rtc-ab-b5ze-s3.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /*
  2. * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
  3. * I2C RTC / Alarm chip
  4. *
  5. * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
  6. *
  7. * Detailed datasheet of the chip is available here:
  8. *
  9. * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
  10. *
  11. * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rtc.h>
  26. #include <linux/i2c.h>
  27. #include <linux/bcd.h>
  28. #include <linux/of.h>
  29. #include <linux/regmap.h>
  30. #include <linux/interrupt.h>
  31. #define DRV_NAME "rtc-ab-b5ze-s3"
  32. /* Control section */
  33. #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
  34. #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
  35. #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
  36. #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
  37. #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
  38. #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
  39. #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
  40. #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
  41. #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
  42. #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
  43. #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
  44. #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
  45. #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
  46. #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
  47. #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
  48. #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
  49. #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
  50. #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
  51. #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
  52. #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
  53. #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
  54. #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
  55. #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
  56. #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
  57. #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
  58. #define ABB5ZES3_CTRL_SEC_LEN 3
  59. /* RTC section */
  60. #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
  61. #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
  62. #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
  63. #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
  64. #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
  65. #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
  66. #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
  67. #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
  68. #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
  69. #define ABB5ZES3_RTC_SEC_LEN 7
  70. /* Alarm section (enable bits are all active low) */
  71. #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
  72. #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
  73. #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
  74. #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
  75. #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
  76. #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
  77. #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
  78. #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
  79. #define ABB5ZES3_ALRM_SEC_LEN 4
  80. /* Frequency offset section */
  81. #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
  82. #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
  83. /* CLOCKOUT section */
  84. #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
  85. #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
  86. #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
  87. #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
  88. #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
  89. #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
  90. #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
  91. #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
  92. #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
  93. /* Timer A Section */
  94. #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
  95. #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
  96. #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
  97. #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
  98. #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
  99. #define ABB5ZES3_TIMA_SEC_LEN 2
  100. /* Timer B Section */
  101. #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
  102. #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
  103. #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
  104. #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
  105. #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
  106. #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
  107. #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
  108. #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
  109. #define ABB5ZES3_TIMB_SEC_LEN 2
  110. #define ABB5ZES3_MEM_MAP_LEN 0x14
  111. struct abb5zes3_rtc_data {
  112. struct rtc_device *rtc;
  113. struct regmap *regmap;
  114. struct mutex lock;
  115. int irq;
  116. bool battery_low;
  117. bool timer_alarm; /* current alarm is via timer A */
  118. };
  119. /*
  120. * Try and match register bits w/ fixed null values to see whether we
  121. * are dealing with an ABB5ZES3. Note: this function is called early
  122. * during init and hence does need mutex protection.
  123. */
  124. static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
  125. {
  126. u8 regs[ABB5ZES3_MEM_MAP_LEN];
  127. static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
  128. 0x80, 0xc0, 0xc0, 0xf8,
  129. 0xe0, 0x00, 0x00, 0x40,
  130. 0x40, 0x78, 0x00, 0x00,
  131. 0xf8, 0x00, 0x88, 0x00 };
  132. int ret, i;
  133. ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
  134. if (ret)
  135. return ret;
  136. for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
  137. if (regs[i] & mask[i]) /* check if bits are cleared */
  138. return -ENODEV;
  139. }
  140. return 0;
  141. }
  142. /* Clear alarm status bit. */
  143. static int _abb5zes3_rtc_clear_alarm(struct device *dev)
  144. {
  145. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  146. int ret;
  147. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  148. ABB5ZES3_REG_CTRL2_AF, 0);
  149. if (ret)
  150. dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
  151. return ret;
  152. }
  153. /* Enable or disable alarm (i.e. alarm interrupt generation) */
  154. static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
  155. {
  156. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  157. int ret;
  158. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
  159. ABB5ZES3_REG_CTRL1_AIE,
  160. enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
  161. if (ret)
  162. dev_err(dev, "%s: writing alarm INT failed (%d)\n",
  163. __func__, ret);
  164. return ret;
  165. }
  166. /* Enable or disable timer (watchdog timer A interrupt generation) */
  167. static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
  168. {
  169. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  170. int ret;
  171. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
  172. ABB5ZES3_REG_CTRL2_WTAIE,
  173. enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
  174. if (ret)
  175. dev_err(dev, "%s: writing timer INT failed (%d)\n",
  176. __func__, ret);
  177. return ret;
  178. }
  179. /*
  180. * Note: we only read, so regmap inner lock protection is sufficient, i.e.
  181. * we do not need driver's main lock protection.
  182. */
  183. static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
  184. {
  185. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  186. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  187. int ret = 0;
  188. /*
  189. * As we need to read CTRL1 register anyway to access 24/12h
  190. * mode bit, we do a single bulk read of both control and RTC
  191. * sections (they are consecutive). This also ease indexing
  192. * of register values after bulk read.
  193. */
  194. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
  195. sizeof(regs));
  196. if (ret) {
  197. dev_err(dev, "%s: reading RTC time failed (%d)\n",
  198. __func__, ret);
  199. goto err;
  200. }
  201. /* If clock integrity is not guaranteed, do not return a time value */
  202. if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
  203. ret = -ENODATA;
  204. goto err;
  205. }
  206. tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
  207. tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
  208. if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
  209. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
  210. if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
  211. tm->tm_hour += 12;
  212. } else { /* 24hr mode */
  213. tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
  214. }
  215. tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
  216. tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
  217. tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
  218. tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
  219. err:
  220. return ret;
  221. }
  222. static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
  223. {
  224. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  225. u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
  226. int ret;
  227. /*
  228. * Year register is 8-bit wide and bcd-coded, i.e records values
  229. * between 0 and 99. tm_year is an offset from 1900 and we are
  230. * interested in the 2000-2099 range, so any value less than 100
  231. * is invalid.
  232. */
  233. if (tm->tm_year < 100)
  234. return -EINVAL;
  235. regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
  236. regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
  237. regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
  238. regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
  239. regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
  240. regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
  241. regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
  242. mutex_lock(&data->lock);
  243. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
  244. regs + ABB5ZES3_REG_RTC_SC,
  245. ABB5ZES3_RTC_SEC_LEN);
  246. mutex_unlock(&data->lock);
  247. return ret;
  248. }
  249. /*
  250. * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
  251. * given number of seconds.
  252. */
  253. static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
  254. {
  255. *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
  256. *timer_a = secs;
  257. }
  258. /*
  259. * Return current number of seconds in Timer A. As we only use
  260. * timer A with a 1Hz freq, this is what we expect to have.
  261. */
  262. static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
  263. {
  264. if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
  265. return -EINVAL;
  266. *secs = timer_a;
  267. return 0;
  268. }
  269. /*
  270. * Read alarm currently configured via a watchdog timer using timer A. This
  271. * is done by reading current RTC time and adding remaining timer time.
  272. */
  273. static int _abb5zes3_rtc_read_timer(struct device *dev,
  274. struct rtc_wkalrm *alarm)
  275. {
  276. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  277. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  278. u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
  279. unsigned long rtc_secs;
  280. unsigned int reg;
  281. u8 timer_secs;
  282. int ret;
  283. /*
  284. * Instead of doing two separate calls, because they are consecutive,
  285. * we grab both clockout register and Timer A section. The latter is
  286. * used to decide if timer A is enabled (as a watchdog timer).
  287. */
  288. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
  289. ABB5ZES3_TIMA_SEC_LEN + 1);
  290. if (ret) {
  291. dev_err(dev, "%s: reading Timer A section failed (%d)\n",
  292. __func__, ret);
  293. goto err;
  294. }
  295. /* get current time ... */
  296. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  297. if (ret)
  298. goto err;
  299. /* ... convert to seconds ... */
  300. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  301. if (ret)
  302. goto err;
  303. /* ... add remaining timer A time ... */
  304. ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
  305. if (ret)
  306. goto err;
  307. /* ... and convert back. */
  308. rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
  309. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
  310. if (ret) {
  311. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  312. __func__, ret);
  313. goto err;
  314. }
  315. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
  316. err:
  317. return ret;
  318. }
  319. /* Read alarm currently configured via a RTC alarm registers. */
  320. static int _abb5zes3_rtc_read_alarm(struct device *dev,
  321. struct rtc_wkalrm *alarm)
  322. {
  323. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  324. struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
  325. unsigned long rtc_secs, alarm_secs;
  326. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  327. unsigned int reg;
  328. int ret;
  329. ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  330. ABB5ZES3_ALRM_SEC_LEN);
  331. if (ret) {
  332. dev_err(dev, "%s: reading alarm section failed (%d)\n",
  333. __func__, ret);
  334. goto err;
  335. }
  336. alarm_tm->tm_sec = 0;
  337. alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
  338. alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
  339. alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
  340. alarm_tm->tm_wday = -1;
  341. /*
  342. * The alarm section does not store year/month. We use the ones in rtc
  343. * section as a basis and increment month and then year if needed to get
  344. * alarm after current time.
  345. */
  346. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  347. if (ret)
  348. goto err;
  349. alarm_tm->tm_year = rtc_tm.tm_year;
  350. alarm_tm->tm_mon = rtc_tm.tm_mon;
  351. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  352. if (ret)
  353. goto err;
  354. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  355. if (ret)
  356. goto err;
  357. if (alarm_secs < rtc_secs) {
  358. if (alarm_tm->tm_mon == 11) {
  359. alarm_tm->tm_mon = 0;
  360. alarm_tm->tm_year += 1;
  361. } else {
  362. alarm_tm->tm_mon += 1;
  363. }
  364. }
  365. ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
  366. if (ret) {
  367. dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
  368. __func__, ret);
  369. goto err;
  370. }
  371. alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
  372. err:
  373. return ret;
  374. }
  375. /*
  376. * As the Alarm mechanism supported by the chip is only accurate to the
  377. * minute, we use the watchdog timer mechanism provided by timer A
  378. * (up to 256 seconds w/ a second accuracy) for low alarm values (below
  379. * 4 minutes). Otherwise, we use the common alarm mechanism provided
  380. * by the chip. In order for that to work, we keep track of currently
  381. * configured timer type via 'timer_alarm' flag in our private data
  382. * structure.
  383. */
  384. static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  385. {
  386. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  387. int ret;
  388. mutex_lock(&data->lock);
  389. if (data->timer_alarm)
  390. ret = _abb5zes3_rtc_read_timer(dev, alarm);
  391. else
  392. ret = _abb5zes3_rtc_read_alarm(dev, alarm);
  393. mutex_unlock(&data->lock);
  394. return ret;
  395. }
  396. /*
  397. * Set alarm using chip alarm mechanism. It is only accurate to the
  398. * minute (not the second). The function expects alarm interrupt to
  399. * be disabled.
  400. */
  401. static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  402. {
  403. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  404. struct rtc_time *alarm_tm = &alarm->time;
  405. unsigned long rtc_secs, alarm_secs;
  406. u8 regs[ABB5ZES3_ALRM_SEC_LEN];
  407. struct rtc_time rtc_tm;
  408. int ret, enable = 1;
  409. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  410. if (ret)
  411. goto err;
  412. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  413. if (ret)
  414. goto err;
  415. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  416. if (ret)
  417. goto err;
  418. /* If alarm time is before current time, disable the alarm */
  419. if (!alarm->enabled || alarm_secs <= rtc_secs) {
  420. enable = 0;
  421. } else {
  422. /*
  423. * Chip only support alarms up to one month in the future. Let's
  424. * return an error if we get something after that limit.
  425. * Comparison is done by incrementing rtc_tm month field by one
  426. * and checking alarm value is still below.
  427. */
  428. if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
  429. rtc_tm.tm_mon = 0;
  430. rtc_tm.tm_year += 1;
  431. } else {
  432. rtc_tm.tm_mon += 1;
  433. }
  434. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  435. if (ret)
  436. goto err;
  437. if (alarm_secs > rtc_secs) {
  438. dev_err(dev, "%s: alarm maximum is one month in the "
  439. "future (%d)\n", __func__, ret);
  440. ret = -EINVAL;
  441. goto err;
  442. }
  443. }
  444. /*
  445. * Program all alarm registers but DW one. For each register, setting
  446. * MSB to 0 enables associated alarm.
  447. */
  448. regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
  449. regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
  450. regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
  451. regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
  452. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
  453. ABB5ZES3_ALRM_SEC_LEN);
  454. if (ret < 0) {
  455. dev_err(dev, "%s: writing ALARM section failed (%d)\n",
  456. __func__, ret);
  457. goto err;
  458. }
  459. /* Record currently configured alarm is not a timer */
  460. data->timer_alarm = 0;
  461. /* Enable or disable alarm interrupt generation */
  462. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  463. err:
  464. return ret;
  465. }
  466. /*
  467. * Set alarm using timer watchdog (via timer A) mechanism. The function expects
  468. * timer A interrupt to be disabled.
  469. */
  470. static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
  471. u8 secs)
  472. {
  473. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  474. u8 regs[ABB5ZES3_TIMA_SEC_LEN];
  475. u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
  476. int ret = 0;
  477. /* Program given number of seconds to Timer A registers */
  478. sec_to_timer_a(secs, &regs[0], &regs[1]);
  479. ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
  480. ABB5ZES3_TIMA_SEC_LEN);
  481. if (ret < 0) {
  482. dev_err(dev, "%s: writing timer section failed\n", __func__);
  483. goto err;
  484. }
  485. /* Configure Timer A as a watchdog timer */
  486. ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
  487. mask, ABB5ZES3_REG_TIM_CLK_TAC1);
  488. if (ret)
  489. dev_err(dev, "%s: failed to update timer\n", __func__);
  490. /* Record currently configured alarm is a timer */
  491. data->timer_alarm = 1;
  492. /* Enable or disable timer interrupt generation */
  493. ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
  494. err:
  495. return ret;
  496. }
  497. /*
  498. * The chip has an alarm which is only accurate to the minute. In order to
  499. * handle alarms below that limit, we use the watchdog timer function of
  500. * timer A. More precisely, the timer method is used for alarms below 240
  501. * seconds.
  502. */
  503. static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
  504. {
  505. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  506. struct rtc_time *alarm_tm = &alarm->time;
  507. unsigned long rtc_secs, alarm_secs;
  508. struct rtc_time rtc_tm;
  509. int ret;
  510. mutex_lock(&data->lock);
  511. ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
  512. if (ret)
  513. goto err;
  514. ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
  515. if (ret)
  516. goto err;
  517. ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
  518. if (ret)
  519. goto err;
  520. /* Let's first disable both the alarm and the timer interrupts */
  521. ret = _abb5zes3_rtc_update_alarm(dev, false);
  522. if (ret < 0) {
  523. dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
  524. ret);
  525. goto err;
  526. }
  527. ret = _abb5zes3_rtc_update_timer(dev, false);
  528. if (ret < 0) {
  529. dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
  530. ret);
  531. goto err;
  532. }
  533. data->timer_alarm = 0;
  534. /*
  535. * Let's now configure the alarm; if we are expected to ring in
  536. * more than 240s, then we setup an alarm. Otherwise, a timer.
  537. */
  538. if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
  539. ret = _abb5zes3_rtc_set_timer(dev, alarm,
  540. alarm_secs - rtc_secs);
  541. else
  542. ret = _abb5zes3_rtc_set_alarm(dev, alarm);
  543. err:
  544. mutex_unlock(&data->lock);
  545. if (ret)
  546. dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
  547. ret);
  548. return ret;
  549. }
  550. /* Enable or disable battery low irq generation */
  551. static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
  552. bool enable)
  553. {
  554. return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
  555. ABB5ZES3_REG_CTRL3_BLIE,
  556. enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
  557. }
  558. /*
  559. * Check current RTC status and enable/disable what needs to be. Return 0 if
  560. * everything went ok and a negative value upon error. Note: this function
  561. * is called early during init and hence does need mutex protection.
  562. */
  563. static int abb5zes3_rtc_check_setup(struct device *dev)
  564. {
  565. struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
  566. struct regmap *regmap = data->regmap;
  567. unsigned int reg;
  568. int ret;
  569. u8 mask;
  570. /*
  571. * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
  572. * is disabled here to prevent polluting the interrupt line and
  573. * uselessly triggering the IRQ handler we install for alarm and battery
  574. * low events. Note: this is done before clearing int. status below
  575. * in this function.
  576. * We also disable all timers and set timer interrupt to permanent (not
  577. * pulsed).
  578. */
  579. mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
  580. ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
  581. ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
  582. ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
  583. ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
  584. ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
  585. ABB5ZES3_REG_TIM_CLK_COF2);
  586. if (ret < 0) {
  587. dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
  588. __func__, ret);
  589. return ret;
  590. }
  591. /*
  592. * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
  593. * individually by clearing/setting MSB of each associated register. So,
  594. * we set all alarm enable bits to disable current alarm setting.
  595. */
  596. mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
  597. ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
  598. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
  599. if (ret < 0) {
  600. dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
  601. __func__, ret);
  602. return ret;
  603. }
  604. /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
  605. mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
  606. ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
  607. ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
  608. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
  609. if (ret < 0) {
  610. dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
  611. __func__, ret);
  612. return ret;
  613. }
  614. /*
  615. * Set Control 2 register (timer int. disabled, alarm status cleared).
  616. * WTAF is read-only and cleared automatically by reading the register.
  617. */
  618. mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
  619. ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
  620. ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
  621. ABB5ZES3_REG_CTRL2_CTAF);
  622. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
  623. if (ret < 0) {
  624. dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
  625. __func__, ret);
  626. return ret;
  627. }
  628. /*
  629. * Enable battery low detection function and battery switchover function
  630. * (standard mode). Disable associated interrupts. Clear battery
  631. * switchover flag but not battery low flag. The latter is checked
  632. * later below.
  633. */
  634. mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
  635. ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
  636. ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
  637. ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
  638. if (ret < 0) {
  639. dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
  640. __func__, ret);
  641. return ret;
  642. }
  643. /* Check oscillator integrity flag */
  644. ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
  645. if (ret < 0) {
  646. dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
  647. __func__, ret);
  648. return ret;
  649. }
  650. if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
  651. dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
  652. "or has been interrupted.\n");
  653. dev_err(dev, "change battery (if not already done) and "
  654. "then set time to reset osc. failure flag.\n");
  655. }
  656. /*
  657. * Check battery low flag at startup: this allows reporting battery
  658. * is low at startup when IRQ line is not connected. Note: we record
  659. * current status to avoid reenabling this interrupt later in probe
  660. * function if battery is low.
  661. */
  662. ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
  663. if (ret < 0) {
  664. dev_err(dev, "%s: unable to read battery low flag (%d)\n",
  665. __func__, ret);
  666. return ret;
  667. }
  668. data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
  669. if (data->battery_low) {
  670. dev_err(dev, "RTC battery is low; please, consider "
  671. "changing it!\n");
  672. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
  673. if (ret)
  674. dev_err(dev, "%s: disabling battery low interrupt "
  675. "generation failed (%d)\n", __func__, ret);
  676. }
  677. return ret;
  678. }
  679. static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
  680. unsigned int enable)
  681. {
  682. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  683. int ret = 0;
  684. if (rtc_data->irq) {
  685. mutex_lock(&rtc_data->lock);
  686. if (rtc_data->timer_alarm)
  687. ret = _abb5zes3_rtc_update_timer(dev, enable);
  688. else
  689. ret = _abb5zes3_rtc_update_alarm(dev, enable);
  690. mutex_unlock(&rtc_data->lock);
  691. }
  692. return ret;
  693. }
  694. static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
  695. {
  696. struct i2c_client *client = data;
  697. struct device *dev = &client->dev;
  698. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  699. struct rtc_device *rtc = rtc_data->rtc;
  700. u8 regs[ABB5ZES3_CTRL_SEC_LEN];
  701. int ret, handled = IRQ_NONE;
  702. ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
  703. ABB5ZES3_CTRL_SEC_LEN);
  704. if (ret) {
  705. dev_err(dev, "%s: unable to read control section (%d)!\n",
  706. __func__, ret);
  707. return handled;
  708. }
  709. /*
  710. * Check battery low detection flag and disable battery low interrupt
  711. * generation if flag is set (interrupt can only be cleared when
  712. * battery is replaced).
  713. */
  714. if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
  715. dev_err(dev, "RTC battery is low; please change it!\n");
  716. _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
  717. handled = IRQ_HANDLED;
  718. }
  719. /* Check alarm flag */
  720. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
  721. dev_dbg(dev, "RTC alarm!\n");
  722. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  723. /* Acknowledge and disable the alarm */
  724. _abb5zes3_rtc_clear_alarm(dev);
  725. _abb5zes3_rtc_update_alarm(dev, 0);
  726. handled = IRQ_HANDLED;
  727. }
  728. /* Check watchdog Timer A flag */
  729. if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
  730. dev_dbg(dev, "RTC timer!\n");
  731. rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
  732. /*
  733. * Acknowledge and disable the alarm. Note: WTAF
  734. * flag had been cleared when reading CTRL2
  735. */
  736. _abb5zes3_rtc_update_timer(dev, 0);
  737. rtc_data->timer_alarm = 0;
  738. handled = IRQ_HANDLED;
  739. }
  740. return handled;
  741. }
  742. static const struct rtc_class_ops rtc_ops = {
  743. .read_time = _abb5zes3_rtc_read_time,
  744. .set_time = abb5zes3_rtc_set_time,
  745. .read_alarm = abb5zes3_rtc_read_alarm,
  746. .set_alarm = abb5zes3_rtc_set_alarm,
  747. .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
  748. };
  749. static const struct regmap_config abb5zes3_rtc_regmap_config = {
  750. .reg_bits = 8,
  751. .val_bits = 8,
  752. };
  753. static int abb5zes3_probe(struct i2c_client *client,
  754. const struct i2c_device_id *id)
  755. {
  756. struct abb5zes3_rtc_data *data = NULL;
  757. struct device *dev = &client->dev;
  758. struct regmap *regmap;
  759. int ret;
  760. if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
  761. I2C_FUNC_SMBUS_BYTE_DATA |
  762. I2C_FUNC_SMBUS_I2C_BLOCK)) {
  763. ret = -ENODEV;
  764. goto err;
  765. }
  766. regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
  767. if (IS_ERR(regmap)) {
  768. ret = PTR_ERR(regmap);
  769. dev_err(dev, "%s: regmap allocation failed: %d\n",
  770. __func__, ret);
  771. goto err;
  772. }
  773. ret = abb5zes3_i2c_validate_chip(regmap);
  774. if (ret)
  775. goto err;
  776. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  777. if (!data) {
  778. ret = -ENOMEM;
  779. goto err;
  780. }
  781. mutex_init(&data->lock);
  782. data->regmap = regmap;
  783. dev_set_drvdata(dev, data);
  784. ret = abb5zes3_rtc_check_setup(dev);
  785. if (ret)
  786. goto err;
  787. if (client->irq > 0) {
  788. ret = devm_request_threaded_irq(dev, client->irq, NULL,
  789. _abb5zes3_rtc_interrupt,
  790. IRQF_SHARED|IRQF_ONESHOT,
  791. DRV_NAME, client);
  792. if (!ret) {
  793. device_init_wakeup(dev, true);
  794. data->irq = client->irq;
  795. dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
  796. client->irq);
  797. } else {
  798. dev_err(dev, "%s: irq %d unavailable (%d)\n",
  799. __func__, client->irq, ret);
  800. goto err;
  801. }
  802. }
  803. data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
  804. THIS_MODULE);
  805. ret = PTR_ERR_OR_ZERO(data->rtc);
  806. if (ret) {
  807. dev_err(dev, "%s: unable to register RTC device (%d)\n",
  808. __func__, ret);
  809. goto err;
  810. }
  811. /* Enable battery low detection interrupt if battery not already low */
  812. if (!data->battery_low && data->irq) {
  813. ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
  814. if (ret) {
  815. dev_err(dev, "%s: enabling battery low interrupt "
  816. "generation failed (%d)\n", __func__, ret);
  817. goto err;
  818. }
  819. }
  820. err:
  821. if (ret && data && data->irq)
  822. device_init_wakeup(dev, false);
  823. return ret;
  824. }
  825. static int abb5zes3_remove(struct i2c_client *client)
  826. {
  827. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
  828. if (rtc_data->irq > 0)
  829. device_init_wakeup(&client->dev, false);
  830. return 0;
  831. }
  832. #ifdef CONFIG_PM_SLEEP
  833. static int abb5zes3_rtc_suspend(struct device *dev)
  834. {
  835. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  836. if (device_may_wakeup(dev))
  837. return enable_irq_wake(rtc_data->irq);
  838. return 0;
  839. }
  840. static int abb5zes3_rtc_resume(struct device *dev)
  841. {
  842. struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
  843. if (device_may_wakeup(dev))
  844. return disable_irq_wake(rtc_data->irq);
  845. return 0;
  846. }
  847. #endif
  848. static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
  849. abb5zes3_rtc_resume);
  850. #ifdef CONFIG_OF
  851. static const struct of_device_id abb5zes3_dt_match[] = {
  852. { .compatible = "abracon,abb5zes3" },
  853. { },
  854. };
  855. MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
  856. #endif
  857. static const struct i2c_device_id abb5zes3_id[] = {
  858. { "abb5zes3", 0 },
  859. { }
  860. };
  861. MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
  862. static struct i2c_driver abb5zes3_driver = {
  863. .driver = {
  864. .name = DRV_NAME,
  865. .pm = &abb5zes3_rtc_pm_ops,
  866. .of_match_table = of_match_ptr(abb5zes3_dt_match),
  867. },
  868. .probe = abb5zes3_probe,
  869. .remove = abb5zes3_remove,
  870. .id_table = abb5zes3_id,
  871. };
  872. module_i2c_driver(abb5zes3_driver);
  873. MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
  874. MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
  875. MODULE_LICENSE("GPL");