_master *master = dev_get_drvdata(dev);
  401. int ret;
  402. ret = spi_master_suspend(master);
  403. if (ret)
  404. return ret;
  405. if (!pm_runtime_suspended(dev))
  406. return mxs_spi_runtime_suspend(dev);
  407. else
  408. return 0;
  409. }
  410. static int __maybe_unused mxs_spi_resume(struct device *dev)
  411. {
  412. struct spi_master *master = dev_get_drvdata(dev);
  413. int ret;
  414. if (!pm_runtime_suspended(dev))
  415. ret = mxs_spi_runtime_resume(dev);
  416. else
  417. ret = 0;
  418. if (ret)
  419. return ret;
  420. ret = spi_master_resume(master);
  421. if (ret < 0 && !pm_runtime_suspended(dev))
  422. mxs_spi_runtime_suspend(dev);
  423. return ret;
  424. }
  425. static const struct dev_pm_ops mxs_spi_pm = {
  426. SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
  427. mxs_spi_runtime_resume, NULL)
  428. SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
  429. };
  430. static const struct of_device_id mxs_spi_dt_ids[] = {
  431. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  432. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  433. { /* sentinel */ }
  434. };
  435. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  436. static int mxs_spi_probe(struct platform_device *pdev)
  437. {
  438. const struct of_device_id *of_id =
  439. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  440. struct device_node *np = pdev->dev.of_node;
  441. struct spi_master *master;
  442. struct mxs_spi *spi;
  443. struct mxs_ssp *ssp;
  444. struct resource *iores;
  445. struct clk *clk;
  446. void __iomem *base;
  447. int devid, clk_freq;
  448. int ret = 0, irq_err;
  449. /*
  450. * Default clock speed for the SPI core. 160MHz seems to
  451. * work reasonably well with most SPI flashes, so use this
  452. * as a default. Override with "clock-frequency" DT prop.
  453. */
  454. const int clk_freq_default = 160000000;
  455. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  456. irq_err = platform_get_irq(pdev, 0);
  457. if (irq_err < 0)
  458. return irq_err;
  459. base = devm_ioremap_resource(&pdev->dev, iores);
  460. if (IS_ERR(base))
  461. return PTR_ERR(base);
  462. clk = devm_clk_get(&pdev->dev, NULL);
  463. if (IS_ERR(clk))
  464. return PTR_ERR(clk);
  465. devid = (enum mxs_ssp_id) of_id->data;
  466. ret = of_property_read_u32(np, "clock-frequency",
  467. &clk_freq);
  468. if (ret)
  469. clk_freq = clk_freq_default;
  470. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  471. if (!master)
  472. return -ENOMEM;
  473. platform_set_drvdata(pdev, master);
  474. master->transfer_one_message = mxs_spi_transfer_one;
  475. master->bits_per_word_mask = SPI_BPW_MASK(8);
  476. master->mode_bits = SPI_CPOL | SPI_CPHA;
  477. master->num_chipselect = 3;
  478. master->dev.of_node = np;
  479. master->flags = SPI_MASTER_HALF_DUPLEX;
  480. master->auto_runtime_pm = true;
  481. spi = spi_master_get_devdata(master);
  482. ssp = &spi->ssp;
  483. ssp->dev = &pdev->dev;
  484. ssp->clk = clk;
  485. ssp->base = base;
  486. ssp->devid = devid;
  487. init_completion(&spi->c);
  488. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  489. dev_name(&pdev->dev), ssp);
  490. if (ret)
  491. goto out_master_free;
  492. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  493. if (!ssp->dmach) {
  494. dev_err(ssp->dev, "Failed to request DMA\n");
  495. ret = -ENODEV;
  496. goto out_master_free;
  497. }
  498. pm_runtime_enable(ssp->dev);
  499. if (!pm_runtime_enabled(ssp->dev)) {
  500. ret = mxs_spi_runtime_resume(ssp->dev);
  501. if (ret < 0) {
  502. dev_err(ssp->dev, "runtime resume failed\n");
  503. goto out_dma_release;
  504. }
  505. }
  506. ret = pm_runtime_get_sync(ssp->dev);
  507. if (ret < 0) {
  508. dev_err(ssp->dev, "runtime_get_sync failed\n");
  509. goto out_pm_runtime_disable;
  510. }
  511. clk_set_rate(ssp->clk, clk_freq);
  512. ret = stmp_reset_block(ssp->base);
  513. if (ret)
  514. goto out_pm_runtime_put;
  515. ret = devm_spi_register_master(&pdev->dev, master);
  516. if (ret) {
  517. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  518. goto out_pm_runtime_put;
  519. }
  520. pm_runtime_put(ssp->dev);
  521. return 0;
  522. out_pm_runtime_put:
  523. pm_runtime_put(ssp->dev);
  524. out_pm_runtime_disable:
  525. pm_runtime_disable(ssp->dev);
  526. out_dma_release:
  527. dma_release_channel(ssp->dmach);
  528. out_master_free:
  529. spi_master_put(master);
  530. return ret;
  531. }
  532. static int mxs_spi_remove(struct platform_device *pdev)
  533. {
  534. struct spi_master *master;
  535. struct mxs_spi *spi;
  536. struct mxs_ssp *ssp;
  537. master = platform_get_drvdata(pdev);
  538. spi = spi_master_get_devdata(master);
  539. ssp = &spi->ssp;
  540. pm_runtime_disable(&pdev->dev);
  541. if (!pm_runtime_status_suspended(&pdev->dev))
  542. mxs_spi_runtime_suspend(&pdev->dev);
  543. dma_release_channel(ssp->dmach);
  544. return 0;
  545. }
  546. static struct platform_driver mxs_spi_driver = {
  547. .probe = mxs_spi_probe,
  548. .remove = mxs_spi_remove,
  549. .driver = {
  550. .name = DRIVER_NAME,
  551. .of_match_table = mxs_spi_dt_ids,
  552. .pm = &mxs_spi_pm,
  553. },
  554. };
  555. module_platform_driver(mxs_spi_driver);
  556. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  557. MODULE_DESCRIPTION("MXS SPI master driver");
  558. MODULE_LICENSE("GPL");
  559. MODULE_ALIAS("platform:mxs-spi");