pci.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/blk-mq-pci.h>
  18. #include <linux/dmi.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/mm.h>
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/once.h>
  26. #include <linux/pci.h>
  27. #include <linux/t10-pi.h>
  28. #include <linux/types.h>
  29. #include <linux/io-64-nonatomic-lo-hi.h>
  30. #include <linux/sed-opal.h>
  31. #include "nvme.h"
  32. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  33. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  34. #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35. static int use_threaded_interrupts;
  36. module_param(use_threaded_interrupts, int, 0);
  37. static bool use_cmb_sqes = true;
  38. module_param(use_cmb_sqes, bool, 0644);
  39. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  40. static unsigned int max_host_mem_size_mb = 128;
  41. module_param(max_host_mem_size_mb, uint, 0444);
  42. MODULE_PARM_DESC(max_host_mem_size_mb,
  43. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  44. static unsigned int sgl_threshold = SZ_32K;
  45. module_param(sgl_threshold, uint, 0644);
  46. MODULE_PARM_DESC(sgl_threshold,
  47. "Use SGLs when average request segment size is larger or equal to "
  48. "this size. Use 0 to disable SGLs.");
  49. static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  50. static const struct kernel_param_ops io_queue_depth_ops = {
  51. .set = io_queue_depth_set,
  52. .get = param_get_int,
  53. };
  54. static int io_queue_depth = 1024;
  55. module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  56. MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  57. struct nvme_dev;
  58. struct nvme_queue;
  59. static void nvme_process_cq(struct nvme_queue *nvmeq);
  60. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  61. /*
  62. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  63. */
  64. struct nvme_dev {
  65. struct nvme_queue *queues;
  66. struct blk_mq_tag_set tagset;
  67. struct blk_mq_tag_set admin_tagset;
  68. u32 __iomem *dbs;
  69. struct device *dev;
  70. struct dma_pool *prp_page_pool;
  71. struct dma_pool *prp_small_pool;
  72. unsigned online_queues;
  73. unsigned max_qid;
  74. unsigned int num_vecs;
  75. int q_depth;
  76. u32 db_stride;
  77. void __iomem *bar;
  78. unsigned long bar_mapped_size;
  79. struct work_struct remove_work;
  80. struct mutex shutdown_lock;
  81. bool subsystem;
  82. void __iomem *cmb;
  83. pci_bus_addr_t cmb_bus_addr;
  84. u64 cmb_size;
  85. u32 cmbsz;
  86. u32 cmbloc;
  87. struct nvme_ctrl ctrl;
  88. struct completion ioq_wait;
  89. /* shadow doorbell buffer support: */
  90. u32 *dbbuf_dbs;
  91. dma_addr_t dbbuf_dbs_dma_addr;
  92. u32 *dbbuf_eis;
  93. dma_addr_t dbbuf_eis_dma_addr;
  94. /* host memory buffer support: */
  95. u64 host_mem_size;
  96. u32 nr_host_mem_descs;
  97. dma_addr_t host_mem_descs_dma;
  98. struct nvme_host_mem_buf_desc *host_mem_descs;
  99. void **host_mem_desc_bufs;
  100. };
  101. static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
  102. {
  103. int n = 0, ret;
  104. ret = kstrtoint(val, 10, &n);
  105. if (ret != 0 || n < 2)
  106. return -EINVAL;
  107. return param_set_int(val, kp);
  108. }
  109. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  110. {
  111. return qid * 2 * stride;
  112. }
  113. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  114. {
  115. return (qid * 2 + 1) * stride;
  116. }
  117. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  118. {
  119. return container_of(ctrl, struct nvme_dev, ctrl);
  120. }
  121. /*
  122. * An NVM Express queue. Each device has at least two (one for admin
  123. * commands and one for I/O commands).
  124. */
  125. struct nvme_queue {
  126. struct device *q_dmadev;
  127. struct nvme_dev *dev;
  128. spinlock_t q_lock;
  129. struct nvme_command *sq_cmds;
  130. struct nvme_command __iomem *sq_cmds_io;
  131. volatile struct nvme_completion *cqes;
  132. struct blk_mq_tags **tags;
  133. dma_addr_t sq_dma_addr;
  134. dma_addr_t cq_dma_addr;
  135. u32 __iomem *q_db;
  136. u16 q_depth;
  137. s16 cq_vector;
  138. u16 sq_tail;
  139. u16 cq_head;
  140. u16 qid;
  141. u8 cq_phase;
  142. u8 cqe_seen;
  143. u32 *dbbuf_sq_db;
  144. u32 *dbbuf_cq_db;
  145. u32 *dbbuf_sq_ei;
  146. u32 *dbbuf_cq_ei;
  147. };
  148. /*
  149. * The nvme_iod describes the data in an I/O, including the list of PRP
  150. * entries. You can't see it in this data structure because C doesn't let
  151. * me express that. Use nvme_init_iod to ensure there's enough space
  152. * allocated to store the PRP list.
  153. */
  154. struct nvme_iod {
  155. struct nvme_request req;
  156. struct nvme_queue *nvmeq;
  157. bool use_sgl;
  158. int aborted;
  159. int npages; /* In the PRP list. 0 means small pool in use */
  160. int nents; /* Used in scatterlist */
  161. int length; /* Of data, in bytes */
  162. dma_addr_t first_dma;
  163. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  164. struct scatterlist *sg;
  165. struct scatterlist inline_sg[0];
  166. };
  167. /*
  168. * Check we didin't inadvertently grow the command struct
  169. */
  170. static inline void _nvme_check_size(void)
  171. {
  172. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  173. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  175. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  176. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  177. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  178. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  179. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  180. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  181. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  182. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  183. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  184. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  185. }
  186. static inline unsigned int nvme_dbbuf_size(u32 stride)
  187. {
  188. return ((num_possible_cpus() + 1) * 8 * stride);
  189. }
  190. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  191. {
  192. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  193. if (dev->dbbuf_dbs)
  194. return 0;
  195. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  196. &dev->dbbuf_dbs_dma_addr,
  197. GFP_KERNEL);
  198. if (!dev->dbbuf_dbs)
  199. return -ENOMEM;
  200. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  201. &dev->dbbuf_eis_dma_addr,
  202. GFP_KERNEL);
  203. if (!dev->dbbuf_eis) {
  204. dma_free_coherent(dev->dev, mem_size,
  205. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  206. dev->dbbuf_dbs = NULL;
  207. return -ENOMEM;
  208. }
  209. return 0;
  210. }
  211. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  212. {
  213. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  214. if (dev->dbbuf_dbs) {
  215. dma_free_coherent(dev->dev, mem_size,
  216. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  217. dev->dbbuf_dbs = NULL;
  218. }
  219. if (dev->dbbuf_eis) {
  220. dma_free_coherent(dev->dev, mem_size,
  221. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  222. dev->dbbuf_eis = NULL;
  223. }
  224. }
  225. static void nvme_dbbuf_init(struct nvme_dev *dev,
  226. struct nvme_queue *nvmeq, int qid)
  227. {
  228. if (!dev->dbbuf_dbs || !qid)
  229. return;
  230. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  231. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  232. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  233. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  234. }
  235. static void nvme_dbbuf_set(struct nvme_dev *dev)
  236. {
  237. struct nvme_command c;
  238. if (!dev->dbbuf_dbs)
  239. return;
  240. memset(&c, 0, sizeof(c));
  241. c.dbbuf.opcode = nvme_admin_dbbuf;
  242. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  243. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  244. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  245. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  246. /* Free memory and continue on */
  247. nvme_dbbuf_dma_free(dev);
  248. }
  249. }
  250. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  251. {
  252. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  253. }
  254. /* Update dbbuf and return true if an MMIO is required */
  255. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  256. volatile u32 *dbbuf_ei)
  257. {
  258. if (dbbuf_db) {
  259. u16 old_value;
  260. /*
  261. * Ensure that the queue is written before updating
  262. * the doorbell in memory
  263. */
  264. wmb();
  265. old_value = *dbbuf_db;
  266. *dbbuf_db = value;
  267. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  268. return false;
  269. }
  270. return true;
  271. }
  272. /*
  273. * Max size of iod being embedded in the request payload
  274. */
  275. #define NVME_INT_PAGES 2
  276. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  277. /*
  278. * Will slightly overestimate the number of pages needed. This is OK
  279. * as it only leads to a small amount of wasted memory for the lifetime of
  280. * the I/O.
  281. */
  282. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  283. {
  284. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  285. dev->ctrl.page_size);
  286. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  287. }
  288. /*
  289. * Calculates the number of pages needed for the SGL segments. For example a 4k
  290. * page can accommodate 256 SGL descriptors.
  291. */
  292. static int nvme_pci_npages_sgl(unsigned int num_seg)
  293. {
  294. return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
  295. }
  296. static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
  297. unsigned int size, unsigned int nseg, bool use_sgl)
  298. {
  299. size_t alloc_size;
  300. if (use_sgl)
  301. alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
  302. else
  303. alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
  304. return alloc_size + sizeof(struct scatterlist) * nseg;
  305. }
  306. static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
  307. {
  308. unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
  309. NVME_INT_BYTES(dev), NVME_INT_PAGES,
  310. use_sgl);
  311. return sizeof(struct nvme_iod) + alloc_size;
  312. }
  313. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  314. unsigned int hctx_idx)
  315. {
  316. struct nvme_dev *dev = data;
  317. struct nvme_queue *nvmeq = &dev->queues[0];
  318. WARN_ON(hctx_idx != 0);
  319. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  320. WARN_ON(nvmeq->tags);
  321. hctx->driver_data = nvmeq;
  322. nvmeq->tags = &dev->admin_tagset.tags[0];
  323. return 0;
  324. }
  325. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  326. {
  327. struct nvme_queue *nvmeq = hctx->driver_data;
  328. nvmeq->tags = NULL;
  329. }
  330. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  331. unsigned int hctx_idx)
  332. {
  333. struct nvme_dev *dev = data;
  334. struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
  335. if (!nvmeq->tags)
  336. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  337. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  338. hctx->driver_data = nvmeq;
  339. return 0;
  340. }
  341. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  342. unsigned int hctx_idx, unsigned int numa_node)
  343. {
  344. struct nvme_dev *dev = set->driver_data;
  345. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  346. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  347. struct nvme_queue *nvmeq = &dev->queues[queue_idx];
  348. BUG_ON(!nvmeq);
  349. iod->nvmeq = nvmeq;
  350. return 0;
  351. }
  352. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  353. {
  354. struct nvme_dev *dev = set->driver_data;
  355. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
  356. dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
  357. }
  358. /**
  359. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  360. * @nvmeq: The queue to use
  361. * @cmd: The command to send
  362. *
  363. * Safe to use from interrupt context
  364. */
  365. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  366. struct nvme_command *cmd)
  367. {
  368. u16 tail = nvmeq->sq_tail;
  369. if (nvmeq->sq_cmds_io)
  370. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  371. else
  372. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  373. if (++tail == nvmeq->q_depth)
  374. tail = 0;
  375. if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
  376. nvmeq->dbbuf_sq_ei))
  377. writel(tail, nvmeq->q_db);
  378. nvmeq->sq_tail = tail;
  379. }
  380. static void **nvme_pci_iod_list(struct request *req)
  381. {
  382. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  383. return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
  384. }
  385. static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
  386. {
  387. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  388. int nseg = blk_rq_nr_phys_segments(req);
  389. unsigned int avg_seg_size;
  390. if (nseg == 0)
  391. return false;
  392. avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
  393. if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
  394. return false;
  395. if (!iod->nvmeq->qid)
  396. return false;
  397. if (!sgl_threshold || avg_seg_size < sgl_threshold)
  398. return false;
  399. return true;
  400. }
  401. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  402. {
  403. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  404. int nseg = blk_rq_nr_phys_segments(rq);
  405. unsigned int size = blk_rq_payload_bytes(rq);
  406. iod->use_sgl = nvme_pci_use_sgls(dev, rq);
  407. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  408. size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
  409. iod->use_sgl);
  410. iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
  411. if (!iod->sg)
  412. return BLK_STS_RESOURCE;
  413. } else {
  414. iod->sg = iod->inline_sg;
  415. }
  416. iod->aborted = 0;
  417. iod->npages = -1;
  418. iod->nents = 0;
  419. iod->length = size;
  420. return BLK_STS_OK;
  421. }
  422. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  423. {
  424. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  425. const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
  426. dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
  427. int i;
  428. if (iod->npages == 0)
  429. dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
  430. dma_addr);
  431. for (i = 0; i < iod->npages; i++) {
  432. void *addr = nvme_pci_iod_list(req)[i];
  433. if (iod->use_sgl) {
  434. struct nvme_sgl_desc *sg_list = addr;
  435. next_dma_addr =
  436. le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
  437. } else {
  438. __le64 *prp_list = addr;
  439. next_dma_addr = le64_to_cpu(prp_list[last_prp]);
  440. }
  441. dma_pool_free(dev->prp_page_pool, addr, dma_addr);
  442. dma_addr = next_dma_addr;
  443. }
  444. if (iod->sg != iod->inline_sg)
  445. kfree(iod->sg);
  446. }
  447. #ifdef CONFIG_BLK_DEV_INTEGRITY
  448. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  449. {
  450. if (be32_to_cpu(pi->ref_tag) == v)
  451. pi->ref_tag = cpu_to_be32(p);
  452. }
  453. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  454. {
  455. if (be32_to_cpu(pi->ref_tag) == p)
  456. pi->ref_tag = cpu_to_be32(v);
  457. }
  458. /**
  459. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  460. *
  461. * The virtual start sector is the one that was originally submitted by the
  462. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  463. * start sector may be different. Remap protection information to match the
  464. * physical LBA on writes, and back to the original seed on reads.
  465. *
  466. * Type 0 and 3 do not have a ref tag, so no remapping required.
  467. */
  468. static void nvme_dif_remap(struct request *req,
  469. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  470. {
  471. struct nvme_ns *ns = req->rq_disk->private_data;
  472. struct bio_integrity_payload *bip;
  473. struct t10_pi_tuple *pi;
  474. void *p, *pmap;
  475. u32 i, nlb, ts, phys, virt;
  476. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  477. return;
  478. bip = bio_integrity(req->bio);
  479. if (!bip)
  480. return;
  481. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  482. p = pmap;
  483. virt = bip_get_seed(bip);
  484. phys = nvme_block_nr(ns, blk_rq_pos(req));
  485. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  486. ts = ns->disk->queue->integrity.tuple_size;
  487. for (i = 0; i < nlb; i++, virt++, phys++) {
  488. pi = (struct t10_pi_tuple *)p;
  489. dif_swap(phys, virt, pi);
  490. p += ts;
  491. }
  492. kunmap_atomic(pmap);
  493. }
  494. #else /* CONFIG_BLK_DEV_INTEGRITY */
  495. static void nvme_dif_remap(struct request *req,
  496. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  497. {
  498. }
  499. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  500. {
  501. }
  502. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  503. {
  504. }
  505. #endif
  506. static void nvme_print_sgl(struct scatterlist *sgl, int nents)
  507. {
  508. int i;
  509. struct scatterlist *sg;
  510. for_each_sg(sgl, sg, nents, i) {
  511. dma_addr_t phys = sg_phys(sg);
  512. pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
  513. "dma_address:%pad dma_length:%d\n",
  514. i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
  515. sg_dma_len(sg));
  516. }
  517. }
  518. static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
  519. struct request *req, struct nvme_rw_command *cmnd)
  520. {
  521. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  522. struct dma_pool *pool;
  523. int length = blk_rq_payload_bytes(req);
  524. struct scatterlist *sg = iod->sg;
  525. int dma_len = sg_dma_len(sg);
  526. u64 dma_addr = sg_dma_address(sg);
  527. u32 page_size = dev->ctrl.page_size;
  528. int offset = dma_addr & (page_size - 1);
  529. __le64 *prp_list;
  530. void **list = nvme_pci_iod_list(req);
  531. dma_addr_t prp_dma;
  532. int nprps, i;
  533. length -= (page_size - offset);
  534. if (length <= 0) {
  535. iod->first_dma = 0;
  536. goto done;
  537. }
  538. dma_len -= (page_size - offset);
  539. if (dma_len) {
  540. dma_addr += (page_size - offset);
  541. } else {
  542. sg = sg_next(sg);
  543. dma_addr = sg_dma_address(sg);
  544. dma_len = sg_dma_len(sg);
  545. }
  546. if (length <= page_size) {
  547. iod->first_dma = dma_addr;
  548. goto done;
  549. }
  550. nprps = DIV_ROUND_UP(length, page_size);
  551. if (nprps <= (256 / 8)) {
  552. pool = dev->prp_small_pool;
  553. iod->npages = 0;
  554. } else {
  555. pool = dev->prp_page_pool;
  556. iod->npages = 1;
  557. }
  558. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  559. if (!prp_list) {
  560. iod->first_dma = dma_addr;
  561. iod->npages = -1;
  562. return BLK_STS_RESOURCE;
  563. }
  564. list[0] = prp_list;
  565. iod->first_dma = prp_dma;
  566. i = 0;
  567. for (;;) {
  568. if (i == page_size >> 3) {
  569. __le64 *old_prp_list = prp_list;
  570. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  571. if (!prp_list)
  572. return BLK_STS_RESOURCE;
  573. list[iod->npages++] = prp_list;
  574. prp_list[0] = old_prp_list[i - 1];
  575. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  576. i = 1;
  577. }
  578. prp_list[i++] = cpu_to_le64(dma_addr);
  579. dma_len -= page_size;
  580. dma_addr += page_size;
  581. length -= page_size;
  582. if (length <= 0)
  583. break;
  584. if (dma_len > 0)
  585. continue;
  586. if (unlikely(dma_len < 0))
  587. goto bad_sgl;
  588. sg = sg_next(sg);
  589. dma_addr = sg_dma_address(sg);
  590. dma_len = sg_dma_len(sg);
  591. }
  592. done:
  593. cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  594. cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
  595. return BLK_STS_OK;
  596. bad_sgl:
  597. WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
  598. "Invalid SGL for payload:%d nents:%d\n",
  599. blk_rq_payload_bytes(req), iod->nents);
  600. return BLK_STS_IOERR;
  601. }
  602. static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
  603. struct scatterlist *sg)
  604. {
  605. sge->addr = cpu_to_le64(sg_dma_address(sg));
  606. sge->length = cpu_to_le32(sg_dma_len(sg));
  607. sge->type = NVME_SGL_FMT_DATA_DESC << 4;
  608. }
  609. static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
  610. dma_addr_t dma_addr, int entries)
  611. {
  612. sge->addr = cpu_to_le64(dma_addr);
  613. if (entries < SGES_PER_PAGE) {
  614. sge->length = cpu_to_le32(entries * sizeof(*sge));
  615. sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
  616. } else {
  617. sge->length = cpu_to_le32(PAGE_SIZE);
  618. sge->type = NVME_SGL_FMT_SEG_DESC << 4;
  619. }
  620. }
  621. static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
  622. struct request *req, struct nvme_rw_command *cmd, int entries)
  623. {
  624. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  625. struct dma_pool *pool;
  626. struct nvme_sgl_desc *sg_list;
  627. struct scatterlist *sg = iod->sg;
  628. dma_addr_t sgl_dma;
  629. int i = 0;
  630. /* setting the transfer type as SGL */
  631. cmd->flags = NVME_CMD_SGL_METABUF;
  632. if (entries == 1) {
  633. nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
  634. return BLK_STS_OK;
  635. }
  636. if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
  637. pool = dev->prp_small_pool;
  638. iod->npages = 0;
  639. } else {
  640. pool = dev->prp_page_pool;
  641. iod->npages = 1;
  642. }
  643. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  644. if (!sg_list) {
  645. iod->npages = -1;
  646. return BLK_STS_RESOURCE;
  647. }
  648. nvme_pci_iod_list(req)[0] = sg_list;
  649. iod->first_dma = sgl_dma;
  650. nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
  651. do {
  652. if (i == SGES_PER_PAGE) {
  653. struct nvme_sgl_desc *old_sg_desc = sg_list;
  654. struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
  655. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  656. if (!sg_list)
  657. return BLK_STS_RESOURCE;
  658. i = 0;
  659. nvme_pci_iod_list(req)[iod->npages++] = sg_list;
  660. sg_list[i++] = *link;
  661. nvme_pci_sgl_set_seg(link, sgl_dma, entries);
  662. }
  663. nvme_pci_sgl_set_data(&sg_list[i++], sg);
  664. sg = sg_next(sg);
  665. } while (--entries > 0);
  666. return BLK_STS_OK;
  667. }
  668. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  669. struct nvme_command *cmnd)
  670. {
  671. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  672. struct request_queue *q = req->q;
  673. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  674. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  675. blk_status_t ret = BLK_STS_IOERR;
  676. int nr_mapped;
  677. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  678. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  679. if (!iod->nents)
  680. goto out;
  681. ret = BLK_STS_RESOURCE;
  682. nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  683. DMA_ATTR_NO_WARN);
  684. if (!nr_mapped)
  685. goto out;
  686. if (iod->use_sgl)
  687. ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
  688. else
  689. ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
  690. if (ret != BLK_STS_OK)
  691. goto out_unmap;
  692. ret = BLK_STS_IOERR;
  693. if (blk_integrity_rq(req)) {
  694. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  695. goto out_unmap;
  696. sg_init_table(&iod->meta_sg, 1);
  697. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  698. goto out_unmap;
  699. if (req_op(req) == REQ_OP_WRITE)
  700. nvme_dif_remap(req, nvme_dif_prep);
  701. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  702. goto out_unmap;
  703. }
  704. if (blk_integrity_rq(req))
  705. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  706. return BLK_STS_OK;
  707. out_unmap:
  708. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  709. out:
  710. return ret;
  711. }
  712. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  713. {
  714. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  715. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  716. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  717. if (iod->nents) {
  718. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  719. if (blk_integrity_rq(req)) {
  720. if (req_op(req) == REQ_OP_READ)
  721. nvme_dif_remap(req, nvme_dif_complete);
  722. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  723. }
  724. }
  725. nvme_cleanup_cmd(req);
  726. nvme_free_iod(dev, req);
  727. }
  728. /*
  729. * NOTE: ns is NULL when called on the admin queue.
  730. */
  731. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  732. const struct blk_mq_queue_data *bd)
  733. {
  734. struct nvme_ns *ns = hctx->queue->queuedata;
  735. struct nvme_queue *nvmeq = hctx->driver_data;
  736. struct nvme_dev *dev = nvmeq->dev;
  737. struct request *req = bd->rq;
  738. struct nvme_command cmnd;
  739. blk_status_t ret;
  740. ret = nvme_setup_cmd(ns, req, &cmnd);
  741. if (ret)
  742. return ret;
  743. ret = nvme_init_iod(req, dev);
  744. if (ret)
  745. goto out_free_cmd;
  746. if (blk_rq_nr_phys_segments(req)) {
  747. ret = nvme_map_data(dev, req, &cmnd);
  748. if (ret)
  749. goto out_cleanup_iod;
  750. }
  751. blk_mq_start_request(req);
  752. spin_lock_irq(&nvmeq->q_lock);
  753. if (unlikely(nvmeq->cq_vector < 0)) {
  754. ret = BLK_STS_IOERR;
  755. spin_unlock_irq(&nvmeq->q_lock);
  756. goto out_cleanup_iod;
  757. }
  758. __nvme_submit_cmd(nvmeq, &cmnd);
  759. nvme_process_cq(nvmeq);
  760. spin_unlock_irq(&nvmeq->q_lock);
  761. return BLK_STS_OK;
  762. out_cleanup_iod:
  763. nvme_free_iod(dev, req);
  764. out_free_cmd:
  765. nvme_cleanup_cmd(req);
  766. return ret;
  767. }
  768. static void nvme_pci_complete_rq(struct request *req)
  769. {
  770. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  771. nvme_unmap_data(iod->nvmeq->dev, req);
  772. nvme_complete_rq(req);
  773. }
  774. /* We read the CQE phase first to check if the rest of the entry is valid */
  775. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  776. u16 phase)
  777. {
  778. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  779. }
  780. static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
  781. {
  782. u16 head = nvmeq->cq_head;
  783. if (likely(nvmeq->cq_vector >= 0)) {
  784. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  785. nvmeq->dbbuf_cq_ei))
  786. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  787. }
  788. }
  789. static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
  790. struct nvme_completion *cqe)
  791. {
  792. struct request *req;
  793. if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
  794. dev_warn(nvmeq->dev->ctrl.device,
  795. "invalid id %d completed on queue %d\n",
  796. cqe->command_id, le16_to_cpu(cqe->sq_id));
  797. return;
  798. }
  799. /*
  800. * AEN requests are special as they don't time out and can
  801. * survive any kind of queue freeze and often don't respond to
  802. * aborts. We don't even bother to allocate a struct request
  803. * for them but rather special case them here.
  804. */
  805. if (unlikely(nvmeq->qid == 0 &&
  806. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
  807. nvme_complete_async_event(&nvmeq->dev->ctrl,
  808. cqe->status, &cqe->result);
  809. return;
  810. }
  811. nvmeq->cqe_seen = 1;
  812. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
  813. nvme_end_request(req, cqe->status, cqe->result);
  814. }
  815. static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
  816. struct nvme_completion *cqe)
  817. {
  818. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  819. *cqe = nvmeq->cqes[nvmeq->cq_head];
  820. if (++nvmeq->cq_head == nvmeq->q_depth) {
  821. nvmeq->cq_head = 0;
  822. nvmeq->cq_phase = !nvmeq->cq_phase;
  823. }
  824. return true;
  825. }
  826. return false;
  827. }
  828. static void nvme_process_cq(struct nvme_queue *nvmeq)
  829. {
  830. struct nvme_completion cqe;
  831. int consumed = 0;
  832. while (nvme_read_cqe(nvmeq, &cqe)) {
  833. nvme_handle_cqe(nvmeq, &cqe);
  834. consumed++;
  835. }
  836. if (consumed)
  837. nvme_ring_cq_doorbell(nvmeq);
  838. }
  839. static irqreturn_t nvme_irq(int irq, void *data)
  840. {
  841. irqreturn_t result;
  842. struct nvme_queue *nvmeq = data;
  843. spin_lock(&nvmeq->q_lock);
  844. nvme_process_cq(nvmeq);
  845. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  846. nvmeq->cqe_seen = 0;
  847. spin_unlock(&nvmeq->q_lock);
  848. return result;
  849. }
  850. static irqreturn_t nvme_irq_check(int irq, void *data)
  851. {
  852. struct nvme_queue *nvmeq = data;
  853. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  854. return IRQ_WAKE_THREAD;
  855. return IRQ_NONE;
  856. }
  857. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  858. {
  859. struct nvme_completion cqe;
  860. int found = 0, consumed = 0;
  861. if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  862. return 0;
  863. spin_lock_irq(&nvmeq->q_lock);
  864. while (nvme_read_cqe(nvmeq, &cqe)) {
  865. nvme_handle_cqe(nvmeq, &cqe);
  866. consumed++;
  867. if (tag == cqe.command_id) {
  868. found = 1;
  869. break;
  870. }
  871. }
  872. if (consumed)
  873. nvme_ring_cq_doorbell(nvmeq);
  874. spin_unlock_irq(&nvmeq->q_lock);
  875. return found;
  876. }
  877. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  878. {
  879. struct nvme_queue *nvmeq = hctx->driver_data;
  880. return __nvme_poll(nvmeq, tag);
  881. }
  882. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
  883. {
  884. struct nvme_dev *dev = to_nvme_dev(ctrl);
  885. struct nvme_queue *nvmeq = &dev->queues[0];
  886. struct nvme_command c;
  887. memset(&c, 0, sizeof(c));
  888. c.common.opcode = nvme_admin_async_event;
  889. c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  890. spin_lock_irq(&nvmeq->q_lock);
  891. __nvme_submit_cmd(nvmeq, &c);
  892. spin_unlock_irq(&nvmeq->q_lock);
  893. }
  894. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  895. {
  896. struct nvme_command c;
  897. memset(&c, 0, sizeof(c));
  898. c.delete_queue.opcode = opcode;
  899. c.delete_queue.qid = cpu_to_le16(id);
  900. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  901. }
  902. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  903. struct nvme_queue *nvmeq)
  904. {
  905. struct nvme_command c;
  906. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  907. /*
  908. * Note: we (ab)use the fact that the prp fields survive if no data
  909. * is attached to the request.
  910. */
  911. memset(&c, 0, sizeof(c));
  912. c.create_cq.opcode = nvme_admin_create_cq;
  913. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  914. c.create_cq.cqid = cpu_to_le16(qid);
  915. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  916. c.create_cq.cq_flags = cpu_to_le16(flags);
  917. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  918. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  919. }
  920. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  921. struct nvme_queue *nvmeq)
  922. {
  923. struct nvme_command c;
  924. int flags = NVME_QUEUE_PHYS_CONTIG;
  925. /*
  926. * Note: we (ab)use the fact that the prp fields survive if no data
  927. * is attached to the request.
  928. */
  929. memset(&c, 0, sizeof(c));
  930. c.create_sq.opcode = nvme_admin_create_sq;
  931. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  932. c.create_sq.sqid = cpu_to_le16(qid);
  933. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  934. c.create_sq.sq_flags = cpu_to_le16(flags);
  935. c.create_sq.cqid = cpu_to_le16(qid);
  936. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  937. }
  938. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  939. {
  940. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  941. }
  942. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  943. {
  944. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  945. }
  946. static void abort_endio(struct request *req, blk_status_t error)
  947. {
  948. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  949. struct nvme_queue *nvmeq = iod->nvmeq;
  950. dev_warn(nvmeq->dev->ctrl.device,
  951. "Abort status: 0x%x", nvme_req(req)->status);
  952. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  953. blk_mq_free_request(req);
  954. }
  955. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  956. {
  957. /* If true, indicates loss of adapter communication, possibly by a
  958. * NVMe Subsystem reset.
  959. */
  960. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  961. /* If there is a reset/reinit ongoing, we shouldn't reset again. */
  962. switch (dev->ctrl.state) {
  963. case NVME_CTRL_RESETTING:
  964. case NVME_CTRL_CONNECTING:
  965. return false;
  966. default:
  967. break;
  968. }
  969. /* We shouldn't reset unless the controller is on fatal error state
  970. * _or_ if we lost the communication with it.
  971. */
  972. if (!(csts & NVME_CSTS_CFS) && !nssro)
  973. return false;
  974. return true;
  975. }
  976. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  977. {
  978. /* Read a config register to help see what died. */
  979. u16 pci_status;
  980. int result;
  981. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  982. &pci_status);
  983. if (result == PCIBIOS_SUCCESSFUL)
  984. dev_warn(dev->ctrl.device,
  985. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  986. csts, pci_status);
  987. else
  988. dev_warn(dev->ctrl.device,
  989. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  990. csts, result);
  991. }
  992. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  993. {
  994. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  995. struct nvme_queue *nvmeq = iod->nvmeq;
  996. struct nvme_dev *dev = nvmeq->dev;
  997. struct request *abort_req;
  998. struct nvme_command cmd;
  999. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1000. /* If PCI error recovery process is happening, we cannot reset or
  1001. * the recovery mechanism will surely fail.
  1002. */
  1003. mb();
  1004. if (pci_channel_offline(to_pci_dev(dev->dev)))
  1005. return BLK_EH_RESET_TIMER;
  1006. /*
  1007. * Reset immediately if the controller is failed
  1008. */
  1009. if (nvme_should_reset(dev, csts)) {
  1010. nvme_warn_reset(dev, csts);
  1011. nvme_dev_disable(dev, false);
  1012. nvme_reset_ctrl(&dev->ctrl);
  1013. return BLK_EH_HANDLED;
  1014. }
  1015. /*
  1016. * Did we miss an interrupt?
  1017. */
  1018. if (__nvme_poll(nvmeq, req->tag)) {
  1019. dev_warn(dev->ctrl.device,
  1020. "I/O %d QID %d timeout, completion polled\n",
  1021. req->tag, nvmeq->qid);
  1022. return BLK_EH_HANDLED;
  1023. }
  1024. /*
  1025. * Shutdown immediately if controller times out while starting. The
  1026. * reset work will see the pci device disabled when it gets the forced
  1027. * cancellation error. All outstanding requests are completed on
  1028. * shutdown, so we return BLK_EH_HANDLED.
  1029. */
  1030. switch (dev->ctrl.state) {
  1031. case NVME_CTRL_CONNECTING:
  1032. case NVME_CTRL_RESETTING:
  1033. dev_warn(dev->ctrl.device,
  1034. "I/O %d QID %d timeout, disable controller\n",
  1035. req->tag, nvmeq->qid);
  1036. nvme_dev_disable(dev, false);
  1037. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1038. return BLK_EH_HANDLED;
  1039. default:
  1040. break;
  1041. }
  1042. /*
  1043. * Shutdown the controller immediately and schedule a reset if the
  1044. * command was already aborted once before and still hasn't been
  1045. * returned to the driver, or if this is the admin queue.
  1046. */
  1047. if (!nvmeq->qid || iod->aborted) {
  1048. dev_warn(dev->ctrl.device,
  1049. "I/O %d QID %d timeout, reset controller\n",
  1050. req->tag, nvmeq->qid);
  1051. nvme_dev_disable(dev, false);
  1052. nvme_reset_ctrl(&dev->ctrl);
  1053. /*
  1054. * Mark the request as handled, since the inline shutdown
  1055. * forces all outstanding requests to complete.
  1056. */
  1057. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1058. return BLK_EH_HANDLED;
  1059. }
  1060. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  1061. atomic_inc(&dev->ctrl.abort_limit);
  1062. return BLK_EH_RESET_TIMER;
  1063. }
  1064. iod->aborted = 1;
  1065. memset(&cmd, 0, sizeof(cmd));
  1066. cmd.abort.opcode = nvme_admin_abort_cmd;
  1067. cmd.abort.cid = req->tag;
  1068. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  1069. dev_warn(nvmeq->dev->ctrl.device,
  1070. "I/O %d QID %d timeout, aborting\n",
  1071. req->tag, nvmeq->qid);
  1072. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  1073. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1074. if (IS_ERR(abort_req)) {
  1075. atomic_inc(&dev->ctrl.abort_limit);
  1076. return BLK_EH_RESET_TIMER;
  1077. }
  1078. abort_req->timeout = ADMIN_TIMEOUT;
  1079. abort_req->end_io_data = NULL;
  1080. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  1081. /*
  1082. * The aborted req will be completed on receiving the abort req.
  1083. * We enable the timer again. If hit twice, it'll cause a device reset,
  1084. * as the device then is in a faulty state.
  1085. */
  1086. return BLK_EH_RESET_TIMER;
  1087. }
  1088. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1089. {
  1090. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1091. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1092. if (nvmeq->sq_cmds)
  1093. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1094. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1095. }
  1096. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1097. {
  1098. int i;
  1099. for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
  1100. dev->ctrl.queue_count--;
  1101. nvme_free_queue(&dev->queues[i]);
  1102. }
  1103. }
  1104. /**
  1105. * nvme_suspend_queue - put queue into suspended state
  1106. * @nvmeq - queue to suspend
  1107. */
  1108. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1109. {
  1110. int vector;
  1111. spin_lock_irq(&nvmeq->q_lock);
  1112. if (nvmeq->cq_vector == -1) {
  1113. spin_unlock_irq(&nvmeq->q_lock);
  1114. return 1;
  1115. }
  1116. vector = nvmeq->cq_vector;
  1117. nvmeq->dev->online_queues--;
  1118. nvmeq->cq_vector = -1;
  1119. spin_unlock_irq(&nvmeq->q_lock);
  1120. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1121. blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
  1122. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  1123. return 0;
  1124. }
  1125. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  1126. {
  1127. struct nvme_queue *nvmeq = &dev->queues[0];
  1128. if (shutdown)
  1129. nvme_shutdown_ctrl(&dev->ctrl);
  1130. else
  1131. nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1132. spin_lock_irq(&nvmeq->q_lock);
  1133. nvme_process_cq(nvmeq);
  1134. spin_unlock_irq(&nvmeq->q_lock);
  1135. }
  1136. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1137. int entry_size)
  1138. {
  1139. int q_depth = dev->q_depth;
  1140. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1141. dev->ctrl.page_size);
  1142. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1143. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1144. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1145. q_depth = div_u64(mem_per_q, entry_size);
  1146. /*
  1147. * Ensure the reduced q_depth is above some threshold where it
  1148. * would be better to map queues in system memory with the
  1149. * original depth
  1150. */
  1151. if (q_depth < 64)
  1152. return -ENOMEM;
  1153. }
  1154. return q_depth;
  1155. }
  1156. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1157. int qid, int depth)
  1158. {
  1159. /* CMB SQEs will be mapped before creation */
  1160. if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
  1161. return 0;
  1162. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1163. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1164. if (!nvmeq->sq_cmds)
  1165. return -ENOMEM;
  1166. return 0;
  1167. }
  1168. static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
  1169. {
  1170. struct nvme_queue *nvmeq = &dev->queues[qid];
  1171. if (dev->ctrl.queue_count > qid)
  1172. return 0;
  1173. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1174. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1175. if (!nvmeq->cqes)
  1176. goto free_nvmeq;
  1177. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1178. goto free_cqdma;
  1179. nvmeq->q_dmadev = dev->dev;
  1180. nvmeq->dev = dev;
  1181. spin_lock_init(&nvmeq->q_lock);
  1182. nvmeq->cq_head = 0;
  1183. nvmeq->cq_phase = 1;
  1184. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1185. nvmeq->q_depth = depth;
  1186. nvmeq->qid = qid;
  1187. nvmeq->cq_vector = -1;
  1188. dev->ctrl.queue_count++;
  1189. return 0;
  1190. free_cqdma:
  1191. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1192. nvmeq->cq_dma_addr);
  1193. free_nvmeq:
  1194. return -ENOMEM;
  1195. }
  1196. static int queue_request_irq(struct nvme_queue *nvmeq)
  1197. {
  1198. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1199. int nr = nvmeq->dev->ctrl.instance;
  1200. if (use_threaded_interrupts) {
  1201. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1202. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1203. } else {
  1204. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1205. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1206. }
  1207. }
  1208. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1209. {
  1210. struct nvme_dev *dev = nvmeq->dev;
  1211. spin_lock_irq(&nvmeq->q_lock);
  1212. nvmeq->sq_tail = 0;
  1213. nvmeq->cq_head = 0;
  1214. nvmeq->cq_phase = 1;
  1215. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1216. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1217. nvme_dbbuf_init(dev, nvmeq, qid);
  1218. dev->online_queues++;
  1219. spin_unlock_irq(&nvmeq->q_lock);
  1220. }
  1221. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1222. {
  1223. struct nvme_dev *dev = nvmeq->dev;
  1224. int result;
  1225. if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1226. unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
  1227. dev->ctrl.page_size);
  1228. nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
  1229. nvmeq->sq_cmds_io = dev->cmb + offset;
  1230. }
  1231. /*
  1232. * A queue's vector matches the queue identifier unless the controller
  1233. * has only one vector available.
  1234. */
  1235. nvmeq->cq_vector = dev->num_vecs == 1 ? 0 : qid;
  1236. result = adapter_alloc_cq(dev, qid, nvmeq);
  1237. if (result < 0)
  1238. goto release_vector;
  1239. result = adapter_alloc_sq(dev, qid, nvmeq);
  1240. if (result < 0)
  1241. goto release_cq;
  1242. nvme_init_queue(nvmeq, qid);
  1243. result = queue_request_irq(nvmeq);
  1244. if (result < 0)
  1245. goto release_sq;
  1246. return result;
  1247. release_sq:
  1248. dev->online_queues--;
  1249. adapter_delete_sq(dev, qid);
  1250. release_cq:
  1251. adapter_delete_cq(dev, qid);
  1252. release_vector:
  1253. nvmeq->cq_vector = -1;
  1254. return result;
  1255. }
  1256. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1257. .queue_rq = nvme_queue_rq,
  1258. .complete = nvme_pci_complete_rq,
  1259. .init_hctx = nvme_admin_init_hctx,
  1260. .exit_hctx = nvme_admin_exit_hctx,
  1261. .init_request = nvme_init_request,
  1262. .timeout = nvme_timeout,
  1263. };
  1264. static const struct blk_mq_ops nvme_mq_ops = {
  1265. .queue_rq = nvme_queue_rq,
  1266. .complete = nvme_pci_complete_rq,
  1267. .init_hctx = nvme_init_hctx,
  1268. .init_request = nvme_init_request,
  1269. .map_queues = nvme_pci_map_queues,
  1270. .timeout = nvme_timeout,
  1271. .poll = nvme_poll,
  1272. };
  1273. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1274. {
  1275. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1276. /*
  1277. * If the controller was reset during removal, it's possible
  1278. * user requests may be waiting on a stopped queue. Start the
  1279. * queue to flush these to completion.
  1280. */
  1281. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1282. blk_cleanup_queue(dev->ctrl.admin_q);
  1283. blk_mq_free_tag_set(&dev->admin_tagset);
  1284. }
  1285. }
  1286. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1287. {
  1288. if (!dev->ctrl.admin_q) {
  1289. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1290. dev->admin_tagset.nr_hw_queues = 1;
  1291. dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  1292. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1293. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1294. dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1295. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1296. dev->admin_tagset.driver_data = dev;
  1297. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1298. return -ENOMEM;
  1299. dev->ctrl.admin_tagset = &dev->admin_tagset;
  1300. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1301. if (IS_ERR(dev->ctrl.admin_q)) {
  1302. blk_mq_free_tag_set(&dev->admin_tagset);
  1303. return -ENOMEM;
  1304. }
  1305. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1306. nvme_dev_remove_admin(dev);
  1307. dev->ctrl.admin_q = NULL;
  1308. return -ENODEV;
  1309. }
  1310. } else
  1311. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1312. return 0;
  1313. }
  1314. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1315. {
  1316. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1317. }
  1318. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1319. {
  1320. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1321. if (size <= dev->bar_mapped_size)
  1322. return 0;
  1323. if (size > pci_resource_len(pdev, 0))
  1324. return -ENOMEM;
  1325. if (dev->bar)
  1326. iounmap(dev->bar);
  1327. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1328. if (!dev->bar) {
  1329. dev->bar_mapped_size = 0;
  1330. return -ENOMEM;
  1331. }
  1332. dev->bar_mapped_size = size;
  1333. dev->dbs = dev->bar + NVME_REG_DBS;
  1334. return 0;
  1335. }
  1336. static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
  1337. {
  1338. int result;
  1339. u32 aqa;
  1340. struct nvme_queue *nvmeq;
  1341. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1342. if (result < 0)
  1343. return result;
  1344. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1345. NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
  1346. if (dev->subsystem &&
  1347. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1348. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1349. result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1350. if (result < 0)
  1351. return result;
  1352. result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1353. if (result)
  1354. return result;
  1355. nvmeq = &dev->queues[0];
  1356. aqa = nvmeq->q_depth - 1;
  1357. aqa |= aqa << 16;
  1358. writel(aqa, dev->bar + NVME_REG_AQA);
  1359. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1360. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1361. result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1362. if (result)
  1363. return result;
  1364. nvmeq->cq_vector = 0;
  1365. nvme_init_queue(nvmeq, 0);
  1366. result = queue_request_irq(nvmeq);
  1367. if (result) {
  1368. nvmeq->cq_vector = -1;
  1369. return result;
  1370. }
  1371. return result;
  1372. }
  1373. static int nvme_create_io_queues(struct nvme_dev *dev)
  1374. {
  1375. unsigned i, max;
  1376. int ret = 0;
  1377. for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
  1378. if (nvme_alloc_queue(dev, i, dev->q_depth)) {
  1379. ret = -ENOMEM;
  1380. break;
  1381. }
  1382. }
  1383. max = min(dev->max_qid, dev->ctrl.queue_count - 1);
  1384. for (i = dev->online_queues; i <= max; i++) {
  1385. ret = nvme_create_queue(&dev->queues[i], i);
  1386. if (ret)
  1387. break;
  1388. }
  1389. /*
  1390. * Ignore failing Create SQ/CQ commands, we can continue with less
  1391. * than the desired amount of queues, and even a controller without
  1392. * I/O queues can still be used to issue admin commands. This might
  1393. * be useful to upgrade a buggy firmware for example.
  1394. */
  1395. return ret >= 0 ? 0 : ret;
  1396. }
  1397. static ssize_t nvme_cmb_show(struct device *dev,
  1398. struct device_attribute *attr,
  1399. char *buf)
  1400. {
  1401. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1402. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1403. ndev->cmbloc, ndev->cmbsz);
  1404. }
  1405. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1406. static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
  1407. {
  1408. u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
  1409. return 1ULL << (12 + 4 * szu);
  1410. }
  1411. static u32 nvme_cmb_size(struct nvme_dev *dev)
  1412. {
  1413. return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
  1414. }
  1415. static void nvme_map_cmb(struct nvme_dev *dev)
  1416. {
  1417. u64 size, offset;
  1418. resource_size_t bar_size;
  1419. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1420. int bar;
  1421. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1422. if (!dev->cmbsz)
  1423. return;
  1424. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1425. if (!use_cmb_sqes)
  1426. return;
  1427. size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
  1428. offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
  1429. bar = NVME_CMB_BIR(dev->cmbloc);
  1430. bar_size = pci_resource_len(pdev, bar);
  1431. if (offset > bar_size)
  1432. return;
  1433. /*
  1434. * Controllers may support a CMB size larger than their BAR,
  1435. * for example, due to being behind a bridge. Reduce the CMB to
  1436. * the reported size of the BAR
  1437. */
  1438. if (size > bar_size - offset)
  1439. size = bar_size - offset;
  1440. dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
  1441. if (!dev->cmb)
  1442. return;
  1443. dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
  1444. dev->cmb_size = size;
  1445. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1446. &dev_attr_cmb.attr, NULL))
  1447. dev_warn(dev->ctrl.device,
  1448. "failed to add sysfs attribute for CMB\n");
  1449. }
  1450. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1451. {
  1452. if (dev->cmb) {
  1453. iounmap(dev->cmb);
  1454. dev->cmb = NULL;
  1455. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1456. &dev_attr_cmb.attr, NULL);
  1457. dev->cmbsz = 0;
  1458. }
  1459. }
  1460. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1461. {
  1462. u64 dma_addr = dev->host_mem_descs_dma;
  1463. struct nvme_command c;
  1464. int ret;
  1465. memset(&c, 0, sizeof(c));
  1466. c.features.opcode = nvme_admin_set_features;
  1467. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1468. c.features.dword11 = cpu_to_le32(bits);
  1469. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1470. ilog2(dev->ctrl.page_size));
  1471. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1472. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1473. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1474. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1475. if (ret) {
  1476. dev_warn(dev->ctrl.device,
  1477. "failed to set host mem (err %d, flags %#x).\n",
  1478. ret, bits);
  1479. }
  1480. return ret;
  1481. }
  1482. static void nvme_free_host_mem(struct nvme_dev *dev)
  1483. {
  1484. int i;
  1485. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1486. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1487. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1488. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1489. le64_to_cpu(desc->addr));
  1490. }
  1491. kfree(dev->host_mem_desc_bufs);
  1492. dev->host_mem_desc_bufs = NULL;
  1493. dma_free_coherent(dev->dev,
  1494. dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
  1495. dev->host_mem_descs, dev->host_mem_descs_dma);
  1496. dev->host_mem_descs = NULL;
  1497. dev->nr_host_mem_descs = 0;
  1498. }
  1499. static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
  1500. u32 chunk_size)
  1501. {
  1502. struct nvme_host_mem_buf_desc *descs;
  1503. u32 max_entries, len;
  1504. dma_addr_t descs_dma;
  1505. int i = 0;
  1506. void **bufs;
  1507. u64 size, tmp;
  1508. tmp = (preferred + chunk_size - 1);
  1509. do_div(tmp, chunk_size);
  1510. max_entries = tmp;
  1511. if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
  1512. max_entries = dev->ctrl.hmmaxd;
  1513. descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
  1514. &descs_dma, GFP_KERNEL);
  1515. if (!descs)
  1516. goto out;
  1517. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1518. if (!bufs)
  1519. goto out_free_descs;
  1520. for (size = 0; size < preferred && i < max_entries; size += len) {
  1521. dma_addr_t dma_addr;
  1522. len = min_t(u64, chunk_size, preferred - size);
  1523. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1524. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1525. if (!bufs[i])
  1526. break;
  1527. descs[i].addr = cpu_to_le64(dma_addr);
  1528. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1529. i++;
  1530. }
  1531. if (!size)
  1532. goto out_free_bufs;
  1533. dev->nr_host_mem_descs = i;
  1534. dev->host_mem_size = size;
  1535. dev->host_mem_descs = descs;
  1536. dev->host_mem_descs_dma = descs_dma;
  1537. dev->host_mem_desc_bufs = bufs;
  1538. return 0;
  1539. out_free_bufs:
  1540. while (--i >= 0) {
  1541. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1542. dma_free_coherent(dev->dev, size, bufs[i],
  1543. le64_to_cpu(descs[i].addr));
  1544. }
  1545. kfree(bufs);
  1546. out_free_descs:
  1547. dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
  1548. descs_dma);
  1549. out:
  1550. dev->host_mem_descs = NULL;
  1551. return -ENOMEM;
  1552. }
  1553. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1554. {
  1555. u32 chunk_size;
  1556. /* start big and work our way down */
  1557. for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
  1558. chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
  1559. chunk_size /= 2) {
  1560. if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
  1561. if (!min || dev->host_mem_size >= min)
  1562. return 0;
  1563. nvme_free_host_mem(dev);
  1564. }
  1565. }
  1566. return -ENOMEM;
  1567. }
  1568. static int nvme_setup_host_mem(struct nvme_dev *dev)
  1569. {
  1570. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1571. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1572. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1573. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1574. int ret;
  1575. preferred = min(preferred, max);
  1576. if (min > max) {
  1577. dev_warn(dev->ctrl.device,
  1578. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1579. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1580. nvme_free_host_mem(dev);
  1581. return 0;
  1582. }
  1583. /*
  1584. * If we already have a buffer allocated check if we can reuse it.
  1585. */
  1586. if (dev->host_mem_descs) {
  1587. if (dev->host_mem_size >= min)
  1588. enable_bits |= NVME_HOST_MEM_RETURN;
  1589. else
  1590. nvme_free_host_mem(dev);
  1591. }
  1592. if (!dev->host_mem_descs) {
  1593. if (nvme_alloc_host_mem(dev, min, preferred)) {
  1594. dev_warn(dev->ctrl.device,
  1595. "failed to allocate host memory buffer.\n");
  1596. return 0; /* controller must work without HMB */
  1597. }
  1598. dev_info(dev->ctrl.device,
  1599. "allocated %lld MiB host memory buffer.\n",
  1600. dev->host_mem_size >> ilog2(SZ_1M));
  1601. }
  1602. ret = nvme_set_host_mem(dev, enable_bits);
  1603. if (ret)
  1604. nvme_free_host_mem(dev);
  1605. return ret;
  1606. }
  1607. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1608. {
  1609. struct nvme_queue *adminq = &dev->queues[0];
  1610. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1611. int result, nr_io_queues;
  1612. unsigned long size;
  1613. struct irq_affinity affd = {
  1614. .pre_vectors = 1
  1615. };
  1616. nr_io_queues = num_possible_cpus();
  1617. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1618. if (result < 0)
  1619. return result;
  1620. if (nr_io_queues == 0)
  1621. return 0;
  1622. if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1623. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1624. sizeof(struct nvme_command));
  1625. if (result > 0)
  1626. dev->q_depth = result;
  1627. else
  1628. nvme_release_cmb(dev);
  1629. }
  1630. do {
  1631. size = db_bar_size(dev, nr_io_queues);
  1632. result = nvme_remap_bar(dev, size);
  1633. if (!result)
  1634. break;
  1635. if (!--nr_io_queues)
  1636. return -ENOMEM;
  1637. } while (1);
  1638. adminq->q_db = dev->dbs;
  1639. /* Deregister the admin queue's interrupt */
  1640. pci_free_irq(pdev, 0, adminq);
  1641. /*
  1642. * If we enable msix early due to not intx, disable it again before
  1643. * setting up the full range we need.
  1644. */
  1645. pci_free_irq_vectors(pdev);
  1646. result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
  1647. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
  1648. if (result <= 0)
  1649. return -EIO;
  1650. dev->num_vecs = result;
  1651. dev->max_qid = max(result - 1, 1);
  1652. /*
  1653. * Should investigate if there's a performance win from allocating
  1654. * more queues than interrupt vectors; it might allow the submission
  1655. * path to scale better, even if the receive path is limited by the
  1656. * number of interrupts.
  1657. */
  1658. result = queue_request_irq(adminq);
  1659. if (result) {
  1660. adminq->cq_vector = -1;
  1661. return result;
  1662. }
  1663. return nvme_create_io_queues(dev);
  1664. }
  1665. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1666. {
  1667. struct nvme_queue *nvmeq = req->end_io_data;
  1668. blk_mq_free_request(req);
  1669. complete(&nvmeq->dev->ioq_wait);
  1670. }
  1671. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1672. {
  1673. struct nvme_queue *nvmeq = req->end_io_data;
  1674. if (!error) {
  1675. unsigned long flags;
  1676. /*
  1677. * We might be called with the AQ q_lock held
  1678. * and the I/O queue q_lock should always
  1679. * nest inside the AQ one.
  1680. */
  1681. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1682. SINGLE_DEPTH_NESTING);
  1683. nvme_process_cq(nvmeq);
  1684. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1685. }
  1686. nvme_del_queue_end(req, error);
  1687. }
  1688. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1689. {
  1690. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1691. struct request *req;
  1692. struct nvme_command cmd;
  1693. memset(&cmd, 0, sizeof(cmd));
  1694. cmd.delete_queue.opcode = opcode;
  1695. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1696. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1697. if (IS_ERR(req))
  1698. return PTR_ERR(req);
  1699. req->timeout = ADMIN_TIMEOUT;
  1700. req->end_io_data = nvmeq;
  1701. blk_execute_rq_nowait(q, NULL, req, false,
  1702. opcode == nvme_admin_delete_cq ?
  1703. nvme_del_cq_end : nvme_del_queue_end);
  1704. return 0;
  1705. }
  1706. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1707. {
  1708. int pass, queues = dev->online_queues - 1;
  1709. unsigned long timeout;
  1710. u8 opcode = nvme_admin_delete_sq;
  1711. for (pass = 0; pass < 2; pass++) {
  1712. int sent = 0, i = queues;
  1713. reinit_completion(&dev->ioq_wait);
  1714. retry:
  1715. timeout = ADMIN_TIMEOUT;
  1716. for (; i > 0; i--, sent++)
  1717. if (nvme_delete_queue(&dev->queues[i], opcode))
  1718. break;
  1719. while (sent--) {
  1720. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1721. if (timeout == 0)
  1722. return;
  1723. if (i)
  1724. goto retry;
  1725. }
  1726. opcode = nvme_admin_delete_cq;
  1727. }
  1728. }
  1729. /*
  1730. * return error value only when tagset allocation failed
  1731. */
  1732. static int nvme_dev_add(struct nvme_dev *dev)
  1733. {
  1734. int ret;
  1735. if (!dev->ctrl.tagset) {
  1736. dev->tagset.ops = &nvme_mq_ops;
  1737. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1738. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1739. dev->tagset.numa_node = dev_to_node(dev->dev);
  1740. dev->tagset.queue_depth =
  1741. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1742. dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1743. if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
  1744. dev->tagset.cmd_size = max(dev->tagset.cmd_size,
  1745. nvme_pci_cmd_size(dev, true));
  1746. }
  1747. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1748. dev->tagset.driver_data = dev;
  1749. ret = blk_mq_alloc_tag_set(&dev->tagset);
  1750. if (ret) {
  1751. dev_warn(dev->ctrl.device,
  1752. "IO queues tagset allocation failed %d\n", ret);
  1753. return ret;
  1754. }
  1755. dev->ctrl.tagset = &dev->tagset;
  1756. nvme_dbbuf_set(dev);
  1757. } else {
  1758. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1759. /* Free previously allocated queues that are no longer usable */
  1760. nvme_free_queues(dev, dev->online_queues);
  1761. }
  1762. return 0;
  1763. }
  1764. static int nvme_pci_enable(struct nvme_dev *dev)
  1765. {
  1766. int result = -ENOMEM;
  1767. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1768. if (pci_enable_device_mem(pdev))
  1769. return result;
  1770. pci_set_master(pdev);
  1771. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1772. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1773. goto disable;
  1774. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1775. result = -ENODEV;
  1776. goto disable;
  1777. }
  1778. /*
  1779. * Some devices and/or platforms don't advertise or work with INTx
  1780. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1781. * adjust this later.
  1782. */
  1783. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1784. if (result < 0)
  1785. return result;
  1786. dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1787. dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
  1788. io_queue_depth);
  1789. dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
  1790. dev->dbs = dev->bar + 4096;
  1791. /*
  1792. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1793. * some MacBook7,1 to avoid controller resets and data loss.
  1794. */
  1795. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1796. dev->q_depth = 2;
  1797. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1798. "set queue depth=%u to work around controller resets\n",
  1799. dev->q_depth);
  1800. } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
  1801. (pdev->device == 0xa821 || pdev->device == 0xa822) &&
  1802. NVME_CAP_MQES(dev->ctrl.cap) == 0) {
  1803. dev->q_depth = 64;
  1804. dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
  1805. "set queue depth=%u\n", dev->q_depth);
  1806. }
  1807. nvme_map_cmb(dev);
  1808. pci_enable_pcie_error_reporting(pdev);
  1809. pci_save_state(pdev);
  1810. return 0;
  1811. disable:
  1812. pci_disable_device(pdev);
  1813. return result;
  1814. }
  1815. static void nvme_dev_unmap(struct nvme_dev *dev)
  1816. {
  1817. if (dev->bar)
  1818. iounmap(dev->bar);
  1819. pci_release_mem_regions(to_pci_dev(dev->dev));
  1820. }
  1821. static void nvme_pci_disable(struct nvme_dev *dev)
  1822. {
  1823. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1824. nvme_release_cmb(dev);
  1825. pci_free_irq_vectors(pdev);
  1826. if (pci_is_enabled(pdev)) {
  1827. pci_disable_pcie_error_reporting(pdev);
  1828. pci_disable_device(pdev);
  1829. }
  1830. }
  1831. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1832. {
  1833. int i;
  1834. bool dead = true;
  1835. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1836. mutex_lock(&dev->shutdown_lock);
  1837. if (pci_is_enabled(pdev)) {
  1838. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1839. if (dev->ctrl.state == NVME_CTRL_LIVE ||
  1840. dev->ctrl.state == NVME_CTRL_RESETTING)
  1841. nvme_start_freeze(&dev->ctrl);
  1842. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1843. pdev->error_state != pci_channel_io_normal);
  1844. }
  1845. /*
  1846. * Give the controller a chance to complete all entered requests if
  1847. * doing a safe shutdown.
  1848. */
  1849. if (!dead) {
  1850. if (shutdown)
  1851. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1852. }
  1853. nvme_stop_queues(&dev->ctrl);
  1854. if (!dead && dev->ctrl.queue_count > 0) {
  1855. /*
  1856. * If the controller is still alive tell it to stop using the
  1857. * host memory buffer. In theory the shutdown / reset should
  1858. * make sure that it doesn't access the host memoery anymore,
  1859. * but I'd rather be safe than sorry..
  1860. */
  1861. if (dev->host_mem_descs)
  1862. nvme_set_host_mem(dev, 0);
  1863. nvme_disable_io_queues(dev);
  1864. nvme_disable_admin_queue(dev, shutdown);
  1865. }
  1866. for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
  1867. nvme_suspend_queue(&dev->queues[i]);
  1868. nvme_pci_disable(dev);
  1869. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1870. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1871. /*
  1872. * The driver will not be starting up queues again if shutting down so
  1873. * must flush all entered requests to their failed completion to avoid
  1874. * deadlocking blk-mq hot-cpu notifier.
  1875. */
  1876. if (shutdown)
  1877. nvme_start_queues(&dev->ctrl);
  1878. mutex_unlock(&dev->shutdown_lock);
  1879. }
  1880. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1881. {
  1882. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1883. PAGE_SIZE, PAGE_SIZE, 0);
  1884. if (!dev->prp_page_pool)
  1885. return -ENOMEM;
  1886. /* Optimisation for I/Os between 4k and 128k */
  1887. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1888. 256, 256, 0);
  1889. if (!dev->prp_small_pool) {
  1890. dma_pool_destroy(dev->prp_page_pool);
  1891. return -ENOMEM;
  1892. }
  1893. return 0;
  1894. }
  1895. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1896. {
  1897. dma_pool_destroy(dev->prp_page_pool);
  1898. dma_pool_destroy(dev->prp_small_pool);
  1899. }
  1900. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1901. {
  1902. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1903. nvme_dbbuf_dma_free(dev);
  1904. put_device(dev->dev);
  1905. if (dev->tagset.tags)
  1906. blk_mq_free_tag_set(&dev->tagset);
  1907. if (dev->ctrl.admin_q)
  1908. blk_put_queue(dev->ctrl.admin_q);
  1909. kfree(dev->queues);
  1910. free_opal_dev(dev->ctrl.opal_dev);
  1911. kfree(dev);
  1912. }
  1913. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1914. {
  1915. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1916. nvme_get_ctrl(&dev->ctrl);
  1917. nvme_dev_disable(dev, false);
  1918. if (!queue_work(nvme_wq, &dev->remove_work))
  1919. nvme_put_ctrl(&dev->ctrl);
  1920. }
  1921. static void nvme_reset_work(struct work_struct *work)
  1922. {
  1923. struct nvme_dev *dev =
  1924. container_of(work, struct nvme_dev, ctrl.reset_work);
  1925. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1926. int result = -ENODEV;
  1927. enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
  1928. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1929. goto out;
  1930. /*
  1931. * If we're called to reset a live controller first shut it down before
  1932. * moving on.
  1933. */
  1934. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1935. nvme_dev_disable(dev, false);
  1936. /*
  1937. * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
  1938. * initializing procedure here.
  1939. */
  1940. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
  1941. dev_warn(dev->ctrl.device,
  1942. "failed to mark controller CONNECTING\n");
  1943. goto out;
  1944. }
  1945. result = nvme_pci_enable(dev);
  1946. if (result)
  1947. goto out;
  1948. result = nvme_pci_configure_admin_queue(dev);
  1949. if (result)
  1950. goto out;
  1951. result = nvme_alloc_admin_tags(dev);
  1952. if (result)
  1953. goto out;
  1954. result = nvme_init_identify(&dev->ctrl);
  1955. if (result)
  1956. goto out;
  1957. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1958. if (!dev->ctrl.opal_dev)
  1959. dev->ctrl.opal_dev =
  1960. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1961. else if (was_suspend)
  1962. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1963. } else {
  1964. free_opal_dev(dev->ctrl.opal_dev);
  1965. dev->ctrl.opal_dev = NULL;
  1966. }
  1967. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1968. result = nvme_dbbuf_dma_alloc(dev);
  1969. if (result)
  1970. dev_warn(dev->dev,
  1971. "unable to allocate dma for dbbuf\n");
  1972. }
  1973. if (dev->ctrl.hmpre) {
  1974. result = nvme_setup_host_mem(dev);
  1975. if (result < 0)
  1976. goto out;
  1977. }
  1978. result = nvme_setup_io_queues(dev);
  1979. if (result)
  1980. goto out;
  1981. /*
  1982. * Keep the controller around but remove all namespaces if we don't have
  1983. * any working I/O queue.
  1984. */
  1985. if (dev->online_queues < 2) {
  1986. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1987. nvme_kill_queues(&dev->ctrl);
  1988. nvme_remove_namespaces(&dev->ctrl);
  1989. new_state = NVME_CTRL_ADMIN_ONLY;
  1990. } else {
  1991. nvme_start_queues(&dev->ctrl);
  1992. nvme_wait_freeze(&dev->ctrl);
  1993. /* hit this only when allocate tagset fails */
  1994. if (nvme_dev_add(dev))
  1995. new_state = NVME_CTRL_ADMIN_ONLY;
  1996. nvme_unfreeze(&dev->ctrl);
  1997. }
  1998. /*
  1999. * If only admin queue live, keep it to do further investigation or
  2000. * recovery.
  2001. */
  2002. if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
  2003. dev_warn(dev->ctrl.device,
  2004. "failed to mark controller state %d\n", new_state);
  2005. goto out;
  2006. }
  2007. nvme_start_ctrl(&dev->ctrl);
  2008. return;
  2009. out:
  2010. nvme_remove_dead_ctrl(dev, result);
  2011. }
  2012. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  2013. {
  2014. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  2015. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2016. nvme_kill_queues(&dev->ctrl);
  2017. if (pci_get_drvdata(pdev))
  2018. device_release_driver(&pdev->dev);
  2019. nvme_put_ctrl(&dev->ctrl);
  2020. }
  2021. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  2022. {
  2023. *val = readl(to_nvme_dev(ctrl)->bar + off);
  2024. return 0;
  2025. }
  2026. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  2027. {
  2028. writel(val, to_nvme_dev(ctrl)->bar + off);
  2029. return 0;
  2030. }
  2031. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  2032. {
  2033. *val = readq(to_nvme_dev(ctrl)->bar + off);
  2034. return 0;
  2035. }
  2036. static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
  2037. {
  2038. struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
  2039. return snprintf(buf, size, "%s", dev_name(&pdev->dev));
  2040. }
  2041. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  2042. .name = "pcie",
  2043. .module = THIS_MODULE,
  2044. .flags = NVME_F_METADATA_SUPPORTED,
  2045. .reg_read32 = nvme_pci_reg_read32,
  2046. .reg_write32 = nvme_pci_reg_write32,
  2047. .reg_read64 = nvme_pci_reg_read64,
  2048. .free_ctrl = nvme_pci_free_ctrl,
  2049. .submit_async_event = nvme_pci_submit_async_event,
  2050. .get_address = nvme_pci_get_address,
  2051. };
  2052. static int nvme_dev_map(struct nvme_dev *dev)
  2053. {
  2054. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2055. if (pci_request_mem_regions(pdev, "nvme"))
  2056. return -ENODEV;
  2057. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  2058. goto release;
  2059. return 0;
  2060. release:
  2061. pci_release_mem_regions(pdev);
  2062. return -ENODEV;
  2063. }
  2064. static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
  2065. {
  2066. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  2067. /*
  2068. * Several Samsung devices seem to drop off the PCIe bus
  2069. * randomly when APST is on and uses the deepest sleep state.
  2070. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  2071. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  2072. * 950 PRO 256GB", but it seems to be restricted to two Dell
  2073. * laptops.
  2074. */
  2075. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  2076. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  2077. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  2078. return NVME_QUIRK_NO_DEEPEST_PS;
  2079. } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
  2080. /*
  2081. * Samsung SSD 960 EVO drops off the PCIe bus after system
  2082. * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
  2083. * within few minutes after bootup on a Coffee Lake board -
  2084. * ASUS PRIME Z370-A
  2085. */
  2086. if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
  2087. (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
  2088. dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
  2089. return NVME_QUIRK_NO_APST;
  2090. }
  2091. return 0;
  2092. }
  2093. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2094. {
  2095. int node, result = -ENOMEM;
  2096. struct nvme_dev *dev;
  2097. unsigned long quirks = id->driver_data;
  2098. node = dev_to_node(&pdev->dev);
  2099. if (node == NUMA_NO_NODE)
  2100. set_dev_node(&pdev->dev, first_memory_node);
  2101. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2102. if (!dev)
  2103. return -ENOMEM;
  2104. dev->queues = kcalloc_node(num_possible_cpus() + 1,
  2105. sizeof(struct nvme_queue), GFP_KERNEL, node);
  2106. if (!dev->queues)
  2107. goto free;
  2108. dev->dev = get_device(&pdev->dev);
  2109. pci_set_drvdata(pdev, dev);
  2110. result = nvme_dev_map(dev);
  2111. if (result)
  2112. goto put_pci;
  2113. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  2114. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  2115. mutex_init(&dev->shutdown_lock);
  2116. init_completion(&dev->ioq_wait);
  2117. result = nvme_setup_prp_pools(dev);
  2118. if (result)
  2119. goto unmap;
  2120. quirks |= check_vendor_combination_bug(pdev);
  2121. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  2122. quirks);
  2123. if (result)
  2124. goto release_pools;
  2125. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  2126. nvme_reset_ctrl(&dev->ctrl);
  2127. return 0;
  2128. release_pools:
  2129. nvme_release_prp_pools(dev);
  2130. unmap:
  2131. nvme_dev_unmap(dev);
  2132. put_pci:
  2133. put_device(dev->dev);
  2134. free:
  2135. kfree(dev->queues);
  2136. kfree(dev);
  2137. return result;
  2138. }
  2139. static void nvme_reset_prepare(struct pci_dev *pdev)
  2140. {
  2141. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2142. nvme_dev_disable(dev, false);
  2143. }
  2144. static void nvme_reset_done(struct pci_dev *pdev)
  2145. {
  2146. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2147. nvme_reset_ctrl_sync(&dev->ctrl);
  2148. }
  2149. static void nvme_shutdown(struct pci_dev *pdev)
  2150. {
  2151. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2152. nvme_dev_disable(dev, true);
  2153. }
  2154. /*
  2155. * The driver's remove may be called on a device in a partially initialized
  2156. * state. This function must not have any dependencies on the device state in
  2157. * order to proceed.
  2158. */
  2159. static void nvme_remove(struct pci_dev *pdev)
  2160. {
  2161. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2162. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  2163. cancel_work_sync(&dev->ctrl.reset_work);
  2164. pci_set_drvdata(pdev, NULL);
  2165. if (!pci_device_is_present(pdev)) {
  2166. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  2167. nvme_dev_disable(dev, false);
  2168. }
  2169. flush_work(&dev->ctrl.reset_work);
  2170. nvme_stop_ctrl(&dev->ctrl);
  2171. nvme_remove_namespaces(&dev->ctrl);
  2172. nvme_dev_disable(dev, true);
  2173. nvme_free_host_mem(dev);
  2174. nvme_dev_remove_admin(dev);
  2175. nvme_free_queues(dev, 0);
  2176. nvme_uninit_ctrl(&dev->ctrl);
  2177. nvme_release_prp_pools(dev);
  2178. nvme_dev_unmap(dev);
  2179. nvme_put_ctrl(&dev->ctrl);
  2180. }
  2181. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  2182. {
  2183. int ret = 0;
  2184. if (numvfs == 0) {
  2185. if (pci_vfs_assigned(pdev)) {
  2186. dev_warn(&pdev->dev,
  2187. "Cannot disable SR-IOV VFs while assigned\n");
  2188. return -EPERM;
  2189. }
  2190. pci_disable_sriov(pdev);
  2191. return 0;
  2192. }
  2193. ret = pci_enable_sriov(pdev, numvfs);
  2194. return ret ? ret : numvfs;
  2195. }
  2196. #ifdef CONFIG_PM_SLEEP
  2197. static int nvme_suspend(struct device *dev)
  2198. {
  2199. struct pci_dev *pdev = to_pci_dev(dev);
  2200. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2201. nvme_dev_disable(ndev, true);
  2202. return 0;
  2203. }
  2204. static int nvme_resume(struct device *dev)
  2205. {
  2206. struct pci_dev *pdev = to_pci_dev(dev);
  2207. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2208. nvme_reset_ctrl(&ndev->ctrl);
  2209. return 0;
  2210. }
  2211. #endif
  2212. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2213. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  2214. pci_channel_state_t state)
  2215. {
  2216. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2217. /*
  2218. * A frozen channel requires a reset. When detected, this method will
  2219. * shutdown the controller to quiesce. The controller will be restarted
  2220. * after the slot reset through driver's slot_reset callback.
  2221. */
  2222. switch (state) {
  2223. case pci_channel_io_normal:
  2224. return PCI_ERS_RESULT_CAN_RECOVER;
  2225. case pci_channel_io_frozen:
  2226. dev_warn(dev->ctrl.device,
  2227. "frozen state error detected, reset controller\n");
  2228. nvme_dev_disable(dev, false);
  2229. return PCI_ERS_RESULT_NEED_RESET;
  2230. case pci_channel_io_perm_failure:
  2231. dev_warn(dev->ctrl.device,
  2232. "failure state error detected, request disconnect\n");
  2233. return PCI_ERS_RESULT_DISCONNECT;
  2234. }
  2235. return PCI_ERS_RESULT_NEED_RESET;
  2236. }
  2237. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2238. {
  2239. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2240. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2241. pci_restore_state(pdev);
  2242. nvme_reset_ctrl(&dev->ctrl);
  2243. return PCI_ERS_RESULT_RECOVERED;
  2244. }
  2245. static void nvme_error_resume(struct pci_dev *pdev)
  2246. {
  2247. pci_cleanup_aer_uncorrect_error_status(pdev);
  2248. }
  2249. static const struct pci_error_handlers nvme_err_handler = {
  2250. .error_detected = nvme_error_detected,
  2251. .slot_reset = nvme_slot_reset,
  2252. .resume = nvme_error_resume,
  2253. .reset_prepare = nvme_reset_prepare,
  2254. .reset_done = nvme_reset_done,
  2255. };
  2256. static const struct pci_device_id nvme_id_table[] = {
  2257. { PCI_VDEVICE(INTEL, 0x0953),
  2258. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2259. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2260. { PCI_VDEVICE(INTEL, 0x0a53),
  2261. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2262. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2263. { PCI_VDEVICE(INTEL, 0x0a54),
  2264. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2265. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2266. { PCI_VDEVICE(INTEL, 0x0a55),
  2267. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2268. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2269. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2270. .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
  2271. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2272. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2273. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2274. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2275. { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
  2276. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2277. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2278. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2279. { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
  2280. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2281. { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
  2282. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2283. { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
  2284. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2285. { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
  2286. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2287. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2288. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2289. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2290. { 0, }
  2291. };
  2292. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2293. static struct pci_driver nvme_driver = {
  2294. .name = "nvme",
  2295. .id_table = nvme_id_table,
  2296. .probe = nvme_probe,
  2297. .remove = nvme_remove,
  2298. .shutdown = nvme_shutdown,
  2299. .driver = {
  2300. .pm = &nvme_dev_pm_ops,
  2301. },
  2302. .sriov_configure = nvme_pci_sriov_configure,
  2303. .err_handler = &nvme_err_handler,
  2304. };
  2305. static int __init nvme_init(void)
  2306. {
  2307. return pci_register_driver(&nvme_driver);
  2308. }
  2309. static void __exit nvme_exit(void)
  2310. {
  2311. pci_unregister_driver(&nvme_driver);
  2312. flush_workqueue(nvme_wq);
  2313. _nvme_check_size();
  2314. }
  2315. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2316. MODULE_LICENSE("GPL");
  2317. MODULE_VERSION("1.0");
  2318. module_init(nvme_init);
  2319. module_exit(nvme_exit);