spi-imx.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright (C) 2008 Juergen Beisert
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the
  16. * Free Software Foundation
  17. * 51 Franklin Street, Fifth Floor
  18. * Boston, MA 02110-1301, USA.
  19. */
  20. #include <linux/clk.h>
  21. #include <linux/completion.h>
  22. #include <linux/delay.h>
  23. #include <linux/dmaengine.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/err.h>
  26. #include <linux/gpio.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/io.h>
  29. #include <linux/irq.h>
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/slab.h>
  34. #include <linux/spi/spi.h>
  35. #include <linux/spi/spi_bitbang.h>
  36. #include <linux/types.h>
  37. #include <linux/of.h>
  38. #include <linux/of_device.h>
  39. #include <linux/of_gpio.h>
  40. #include <linux/platform_data/dma-imx.h>
  41. #include <linux/platform_data/spi-imx.h>
  42. #define DRIVER_NAME "spi_imx"
  43. #define MXC_CSPIRXDATA 0x00
  44. #define MXC_CSPITXDATA 0x04
  45. #define MXC_CSPICTRL 0x08
  46. #define MXC_CSPIINT 0x0c
  47. #define MXC_RESET 0x1c
  48. /* generic defines to abstract from the different register layouts */
  49. #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
  50. #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
  51. #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
  52. /* The maximum bytes that a sdma BD can transfer.*/
  53. #define MAX_SDMA_BD_BYTES (1 << 15)
  54. #define MX51_ECSPI_CTRL_MAX_BURST 512
  55. /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
  56. #define MX53_MAX_TRANSFER_BYTES 512
  57. enum spi_imx_devtype {
  58. IMX1_CSPI,
  59. IMX21_CSPI,
  60. IMX27_CSPI,
  61. IMX31_CSPI,
  62. IMX35_CSPI, /* CSPI on all i.mx except above */
  63. IMX51_ECSPI, /* ECSPI on i.mx51 */
  64. IMX53_ECSPI, /* ECSPI on i.mx53 and later */
  65. };
  66. struct spi_imx_data;
  67. struct spi_imx_devtype_data {
  68. void (*intctrl)(struct spi_imx_data *, int);
  69. int (*config)(struct spi_device *);
  70. void (*trigger)(struct spi_imx_data *);
  71. int (*rx_available)(struct spi_imx_data *);
  72. void (*reset)(struct spi_imx_data *);
  73. void (*disable)(struct spi_imx_data *);
  74. bool has_dmamode;
  75. bool has_slavemode;
  76. unsigned int fifo_size;
  77. bool dynamic_burst;
  78. enum spi_imx_devtype devtype;
  79. };
  80. struct spi_imx_data {
  81. struct spi_bitbang bitbang;
  82. struct device *dev;
  83. struct completion xfer_done;
  84. void __iomem *base;
  85. unsigned long base_phys;
  86. struct clk *clk_per;
  87. struct clk *clk_ipg;
  88. unsigned long spi_clk;
  89. unsigned int spi_bus_clk;
  90. unsigned int speed_hz;
  91. unsigned int bits_per_word;
  92. unsigned int spi_drctl;
  93. unsigned int count, remainder;
  94. void (*tx)(struct spi_imx_data *);
  95. void (*rx)(struct spi_imx_data *);
  96. void *rx_buf;
  97. const void *tx_buf;
  98. unsigned int txfifo; /* number of words pushed in tx FIFO */
  99. unsigned int dynamic_burst, read_u32;
  100. unsigned int word_mask;
  101. /* Slave mode */
  102. bool slave_mode;
  103. bool slave_aborted;
  104. unsigned int slave_burst;
  105. /* DMA */
  106. bool usedma;
  107. u32 wml;
  108. struct completion dma_rx_completion;
  109. struct completion dma_tx_completion;
  110. const struct spi_imx_devtype_data *devtype_data;
  111. };
  112. static inline int is_imx27_cspi(struct spi_imx_data *d)
  113. {
  114. return d->devtype_data->devtype == IMX27_CSPI;
  115. }
  116. static inline int is_imx35_cspi(struct spi_imx_data *d)
  117. {
  118. return d->devtype_data->devtype == IMX35_CSPI;
  119. }
  120. static inline int is_imx51_ecspi(struct spi_imx_data *d)
  121. {
  122. return d->devtype_data->devtype == IMX51_ECSPI;
  123. }
  124. static inline int is_imx53_ecspi(struct spi_imx_data *d)
  125. {
  126. return d->devtype_data->devtype == IMX53_ECSPI;
  127. }
  128. #define MXC_SPI_BUF_RX(type) \
  129. static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
  130. { \
  131. unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
  132. \
  133. if (spi_imx->rx_buf) { \
  134. *(type *)spi_imx->rx_buf = val; \
  135. spi_imx->rx_buf += sizeof(type); \
  136. } \
  137. }
  138. #define MXC_SPI_BUF_TX(type) \
  139. static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
  140. { \
  141. type val = 0; \
  142. \
  143. if (spi_imx->tx_buf) { \
  144. val = *(type *)spi_imx->tx_buf; \
  145. spi_imx->tx_buf += sizeof(type); \
  146. } \
  147. \
  148. spi_imx->count -= sizeof(type); \
  149. \
  150. writel(val, spi_imx->base + MXC_CSPITXDATA); \
  151. }
  152. MXC_SPI_BUF_RX(u8)
  153. MXC_SPI_BUF_TX(u8)
  154. MXC_SPI_BUF_RX(u16)
  155. MXC_SPI_BUF_TX(u16)
  156. MXC_SPI_BUF_RX(u32)
  157. MXC_SPI_BUF_TX(u32)
  158. /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
  159. * (which is currently not the case in this driver)
  160. */
  161. static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
  162. 256, 384, 512, 768, 1024};
  163. /* MX21, MX27 */
  164. static unsigned int spi_imx_clkdiv_1(unsigned int fin,
  165. unsigned int fspi, unsigned int max, unsigned int *fres)
  166. {
  167. int i;
  168. for (i = 2; i < max; i++)
  169. if (fspi * mxc_clkdivs[i] >= fin)
  170. break;
  171. *fres = fin / mxc_clkdivs[i];
  172. return i;
  173. }
  174. /* MX1, MX31, MX35, MX51 CSPI */
  175. static unsigned int spi_imx_clkdiv_2(unsigned int fin,
  176. unsigned int fspi, unsigned int *fres)
  177. {
  178. int i, div = 4;
  179. for (i = 0; i < 7; i++) {
  180. if (fspi * div >= fin)
  181. goto out;
  182. div <<= 1;
  183. }
  184. out:
  185. *fres = fin / div;
  186. return i;
  187. }
  188. static int spi_imx_bytes_per_word(const int bits_per_word)
  189. {
  190. return DIV_ROUND_UP(bits_per_word, BITS_PER_BYTE);
  191. }
  192. static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
  193. struct spi_transfer *transfer)
  194. {
  195. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  196. unsigned int bytes_per_word, i;
  197. if (!master->dma_rx)
  198. return false;
  199. if (spi_imx->slave_mode)
  200. return false;
  201. bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
  202. if (bytes_per_word != 1 && bytes_per_word != 2 && bytes_per_word != 4)
  203. return false;
  204. for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
  205. if (!(transfer->len % (i * bytes_per_word)))
  206. break;
  207. }
  208. if (i == 0)
  209. return false;
  210. spi_imx->wml = i;
  211. spi_imx->dynamic_burst = 0;
  212. return true;
  213. }
  214. #define MX51_ECSPI_CTRL 0x08
  215. #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
  216. #define MX51_ECSPI_CTRL_XCH (1 << 2)
  217. #define MX51_ECSPI_CTRL_SMC (1 << 3)
  218. #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
  219. #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
  220. #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
  221. #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
  222. #define MX51_ECSPI_CTRL_CS(cs) ((cs) << 18)
  223. #define MX51_ECSPI_CTRL_BL_OFFSET 20
  224. #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
  225. #define MX51_ECSPI_CONFIG 0x0c
  226. #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs) + 0))
  227. #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs) + 4))
  228. #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs) + 8))
  229. #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs) + 12))
  230. #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs) + 20))
  231. #define MX51_ECSPI_INT 0x10
  232. #define MX51_ECSPI_INT_TEEN (1 << 0)
  233. #define MX51_ECSPI_INT_RREN (1 << 3)
  234. #define MX51_ECSPI_INT_RDREN (1 << 4)
  235. #define MX51_ECSPI_DMA 0x14
  236. #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
  237. #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
  238. #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
  239. #define MX51_ECSPI_DMA_TEDEN (1 << 7)
  240. #define MX51_ECSPI_DMA_RXDEN (1 << 23)
  241. #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
  242. #define MX51_ECSPI_STAT 0x18
  243. #define MX51_ECSPI_STAT_RR (1 << 3)
  244. #define MX51_ECSPI_TESTREG 0x20
  245. #define MX51_ECSPI_TESTREG_LBC BIT(31)
  246. static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
  247. {
  248. unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
  249. #ifdef __LITTLE_ENDIAN
  250. unsigned int bytes_per_word;
  251. #endif
  252. if (spi_imx->rx_buf) {
  253. #ifdef __LITTLE_ENDIAN
  254. bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
  255. if (bytes_per_word == 1)
  256. val = cpu_to_be32(val);
  257. else if (bytes_per_word == 2)
  258. val = (val << 16) | (val >> 16);
  259. #endif
  260. val &= spi_imx->word_mask;
  261. *(u32 *)spi_imx->rx_buf = val;
  262. spi_imx->rx_buf += sizeof(u32);
  263. }
  264. }
  265. static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
  266. {
  267. unsigned int bytes_per_word;
  268. bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
  269. if (spi_imx->read_u32) {
  270. spi_imx_buf_rx_swap_u32(spi_imx);
  271. return;
  272. }
  273. if (bytes_per_word == 1)
  274. spi_imx_buf_rx_u8(spi_imx);
  275. else if (bytes_per_word == 2)
  276. spi_imx_buf_rx_u16(spi_imx);
  277. }
  278. static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
  279. {
  280. u32 val = 0;
  281. #ifdef __LITTLE_ENDIAN
  282. unsigned int bytes_per_word;
  283. #endif
  284. if (spi_imx->tx_buf) {
  285. val = *(u32 *)spi_imx->tx_buf;
  286. val &= spi_imx->word_mask;
  287. spi_imx->tx_buf += sizeof(u32);
  288. }
  289. spi_imx->count -= sizeof(u32);
  290. #ifdef __LITTLE_ENDIAN
  291. bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
  292. if (bytes_per_word == 1)
  293. val = cpu_to_be32(val);
  294. else if (bytes_per_word == 2)
  295. val = (val << 16) | (val >> 16);
  296. #endif
  297. writel(val, spi_imx->base + MXC_CSPITXDATA);
  298. }
  299. static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
  300. {
  301. u32 ctrl, val;
  302. unsigned int bytes_per_word;
  303. if (spi_imx->count == spi_imx->remainder) {
  304. ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
  305. ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
  306. if (spi_imx->count > MX51_ECSPI_CTRL_MAX_BURST) {
  307. spi_imx->remainder = spi_imx->count %
  308. MX51_ECSPI_CTRL_MAX_BURST;
  309. val = MX51_ECSPI_CTRL_MAX_BURST * 8 - 1;
  310. } else if (spi_imx->count >= sizeof(u32)) {
  311. spi_imx->remainder = spi_imx->count % sizeof(u32);
  312. val = (spi_imx->count - spi_imx->remainder) * 8 - 1;
  313. } else {
  314. spi_imx->remainder = 0;
  315. val = spi_imx->bits_per_word - 1;
  316. spi_imx->read_u32 = 0;
  317. }
  318. ctrl |= (val << MX51_ECSPI_CTRL_BL_OFFSET);
  319. writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
  320. }
  321. if (spi_imx->count >= sizeof(u32)) {
  322. spi_imx_buf_tx_swap_u32(spi_imx);
  323. return;
  324. }
  325. bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
  326. if (bytes_per_word == 1)
  327. spi_imx_buf_tx_u8(spi_imx);
  328. else if (bytes_per_word == 2)
  329. spi_imx_buf_tx_u16(spi_imx);
  330. }
  331. static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
  332. {
  333. u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
  334. if (spi_imx->rx_buf) {
  335. int n_bytes = spi_imx->slave_burst % sizeof(val);
  336. if (!n_bytes)
  337. n_bytes = sizeof(val);
  338. memcpy(spi_imx->rx_buf,
  339. ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
  340. spi_imx->rx_buf += n_bytes;
  341. spi_imx->slave_burst -= n_bytes;
  342. }
  343. }
  344. static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
  345. {
  346. u32 val = 0;
  347. int n_bytes = spi_imx->count % sizeof(val);
  348. if (!n_bytes)
  349. n_bytes = sizeof(val);
  350. if (spi_imx->tx_buf) {
  351. memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
  352. spi_imx->tx_buf, n_bytes);
  353. val = cpu_to_be32(val);
  354. spi_imx->tx_buf += n_bytes;
  355. }
  356. spi_imx->count -= n_bytes;
  357. writel(val, spi_imx->base + MXC_CSPITXDATA);
  358. }
  359. /* MX51 eCSPI */
  360. static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
  361. unsigned int fspi, unsigned int *fres)
  362. {
  363. /*
  364. * there are two 4-bit dividers, the pre-divider divides by
  365. * $pre, the post-divider by 2^$post
  366. */
  367. unsigned int pre, post;
  368. unsigned int fin = spi_imx->spi_clk;
  369. if (unlikely(fspi > fin))
  370. return 0;
  371. post = fls(fin) - fls(fspi);
  372. if (fin > fspi << post)
  373. post++;
  374. /* now we have: (fin <= fspi << post) with post being minimal */
  375. post = max(4U, post) - 4;
  376. if (unlikely(post > 0xf)) {
  377. dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
  378. fspi, fin);
  379. return 0xff;
  380. }
  381. pre = DIV_ROUND_UP(fin, fspi << post) - 1;
  382. dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
  383. __func__, fin, fspi, post, pre);
  384. /* Resulting frequency for the SCLK line. */
  385. *fres = (fin / (pre + 1)) >> post;
  386. return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
  387. (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
  388. }
  389. static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
  390. {
  391. unsigned val = 0;
  392. if (enable & MXC_INT_TE)
  393. val |= MX51_ECSPI_INT_TEEN;
  394. if (enable & MXC_INT_RR)
  395. val |= MX51_ECSPI_INT_RREN;
  396. if (enable & MXC_INT_RDR)
  397. val |= MX51_ECSPI_INT_RDREN;
  398. writel(val, spi_imx->base + MX51_ECSPI_INT);
  399. }
  400. static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
  401. {
  402. u32 reg;
  403. reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
  404. reg |= MX51_ECSPI_CTRL_XCH;
  405. writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
  406. }
  407. static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
  408. {
  409. u32 ctrl;
  410. ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
  411. ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
  412. writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
  413. }
  414. static int mx51_ecspi_config(struct spi_device *spi)
  415. {
  416. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  417. u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
  418. u32 clk = spi_imx->speed_hz, delay, reg;
  419. u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
  420. /* set Master or Slave mode */
  421. if (spi_imx->slave_mode)
  422. ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
  423. else
  424. ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
  425. /*
  426. * Enable SPI_RDY handling (falling edge/level triggered).
  427. */
  428. if (spi->mode & SPI_READY)
  429. ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
  430. /* set clock speed */
  431. ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->speed_hz, &clk);
  432. spi_imx->spi_bus_clk = clk;
  433. /* set chip select to use */
  434. ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
  435. if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
  436. ctrl |= (spi_imx->slave_burst * 8 - 1)
  437. << MX51_ECSPI_CTRL_BL_OFFSET;
  438. else
  439. ctrl |= (spi_imx->bits_per_word - 1)
  440. << MX51_ECSPI_CTRL_BL_OFFSET;
  441. /*
  442. * eCSPI burst completion by Chip Select signal in Slave mode
  443. * is not functional for imx53 Soc, config SPI burst completed when
  444. * BURST_LENGTH + 1 bits are received
  445. */
  446. if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
  447. cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
  448. else
  449. cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
  450. if (spi->mode & SPI_CPHA)
  451. cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
  452. else
  453. cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
  454. if (spi->mode & SPI_CPOL) {
  455. cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
  456. cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
  457. } else {
  458. cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
  459. cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
  460. }
  461. if (spi->mode & SPI_CS_HIGH)
  462. cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
  463. else
  464. cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
  465. if (spi_imx->usedma)
  466. ctrl |= MX51_ECSPI_CTRL_SMC;
  467. /* CTRL register always go first to bring out controller from reset */
  468. writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
  469. reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
  470. if (spi->mode & SPI_LOOP)
  471. reg |= MX51_ECSPI_TESTREG_LBC;
  472. else
  473. reg &= ~MX51_ECSPI_TESTREG_LBC;
  474. writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
  475. writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
  476. /*
  477. * Wait until the changes in the configuration register CONFIGREG
  478. * propagate into the hardware. It takes exactly one tick of the
  479. * SCLK clock, but we will wait two SCLK clock just to be sure. The
  480. * effect of the delay it takes for the hardware to apply changes
  481. * is noticable if the SCLK clock run very slow. In such a case, if
  482. * the polarity of SCLK should be inverted, the GPIO ChipSelect might
  483. * be asserted before the SCLK polarity changes, which would disrupt
  484. * the SPI communication as the device on the other end would consider
  485. * the change of SCLK polarity as a clock tick already.
  486. */
  487. delay = (2 * 1000000) / clk;
  488. if (likely(delay < 10)) /* SCLK is faster than 100 kHz */
  489. udelay(delay);
  490. else /* SCLK is _very_ slow */
  491. usleep_range(delay, delay + 10);
  492. /*
  493. * Configure the DMA register: setup the watermark
  494. * and enable DMA request.
  495. */
  496. writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) |
  497. MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
  498. MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
  499. MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
  500. MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
  501. return 0;
  502. }
  503. static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
  504. {
  505. return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
  506. }
  507. static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
  508. {
  509. /* drain receive buffer */
  510. while (mx51_ecspi_rx_available(spi_imx))
  511. readl(spi_imx->base + MXC_CSPIRXDATA);
  512. }
  513. #define MX31_INTREG_TEEN (1 << 0)
  514. #define MX31_INTREG_RREN (1 << 3)
  515. #define MX31_CSPICTRL_ENABLE (1 << 0)
  516. #define MX31_CSPICTRL_MASTER (1 << 1)
  517. #define MX31_CSPICTRL_XCH (1 << 2)
  518. #define MX31_CSPICTRL_SMC (1 << 3)
  519. #define MX31_CSPICTRL_POL (1 << 4)
  520. #define MX31_CSPICTRL_PHA (1 << 5)
  521. #define MX31_CSPICTRL_SSCTL (1 << 6)
  522. #define MX31_CSPICTRL_SSPOL (1 << 7)
  523. #define MX31_CSPICTRL_BC_SHIFT 8
  524. #define MX35_CSPICTRL_BL_SHIFT 20
  525. #define MX31_CSPICTRL_CS_SHIFT 24
  526. #define MX35_CSPICTRL_CS_SHIFT 12
  527. #define MX31_CSPICTRL_DR_SHIFT 16
  528. #define MX31_CSPI_DMAREG 0x10
  529. #define MX31_DMAREG_RH_DEN (1<<4)
  530. #define MX31_DMAREG_TH_DEN (1<<1)
  531. #define MX31_CSPISTATUS 0x14
  532. #define MX31_STATUS_RR (1 << 3)
  533. #define MX31_CSPI_TESTREG 0x1C
  534. #define MX31_TEST_LBC (1 << 14)
  535. /* These functions also work for the i.MX35, but be aware that
  536. * the i.MX35 has a slightly different register layout for bits
  537. * we do not use here.
  538. */
  539. static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
  540. {
  541. unsigned int val = 0;
  542. if (enable & MXC_INT_TE)
  543. val |= MX31_INTREG_TEEN;
  544. if (enable & MXC_INT_RR)
  545. val |= MX31_INTREG_RREN;
  546. writel(val, spi_imx->base + MXC_CSPIINT);
  547. }
  548. static void mx31_trigger(struct spi_imx_data *spi_imx)
  549. {
  550. unsigned int reg;
  551. reg = readl(spi_imx->base + MXC_CSPICTRL);
  552. reg |= MX31_CSPICTRL_XCH;
  553. writel(reg, spi_imx->base + MXC_CSPICTRL);
  554. }
  555. static int mx31_config(struct spi_device *spi)
  556. {
  557. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  558. unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
  559. unsigned int clk;
  560. reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
  561. MX31_CSPICTRL_DR_SHIFT;
  562. spi_imx->spi_bus_clk = clk;
  563. if (is_imx35_cspi(spi_imx)) {
  564. reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
  565. reg |= MX31_CSPICTRL_SSCTL;
  566. } else {
  567. reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
  568. }
  569. if (spi->mode & SPI_CPHA)
  570. reg |= MX31_CSPICTRL_PHA;
  571. if (spi->mode & SPI_CPOL)
  572. reg |= MX31_CSPICTRL_POL;
  573. if (spi->mode & SPI_CS_HIGH)
  574. reg |= MX31_CSPICTRL_SSPOL;
  575. if (!gpio_is_valid(spi->cs_gpio))
  576. reg |= (spi->chip_select) <<
  577. (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
  578. MX31_CSPICTRL_CS_SHIFT);
  579. if (spi_imx->usedma)
  580. reg |= MX31_CSPICTRL_SMC;
  581. writel(reg, spi_imx->base + MXC_CSPICTRL);
  582. reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
  583. if (spi->mode & SPI_LOOP)
  584. reg |= MX31_TEST_LBC;
  585. else
  586. reg &= ~MX31_TEST_LBC;
  587. writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
  588. if (spi_imx->usedma) {
  589. /* configure DMA requests when RXFIFO is half full and
  590. when TXFIFO is half empty */
  591. writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
  592. spi_imx->base + MX31_CSPI_DMAREG);
  593. }
  594. return 0;
  595. }
  596. static int mx31_rx_available(struct spi_imx_data *spi_imx)
  597. {
  598. return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
  599. }
  600. static void mx31_reset(struct spi_imx_data *spi_imx)
  601. {
  602. /* drain receive buffer */
  603. while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
  604. readl(spi_imx->base + MXC_CSPIRXDATA);
  605. }
  606. #define MX21_INTREG_RR (1 << 4)
  607. #define MX21_INTREG_TEEN (1 << 9)
  608. #define MX21_INTREG_RREN (1 << 13)
  609. #define MX21_CSPICTRL_POL (1 << 5)
  610. #define MX21_CSPICTRL_PHA (1 << 6)
  611. #define MX21_CSPICTRL_SSPOL (1 << 8)
  612. #define MX21_CSPICTRL_XCH (1 << 9)
  613. #define MX21_CSPICTRL_ENABLE (1 << 10)
  614. #define MX21_CSPICTRL_MASTER (1 << 11)
  615. #define MX21_CSPICTRL_DR_SHIFT 14
  616. #define MX21_CSPICTRL_CS_SHIFT 19
  617. static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
  618. {
  619. unsigned int val = 0;
  620. if (enable & MXC_INT_TE)
  621. val |= MX21_INTREG_TEEN;
  622. if (enable & MXC_INT_RR)
  623. val |= MX21_INTREG_RREN;
  624. writel(val, spi_imx->base + MXC_CSPIINT);
  625. }
  626. static void mx21_trigger(struct spi_imx_data *spi_imx)
  627. {
  628. unsigned int reg;
  629. reg = readl(spi_imx->base + MXC_CSPICTRL);
  630. reg |= MX21_CSPICTRL_XCH;
  631. writel(reg, spi_imx->base + MXC_CSPICTRL);
  632. }
  633. static int mx21_config(struct spi_device *spi)
  634. {
  635. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  636. unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
  637. unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
  638. unsigned int clk;
  639. reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->speed_hz, max, &clk)
  640. << MX21_CSPICTRL_DR_SHIFT;
  641. spi_imx->spi_bus_clk = clk;
  642. reg |= spi_imx->bits_per_word - 1;
  643. if (spi->mode & SPI_CPHA)
  644. reg |= MX21_CSPICTRL_PHA;
  645. if (spi->mode & SPI_CPOL)
  646. reg |= MX21_CSPICTRL_POL;
  647. if (spi->mode & SPI_CS_HIGH)
  648. reg |= MX21_CSPICTRL_SSPOL;
  649. if (!gpio_is_valid(spi->cs_gpio))
  650. reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
  651. writel(reg, spi_imx->base + MXC_CSPICTRL);
  652. return 0;
  653. }
  654. static int mx21_rx_available(struct spi_imx_data *spi_imx)
  655. {
  656. return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
  657. }
  658. static void mx21_reset(struct spi_imx_data *spi_imx)
  659. {
  660. writel(1, spi_imx->base + MXC_RESET);
  661. }
  662. #define MX1_INTREG_RR (1 << 3)
  663. #define MX1_INTREG_TEEN (1 << 8)
  664. #define MX1_INTREG_RREN (1 << 11)
  665. #define MX1_CSPICTRL_POL (1 << 4)
  666. #define MX1_CSPICTRL_PHA (1 << 5)
  667. #define MX1_CSPICTRL_XCH (1 << 8)
  668. #define MX1_CSPICTRL_ENABLE (1 << 9)
  669. #define MX1_CSPICTRL_MASTER (1 << 10)
  670. #define MX1_CSPICTRL_DR_SHIFT 13
  671. static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
  672. {
  673. unsigned int val = 0;
  674. if (enable & MXC_INT_TE)
  675. val |= MX1_INTREG_TEEN;
  676. if (enable & MXC_INT_RR)
  677. val |= MX1_INTREG_RREN;
  678. writel(val, spi_imx->base + MXC_CSPIINT);
  679. }
  680. static void mx1_trigger(struct spi_imx_data *spi_imx)
  681. {
  682. unsigned int reg;
  683. reg = readl(spi_imx->base + MXC_CSPICTRL);
  684. reg |= MX1_CSPICTRL_XCH;
  685. writel(reg, spi_imx->base + MXC_CSPICTRL);
  686. }
  687. static int mx1_config(struct spi_device *spi)
  688. {
  689. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  690. unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
  691. unsigned int clk;
  692. reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
  693. MX1_CSPICTRL_DR_SHIFT;
  694. spi_imx->spi_bus_clk = clk;
  695. reg |= spi_imx->bits_per_word - 1;
  696. if (spi->mode & SPI_CPHA)
  697. reg |= MX1_CSPICTRL_PHA;
  698. if (spi->mode & SPI_CPOL)
  699. reg |= MX1_CSPICTRL_POL;
  700. writel(reg, spi_imx->base + MXC_CSPICTRL);
  701. return 0;
  702. }
  703. static int mx1_rx_available(struct spi_imx_data *spi_imx)
  704. {
  705. return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
  706. }
  707. static void mx1_reset(struct spi_imx_data *spi_imx)
  708. {
  709. writel(1, spi_imx->base + MXC_RESET);
  710. }
  711. static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
  712. .intctrl = mx1_intctrl,
  713. .config = mx1_config,
  714. .trigger = mx1_trigger,
  715. .rx_available = mx1_rx_available,
  716. .reset = mx1_reset,
  717. .fifo_size = 8,
  718. .has_dmamode = false,
  719. .dynamic_burst = false,
  720. .has_slavemode = false,
  721. .devtype = IMX1_CSPI,
  722. };
  723. static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
  724. .intctrl = mx21_intctrl,
  725. .config = mx21_config,
  726. .trigger = mx21_trigger,
  727. .rx_available = mx21_rx_available,
  728. .reset = mx21_reset,
  729. .fifo_size = 8,
  730. .has_dmamode = false,
  731. .dynamic_burst = false,
  732. .has_slavemode = false,
  733. .devtype = IMX21_CSPI,
  734. };
  735. static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
  736. /* i.mx27 cspi shares the functions with i.mx21 one */
  737. .intctrl = mx21_intctrl,
  738. .config = mx21_config,
  739. .trigger = mx21_trigger,
  740. .rx_available = mx21_rx_available,
  741. .reset = mx21_reset,
  742. .fifo_size = 8,
  743. .has_dmamode = false,
  744. .dynamic_burst = false,
  745. .has_slavemode = false,
  746. .devtype = IMX27_CSPI,
  747. };
  748. static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
  749. .intctrl = mx31_intctrl,
  750. .config = mx31_config,
  751. .trigger = mx31_trigger,
  752. .rx_available = mx31_rx_available,
  753. .reset = mx31_reset,
  754. .fifo_size = 8,
  755. .has_dmamode = false,
  756. .dynamic_burst = false,
  757. .has_slavemode = false,
  758. .devtype = IMX31_CSPI,
  759. };
  760. static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
  761. /* i.mx35 and later cspi shares the functions with i.mx31 one */
  762. .intctrl = mx31_intctrl,
  763. .config = mx31_config,
  764. .trigger = mx31_trigger,
  765. .rx_available = mx31_rx_available,
  766. .reset = mx31_reset,
  767. .fifo_size = 8,
  768. .has_dmamode = true,
  769. .dynamic_burst = false,
  770. .has_slavemode = false,
  771. .devtype = IMX35_CSPI,
  772. };
  773. static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
  774. .intctrl = mx51_ecspi_intctrl,
  775. .config = mx51_ecspi_config,
  776. .trigger = mx51_ecspi_trigger,
  777. .rx_available = mx51_ecspi_rx_available,
  778. .reset = mx51_ecspi_reset,
  779. .fifo_size = 64,
  780. .has_dmamode = true,
  781. .dynamic_burst = true,
  782. .has_slavemode = true,
  783. .disable = mx51_ecspi_disable,
  784. .devtype = IMX51_ECSPI,
  785. };
  786. static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
  787. .intctrl = mx51_ecspi_intctrl,
  788. .config = mx51_ecspi_config,
  789. .trigger = mx51_ecspi_trigger,
  790. .rx_available = mx51_ecspi_rx_available,
  791. .reset = mx51_ecspi_reset,
  792. .fifo_size = 64,
  793. .has_dmamode = true,
  794. .has_slavemode = true,
  795. .disable = mx51_ecspi_disable,
  796. .devtype = IMX53_ECSPI,
  797. };
  798. static const struct platform_device_id spi_imx_devtype[] = {
  799. {
  800. .name = "imx1-cspi",
  801. .driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
  802. }, {
  803. .name = "imx21-cspi",
  804. .driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
  805. }, {
  806. .name = "imx27-cspi",
  807. .driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
  808. }, {
  809. .name = "imx31-cspi",
  810. .driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
  811. }, {
  812. .name = "imx35-cspi",
  813. .driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
  814. }, {
  815. .name = "imx51-ecspi",
  816. .driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
  817. }, {
  818. .name = "imx53-ecspi",
  819. .driver_data = (kernel_ulong_t) &imx53_ecspi_devtype_data,
  820. }, {
  821. /* sentinel */
  822. }
  823. };
  824. static const struct of_device_id spi_imx_dt_ids[] = {
  825. { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
  826. { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
  827. { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
  828. { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
  829. { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
  830. { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
  831. { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
  832. { /* sentinel */ }
  833. };
  834. MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
  835. static void spi_imx_chipselect(struct spi_device *spi, int is_active)
  836. {
  837. int active = is_active != BITBANG_CS_INACTIVE;
  838. int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
  839. if (spi->mode & SPI_NO_CS)
  840. return;
  841. if (!gpio_is_valid(spi->cs_gpio))
  842. return;
  843. gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active);
  844. }
  845. static void spi_imx_push(struct spi_imx_data *spi_imx)
  846. {
  847. while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
  848. if (!spi_imx->count)
  849. break;
  850. if (spi_imx->txfifo && (spi_imx->count == spi_imx->remainder))
  851. break;
  852. spi_imx->tx(spi_imx);
  853. spi_imx->txfifo++;
  854. }
  855. if (!spi_imx->slave_mode)
  856. spi_imx->devtype_data->trigger(spi_imx);
  857. }
  858. static irqreturn_t spi_imx_isr(int irq, void *dev_id)
  859. {
  860. struct spi_imx_data *spi_imx = dev_id;
  861. while (spi_imx->txfifo &&
  862. spi_imx->devtype_data->rx_available(spi_imx)) {
  863. spi_imx->rx(spi_imx);
  864. spi_imx->txfifo--;
  865. }
  866. if (spi_imx->count) {
  867. spi_imx_push(spi_imx);
  868. return IRQ_HANDLED;
  869. }
  870. if (spi_imx->txfifo) {
  871. /* No data left to push, but still waiting for rx data,
  872. * enable receive data available interrupt.
  873. */
  874. spi_imx->devtype_data->intctrl(
  875. spi_imx, MXC_INT_RR);
  876. return IRQ_HANDLED;
  877. }
  878. spi_imx->devtype_data->intctrl(spi_imx, 0);
  879. complete(&spi_imx->xfer_done);
  880. return IRQ_HANDLED;
  881. }
  882. static int spi_imx_dma_configure(struct spi_master *master)
  883. {
  884. int ret;
  885. enum dma_slave_buswidth buswidth;
  886. struct dma_slave_config rx = {}, tx = {};
  887. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  888. switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
  889. case 4:
  890. buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
  891. break;
  892. case 2:
  893. buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
  894. break;
  895. case 1:
  896. buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
  897. break;
  898. default:
  899. return -EINVAL;
  900. }
  901. tx.direction = DMA_MEM_TO_DEV;
  902. tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
  903. tx.dst_addr_width = buswidth;
  904. tx.dst_maxburst = spi_imx->wml;
  905. ret = dmaengine_slave_config(master->dma_tx, &tx);
  906. if (ret) {
  907. dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
  908. return ret;
  909. }
  910. rx.direction = DMA_DEV_TO_MEM;
  911. rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
  912. rx.src_addr_width = buswidth;
  913. rx.src_maxburst = spi_imx->wml;
  914. ret = dmaengine_slave_config(master->dma_rx, &rx);
  915. if (ret) {
  916. dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
  917. return ret;
  918. }
  919. return 0;
  920. }
  921. static int spi_imx_setupxfer(struct spi_device *spi,
  922. struct spi_transfer *t)
  923. {
  924. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  925. int ret;
  926. if (!t)
  927. return 0;
  928. spi_imx->bits_per_word = t->bits_per_word;
  929. spi_imx->speed_hz = t->speed_hz;
  930. /* Initialize the functions for transfer */
  931. if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode) {
  932. u32 mask;
  933. spi_imx->dynamic_burst = 0;
  934. spi_imx->remainder = 0;
  935. spi_imx->read_u32 = 1;
  936. mask = (1 << spi_imx->bits_per_word) - 1;
  937. spi_imx->rx = spi_imx_buf_rx_swap;
  938. spi_imx->tx = spi_imx_buf_tx_swap;
  939. spi_imx->dynamic_burst = 1;
  940. spi_imx->remainder = t->len;
  941. if (spi_imx->bits_per_word <= 8)
  942. spi_imx->word_mask = mask << 24 | mask << 16
  943. | mask << 8 | mask;
  944. else if (spi_imx->bits_per_word <= 16)
  945. spi_imx->word_mask = mask << 16 | mask;
  946. else
  947. spi_imx->word_mask = mask;
  948. } else {
  949. if (spi_imx->bits_per_word <= 8) {
  950. spi_imx->rx = spi_imx_buf_rx_u8;
  951. spi_imx->tx = spi_imx_buf_tx_u8;
  952. } else if (spi_imx->bits_per_word <= 16) {
  953. spi_imx->rx = spi_imx_buf_rx_u16;
  954. spi_imx->tx = spi_imx_buf_tx_u16;
  955. } else {
  956. spi_imx->rx = spi_imx_buf_rx_u32;
  957. spi_imx->tx = spi_imx_buf_tx_u32;
  958. }
  959. }
  960. if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
  961. spi_imx->usedma = 1;
  962. else
  963. spi_imx->usedma = 0;
  964. if (spi_imx->usedma) {
  965. ret = spi_imx_dma_configure(spi->master);
  966. if (ret)
  967. return ret;
  968. }
  969. if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
  970. spi_imx->rx = mx53_ecspi_rx_slave;
  971. spi_imx->tx = mx53_ecspi_tx_slave;
  972. spi_imx->slave_burst = t->len;
  973. }
  974. spi_imx->devtype_data->config(spi);
  975. return 0;
  976. }
  977. static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
  978. {
  979. struct spi_master *master = spi_imx->bitbang.master;
  980. if (master->dma_rx) {
  981. dma_release_channel(master->dma_rx);
  982. master->dma_rx = NULL;
  983. }
  984. if (master->dma_tx) {
  985. dma_release_channel(master->dma_tx);
  986. master->dma_tx = NULL;
  987. }
  988. }
  989. static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
  990. struct spi_master *master)
  991. {
  992. int ret;
  993. /* use pio mode for i.mx6dl chip TKT238285 */
  994. if (of_machine_is_compatible("fsl,imx6dl"))
  995. return 0;
  996. spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
  997. /* Prepare for TX DMA: */
  998. master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
  999. if (IS_ERR(master->dma_tx)) {
  1000. ret = PTR_ERR(master->dma_tx);
  1001. dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
  1002. master->dma_tx = NULL;
  1003. goto err;
  1004. }
  1005. /* Prepare for RX : */
  1006. master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
  1007. if (IS_ERR(master->dma_rx)) {
  1008. ret = PTR_ERR(master->dma_rx);
  1009. dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
  1010. master->dma_rx = NULL;
  1011. goto err;
  1012. }
  1013. init_completion(&spi_imx->dma_rx_completion);
  1014. init_completion(&spi_imx->dma_tx_completion);
  1015. master->can_dma = spi_imx_can_dma;
  1016. master->max_dma_len = MAX_SDMA_BD_BYTES;
  1017. spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
  1018. SPI_MASTER_MUST_TX;
  1019. return 0;
  1020. err:
  1021. spi_imx_sdma_exit(spi_imx);
  1022. return ret;
  1023. }
  1024. static void spi_imx_dma_rx_callback(void *cookie)
  1025. {
  1026. struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
  1027. complete(&spi_imx->dma_rx_completion);
  1028. }
  1029. static void spi_imx_dma_tx_callback(void *cookie)
  1030. {
  1031. struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
  1032. complete(&spi_imx->dma_tx_completion);
  1033. }
  1034. static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
  1035. {
  1036. unsigned long timeout = 0;
  1037. /* Time with actual data transfer and CS change delay related to HW */
  1038. timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
  1039. /* Add extra second for scheduler related activities */
  1040. timeout += 1;
  1041. /* Double calculated timeout */
  1042. return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
  1043. }
  1044. static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
  1045. struct spi_transfer *transfer)
  1046. {
  1047. struct dma_async_tx_descriptor *desc_tx, *desc_rx;
  1048. unsigned long transfer_timeout;
  1049. unsigned long timeout;
  1050. struct spi_master *master = spi_imx->bitbang.master;
  1051. struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
  1052. /*
  1053. * The TX DMA setup starts the transfer, so make sure RX is configured
  1054. * before TX.
  1055. */
  1056. desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
  1057. rx->sgl, rx->nents, DMA_DEV_TO_MEM,
  1058. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1059. if (!desc_rx)
  1060. return -EINVAL;
  1061. desc_rx->callback = spi_imx_dma_rx_callback;
  1062. desc_rx->callback_param = (void *)spi_imx;
  1063. dmaengine_submit(desc_rx);
  1064. reinit_completion(&spi_imx->dma_rx_completion);
  1065. dma_async_issue_pending(master->dma_rx);
  1066. desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
  1067. tx->sgl, tx->nents, DMA_MEM_TO_DEV,
  1068. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1069. if (!desc_tx) {
  1070. dmaengine_terminate_all(master->dma_tx);
  1071. return -EINVAL;
  1072. }
  1073. desc_tx->callback = spi_imx_dma_tx_callback;
  1074. desc_tx->callback_param = (void *)spi_imx;
  1075. dmaengine_submit(desc_tx);
  1076. reinit_completion(&spi_imx->dma_tx_completion);
  1077. dma_async_issue_pending(master->dma_tx);
  1078. transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
  1079. /* Wait SDMA to finish the data transfer.*/
  1080. timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
  1081. transfer_timeout);
  1082. if (!timeout) {
  1083. dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
  1084. dmaengine_terminate_all(master->dma_tx);
  1085. dmaengine_terminate_all(master->dma_rx);
  1086. return -ETIMEDOUT;
  1087. }
  1088. timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
  1089. transfer_timeout);
  1090. if (!timeout) {
  1091. dev_err(&master->dev, "I/O Error in DMA RX\n");
  1092. spi_imx->devtype_data->reset(spi_imx);
  1093. dmaengine_terminate_all(master->dma_rx);
  1094. return -ETIMEDOUT;
  1095. }
  1096. return transfer->len;
  1097. }
  1098. static int spi_imx_pio_transfer(struct spi_device *spi,
  1099. struct spi_transfer *transfer)
  1100. {
  1101. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  1102. unsigned long transfer_timeout;
  1103. unsigned long timeout;
  1104. spi_imx->tx_buf = transfer->tx_buf;
  1105. spi_imx->rx_buf = transfer->rx_buf;
  1106. spi_imx->count = transfer->len;
  1107. spi_imx->txfifo = 0;
  1108. reinit_completion(&spi_imx->xfer_done);
  1109. spi_imx_push(spi_imx);
  1110. spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
  1111. transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
  1112. timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
  1113. transfer_timeout);
  1114. if (!timeout) {
  1115. dev_err(&spi->dev, "I/O Error in PIO\n");
  1116. spi_imx->devtype_data->reset(spi_imx);
  1117. return -ETIMEDOUT;
  1118. }
  1119. return transfer->len;
  1120. }
  1121. static int spi_imx_pio_transfer_slave(struct spi_device *spi,
  1122. struct spi_transfer *transfer)
  1123. {
  1124. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  1125. int ret = transfer->len;
  1126. if (is_imx53_ecspi(spi_imx) &&
  1127. transfer->len > MX53_MAX_TRANSFER_BYTES) {
  1128. dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
  1129. MX53_MAX_TRANSFER_BYTES);
  1130. return -EMSGSIZE;
  1131. }
  1132. spi_imx->tx_buf = transfer->tx_buf;
  1133. spi_imx->rx_buf = transfer->rx_buf;
  1134. spi_imx->count = transfer->len;
  1135. spi_imx->txfifo = 0;
  1136. reinit_completion(&spi_imx->xfer_done);
  1137. spi_imx->slave_aborted = false;
  1138. spi_imx_push(spi_imx);
  1139. spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
  1140. if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
  1141. spi_imx->slave_aborted) {
  1142. dev_dbg(&spi->dev, "interrupted\n");
  1143. ret = -EINTR;
  1144. }
  1145. /* ecspi has a HW issue when works in Slave mode,
  1146. * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
  1147. * ECSPI_TXDATA keeps shift out the last word data,
  1148. * so we have to disable ECSPI when in slave mode after the
  1149. * transfer completes
  1150. */
  1151. if (spi_imx->devtype_data->disable)
  1152. spi_imx->devtype_data->disable(spi_imx);
  1153. return ret;
  1154. }
  1155. static int spi_imx_transfer(struct spi_device *spi,
  1156. struct spi_transfer *transfer)
  1157. {
  1158. struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
  1159. /* flush rxfifo before transfer */
  1160. while (spi_imx->devtype_data->rx_available(spi_imx))
  1161. spi_imx->rx(spi_imx);
  1162. if (spi_imx->slave_mode)
  1163. return spi_imx_pio_transfer_slave(spi, transfer);
  1164. if (spi_imx->usedma)
  1165. return spi_imx_dma_transfer(spi_imx, transfer);
  1166. else
  1167. return spi_imx_pio_transfer(spi, transfer);
  1168. }
  1169. static int spi_imx_setup(struct spi_device *spi)
  1170. {
  1171. dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
  1172. spi->mode, spi->bits_per_word, spi->max_speed_hz);
  1173. if (spi->mode & SPI_NO_CS)
  1174. return 0;
  1175. if (gpio_is_valid(spi->cs_gpio))
  1176. gpio_direction_output(spi->cs_gpio,
  1177. spi->mode & SPI_CS_HIGH ? 0 : 1);
  1178. spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
  1179. return 0;
  1180. }
  1181. static void spi_imx_cleanup(struct spi_device *spi)
  1182. {
  1183. }
  1184. static int
  1185. spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
  1186. {
  1187. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  1188. int ret;
  1189. ret = clk_enable(spi_imx->clk_per);
  1190. if (ret)
  1191. return ret;
  1192. ret = clk_enable(spi_imx->clk_ipg);
  1193. if (ret) {
  1194. clk_disable(spi_imx->clk_per);
  1195. return ret;
  1196. }
  1197. return 0;
  1198. }
  1199. static int
  1200. spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
  1201. {
  1202. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  1203. clk_disable(spi_imx->clk_ipg);
  1204. clk_disable(spi_imx->clk_per);
  1205. return 0;
  1206. }
  1207. static int spi_imx_slave_abort(struct spi_master *master)
  1208. {
  1209. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  1210. spi_imx->slave_aborted = true;
  1211. complete(&spi_imx->xfer_done);
  1212. return 0;
  1213. }
  1214. static int spi_imx_probe(struct platform_device *pdev)
  1215. {
  1216. struct device_node *np = pdev->dev.of_node;
  1217. const struct of_device_id *of_id =
  1218. of_match_device(spi_imx_dt_ids, &pdev->dev);
  1219. struct spi_imx_master *mxc_platform_info =
  1220. dev_get_platdata(&pdev->dev);
  1221. struct spi_master *master;
  1222. struct spi_imx_data *spi_imx;
  1223. struct resource *res;
  1224. int i, ret, irq, spi_drctl;
  1225. const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data :
  1226. (struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
  1227. bool slave_mode;
  1228. if (!np && !mxc_platform_info) {
  1229. dev_err(&pdev->dev, "can't get the platform data\n");
  1230. return -EINVAL;
  1231. }
  1232. slave_mode = devtype_data->has_slavemode &&
  1233. of_property_read_bool(np, "spi-slave");
  1234. if (slave_mode)
  1235. master = spi_alloc_slave(&pdev->dev,
  1236. sizeof(struct spi_imx_data));
  1237. else
  1238. master = spi_alloc_master(&pdev->dev,
  1239. sizeof(struct spi_imx_data));
  1240. if (!master)
  1241. return -ENOMEM;
  1242. ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
  1243. if ((ret < 0) || (spi_drctl >= 0x3)) {
  1244. /* '11' is reserved */
  1245. spi_drctl = 0;
  1246. }
  1247. platform_set_drvdata(pdev, master);
  1248. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
  1249. master->bus_num = np ? -1 : pdev->id;
  1250. spi_imx = spi_master_get_devdata(master);
  1251. spi_imx->bitbang.master = master;
  1252. spi_imx->dev = &pdev->dev;
  1253. spi_imx->slave_mode = slave_mode;
  1254. spi_imx->devtype_data = devtype_data;
  1255. /* Get number of chip selects, either platform data or OF */
  1256. if (mxc_platform_info) {
  1257. master->num_chipselect = mxc_platform_info->num_chipselect;
  1258. if (mxc_platform_info->chipselect) {
  1259. master->cs_gpios = devm_kzalloc(&master->dev,
  1260. sizeof(int) * master->num_chipselect, GFP_KERNEL);
  1261. if (!master->cs_gpios)
  1262. return -ENOMEM;
  1263. for (i = 0; i < master->num_chipselect; i++)
  1264. master->cs_gpios[i] = mxc_platform_info->chipselect[i];
  1265. }
  1266. } else {
  1267. u32 num_cs;
  1268. if (!of_property_read_u32(np, "num-cs", &num_cs))
  1269. master->num_chipselect = num_cs;
  1270. /* If not preset, default value of 1 is used */
  1271. }
  1272. spi_imx->bitbang.chipselect = spi_imx_chipselect;
  1273. spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
  1274. spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
  1275. spi_imx->bitbang.master->setup = spi_imx_setup;
  1276. spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
  1277. spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
  1278. spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
  1279. spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort;
  1280. spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  1281. | SPI_NO_CS;
  1282. if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
  1283. is_imx53_ecspi(spi_imx))
  1284. spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY;
  1285. spi_imx->spi_drctl = spi_drctl;
  1286. init_completion(&spi_imx->xfer_done);
  1287. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1288. spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
  1289. if (IS_ERR(spi_imx->base)) {
  1290. ret = PTR_ERR(spi_imx->base);
  1291. goto out_master_put;
  1292. }
  1293. spi_imx->base_phys = res->start;
  1294. irq = platform_get_irq(pdev, 0);
  1295. if (irq < 0) {
  1296. ret = irq;
  1297. goto out_master_put;
  1298. }
  1299. ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
  1300. dev_name(&pdev->dev), spi_imx);
  1301. if (ret) {
  1302. dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
  1303. goto out_master_put;
  1304. }
  1305. spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  1306. if (IS_ERR(spi_imx->clk_ipg)) {
  1307. ret = PTR_ERR(spi_imx->clk_ipg);
  1308. goto out_master_put;
  1309. }
  1310. spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
  1311. if (IS_ERR(spi_imx->clk_per)) {
  1312. ret = PTR_ERR(spi_imx->clk_per);
  1313. goto out_master_put;
  1314. }
  1315. ret = clk_prepare_enable(spi_imx->clk_per);
  1316. if (ret)
  1317. goto out_master_put;
  1318. ret = clk_prepare_enable(spi_imx->clk_ipg);
  1319. if (ret)
  1320. goto out_put_per;
  1321. spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
  1322. /*
  1323. * Only validated on i.mx35 and i.mx6 now, can remove the constraint
  1324. * if validated on other chips.
  1325. */
  1326. if (spi_imx->devtype_data->has_dmamode) {
  1327. ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
  1328. if (ret == -EPROBE_DEFER)
  1329. goto out_clk_put;
  1330. if (ret < 0)
  1331. dev_err(&pdev->dev, "dma setup error %d, use pio\n",
  1332. ret);
  1333. }
  1334. spi_imx->devtype_data->reset(spi_imx);
  1335. spi_imx->devtype_data->intctrl(spi_imx, 0);
  1336. master->dev.of_node = pdev->dev.of_node;
  1337. ret = spi_bitbang_start(&spi_imx->bitbang);
  1338. if (ret) {
  1339. dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
  1340. goto out_clk_put;
  1341. }
  1342. /* Request GPIO CS lines, if any */
  1343. if (!spi_imx->slave_mode && master->cs_gpios) {
  1344. for (i = 0; i < master->num_chipselect; i++) {
  1345. if (!gpio_is_valid(master->cs_gpios[i]))
  1346. continue;
  1347. ret = devm_gpio_request(&pdev->dev,
  1348. master->cs_gpios[i],
  1349. DRIVER_NAME);
  1350. if (ret) {
  1351. dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
  1352. master->cs_gpios[i]);
  1353. goto out_spi_bitbang;
  1354. }
  1355. }
  1356. }
  1357. dev_info(&pdev->dev, "probed\n");
  1358. clk_disable(spi_imx->clk_ipg);
  1359. clk_disable(spi_imx->clk_per);
  1360. return ret;
  1361. out_spi_bitbang:
  1362. spi_bitbang_stop(&spi_imx->bitbang);
  1363. out_clk_put:
  1364. clk_disable_unprepare(spi_imx->clk_ipg);
  1365. out_put_per:
  1366. clk_disable_unprepare(spi_imx->clk_per);
  1367. out_master_put:
  1368. spi_master_put(master);
  1369. return ret;
  1370. }
  1371. static int spi_imx_remove(struct platform_device *pdev)
  1372. {
  1373. struct spi_master *master = platform_get_drvdata(pdev);
  1374. struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
  1375. int ret;
  1376. spi_bitbang_stop(&spi_imx->bitbang);
  1377. ret = clk_enable(spi_imx->clk_per);
  1378. if (ret)
  1379. return ret;
  1380. ret = clk_enable(spi_imx->clk_ipg);
  1381. if (ret) {
  1382. clk_disable(spi_imx->clk_per);
  1383. return ret;
  1384. }
  1385. writel(0, spi_imx->base + MXC_CSPICTRL);
  1386. clk_disable_unprepare(spi_imx->clk_ipg);
  1387. clk_disable_unprepare(spi_imx->clk_per);
  1388. spi_imx_sdma_exit(spi_imx);
  1389. spi_master_put(master);
  1390. return 0;
  1391. }
  1392. static struct platform_driver spi_imx_driver = {
  1393. .driver = {
  1394. .name = DRIVER_NAME,
  1395. .of_match_table = spi_imx_dt_ids,
  1396. },
  1397. .id_table = spi_imx_devtype,
  1398. .probe = spi_imx_probe,
  1399. .remove = spi_imx_remove,
  1400. };
  1401. module_platform_driver(spi_imx_driver);
  1402. MODULE_DESCRIPTION("SPI Master Controller driver");
  1403. MODULE_AUTHOR("Sascha Hauer, Pengutronix");
  1404. MODULE_LICENSE("GPL");
  1405. MODULE_ALIAS("platform:" DRIVER_NAME);