rdma.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <rdma/mr_pool.h>
  19. #include <linux/err.h>
  20. #include <linux/string.h>
  21. #include <linux/atomic.h>
  22. #include <linux/blk-mq.h>
  23. #include <linux/blk-mq-rdma.h>
  24. #include <linux/types.h>
  25. #include <linux/list.h>
  26. #include <linux/mutex.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/nvme.h>
  29. #include <asm/unaligned.h>
  30. #include <rdma/ib_verbs.h>
  31. #include <rdma/rdma_cm.h>
  32. #include <linux/nvme-rdma.h>
  33. #include "nvme.h"
  34. #include "fabrics.h"
  35. #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
  36. #define NVME_RDMA_MAX_SEGMENTS 256
  37. #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
  38. struct nvme_rdma_device {
  39. struct ib_device *dev;
  40. struct ib_pd *pd;
  41. struct kref ref;
  42. struct list_head entry;
  43. };
  44. struct nvme_rdma_qe {
  45. struct ib_cqe cqe;
  46. void *data;
  47. u64 dma;
  48. };
  49. struct nvme_rdma_queue;
  50. struct nvme_rdma_request {
  51. struct nvme_request req;
  52. struct ib_mr *mr;
  53. struct nvme_rdma_qe sqe;
  54. union nvme_result result;
  55. __le16 status;
  56. refcount_t ref;
  57. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  58. u32 num_sge;
  59. int nents;
  60. struct ib_reg_wr reg_wr;
  61. struct ib_cqe reg_cqe;
  62. struct nvme_rdma_queue *queue;
  63. struct sg_table sg_table;
  64. struct scatterlist first_sgl[];
  65. };
  66. enum nvme_rdma_queue_flags {
  67. NVME_RDMA_Q_ALLOCATED = 0,
  68. NVME_RDMA_Q_LIVE = 1,
  69. NVME_RDMA_Q_TR_READY = 2,
  70. };
  71. struct nvme_rdma_queue {
  72. struct nvme_rdma_qe *rsp_ring;
  73. int queue_size;
  74. size_t cmnd_capsule_len;
  75. struct nvme_rdma_ctrl *ctrl;
  76. struct nvme_rdma_device *device;
  77. struct ib_cq *ib_cq;
  78. struct ib_qp *qp;
  79. unsigned long flags;
  80. struct rdma_cm_id *cm_id;
  81. int cm_error;
  82. struct completion cm_done;
  83. };
  84. struct nvme_rdma_ctrl {
  85. /* read only in the hot path */
  86. struct nvme_rdma_queue *queues;
  87. /* other member variables */
  88. struct blk_mq_tag_set tag_set;
  89. struct work_struct err_work;
  90. struct nvme_rdma_qe async_event_sqe;
  91. struct delayed_work reconnect_work;
  92. struct list_head list;
  93. struct blk_mq_tag_set admin_tag_set;
  94. struct nvme_rdma_device *device;
  95. u32 max_fr_pages;
  96. struct sockaddr_storage addr;
  97. struct sockaddr_storage src_addr;
  98. struct nvme_ctrl ctrl;
  99. };
  100. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  101. {
  102. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  103. }
  104. static LIST_HEAD(device_list);
  105. static DEFINE_MUTEX(device_list_mutex);
  106. static LIST_HEAD(nvme_rdma_ctrl_list);
  107. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  108. /*
  109. * Disabling this option makes small I/O goes faster, but is fundamentally
  110. * unsafe. With it turned off we will have to register a global rkey that
  111. * allows read and write access to all physical memory.
  112. */
  113. static bool register_always = true;
  114. module_param(register_always, bool, 0444);
  115. MODULE_PARM_DESC(register_always,
  116. "Use memory registration even for contiguous memory regions");
  117. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  118. struct rdma_cm_event *event);
  119. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  120. static const struct blk_mq_ops nvme_rdma_mq_ops;
  121. static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
  122. /* XXX: really should move to a generic header sooner or later.. */
  123. static inline void put_unaligned_le24(u32 val, u8 *p)
  124. {
  125. *p++ = val;
  126. *p++ = val >> 8;
  127. *p++ = val >> 16;
  128. }
  129. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  130. {
  131. return queue - queue->ctrl->queues;
  132. }
  133. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  134. {
  135. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  136. }
  137. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  138. size_t capsule_size, enum dma_data_direction dir)
  139. {
  140. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  141. kfree(qe->data);
  142. }
  143. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  144. size_t capsule_size, enum dma_data_direction dir)
  145. {
  146. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  147. if (!qe->data)
  148. return -ENOMEM;
  149. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  150. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  151. kfree(qe->data);
  152. return -ENOMEM;
  153. }
  154. return 0;
  155. }
  156. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  157. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  158. size_t capsule_size, enum dma_data_direction dir)
  159. {
  160. int i;
  161. for (i = 0; i < ib_queue_size; i++)
  162. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  163. kfree(ring);
  164. }
  165. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  166. size_t ib_queue_size, size_t capsule_size,
  167. enum dma_data_direction dir)
  168. {
  169. struct nvme_rdma_qe *ring;
  170. int i;
  171. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  172. if (!ring)
  173. return NULL;
  174. for (i = 0; i < ib_queue_size; i++) {
  175. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  176. goto out_free_ring;
  177. }
  178. return ring;
  179. out_free_ring:
  180. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  181. return NULL;
  182. }
  183. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  184. {
  185. pr_debug("QP event %s (%d)\n",
  186. ib_event_msg(event->event), event->event);
  187. }
  188. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  189. {
  190. wait_for_completion_interruptible_timeout(&queue->cm_done,
  191. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  192. return queue->cm_error;
  193. }
  194. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  195. {
  196. struct nvme_rdma_device *dev = queue->device;
  197. struct ib_qp_init_attr init_attr;
  198. int ret;
  199. memset(&init_attr, 0, sizeof(init_attr));
  200. init_attr.event_handler = nvme_rdma_qp_event;
  201. /* +1 for drain */
  202. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  203. /* +1 for drain */
  204. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  205. init_attr.cap.max_recv_sge = 1;
  206. init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
  207. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  208. init_attr.qp_type = IB_QPT_RC;
  209. init_attr.send_cq = queue->ib_cq;
  210. init_attr.recv_cq = queue->ib_cq;
  211. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  212. queue->qp = queue->cm_id->qp;
  213. return ret;
  214. }
  215. static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
  216. struct request *rq, unsigned int hctx_idx)
  217. {
  218. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  219. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  220. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  221. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  222. struct nvme_rdma_device *dev = queue->device;
  223. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  224. DMA_TO_DEVICE);
  225. }
  226. static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
  227. struct request *rq, unsigned int hctx_idx,
  228. unsigned int numa_node)
  229. {
  230. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  231. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  232. int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
  233. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  234. struct nvme_rdma_device *dev = queue->device;
  235. struct ib_device *ibdev = dev->dev;
  236. int ret;
  237. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  238. DMA_TO_DEVICE);
  239. if (ret)
  240. return ret;
  241. req->queue = queue;
  242. return 0;
  243. }
  244. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  245. unsigned int hctx_idx)
  246. {
  247. struct nvme_rdma_ctrl *ctrl = data;
  248. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  249. BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
  250. hctx->driver_data = queue;
  251. return 0;
  252. }
  253. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  254. unsigned int hctx_idx)
  255. {
  256. struct nvme_rdma_ctrl *ctrl = data;
  257. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  258. BUG_ON(hctx_idx != 0);
  259. hctx->driver_data = queue;
  260. return 0;
  261. }
  262. static void nvme_rdma_free_dev(struct kref *ref)
  263. {
  264. struct nvme_rdma_device *ndev =
  265. container_of(ref, struct nvme_rdma_device, ref);
  266. mutex_lock(&device_list_mutex);
  267. list_del(&ndev->entry);
  268. mutex_unlock(&device_list_mutex);
  269. ib_dealloc_pd(ndev->pd);
  270. kfree(ndev);
  271. }
  272. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  273. {
  274. kref_put(&dev->ref, nvme_rdma_free_dev);
  275. }
  276. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  277. {
  278. return kref_get_unless_zero(&dev->ref);
  279. }
  280. static struct nvme_rdma_device *
  281. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  282. {
  283. struct nvme_rdma_device *ndev;
  284. mutex_lock(&device_list_mutex);
  285. list_for_each_entry(ndev, &device_list, entry) {
  286. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  287. nvme_rdma_dev_get(ndev))
  288. goto out_unlock;
  289. }
  290. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  291. if (!ndev)
  292. goto out_err;
  293. ndev->dev = cm_id->device;
  294. kref_init(&ndev->ref);
  295. ndev->pd = ib_alloc_pd(ndev->dev,
  296. register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
  297. if (IS_ERR(ndev->pd))
  298. goto out_free_dev;
  299. if (!(ndev->dev->attrs.device_cap_flags &
  300. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  301. dev_err(&ndev->dev->dev,
  302. "Memory registrations not supported.\n");
  303. goto out_free_pd;
  304. }
  305. list_add(&ndev->entry, &device_list);
  306. out_unlock:
  307. mutex_unlock(&device_list_mutex);
  308. return ndev;
  309. out_free_pd:
  310. ib_dealloc_pd(ndev->pd);
  311. out_free_dev:
  312. kfree(ndev);
  313. out_err:
  314. mutex_unlock(&device_list_mutex);
  315. return NULL;
  316. }
  317. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  318. {
  319. struct nvme_rdma_device *dev;
  320. struct ib_device *ibdev;
  321. if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
  322. return;
  323. dev = queue->device;
  324. ibdev = dev->dev;
  325. ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
  326. /*
  327. * The cm_id object might have been destroyed during RDMA connection
  328. * establishment error flow to avoid getting other cma events, thus
  329. * the destruction of the QP shouldn't use rdma_cm API.
  330. */
  331. ib_destroy_qp(queue->qp);
  332. ib_free_cq(queue->ib_cq);
  333. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  334. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  335. nvme_rdma_dev_put(dev);
  336. }
  337. static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
  338. {
  339. return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  340. ibdev->attrs.max_fast_reg_page_list_len);
  341. }
  342. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
  343. {
  344. struct ib_device *ibdev;
  345. const int send_wr_factor = 3; /* MR, SEND, INV */
  346. const int cq_factor = send_wr_factor + 1; /* + RECV */
  347. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  348. int ret;
  349. queue->device = nvme_rdma_find_get_device(queue->cm_id);
  350. if (!queue->device) {
  351. dev_err(queue->cm_id->device->dev.parent,
  352. "no client data found!\n");
  353. return -ECONNREFUSED;
  354. }
  355. ibdev = queue->device->dev;
  356. /*
  357. * Spread I/O queues completion vectors according their queue index.
  358. * Admin queues can always go on completion vector 0.
  359. */
  360. comp_vector = idx == 0 ? idx : idx - 1;
  361. /* +1 for ib_stop_cq */
  362. queue->ib_cq = ib_alloc_cq(ibdev, queue,
  363. cq_factor * queue->queue_size + 1,
  364. comp_vector, IB_POLL_SOFTIRQ);
  365. if (IS_ERR(queue->ib_cq)) {
  366. ret = PTR_ERR(queue->ib_cq);
  367. goto out_put_dev;
  368. }
  369. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  370. if (ret)
  371. goto out_destroy_ib_cq;
  372. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  373. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  374. if (!queue->rsp_ring) {
  375. ret = -ENOMEM;
  376. goto out_destroy_qp;
  377. }
  378. ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
  379. queue->queue_size,
  380. IB_MR_TYPE_MEM_REG,
  381. nvme_rdma_get_max_fr_pages(ibdev));
  382. if (ret) {
  383. dev_err(queue->ctrl->ctrl.device,
  384. "failed to initialize MR pool sized %d for QID %d\n",
  385. queue->queue_size, idx);
  386. goto out_destroy_ring;
  387. }
  388. set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
  389. return 0;
  390. out_destroy_ring:
  391. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  392. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  393. out_destroy_qp:
  394. rdma_destroy_qp(queue->cm_id);
  395. out_destroy_ib_cq:
  396. ib_free_cq(queue->ib_cq);
  397. out_put_dev:
  398. nvme_rdma_dev_put(queue->device);
  399. return ret;
  400. }
  401. static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
  402. int idx, size_t queue_size)
  403. {
  404. struct nvme_rdma_queue *queue;
  405. struct sockaddr *src_addr = NULL;
  406. int ret;
  407. queue = &ctrl->queues[idx];
  408. queue->ctrl = ctrl;
  409. init_completion(&queue->cm_done);
  410. if (idx > 0)
  411. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  412. else
  413. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  414. queue->queue_size = queue_size;
  415. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  416. RDMA_PS_TCP, IB_QPT_RC);
  417. if (IS_ERR(queue->cm_id)) {
  418. dev_info(ctrl->ctrl.device,
  419. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  420. return PTR_ERR(queue->cm_id);
  421. }
  422. if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  423. src_addr = (struct sockaddr *)&ctrl->src_addr;
  424. queue->cm_error = -ETIMEDOUT;
  425. ret = rdma_resolve_addr(queue->cm_id, src_addr,
  426. (struct sockaddr *)&ctrl->addr,
  427. NVME_RDMA_CONNECT_TIMEOUT_MS);
  428. if (ret) {
  429. dev_info(ctrl->ctrl.device,
  430. "rdma_resolve_addr failed (%d).\n", ret);
  431. goto out_destroy_cm_id;
  432. }
  433. ret = nvme_rdma_wait_for_cm(queue);
  434. if (ret) {
  435. dev_info(ctrl->ctrl.device,
  436. "rdma connection establishment failed (%d)\n", ret);
  437. goto out_destroy_cm_id;
  438. }
  439. set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
  440. return 0;
  441. out_destroy_cm_id:
  442. rdma_destroy_id(queue->cm_id);
  443. nvme_rdma_destroy_queue_ib(queue);
  444. return ret;
  445. }
  446. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  447. {
  448. if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
  449. return;
  450. rdma_disconnect(queue->cm_id);
  451. ib_drain_qp(queue->qp);
  452. }
  453. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  454. {
  455. if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
  456. return;
  457. if (nvme_rdma_queue_idx(queue) == 0) {
  458. nvme_rdma_free_qe(queue->device->dev,
  459. &queue->ctrl->async_event_sqe,
  460. sizeof(struct nvme_command), DMA_TO_DEVICE);
  461. }
  462. nvme_rdma_destroy_queue_ib(queue);
  463. rdma_destroy_id(queue->cm_id);
  464. }
  465. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  466. {
  467. int i;
  468. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  469. nvme_rdma_free_queue(&ctrl->queues[i]);
  470. }
  471. static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
  472. {
  473. int i;
  474. for (i = 1; i < ctrl->ctrl.queue_count; i++)
  475. nvme_rdma_stop_queue(&ctrl->queues[i]);
  476. }
  477. static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
  478. {
  479. int ret;
  480. if (idx)
  481. ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
  482. else
  483. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  484. if (!ret)
  485. set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
  486. else
  487. dev_info(ctrl->ctrl.device,
  488. "failed to connect queue: %d ret=%d\n", idx, ret);
  489. return ret;
  490. }
  491. static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
  492. {
  493. int i, ret = 0;
  494. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  495. ret = nvme_rdma_start_queue(ctrl, i);
  496. if (ret)
  497. goto out_stop_queues;
  498. }
  499. return 0;
  500. out_stop_queues:
  501. for (i--; i >= 1; i--)
  502. nvme_rdma_stop_queue(&ctrl->queues[i]);
  503. return ret;
  504. }
  505. static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
  506. {
  507. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  508. struct ib_device *ibdev = ctrl->device->dev;
  509. unsigned int nr_io_queues;
  510. int i, ret;
  511. nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
  512. /*
  513. * we map queues according to the device irq vectors for
  514. * optimal locality so we don't need more queues than
  515. * completion vectors.
  516. */
  517. nr_io_queues = min_t(unsigned int, nr_io_queues,
  518. ibdev->num_comp_vectors);
  519. ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
  520. if (ret)
  521. return ret;
  522. ctrl->ctrl.queue_count = nr_io_queues + 1;
  523. if (ctrl->ctrl.queue_count < 2)
  524. return 0;
  525. dev_info(ctrl->ctrl.device,
  526. "creating %d I/O queues.\n", nr_io_queues);
  527. for (i = 1; i < ctrl->ctrl.queue_count; i++) {
  528. ret = nvme_rdma_alloc_queue(ctrl, i,
  529. ctrl->ctrl.sqsize + 1);
  530. if (ret)
  531. goto out_free_queues;
  532. }
  533. return 0;
  534. out_free_queues:
  535. for (i--; i >= 1; i--)
  536. nvme_rdma_free_queue(&ctrl->queues[i]);
  537. return ret;
  538. }
  539. static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
  540. struct blk_mq_tag_set *set)
  541. {
  542. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  543. blk_mq_free_tag_set(set);
  544. nvme_rdma_dev_put(ctrl->device);
  545. }
  546. static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
  547. bool admin)
  548. {
  549. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  550. struct blk_mq_tag_set *set;
  551. int ret;
  552. if (admin) {
  553. set = &ctrl->admin_tag_set;
  554. memset(set, 0, sizeof(*set));
  555. set->ops = &nvme_rdma_admin_mq_ops;
  556. set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  557. set->reserved_tags = 2; /* connect + keep-alive */
  558. set->numa_node = NUMA_NO_NODE;
  559. set->cmd_size = sizeof(struct nvme_rdma_request) +
  560. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  561. set->driver_data = ctrl;
  562. set->nr_hw_queues = 1;
  563. set->timeout = ADMIN_TIMEOUT;
  564. set->flags = BLK_MQ_F_NO_SCHED;
  565. } else {
  566. set = &ctrl->tag_set;
  567. memset(set, 0, sizeof(*set));
  568. set->ops = &nvme_rdma_mq_ops;
  569. set->queue_depth = nctrl->opts->queue_size;
  570. set->reserved_tags = 1; /* fabric connect */
  571. set->numa_node = NUMA_NO_NODE;
  572. set->flags = BLK_MQ_F_SHOULD_MERGE;
  573. set->cmd_size = sizeof(struct nvme_rdma_request) +
  574. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  575. set->driver_data = ctrl;
  576. set->nr_hw_queues = nctrl->queue_count - 1;
  577. set->timeout = NVME_IO_TIMEOUT;
  578. }
  579. ret = blk_mq_alloc_tag_set(set);
  580. if (ret)
  581. goto out;
  582. /*
  583. * We need a reference on the device as long as the tag_set is alive,
  584. * as the MRs in the request structures need a valid ib_device.
  585. */
  586. ret = nvme_rdma_dev_get(ctrl->device);
  587. if (!ret) {
  588. ret = -EINVAL;
  589. goto out_free_tagset;
  590. }
  591. return set;
  592. out_free_tagset:
  593. blk_mq_free_tag_set(set);
  594. out:
  595. return ERR_PTR(ret);
  596. }
  597. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
  598. bool remove)
  599. {
  600. nvme_rdma_stop_queue(&ctrl->queues[0]);
  601. if (remove) {
  602. blk_cleanup_queue(ctrl->ctrl.admin_q);
  603. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  604. }
  605. nvme_rdma_free_queue(&ctrl->queues[0]);
  606. }
  607. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
  608. bool new)
  609. {
  610. int error;
  611. error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
  612. if (error)
  613. return error;
  614. ctrl->device = ctrl->queues[0].device;
  615. ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
  616. if (new) {
  617. ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
  618. if (IS_ERR(ctrl->ctrl.admin_tagset)) {
  619. error = PTR_ERR(ctrl->ctrl.admin_tagset);
  620. goto out_free_queue;
  621. }
  622. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  623. if (IS_ERR(ctrl->ctrl.admin_q)) {
  624. error = PTR_ERR(ctrl->ctrl.admin_q);
  625. goto out_free_tagset;
  626. }
  627. }
  628. error = nvme_rdma_start_queue(ctrl, 0);
  629. if (error)
  630. goto out_cleanup_queue;
  631. error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
  632. &ctrl->ctrl.cap);
  633. if (error) {
  634. dev_err(ctrl->ctrl.device,
  635. "prop_get NVME_REG_CAP failed\n");
  636. goto out_cleanup_queue;
  637. }
  638. ctrl->ctrl.sqsize =
  639. min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
  640. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  641. if (error)
  642. goto out_cleanup_queue;
  643. ctrl->ctrl.max_hw_sectors =
  644. (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
  645. error = nvme_init_identify(&ctrl->ctrl);
  646. if (error)
  647. goto out_cleanup_queue;
  648. error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
  649. &ctrl->async_event_sqe, sizeof(struct nvme_command),
  650. DMA_TO_DEVICE);
  651. if (error)
  652. goto out_cleanup_queue;
  653. return 0;
  654. out_cleanup_queue:
  655. if (new)
  656. blk_cleanup_queue(ctrl->ctrl.admin_q);
  657. out_free_tagset:
  658. if (new)
  659. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
  660. out_free_queue:
  661. nvme_rdma_free_queue(&ctrl->queues[0]);
  662. return error;
  663. }
  664. static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
  665. bool remove)
  666. {
  667. nvme_rdma_stop_io_queues(ctrl);
  668. if (remove) {
  669. blk_cleanup_queue(ctrl->ctrl.connect_q);
  670. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  671. }
  672. nvme_rdma_free_io_queues(ctrl);
  673. }
  674. static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
  675. {
  676. int ret;
  677. ret = nvme_rdma_alloc_io_queues(ctrl);
  678. if (ret)
  679. return ret;
  680. if (new) {
  681. ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
  682. if (IS_ERR(ctrl->ctrl.tagset)) {
  683. ret = PTR_ERR(ctrl->ctrl.tagset);
  684. goto out_free_io_queues;
  685. }
  686. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  687. if (IS_ERR(ctrl->ctrl.connect_q)) {
  688. ret = PTR_ERR(ctrl->ctrl.connect_q);
  689. goto out_free_tag_set;
  690. }
  691. } else {
  692. blk_mq_update_nr_hw_queues(&ctrl->tag_set,
  693. ctrl->ctrl.queue_count - 1);
  694. }
  695. ret = nvme_rdma_start_io_queues(ctrl);
  696. if (ret)
  697. goto out_cleanup_connect_q;
  698. return 0;
  699. out_cleanup_connect_q:
  700. if (new)
  701. blk_cleanup_queue(ctrl->ctrl.connect_q);
  702. out_free_tag_set:
  703. if (new)
  704. nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
  705. out_free_io_queues:
  706. nvme_rdma_free_io_queues(ctrl);
  707. return ret;
  708. }
  709. static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
  710. {
  711. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  712. cancel_work_sync(&ctrl->err_work);
  713. cancel_delayed_work_sync(&ctrl->reconnect_work);
  714. }
  715. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  716. {
  717. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  718. if (list_empty(&ctrl->list))
  719. goto free_ctrl;
  720. mutex_lock(&nvme_rdma_ctrl_mutex);
  721. list_del(&ctrl->list);
  722. mutex_unlock(&nvme_rdma_ctrl_mutex);
  723. kfree(ctrl->queues);
  724. nvmf_free_options(nctrl->opts);
  725. free_ctrl:
  726. kfree(ctrl);
  727. }
  728. static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
  729. {
  730. /* If we are resetting/deleting then do nothing */
  731. if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
  732. WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
  733. ctrl->ctrl.state == NVME_CTRL_LIVE);
  734. return;
  735. }
  736. if (nvmf_should_reconnect(&ctrl->ctrl)) {
  737. dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
  738. ctrl->ctrl.opts->reconnect_delay);
  739. queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
  740. ctrl->ctrl.opts->reconnect_delay * HZ);
  741. } else {
  742. nvme_delete_ctrl(&ctrl->ctrl);
  743. }
  744. }
  745. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  746. {
  747. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  748. struct nvme_rdma_ctrl, reconnect_work);
  749. bool changed;
  750. int ret;
  751. ++ctrl->ctrl.nr_reconnects;
  752. ret = nvme_rdma_configure_admin_queue(ctrl, false);
  753. if (ret)
  754. goto requeue;
  755. if (ctrl->ctrl.queue_count > 1) {
  756. ret = nvme_rdma_configure_io_queues(ctrl, false);
  757. if (ret)
  758. goto destroy_admin;
  759. }
  760. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  761. if (!changed) {
  762. /* state change failure is ok if we're in DELETING state */
  763. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  764. return;
  765. }
  766. nvme_start_ctrl(&ctrl->ctrl);
  767. dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
  768. ctrl->ctrl.nr_reconnects);
  769. ctrl->ctrl.nr_reconnects = 0;
  770. return;
  771. destroy_admin:
  772. nvme_rdma_destroy_admin_queue(ctrl, false);
  773. requeue:
  774. dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
  775. ctrl->ctrl.nr_reconnects);
  776. nvme_rdma_reconnect_or_remove(ctrl);
  777. }
  778. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  779. {
  780. struct nvme_rdma_ctrl *ctrl = container_of(work,
  781. struct nvme_rdma_ctrl, err_work);
  782. nvme_stop_keep_alive(&ctrl->ctrl);
  783. if (ctrl->ctrl.queue_count > 1) {
  784. nvme_stop_queues(&ctrl->ctrl);
  785. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  786. nvme_cancel_request, &ctrl->ctrl);
  787. nvme_rdma_destroy_io_queues(ctrl, false);
  788. }
  789. blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
  790. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  791. nvme_cancel_request, &ctrl->ctrl);
  792. nvme_rdma_destroy_admin_queue(ctrl, false);
  793. /*
  794. * queues are not a live anymore, so restart the queues to fail fast
  795. * new IO
  796. */
  797. blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
  798. nvme_start_queues(&ctrl->ctrl);
  799. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  800. /* state change failure is ok if we're in DELETING state */
  801. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  802. return;
  803. }
  804. nvme_rdma_reconnect_or_remove(ctrl);
  805. }
  806. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  807. {
  808. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
  809. return;
  810. queue_work(nvme_wq, &ctrl->err_work);
  811. }
  812. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  813. const char *op)
  814. {
  815. struct nvme_rdma_queue *queue = cq->cq_context;
  816. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  817. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  818. dev_info(ctrl->ctrl.device,
  819. "%s for CQE 0x%p failed with status %s (%d)\n",
  820. op, wc->wr_cqe,
  821. ib_wc_status_msg(wc->status), wc->status);
  822. nvme_rdma_error_recovery(ctrl);
  823. }
  824. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  825. {
  826. if (unlikely(wc->status != IB_WC_SUCCESS))
  827. nvme_rdma_wr_error(cq, wc, "MEMREG");
  828. }
  829. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  830. {
  831. struct nvme_rdma_request *req =
  832. container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
  833. struct request *rq = blk_mq_rq_from_pdu(req);
  834. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  835. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  836. return;
  837. }
  838. if (refcount_dec_and_test(&req->ref))
  839. nvme_end_request(rq, req->status, req->result);
  840. }
  841. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  842. struct nvme_rdma_request *req)
  843. {
  844. struct ib_send_wr *bad_wr;
  845. struct ib_send_wr wr = {
  846. .opcode = IB_WR_LOCAL_INV,
  847. .next = NULL,
  848. .num_sge = 0,
  849. .send_flags = IB_SEND_SIGNALED,
  850. .ex.invalidate_rkey = req->mr->rkey,
  851. };
  852. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  853. wr.wr_cqe = &req->reg_cqe;
  854. return ib_post_send(queue->qp, &wr, &bad_wr);
  855. }
  856. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  857. struct request *rq)
  858. {
  859. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  860. struct nvme_rdma_device *dev = queue->device;
  861. struct ib_device *ibdev = dev->dev;
  862. if (!blk_rq_payload_bytes(rq))
  863. return;
  864. if (req->mr) {
  865. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  866. req->mr = NULL;
  867. }
  868. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  869. req->nents, rq_data_dir(rq) ==
  870. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  871. nvme_cleanup_cmd(rq);
  872. sg_free_table_chained(&req->sg_table, true);
  873. }
  874. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  875. {
  876. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  877. sg->addr = 0;
  878. put_unaligned_le24(0, sg->length);
  879. put_unaligned_le32(0, sg->key);
  880. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  881. return 0;
  882. }
  883. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  884. struct nvme_rdma_request *req, struct nvme_command *c)
  885. {
  886. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  887. req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
  888. req->sge[1].length = sg_dma_len(req->sg_table.sgl);
  889. req->sge[1].lkey = queue->device->pd->local_dma_lkey;
  890. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  891. sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
  892. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  893. req->num_sge++;
  894. return 0;
  895. }
  896. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  897. struct nvme_rdma_request *req, struct nvme_command *c)
  898. {
  899. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  900. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  901. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  902. put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
  903. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  904. return 0;
  905. }
  906. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  907. struct nvme_rdma_request *req, struct nvme_command *c,
  908. int count)
  909. {
  910. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  911. int nr;
  912. req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
  913. if (WARN_ON_ONCE(!req->mr))
  914. return -EAGAIN;
  915. /*
  916. * Align the MR to a 4K page size to match the ctrl page size and
  917. * the block virtual boundary.
  918. */
  919. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
  920. if (unlikely(nr < count)) {
  921. ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
  922. req->mr = NULL;
  923. if (nr < 0)
  924. return nr;
  925. return -EINVAL;
  926. }
  927. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  928. req->reg_cqe.done = nvme_rdma_memreg_done;
  929. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  930. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  931. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  932. req->reg_wr.wr.num_sge = 0;
  933. req->reg_wr.mr = req->mr;
  934. req->reg_wr.key = req->mr->rkey;
  935. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  936. IB_ACCESS_REMOTE_READ |
  937. IB_ACCESS_REMOTE_WRITE;
  938. sg->addr = cpu_to_le64(req->mr->iova);
  939. put_unaligned_le24(req->mr->length, sg->length);
  940. put_unaligned_le32(req->mr->rkey, sg->key);
  941. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  942. NVME_SGL_FMT_INVALIDATE;
  943. return 0;
  944. }
  945. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  946. struct request *rq, struct nvme_command *c)
  947. {
  948. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  949. struct nvme_rdma_device *dev = queue->device;
  950. struct ib_device *ibdev = dev->dev;
  951. int count, ret;
  952. req->num_sge = 1;
  953. refcount_set(&req->ref, 2); /* send and recv completions */
  954. c->common.flags |= NVME_CMD_SGL_METABUF;
  955. if (!blk_rq_payload_bytes(rq))
  956. return nvme_rdma_set_sg_null(c);
  957. req->sg_table.sgl = req->first_sgl;
  958. ret = sg_alloc_table_chained(&req->sg_table,
  959. blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
  960. if (ret)
  961. return -ENOMEM;
  962. req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  963. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
  964. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  965. if (unlikely(count <= 0)) {
  966. sg_free_table_chained(&req->sg_table, true);
  967. return -EIO;
  968. }
  969. if (count == 1) {
  970. if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
  971. blk_rq_payload_bytes(rq) <=
  972. nvme_rdma_inline_data_size(queue))
  973. return nvme_rdma_map_sg_inline(queue, req, c);
  974. if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  975. return nvme_rdma_map_sg_single(queue, req, c);
  976. }
  977. return nvme_rdma_map_sg_fr(queue, req, c, count);
  978. }
  979. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  980. {
  981. struct nvme_rdma_qe *qe =
  982. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  983. struct nvme_rdma_request *req =
  984. container_of(qe, struct nvme_rdma_request, sqe);
  985. struct request *rq = blk_mq_rq_from_pdu(req);
  986. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  987. nvme_rdma_wr_error(cq, wc, "SEND");
  988. return;
  989. }
  990. if (refcount_dec_and_test(&req->ref))
  991. nvme_end_request(rq, req->status, req->result);
  992. }
  993. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  994. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  995. struct ib_send_wr *first)
  996. {
  997. struct ib_send_wr wr, *bad_wr;
  998. int ret;
  999. sge->addr = qe->dma;
  1000. sge->length = sizeof(struct nvme_command),
  1001. sge->lkey = queue->device->pd->local_dma_lkey;
  1002. wr.next = NULL;
  1003. wr.wr_cqe = &qe->cqe;
  1004. wr.sg_list = sge;
  1005. wr.num_sge = num_sge;
  1006. wr.opcode = IB_WR_SEND;
  1007. wr.send_flags = IB_SEND_SIGNALED;
  1008. if (first)
  1009. first->next = &wr;
  1010. else
  1011. first = &wr;
  1012. ret = ib_post_send(queue->qp, first, &bad_wr);
  1013. if (unlikely(ret)) {
  1014. dev_err(queue->ctrl->ctrl.device,
  1015. "%s failed with error code %d\n", __func__, ret);
  1016. }
  1017. return ret;
  1018. }
  1019. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  1020. struct nvme_rdma_qe *qe)
  1021. {
  1022. struct ib_recv_wr wr, *bad_wr;
  1023. struct ib_sge list;
  1024. int ret;
  1025. list.addr = qe->dma;
  1026. list.length = sizeof(struct nvme_completion);
  1027. list.lkey = queue->device->pd->local_dma_lkey;
  1028. qe->cqe.done = nvme_rdma_recv_done;
  1029. wr.next = NULL;
  1030. wr.wr_cqe = &qe->cqe;
  1031. wr.sg_list = &list;
  1032. wr.num_sge = 1;
  1033. ret = ib_post_recv(queue->qp, &wr, &bad_wr);
  1034. if (unlikely(ret)) {
  1035. dev_err(queue->ctrl->ctrl.device,
  1036. "%s failed with error code %d\n", __func__, ret);
  1037. }
  1038. return ret;
  1039. }
  1040. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  1041. {
  1042. u32 queue_idx = nvme_rdma_queue_idx(queue);
  1043. if (queue_idx == 0)
  1044. return queue->ctrl->admin_tag_set.tags[queue_idx];
  1045. return queue->ctrl->tag_set.tags[queue_idx - 1];
  1046. }
  1047. static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
  1048. {
  1049. if (unlikely(wc->status != IB_WC_SUCCESS))
  1050. nvme_rdma_wr_error(cq, wc, "ASYNC");
  1051. }
  1052. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
  1053. {
  1054. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  1055. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  1056. struct ib_device *dev = queue->device->dev;
  1057. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  1058. struct nvme_command *cmd = sqe->data;
  1059. struct ib_sge sge;
  1060. int ret;
  1061. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  1062. memset(cmd, 0, sizeof(*cmd));
  1063. cmd->common.opcode = nvme_admin_async_event;
  1064. cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  1065. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  1066. nvme_rdma_set_sg_null(cmd);
  1067. sqe->cqe.done = nvme_rdma_async_done;
  1068. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  1069. DMA_TO_DEVICE);
  1070. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
  1071. WARN_ON_ONCE(ret);
  1072. }
  1073. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  1074. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  1075. {
  1076. struct request *rq;
  1077. struct nvme_rdma_request *req;
  1078. int ret = 0;
  1079. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  1080. if (!rq) {
  1081. dev_err(queue->ctrl->ctrl.device,
  1082. "tag 0x%x on QP %#x not found\n",
  1083. cqe->command_id, queue->qp->qp_num);
  1084. nvme_rdma_error_recovery(queue->ctrl);
  1085. return ret;
  1086. }
  1087. req = blk_mq_rq_to_pdu(rq);
  1088. req->status = cqe->status;
  1089. req->result = cqe->result;
  1090. if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
  1091. if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
  1092. dev_err(queue->ctrl->ctrl.device,
  1093. "Bogus remote invalidation for rkey %#x\n",
  1094. req->mr->rkey);
  1095. nvme_rdma_error_recovery(queue->ctrl);
  1096. }
  1097. } else if (req->mr) {
  1098. ret = nvme_rdma_inv_rkey(queue, req);
  1099. if (unlikely(ret < 0)) {
  1100. dev_err(queue->ctrl->ctrl.device,
  1101. "Queueing INV WR for rkey %#x failed (%d)\n",
  1102. req->mr->rkey, ret);
  1103. nvme_rdma_error_recovery(queue->ctrl);
  1104. }
  1105. /* the local invalidation completion will end the request */
  1106. return 0;
  1107. }
  1108. if (refcount_dec_and_test(&req->ref)) {
  1109. if (rq->tag == tag)
  1110. ret = 1;
  1111. nvme_end_request(rq, req->status, req->result);
  1112. }
  1113. return ret;
  1114. }
  1115. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  1116. {
  1117. struct nvme_rdma_qe *qe =
  1118. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  1119. struct nvme_rdma_queue *queue = cq->cq_context;
  1120. struct ib_device *ibdev = queue->device->dev;
  1121. struct nvme_completion *cqe = qe->data;
  1122. const size_t len = sizeof(struct nvme_completion);
  1123. int ret = 0;
  1124. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  1125. nvme_rdma_wr_error(cq, wc, "RECV");
  1126. return 0;
  1127. }
  1128. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1129. /*
  1130. * AEN requests are special as they don't time out and can
  1131. * survive any kind of queue freeze and often don't respond to
  1132. * aborts. We don't even bother to allocate a struct request
  1133. * for them but rather special case them here.
  1134. */
  1135. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  1136. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
  1137. nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
  1138. &cqe->result);
  1139. else
  1140. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  1141. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  1142. nvme_rdma_post_recv(queue, qe);
  1143. return ret;
  1144. }
  1145. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  1146. {
  1147. __nvme_rdma_recv_done(cq, wc, -1);
  1148. }
  1149. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  1150. {
  1151. int ret, i;
  1152. for (i = 0; i < queue->queue_size; i++) {
  1153. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  1154. if (ret)
  1155. goto out_destroy_queue_ib;
  1156. }
  1157. return 0;
  1158. out_destroy_queue_ib:
  1159. nvme_rdma_destroy_queue_ib(queue);
  1160. return ret;
  1161. }
  1162. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  1163. struct rdma_cm_event *ev)
  1164. {
  1165. struct rdma_cm_id *cm_id = queue->cm_id;
  1166. int status = ev->status;
  1167. const char *rej_msg;
  1168. const struct nvme_rdma_cm_rej *rej_data;
  1169. u8 rej_data_len;
  1170. rej_msg = rdma_reject_msg(cm_id, status);
  1171. rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
  1172. if (rej_data && rej_data_len >= sizeof(u16)) {
  1173. u16 sts = le16_to_cpu(rej_data->sts);
  1174. dev_err(queue->ctrl->ctrl.device,
  1175. "Connect rejected: status %d (%s) nvme status %d (%s).\n",
  1176. status, rej_msg, sts, nvme_rdma_cm_msg(sts));
  1177. } else {
  1178. dev_err(queue->ctrl->ctrl.device,
  1179. "Connect rejected: status %d (%s).\n", status, rej_msg);
  1180. }
  1181. return -ECONNRESET;
  1182. }
  1183. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  1184. {
  1185. int ret;
  1186. ret = nvme_rdma_create_queue_ib(queue);
  1187. if (ret)
  1188. return ret;
  1189. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1190. if (ret) {
  1191. dev_err(queue->ctrl->ctrl.device,
  1192. "rdma_resolve_route failed (%d).\n",
  1193. queue->cm_error);
  1194. goto out_destroy_queue;
  1195. }
  1196. return 0;
  1197. out_destroy_queue:
  1198. nvme_rdma_destroy_queue_ib(queue);
  1199. return ret;
  1200. }
  1201. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1202. {
  1203. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1204. struct rdma_conn_param param = { };
  1205. struct nvme_rdma_cm_req priv = { };
  1206. int ret;
  1207. param.qp_num = queue->qp->qp_num;
  1208. param.flow_control = 1;
  1209. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1210. /* maximum retry count */
  1211. param.retry_count = 7;
  1212. param.rnr_retry_count = 7;
  1213. param.private_data = &priv;
  1214. param.private_data_len = sizeof(priv);
  1215. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1216. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1217. /*
  1218. * set the admin queue depth to the minimum size
  1219. * specified by the Fabrics standard.
  1220. */
  1221. if (priv.qid == 0) {
  1222. priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
  1223. priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
  1224. } else {
  1225. /*
  1226. * current interpretation of the fabrics spec
  1227. * is at minimum you make hrqsize sqsize+1, or a
  1228. * 1's based representation of sqsize.
  1229. */
  1230. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1231. priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
  1232. }
  1233. ret = rdma_connect(queue->cm_id, &param);
  1234. if (ret) {
  1235. dev_err(ctrl->ctrl.device,
  1236. "rdma_connect failed (%d).\n", ret);
  1237. goto out_destroy_queue_ib;
  1238. }
  1239. return 0;
  1240. out_destroy_queue_ib:
  1241. nvme_rdma_destroy_queue_ib(queue);
  1242. return ret;
  1243. }
  1244. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1245. struct rdma_cm_event *ev)
  1246. {
  1247. struct nvme_rdma_queue *queue = cm_id->context;
  1248. int cm_error = 0;
  1249. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1250. rdma_event_msg(ev->event), ev->event,
  1251. ev->status, cm_id);
  1252. switch (ev->event) {
  1253. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1254. cm_error = nvme_rdma_addr_resolved(queue);
  1255. break;
  1256. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1257. cm_error = nvme_rdma_route_resolved(queue);
  1258. break;
  1259. case RDMA_CM_EVENT_ESTABLISHED:
  1260. queue->cm_error = nvme_rdma_conn_established(queue);
  1261. /* complete cm_done regardless of success/failure */
  1262. complete(&queue->cm_done);
  1263. return 0;
  1264. case RDMA_CM_EVENT_REJECTED:
  1265. nvme_rdma_destroy_queue_ib(queue);
  1266. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1267. break;
  1268. case RDMA_CM_EVENT_ROUTE_ERROR:
  1269. case RDMA_CM_EVENT_CONNECT_ERROR:
  1270. case RDMA_CM_EVENT_UNREACHABLE:
  1271. nvme_rdma_destroy_queue_ib(queue);
  1272. case RDMA_CM_EVENT_ADDR_ERROR:
  1273. dev_dbg(queue->ctrl->ctrl.device,
  1274. "CM error event %d\n", ev->event);
  1275. cm_error = -ECONNRESET;
  1276. break;
  1277. case RDMA_CM_EVENT_DISCONNECTED:
  1278. case RDMA_CM_EVENT_ADDR_CHANGE:
  1279. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1280. dev_dbg(queue->ctrl->ctrl.device,
  1281. "disconnect received - connection closed\n");
  1282. nvme_rdma_error_recovery(queue->ctrl);
  1283. break;
  1284. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1285. /* device removal is handled via the ib_client API */
  1286. break;
  1287. default:
  1288. dev_err(queue->ctrl->ctrl.device,
  1289. "Unexpected RDMA CM event (%d)\n", ev->event);
  1290. nvme_rdma_error_recovery(queue->ctrl);
  1291. break;
  1292. }
  1293. if (cm_error) {
  1294. queue->cm_error = cm_error;
  1295. complete(&queue->cm_done);
  1296. }
  1297. return 0;
  1298. }
  1299. static enum blk_eh_timer_return
  1300. nvme_rdma_timeout(struct request *rq, bool reserved)
  1301. {
  1302. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1303. dev_warn(req->queue->ctrl->ctrl.device,
  1304. "I/O %d QID %d timeout, reset controller\n",
  1305. rq->tag, nvme_rdma_queue_idx(req->queue));
  1306. /* queue error recovery */
  1307. nvme_rdma_error_recovery(req->queue->ctrl);
  1308. /* fail with DNR on cmd timeout */
  1309. nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
  1310. return BLK_EH_HANDLED;
  1311. }
  1312. static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1313. const struct blk_mq_queue_data *bd)
  1314. {
  1315. struct nvme_ns *ns = hctx->queue->queuedata;
  1316. struct nvme_rdma_queue *queue = hctx->driver_data;
  1317. struct request *rq = bd->rq;
  1318. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1319. struct nvme_rdma_qe *sqe = &req->sqe;
  1320. struct nvme_command *c = sqe->data;
  1321. struct ib_device *dev;
  1322. blk_status_t ret;
  1323. int err;
  1324. WARN_ON_ONCE(rq->tag < 0);
  1325. ret = nvmf_check_if_ready(&queue->ctrl->ctrl, rq,
  1326. test_bit(NVME_RDMA_Q_LIVE, &queue->flags), true);
  1327. if (unlikely(ret))
  1328. return ret;
  1329. dev = queue->device->dev;
  1330. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1331. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1332. ret = nvme_setup_cmd(ns, rq, c);
  1333. if (ret)
  1334. return ret;
  1335. blk_mq_start_request(rq);
  1336. err = nvme_rdma_map_data(queue, rq, c);
  1337. if (unlikely(err < 0)) {
  1338. dev_err(queue->ctrl->ctrl.device,
  1339. "Failed to map data (%d)\n", err);
  1340. nvme_cleanup_cmd(rq);
  1341. goto err;
  1342. }
  1343. sqe->cqe.done = nvme_rdma_send_done;
  1344. ib_dma_sync_single_for_device(dev, sqe->dma,
  1345. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1346. err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1347. req->mr ? &req->reg_wr.wr : NULL);
  1348. if (unlikely(err)) {
  1349. nvme_rdma_unmap_data(queue, rq);
  1350. goto err;
  1351. }
  1352. return BLK_STS_OK;
  1353. err:
  1354. if (err == -ENOMEM || err == -EAGAIN)
  1355. return BLK_STS_RESOURCE;
  1356. return BLK_STS_IOERR;
  1357. }
  1358. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1359. {
  1360. struct nvme_rdma_queue *queue = hctx->driver_data;
  1361. struct ib_cq *cq = queue->ib_cq;
  1362. struct ib_wc wc;
  1363. int found = 0;
  1364. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1365. struct ib_cqe *cqe = wc.wr_cqe;
  1366. if (cqe) {
  1367. if (cqe->done == nvme_rdma_recv_done)
  1368. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1369. else
  1370. cqe->done(cq, &wc);
  1371. }
  1372. }
  1373. return found;
  1374. }
  1375. static void nvme_rdma_complete_rq(struct request *rq)
  1376. {
  1377. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1378. nvme_rdma_unmap_data(req->queue, rq);
  1379. nvme_complete_rq(rq);
  1380. }
  1381. static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
  1382. {
  1383. struct nvme_rdma_ctrl *ctrl = set->driver_data;
  1384. return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
  1385. }
  1386. static const struct blk_mq_ops nvme_rdma_mq_ops = {
  1387. .queue_rq = nvme_rdma_queue_rq,
  1388. .complete = nvme_rdma_complete_rq,
  1389. .init_request = nvme_rdma_init_request,
  1390. .exit_request = nvme_rdma_exit_request,
  1391. .init_hctx = nvme_rdma_init_hctx,
  1392. .poll = nvme_rdma_poll,
  1393. .timeout = nvme_rdma_timeout,
  1394. .map_queues = nvme_rdma_map_queues,
  1395. };
  1396. static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1397. .queue_rq = nvme_rdma_queue_rq,
  1398. .complete = nvme_rdma_complete_rq,
  1399. .init_request = nvme_rdma_init_request,
  1400. .exit_request = nvme_rdma_exit_request,
  1401. .init_hctx = nvme_rdma_init_admin_hctx,
  1402. .timeout = nvme_rdma_timeout,
  1403. };
  1404. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1405. {
  1406. if (ctrl->ctrl.queue_count > 1) {
  1407. nvme_stop_queues(&ctrl->ctrl);
  1408. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  1409. nvme_cancel_request, &ctrl->ctrl);
  1410. nvme_rdma_destroy_io_queues(ctrl, shutdown);
  1411. }
  1412. if (shutdown)
  1413. nvme_shutdown_ctrl(&ctrl->ctrl);
  1414. else
  1415. nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
  1416. blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
  1417. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  1418. nvme_cancel_request, &ctrl->ctrl);
  1419. blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
  1420. nvme_rdma_destroy_admin_queue(ctrl, shutdown);
  1421. }
  1422. static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
  1423. {
  1424. nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
  1425. }
  1426. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1427. {
  1428. struct nvme_rdma_ctrl *ctrl =
  1429. container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
  1430. int ret;
  1431. bool changed;
  1432. nvme_stop_ctrl(&ctrl->ctrl);
  1433. nvme_rdma_shutdown_ctrl(ctrl, false);
  1434. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
  1435. /* state change failure should never happen */
  1436. WARN_ON_ONCE(1);
  1437. return;
  1438. }
  1439. ret = nvme_rdma_configure_admin_queue(ctrl, false);
  1440. if (ret)
  1441. goto out_fail;
  1442. if (ctrl->ctrl.queue_count > 1) {
  1443. ret = nvme_rdma_configure_io_queues(ctrl, false);
  1444. if (ret)
  1445. goto out_fail;
  1446. }
  1447. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1448. if (!changed) {
  1449. /* state change failure is ok if we're in DELETING state */
  1450. WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
  1451. return;
  1452. }
  1453. nvme_start_ctrl(&ctrl->ctrl);
  1454. return;
  1455. out_fail:
  1456. ++ctrl->ctrl.nr_reconnects;
  1457. nvme_rdma_reconnect_or_remove(ctrl);
  1458. }
  1459. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1460. .name = "rdma",
  1461. .module = THIS_MODULE,
  1462. .flags = NVME_F_FABRICS,
  1463. .reg_read32 = nvmf_reg_read32,
  1464. .reg_read64 = nvmf_reg_read64,
  1465. .reg_write32 = nvmf_reg_write32,
  1466. .free_ctrl = nvme_rdma_free_ctrl,
  1467. .submit_async_event = nvme_rdma_submit_async_event,
  1468. .delete_ctrl = nvme_rdma_delete_ctrl,
  1469. .get_address = nvmf_get_address,
  1470. .stop_ctrl = nvme_rdma_stop_ctrl,
  1471. };
  1472. static inline bool
  1473. __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
  1474. struct nvmf_ctrl_options *opts)
  1475. {
  1476. char *stdport = __stringify(NVME_RDMA_IP_PORT);
  1477. if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
  1478. strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
  1479. return false;
  1480. if (opts->mask & NVMF_OPT_TRSVCID &&
  1481. ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1482. if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
  1483. return false;
  1484. } else if (opts->mask & NVMF_OPT_TRSVCID) {
  1485. if (strcmp(opts->trsvcid, stdport))
  1486. return false;
  1487. } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
  1488. if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
  1489. return false;
  1490. }
  1491. /* else, it's a match as both have stdport. Fall to next checks */
  1492. /*
  1493. * checking the local address is rough. In most cases, one
  1494. * is not specified and the host port is selected by the stack.
  1495. *
  1496. * Assume no match if:
  1497. * local address is specified and address is not the same
  1498. * local address is not specified but remote is, or vice versa
  1499. * (admin using specific host_traddr when it matters).
  1500. */
  1501. if (opts->mask & NVMF_OPT_HOST_TRADDR &&
  1502. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
  1503. if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
  1504. return false;
  1505. } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
  1506. ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
  1507. return false;
  1508. /*
  1509. * if neither controller had an host port specified, assume it's
  1510. * a match as everything else matched.
  1511. */
  1512. return true;
  1513. }
  1514. /*
  1515. * Fails a connection request if it matches an existing controller
  1516. * (association) with the same tuple:
  1517. * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
  1518. *
  1519. * if local address is not specified in the request, it will match an
  1520. * existing controller with all the other parameters the same and no
  1521. * local port address specified as well.
  1522. *
  1523. * The ports don't need to be compared as they are intrinsically
  1524. * already matched by the port pointers supplied.
  1525. */
  1526. static bool
  1527. nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
  1528. {
  1529. struct nvme_rdma_ctrl *ctrl;
  1530. bool found = false;
  1531. mutex_lock(&nvme_rdma_ctrl_mutex);
  1532. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1533. found = __nvme_rdma_options_match(ctrl, opts);
  1534. if (found)
  1535. break;
  1536. }
  1537. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1538. return found;
  1539. }
  1540. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1541. struct nvmf_ctrl_options *opts)
  1542. {
  1543. struct nvme_rdma_ctrl *ctrl;
  1544. int ret;
  1545. bool changed;
  1546. char *port;
  1547. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1548. if (!ctrl)
  1549. return ERR_PTR(-ENOMEM);
  1550. ctrl->ctrl.opts = opts;
  1551. INIT_LIST_HEAD(&ctrl->list);
  1552. if (opts->mask & NVMF_OPT_TRSVCID)
  1553. port = opts->trsvcid;
  1554. else
  1555. port = __stringify(NVME_RDMA_IP_PORT);
  1556. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1557. opts->traddr, port, &ctrl->addr);
  1558. if (ret) {
  1559. pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
  1560. goto out_free_ctrl;
  1561. }
  1562. if (opts->mask & NVMF_OPT_HOST_TRADDR) {
  1563. ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
  1564. opts->host_traddr, NULL, &ctrl->src_addr);
  1565. if (ret) {
  1566. pr_err("malformed src address passed: %s\n",
  1567. opts->host_traddr);
  1568. goto out_free_ctrl;
  1569. }
  1570. }
  1571. if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
  1572. ret = -EALREADY;
  1573. goto out_free_ctrl;
  1574. }
  1575. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1576. 0 /* no quirks, we're perfect! */);
  1577. if (ret)
  1578. goto out_free_ctrl;
  1579. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1580. nvme_rdma_reconnect_ctrl_work);
  1581. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1582. INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
  1583. ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1584. ctrl->ctrl.sqsize = opts->queue_size - 1;
  1585. ctrl->ctrl.kato = opts->kato;
  1586. ret = -ENOMEM;
  1587. ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
  1588. GFP_KERNEL);
  1589. if (!ctrl->queues)
  1590. goto out_uninit_ctrl;
  1591. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
  1592. WARN_ON_ONCE(!changed);
  1593. ret = nvme_rdma_configure_admin_queue(ctrl, true);
  1594. if (ret)
  1595. goto out_kfree_queues;
  1596. /* sanity check icdoff */
  1597. if (ctrl->ctrl.icdoff) {
  1598. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  1599. ret = -EINVAL;
  1600. goto out_remove_admin_queue;
  1601. }
  1602. /* sanity check keyed sgls */
  1603. if (!(ctrl->ctrl.sgls & (1 << 20))) {
  1604. dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
  1605. ret = -EINVAL;
  1606. goto out_remove_admin_queue;
  1607. }
  1608. if (opts->queue_size > ctrl->ctrl.maxcmd) {
  1609. /* warn if maxcmd is lower than queue_size */
  1610. dev_warn(ctrl->ctrl.device,
  1611. "queue_size %zu > ctrl maxcmd %u, clamping down\n",
  1612. opts->queue_size, ctrl->ctrl.maxcmd);
  1613. opts->queue_size = ctrl->ctrl.maxcmd;
  1614. }
  1615. if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
  1616. /* warn if sqsize is lower than queue_size */
  1617. dev_warn(ctrl->ctrl.device,
  1618. "queue_size %zu > ctrl sqsize %u, clamping down\n",
  1619. opts->queue_size, ctrl->ctrl.sqsize + 1);
  1620. opts->queue_size = ctrl->ctrl.sqsize + 1;
  1621. }
  1622. if (opts->nr_io_queues) {
  1623. ret = nvme_rdma_configure_io_queues(ctrl, true);
  1624. if (ret)
  1625. goto out_remove_admin_queue;
  1626. }
  1627. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1628. WARN_ON_ONCE(!changed);
  1629. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
  1630. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1631. nvme_get_ctrl(&ctrl->ctrl);
  1632. mutex_lock(&nvme_rdma_ctrl_mutex);
  1633. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1634. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1635. nvme_start_ctrl(&ctrl->ctrl);
  1636. return &ctrl->ctrl;
  1637. out_remove_admin_queue:
  1638. nvme_rdma_destroy_admin_queue(ctrl, true);
  1639. out_kfree_queues:
  1640. kfree(ctrl->queues);
  1641. out_uninit_ctrl:
  1642. nvme_uninit_ctrl(&ctrl->ctrl);
  1643. nvme_put_ctrl(&ctrl->ctrl);
  1644. if (ret > 0)
  1645. ret = -EIO;
  1646. return ERR_PTR(ret);
  1647. out_free_ctrl:
  1648. kfree(ctrl);
  1649. return ERR_PTR(ret);
  1650. }
  1651. static struct nvmf_transport_ops nvme_rdma_transport = {
  1652. .name = "rdma",
  1653. .module = THIS_MODULE,
  1654. .required_opts = NVMF_OPT_TRADDR,
  1655. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
  1656. NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
  1657. .create_ctrl = nvme_rdma_create_ctrl,
  1658. };
  1659. static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1660. {
  1661. struct nvme_rdma_ctrl *ctrl;
  1662. struct nvme_rdma_device *ndev;
  1663. bool found = false;
  1664. mutex_lock(&device_list_mutex);
  1665. list_for_each_entry(ndev, &device_list, entry) {
  1666. if (ndev->dev == ib_device) {
  1667. found = true;
  1668. break;
  1669. }
  1670. }
  1671. mutex_unlock(&device_list_mutex);
  1672. if (!found)
  1673. return;
  1674. /* Delete all controllers using this device */
  1675. mutex_lock(&nvme_rdma_ctrl_mutex);
  1676. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
  1677. if (ctrl->device->dev != ib_device)
  1678. continue;
  1679. nvme_delete_ctrl(&ctrl->ctrl);
  1680. }
  1681. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1682. flush_workqueue(nvme_delete_wq);
  1683. }
  1684. static struct ib_client nvme_rdma_ib_client = {
  1685. .name = "nvme_rdma",
  1686. .remove = nvme_rdma_remove_one
  1687. };
  1688. static int __init nvme_rdma_init_module(void)
  1689. {
  1690. int ret;
  1691. ret = ib_register_client(&nvme_rdma_ib_client);
  1692. if (ret)
  1693. return ret;
  1694. ret = nvmf_register_transport(&nvme_rdma_transport);
  1695. if (ret)
  1696. goto err_unreg_client;
  1697. return 0;
  1698. err_unreg_client:
  1699. ib_unregister_client(&nvme_rdma_ib_client);
  1700. return ret;
  1701. }
  1702. static void __exit nvme_rdma_cleanup_module(void)
  1703. {
  1704. nvmf_unregister_transport(&nvme_rdma_transport);
  1705. ib_unregister_client(&nvme_rdma_ib_client);
  1706. }
  1707. module_init(nvme_rdma_init_module);
  1708. module_exit(nvme_rdma_cleanup_module);
  1709. MODULE_LICENSE("GPL v2");