niu.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* niu.c: Neptune ethernet driver.
  3. *
  4. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  5. */
  6. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/interrupt.h>
  10. #include <linux/pci.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/mii.h>
  19. #include <linux/if.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/if_vlan.h>
  22. #include <linux/ip.h>
  23. #include <linux/in.h>
  24. #include <linux/ipv6.h>
  25. #include <linux/log2.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/crc32.h>
  28. #include <linux/list.h>
  29. #include <linux/slab.h>
  30. #include <linux/io.h>
  31. #include <linux/of_device.h>
  32. #include "niu.h"
  33. #define DRV_MODULE_NAME "niu"
  34. #define DRV_MODULE_VERSION "1.1"
  35. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  36. static char version[] =
  37. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  38. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  39. MODULE_DESCRIPTION("NIU ethernet driver");
  40. MODULE_LICENSE("GPL");
  41. MODULE_VERSION(DRV_MODULE_VERSION);
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static const struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niu_lock_parent(np, flags) \
  75. spin_lock_irqsave(&np->parent->lock, flags)
  76. #define niu_unlock_parent(np, flags) \
  77. spin_unlock_irqrestore(&np->parent->lock, flags)
  78. static int serdes_init_10g_serdes(struct niu *np);
  79. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  80. u64 bits, int limit, int delay)
  81. {
  82. while (--limit >= 0) {
  83. u64 val = nr64_mac(reg);
  84. if (!(val & bits))
  85. break;
  86. udelay(delay);
  87. }
  88. if (limit < 0)
  89. return -ENODEV;
  90. return 0;
  91. }
  92. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay,
  94. const char *reg_name)
  95. {
  96. int err;
  97. nw64_mac(reg, bits);
  98. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  99. if (err)
  100. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  101. (unsigned long long)bits, reg_name,
  102. (unsigned long long)nr64_mac(reg));
  103. return err;
  104. }
  105. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  106. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  107. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  108. })
  109. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  110. u64 bits, int limit, int delay)
  111. {
  112. while (--limit >= 0) {
  113. u64 val = nr64_ipp(reg);
  114. if (!(val & bits))
  115. break;
  116. udelay(delay);
  117. }
  118. if (limit < 0)
  119. return -ENODEV;
  120. return 0;
  121. }
  122. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay,
  124. const char *reg_name)
  125. {
  126. int err;
  127. u64 val;
  128. val = nr64_ipp(reg);
  129. val |= bits;
  130. nw64_ipp(reg, val);
  131. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  132. if (err)
  133. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  134. (unsigned long long)bits, reg_name,
  135. (unsigned long long)nr64_ipp(reg));
  136. return err;
  137. }
  138. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  139. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  140. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  141. })
  142. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  143. u64 bits, int limit, int delay)
  144. {
  145. while (--limit >= 0) {
  146. u64 val = nr64(reg);
  147. if (!(val & bits))
  148. break;
  149. udelay(delay);
  150. }
  151. if (limit < 0)
  152. return -ENODEV;
  153. return 0;
  154. }
  155. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  156. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  157. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  158. })
  159. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  160. u64 bits, int limit, int delay,
  161. const char *reg_name)
  162. {
  163. int err;
  164. nw64(reg, bits);
  165. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  166. if (err)
  167. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  168. (unsigned long long)bits, reg_name,
  169. (unsigned long long)nr64(reg));
  170. return err;
  171. }
  172. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  173. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  174. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  175. })
  176. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  177. {
  178. u64 val = (u64) lp->timer;
  179. if (on)
  180. val |= LDG_IMGMT_ARM;
  181. nw64(LDG_IMGMT(lp->ldg_num), val);
  182. }
  183. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  184. {
  185. unsigned long mask_reg, bits;
  186. u64 val;
  187. if (ldn < 0 || ldn > LDN_MAX)
  188. return -EINVAL;
  189. if (ldn < 64) {
  190. mask_reg = LD_IM0(ldn);
  191. bits = LD_IM0_MASK;
  192. } else {
  193. mask_reg = LD_IM1(ldn - 64);
  194. bits = LD_IM1_MASK;
  195. }
  196. val = nr64(mask_reg);
  197. if (on)
  198. val &= ~bits;
  199. else
  200. val |= bits;
  201. nw64(mask_reg, val);
  202. return 0;
  203. }
  204. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  205. {
  206. struct niu_parent *parent = np->parent;
  207. int i;
  208. for (i = 0; i <= LDN_MAX; i++) {
  209. int err;
  210. if (parent->ldg_map[i] != lp->ldg_num)
  211. continue;
  212. err = niu_ldn_irq_enable(np, i, on);
  213. if (err)
  214. return err;
  215. }
  216. return 0;
  217. }
  218. static int niu_enable_interrupts(struct niu *np, int on)
  219. {
  220. int i;
  221. for (i = 0; i < np->num_ldg; i++) {
  222. struct niu_ldg *lp = &np->ldg[i];
  223. int err;
  224. err = niu_enable_ldn_in_ldg(np, lp, on);
  225. if (err)
  226. return err;
  227. }
  228. for (i = 0; i < np->num_ldg; i++)
  229. niu_ldg_rearm(np, &np->ldg[i], on);
  230. return 0;
  231. }
  232. static u32 phy_encode(u32 type, int port)
  233. {
  234. return type << (port * 2);
  235. }
  236. static u32 phy_decode(u32 val, int port)
  237. {
  238. return (val >> (port * 2)) & PORT_TYPE_MASK;
  239. }
  240. static int mdio_wait(struct niu *np)
  241. {
  242. int limit = 1000;
  243. u64 val;
  244. while (--limit > 0) {
  245. val = nr64(MIF_FRAME_OUTPUT);
  246. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  247. return val & MIF_FRAME_OUTPUT_DATA;
  248. udelay(10);
  249. }
  250. return -ENODEV;
  251. }
  252. static int mdio_read(struct niu *np, int port, int dev, int reg)
  253. {
  254. int err;
  255. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  256. err = mdio_wait(np);
  257. if (err < 0)
  258. return err;
  259. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  260. return mdio_wait(np);
  261. }
  262. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  263. {
  264. int err;
  265. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  266. err = mdio_wait(np);
  267. if (err < 0)
  268. return err;
  269. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  270. err = mdio_wait(np);
  271. if (err < 0)
  272. return err;
  273. return 0;
  274. }
  275. static int mii_read(struct niu *np, int port, int reg)
  276. {
  277. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  278. return mdio_wait(np);
  279. }
  280. static int mii_write(struct niu *np, int port, int reg, int data)
  281. {
  282. int err;
  283. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  284. err = mdio_wait(np);
  285. if (err < 0)
  286. return err;
  287. return 0;
  288. }
  289. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  290. {
  291. int err;
  292. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  293. ESR2_TI_PLL_TX_CFG_L(channel),
  294. val & 0xffff);
  295. if (!err)
  296. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  297. ESR2_TI_PLL_TX_CFG_H(channel),
  298. val >> 16);
  299. return err;
  300. }
  301. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  302. {
  303. int err;
  304. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  305. ESR2_TI_PLL_RX_CFG_L(channel),
  306. val & 0xffff);
  307. if (!err)
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_RX_CFG_H(channel),
  310. val >> 16);
  311. return err;
  312. }
  313. /* Mode is always 10G fiber. */
  314. static int serdes_init_niu_10g_fiber(struct niu *np)
  315. {
  316. struct niu_link_config *lp = &np->link_config;
  317. u32 tx_cfg, rx_cfg;
  318. unsigned long i;
  319. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  320. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  321. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  322. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  323. if (lp->loopback_mode == LOOPBACK_PHY) {
  324. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  325. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  326. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  327. tx_cfg |= PLL_TX_CFG_ENTEST;
  328. rx_cfg |= PLL_RX_CFG_ENTEST;
  329. }
  330. /* Initialize all 4 lanes of the SERDES. */
  331. for (i = 0; i < 4; i++) {
  332. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  333. if (err)
  334. return err;
  335. }
  336. for (i = 0; i < 4; i++) {
  337. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  338. if (err)
  339. return err;
  340. }
  341. return 0;
  342. }
  343. static int serdes_init_niu_1g_serdes(struct niu *np)
  344. {
  345. struct niu_link_config *lp = &np->link_config;
  346. u16 pll_cfg, pll_sts;
  347. int max_retry = 100;
  348. u64 uninitialized_var(sig), mask, val;
  349. u32 tx_cfg, rx_cfg;
  350. unsigned long i;
  351. int err;
  352. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  353. PLL_TX_CFG_RATE_HALF);
  354. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  355. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  356. PLL_RX_CFG_RATE_HALF);
  357. if (np->port == 0)
  358. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  359. if (lp->loopback_mode == LOOPBACK_PHY) {
  360. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  361. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  362. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  363. tx_cfg |= PLL_TX_CFG_ENTEST;
  364. rx_cfg |= PLL_RX_CFG_ENTEST;
  365. }
  366. /* Initialize PLL for 1G */
  367. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  368. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  369. ESR2_TI_PLL_CFG_L, pll_cfg);
  370. if (err) {
  371. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  372. np->port, __func__);
  373. return err;
  374. }
  375. pll_sts = PLL_CFG_ENPLL;
  376. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_STS_L, pll_sts);
  378. if (err) {
  379. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  380. np->port, __func__);
  381. return err;
  382. }
  383. udelay(200);
  384. /* Initialize all 4 lanes of the SERDES. */
  385. for (i = 0; i < 4; i++) {
  386. err = esr2_set_tx_cfg(np, i, tx_cfg);
  387. if (err)
  388. return err;
  389. }
  390. for (i = 0; i < 4; i++) {
  391. err = esr2_set_rx_cfg(np, i, rx_cfg);
  392. if (err)
  393. return err;
  394. }
  395. switch (np->port) {
  396. case 0:
  397. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  398. mask = val;
  399. break;
  400. case 1:
  401. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  402. mask = val;
  403. break;
  404. default:
  405. return -EINVAL;
  406. }
  407. while (max_retry--) {
  408. sig = nr64(ESR_INT_SIGNALS);
  409. if ((sig & mask) == val)
  410. break;
  411. mdelay(500);
  412. }
  413. if ((sig & mask) != val) {
  414. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  415. np->port, (int)(sig & mask), (int)val);
  416. return -ENODEV;
  417. }
  418. return 0;
  419. }
  420. static int serdes_init_niu_10g_serdes(struct niu *np)
  421. {
  422. struct niu_link_config *lp = &np->link_config;
  423. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  424. int max_retry = 100;
  425. u64 uninitialized_var(sig), mask, val;
  426. unsigned long i;
  427. int err;
  428. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  429. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  430. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  431. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  432. if (lp->loopback_mode == LOOPBACK_PHY) {
  433. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  434. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  435. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  436. tx_cfg |= PLL_TX_CFG_ENTEST;
  437. rx_cfg |= PLL_RX_CFG_ENTEST;
  438. }
  439. /* Initialize PLL for 10G */
  440. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  441. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  442. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  443. if (err) {
  444. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  445. np->port, __func__);
  446. return err;
  447. }
  448. pll_sts = PLL_CFG_ENPLL;
  449. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  450. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  451. if (err) {
  452. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  453. np->port, __func__);
  454. return err;
  455. }
  456. udelay(200);
  457. /* Initialize all 4 lanes of the SERDES. */
  458. for (i = 0; i < 4; i++) {
  459. err = esr2_set_tx_cfg(np, i, tx_cfg);
  460. if (err)
  461. return err;
  462. }
  463. for (i = 0; i < 4; i++) {
  464. err = esr2_set_rx_cfg(np, i, rx_cfg);
  465. if (err)
  466. return err;
  467. }
  468. /* check if serdes is ready */
  469. switch (np->port) {
  470. case 0:
  471. mask = ESR_INT_SIGNALS_P0_BITS;
  472. val = (ESR_INT_SRDY0_P0 |
  473. ESR_INT_DET0_P0 |
  474. ESR_INT_XSRDY_P0 |
  475. ESR_INT_XDP_P0_CH3 |
  476. ESR_INT_XDP_P0_CH2 |
  477. ESR_INT_XDP_P0_CH1 |
  478. ESR_INT_XDP_P0_CH0);
  479. break;
  480. case 1:
  481. mask = ESR_INT_SIGNALS_P1_BITS;
  482. val = (ESR_INT_SRDY0_P1 |
  483. ESR_INT_DET0_P1 |
  484. ESR_INT_XSRDY_P1 |
  485. ESR_INT_XDP_P1_CH3 |
  486. ESR_INT_XDP_P1_CH2 |
  487. ESR_INT_XDP_P1_CH1 |
  488. ESR_INT_XDP_P1_CH0);
  489. break;
  490. default:
  491. return -EINVAL;
  492. }
  493. while (max_retry--) {
  494. sig = nr64(ESR_INT_SIGNALS);
  495. if ((sig & mask) == val)
  496. break;
  497. mdelay(500);
  498. }
  499. if ((sig & mask) != val) {
  500. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  501. np->port, (int)(sig & mask), (int)val);
  502. /* 10G failed, try initializing at 1G */
  503. err = serdes_init_niu_1g_serdes(np);
  504. if (!err) {
  505. np->flags &= ~NIU_FLAGS_10G;
  506. np->mac_xcvr = MAC_XCVR_PCS;
  507. } else {
  508. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  509. np->port);
  510. return -ENODEV;
  511. }
  512. }
  513. return 0;
  514. }
  515. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  516. {
  517. int err;
  518. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  519. if (err >= 0) {
  520. *val = (err & 0xffff);
  521. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  522. ESR_RXTX_CTRL_H(chan));
  523. if (err >= 0)
  524. *val |= ((err & 0xffff) << 16);
  525. err = 0;
  526. }
  527. return err;
  528. }
  529. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  530. {
  531. int err;
  532. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  533. ESR_GLUE_CTRL0_L(chan));
  534. if (err >= 0) {
  535. *val = (err & 0xffff);
  536. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  537. ESR_GLUE_CTRL0_H(chan));
  538. if (err >= 0) {
  539. *val |= ((err & 0xffff) << 16);
  540. err = 0;
  541. }
  542. }
  543. return err;
  544. }
  545. static int esr_read_reset(struct niu *np, u32 *val)
  546. {
  547. int err;
  548. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  549. ESR_RXTX_RESET_CTRL_L);
  550. if (err >= 0) {
  551. *val = (err & 0xffff);
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_RXTX_RESET_CTRL_H);
  554. if (err >= 0) {
  555. *val |= ((err & 0xffff) << 16);
  556. err = 0;
  557. }
  558. }
  559. return err;
  560. }
  561. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  562. {
  563. int err;
  564. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  565. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  566. if (!err)
  567. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  568. ESR_RXTX_CTRL_H(chan), (val >> 16));
  569. return err;
  570. }
  571. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  572. {
  573. int err;
  574. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  575. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  576. if (!err)
  577. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  578. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  579. return err;
  580. }
  581. static int esr_reset(struct niu *np)
  582. {
  583. u32 uninitialized_var(reset);
  584. int err;
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_RESET_CTRL_L, 0x0000);
  587. if (err)
  588. return err;
  589. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  590. ESR_RXTX_RESET_CTRL_H, 0xffff);
  591. if (err)
  592. return err;
  593. udelay(200);
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_RXTX_RESET_CTRL_L, 0xffff);
  596. if (err)
  597. return err;
  598. udelay(200);
  599. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  600. ESR_RXTX_RESET_CTRL_H, 0x0000);
  601. if (err)
  602. return err;
  603. udelay(200);
  604. err = esr_read_reset(np, &reset);
  605. if (err)
  606. return err;
  607. if (reset != 0) {
  608. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  609. np->port, reset);
  610. return -ENODEV;
  611. }
  612. return 0;
  613. }
  614. static int serdes_init_10g(struct niu *np)
  615. {
  616. struct niu_link_config *lp = &np->link_config;
  617. unsigned long ctrl_reg, test_cfg_reg, i;
  618. u64 ctrl_val, test_cfg_val, sig, mask, val;
  619. int err;
  620. switch (np->port) {
  621. case 0:
  622. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  623. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  624. break;
  625. case 1:
  626. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  627. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  628. break;
  629. default:
  630. return -EINVAL;
  631. }
  632. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  633. ENET_SERDES_CTRL_SDET_1 |
  634. ENET_SERDES_CTRL_SDET_2 |
  635. ENET_SERDES_CTRL_SDET_3 |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  639. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  643. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  644. test_cfg_val = 0;
  645. if (lp->loopback_mode == LOOPBACK_PHY) {
  646. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  647. ENET_SERDES_TEST_MD_0_SHIFT) |
  648. (ENET_TEST_MD_PAD_LOOPBACK <<
  649. ENET_SERDES_TEST_MD_1_SHIFT) |
  650. (ENET_TEST_MD_PAD_LOOPBACK <<
  651. ENET_SERDES_TEST_MD_2_SHIFT) |
  652. (ENET_TEST_MD_PAD_LOOPBACK <<
  653. ENET_SERDES_TEST_MD_3_SHIFT));
  654. }
  655. nw64(ctrl_reg, ctrl_val);
  656. nw64(test_cfg_reg, test_cfg_val);
  657. /* Initialize all 4 lanes of the SERDES. */
  658. for (i = 0; i < 4; i++) {
  659. u32 rxtx_ctrl, glue0;
  660. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  661. if (err)
  662. return err;
  663. err = esr_read_glue0(np, i, &glue0);
  664. if (err)
  665. return err;
  666. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  667. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  668. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  669. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  670. ESR_GLUE_CTRL0_THCNT |
  671. ESR_GLUE_CTRL0_BLTIME);
  672. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  673. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  674. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  675. (BLTIME_300_CYCLES <<
  676. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  677. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  678. if (err)
  679. return err;
  680. err = esr_write_glue0(np, i, glue0);
  681. if (err)
  682. return err;
  683. }
  684. err = esr_reset(np);
  685. if (err)
  686. return err;
  687. sig = nr64(ESR_INT_SIGNALS);
  688. switch (np->port) {
  689. case 0:
  690. mask = ESR_INT_SIGNALS_P0_BITS;
  691. val = (ESR_INT_SRDY0_P0 |
  692. ESR_INT_DET0_P0 |
  693. ESR_INT_XSRDY_P0 |
  694. ESR_INT_XDP_P0_CH3 |
  695. ESR_INT_XDP_P0_CH2 |
  696. ESR_INT_XDP_P0_CH1 |
  697. ESR_INT_XDP_P0_CH0);
  698. break;
  699. case 1:
  700. mask = ESR_INT_SIGNALS_P1_BITS;
  701. val = (ESR_INT_SRDY0_P1 |
  702. ESR_INT_DET0_P1 |
  703. ESR_INT_XSRDY_P1 |
  704. ESR_INT_XDP_P1_CH3 |
  705. ESR_INT_XDP_P1_CH2 |
  706. ESR_INT_XDP_P1_CH1 |
  707. ESR_INT_XDP_P1_CH0);
  708. break;
  709. default:
  710. return -EINVAL;
  711. }
  712. if ((sig & mask) != val) {
  713. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  714. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  715. return 0;
  716. }
  717. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  718. np->port, (int)(sig & mask), (int)val);
  719. return -ENODEV;
  720. }
  721. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  722. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  723. return 0;
  724. }
  725. static int serdes_init_1g(struct niu *np)
  726. {
  727. u64 val;
  728. val = nr64(ENET_SERDES_1_PLL_CFG);
  729. val &= ~ENET_SERDES_PLL_FBDIV2;
  730. switch (np->port) {
  731. case 0:
  732. val |= ENET_SERDES_PLL_HRATE0;
  733. break;
  734. case 1:
  735. val |= ENET_SERDES_PLL_HRATE1;
  736. break;
  737. case 2:
  738. val |= ENET_SERDES_PLL_HRATE2;
  739. break;
  740. case 3:
  741. val |= ENET_SERDES_PLL_HRATE3;
  742. break;
  743. default:
  744. return -EINVAL;
  745. }
  746. nw64(ENET_SERDES_1_PLL_CFG, val);
  747. return 0;
  748. }
  749. static int serdes_init_1g_serdes(struct niu *np)
  750. {
  751. struct niu_link_config *lp = &np->link_config;
  752. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  753. u64 ctrl_val, test_cfg_val, sig, mask, val;
  754. int err;
  755. u64 reset_val, val_rd;
  756. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  757. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  758. ENET_SERDES_PLL_FBDIV0;
  759. switch (np->port) {
  760. case 0:
  761. reset_val = ENET_SERDES_RESET_0;
  762. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  763. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  764. pll_cfg = ENET_SERDES_0_PLL_CFG;
  765. break;
  766. case 1:
  767. reset_val = ENET_SERDES_RESET_1;
  768. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  769. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  770. pll_cfg = ENET_SERDES_1_PLL_CFG;
  771. break;
  772. default:
  773. return -EINVAL;
  774. }
  775. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  776. ENET_SERDES_CTRL_SDET_1 |
  777. ENET_SERDES_CTRL_SDET_2 |
  778. ENET_SERDES_CTRL_SDET_3 |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  782. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  786. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  787. test_cfg_val = 0;
  788. if (lp->loopback_mode == LOOPBACK_PHY) {
  789. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  790. ENET_SERDES_TEST_MD_0_SHIFT) |
  791. (ENET_TEST_MD_PAD_LOOPBACK <<
  792. ENET_SERDES_TEST_MD_1_SHIFT) |
  793. (ENET_TEST_MD_PAD_LOOPBACK <<
  794. ENET_SERDES_TEST_MD_2_SHIFT) |
  795. (ENET_TEST_MD_PAD_LOOPBACK <<
  796. ENET_SERDES_TEST_MD_3_SHIFT));
  797. }
  798. nw64(ENET_SERDES_RESET, reset_val);
  799. mdelay(20);
  800. val_rd = nr64(ENET_SERDES_RESET);
  801. val_rd &= ~reset_val;
  802. nw64(pll_cfg, val);
  803. nw64(ctrl_reg, ctrl_val);
  804. nw64(test_cfg_reg, test_cfg_val);
  805. nw64(ENET_SERDES_RESET, val_rd);
  806. mdelay(2000);
  807. /* Initialize all 4 lanes of the SERDES. */
  808. for (i = 0; i < 4; i++) {
  809. u32 rxtx_ctrl, glue0;
  810. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  811. if (err)
  812. return err;
  813. err = esr_read_glue0(np, i, &glue0);
  814. if (err)
  815. return err;
  816. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  817. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  818. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  819. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  820. ESR_GLUE_CTRL0_THCNT |
  821. ESR_GLUE_CTRL0_BLTIME);
  822. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  823. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  824. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  825. (BLTIME_300_CYCLES <<
  826. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  827. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  828. if (err)
  829. return err;
  830. err = esr_write_glue0(np, i, glue0);
  831. if (err)
  832. return err;
  833. }
  834. sig = nr64(ESR_INT_SIGNALS);
  835. switch (np->port) {
  836. case 0:
  837. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  838. mask = val;
  839. break;
  840. case 1:
  841. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  842. mask = val;
  843. break;
  844. default:
  845. return -EINVAL;
  846. }
  847. if ((sig & mask) != val) {
  848. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  849. np->port, (int)(sig & mask), (int)val);
  850. return -ENODEV;
  851. }
  852. return 0;
  853. }
  854. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  855. {
  856. struct niu_link_config *lp = &np->link_config;
  857. int link_up;
  858. u64 val;
  859. u16 current_speed;
  860. unsigned long flags;
  861. u8 current_duplex;
  862. link_up = 0;
  863. current_speed = SPEED_INVALID;
  864. current_duplex = DUPLEX_INVALID;
  865. spin_lock_irqsave(&np->lock, flags);
  866. val = nr64_pcs(PCS_MII_STAT);
  867. if (val & PCS_MII_STAT_LINK_STATUS) {
  868. link_up = 1;
  869. current_speed = SPEED_1000;
  870. current_duplex = DUPLEX_FULL;
  871. }
  872. lp->active_speed = current_speed;
  873. lp->active_duplex = current_duplex;
  874. spin_unlock_irqrestore(&np->lock, flags);
  875. *link_up_p = link_up;
  876. return 0;
  877. }
  878. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  879. {
  880. unsigned long flags;
  881. struct niu_link_config *lp = &np->link_config;
  882. int link_up = 0;
  883. int link_ok = 1;
  884. u64 val, val2;
  885. u16 current_speed;
  886. u8 current_duplex;
  887. if (!(np->flags & NIU_FLAGS_10G))
  888. return link_status_1g_serdes(np, link_up_p);
  889. current_speed = SPEED_INVALID;
  890. current_duplex = DUPLEX_INVALID;
  891. spin_lock_irqsave(&np->lock, flags);
  892. val = nr64_xpcs(XPCS_STATUS(0));
  893. val2 = nr64_mac(XMAC_INTER2);
  894. if (val2 & 0x01000000)
  895. link_ok = 0;
  896. if ((val & 0x1000ULL) && link_ok) {
  897. link_up = 1;
  898. current_speed = SPEED_10000;
  899. current_duplex = DUPLEX_FULL;
  900. }
  901. lp->active_speed = current_speed;
  902. lp->active_duplex = current_duplex;
  903. spin_unlock_irqrestore(&np->lock, flags);
  904. *link_up_p = link_up;
  905. return 0;
  906. }
  907. static int link_status_mii(struct niu *np, int *link_up_p)
  908. {
  909. struct niu_link_config *lp = &np->link_config;
  910. int err;
  911. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  912. int supported, advertising, active_speed, active_duplex;
  913. err = mii_read(np, np->phy_addr, MII_BMCR);
  914. if (unlikely(err < 0))
  915. return err;
  916. bmcr = err;
  917. err = mii_read(np, np->phy_addr, MII_BMSR);
  918. if (unlikely(err < 0))
  919. return err;
  920. bmsr = err;
  921. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  922. if (unlikely(err < 0))
  923. return err;
  924. advert = err;
  925. err = mii_read(np, np->phy_addr, MII_LPA);
  926. if (unlikely(err < 0))
  927. return err;
  928. lpa = err;
  929. if (likely(bmsr & BMSR_ESTATEN)) {
  930. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  931. if (unlikely(err < 0))
  932. return err;
  933. estatus = err;
  934. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  935. if (unlikely(err < 0))
  936. return err;
  937. ctrl1000 = err;
  938. err = mii_read(np, np->phy_addr, MII_STAT1000);
  939. if (unlikely(err < 0))
  940. return err;
  941. stat1000 = err;
  942. } else
  943. estatus = ctrl1000 = stat1000 = 0;
  944. supported = 0;
  945. if (bmsr & BMSR_ANEGCAPABLE)
  946. supported |= SUPPORTED_Autoneg;
  947. if (bmsr & BMSR_10HALF)
  948. supported |= SUPPORTED_10baseT_Half;
  949. if (bmsr & BMSR_10FULL)
  950. supported |= SUPPORTED_10baseT_Full;
  951. if (bmsr & BMSR_100HALF)
  952. supported |= SUPPORTED_100baseT_Half;
  953. if (bmsr & BMSR_100FULL)
  954. supported |= SUPPORTED_100baseT_Full;
  955. if (estatus & ESTATUS_1000_THALF)
  956. supported |= SUPPORTED_1000baseT_Half;
  957. if (estatus & ESTATUS_1000_TFULL)
  958. supported |= SUPPORTED_1000baseT_Full;
  959. lp->supported = supported;
  960. advertising = mii_adv_to_ethtool_adv_t(advert);
  961. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  962. if (bmcr & BMCR_ANENABLE) {
  963. int neg, neg1000;
  964. lp->active_autoneg = 1;
  965. advertising |= ADVERTISED_Autoneg;
  966. neg = advert & lpa;
  967. neg1000 = (ctrl1000 << 2) & stat1000;
  968. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  969. active_speed = SPEED_1000;
  970. else if (neg & LPA_100)
  971. active_speed = SPEED_100;
  972. else if (neg & (LPA_10HALF | LPA_10FULL))
  973. active_speed = SPEED_10;
  974. else
  975. active_speed = SPEED_INVALID;
  976. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  977. active_duplex = DUPLEX_FULL;
  978. else if (active_speed != SPEED_INVALID)
  979. active_duplex = DUPLEX_HALF;
  980. else
  981. active_duplex = DUPLEX_INVALID;
  982. } else {
  983. lp->active_autoneg = 0;
  984. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  985. active_speed = SPEED_1000;
  986. else if (bmcr & BMCR_SPEED100)
  987. active_speed = SPEED_100;
  988. else
  989. active_speed = SPEED_10;
  990. if (bmcr & BMCR_FULLDPLX)
  991. active_duplex = DUPLEX_FULL;
  992. else
  993. active_duplex = DUPLEX_HALF;
  994. }
  995. lp->active_advertising = advertising;
  996. lp->active_speed = active_speed;
  997. lp->active_duplex = active_duplex;
  998. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  999. return 0;
  1000. }
  1001. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1002. {
  1003. struct niu_link_config *lp = &np->link_config;
  1004. u16 current_speed, bmsr;
  1005. unsigned long flags;
  1006. u8 current_duplex;
  1007. int err, link_up;
  1008. link_up = 0;
  1009. current_speed = SPEED_INVALID;
  1010. current_duplex = DUPLEX_INVALID;
  1011. spin_lock_irqsave(&np->lock, flags);
  1012. err = -EINVAL;
  1013. err = mii_read(np, np->phy_addr, MII_BMSR);
  1014. if (err < 0)
  1015. goto out;
  1016. bmsr = err;
  1017. if (bmsr & BMSR_LSTATUS) {
  1018. u16 adv, lpa;
  1019. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1020. if (err < 0)
  1021. goto out;
  1022. adv = err;
  1023. err = mii_read(np, np->phy_addr, MII_LPA);
  1024. if (err < 0)
  1025. goto out;
  1026. lpa = err;
  1027. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1028. if (err < 0)
  1029. goto out;
  1030. link_up = 1;
  1031. current_speed = SPEED_1000;
  1032. current_duplex = DUPLEX_FULL;
  1033. }
  1034. lp->active_speed = current_speed;
  1035. lp->active_duplex = current_duplex;
  1036. err = 0;
  1037. out:
  1038. spin_unlock_irqrestore(&np->lock, flags);
  1039. *link_up_p = link_up;
  1040. return err;
  1041. }
  1042. static int link_status_1g(struct niu *np, int *link_up_p)
  1043. {
  1044. struct niu_link_config *lp = &np->link_config;
  1045. unsigned long flags;
  1046. int err;
  1047. spin_lock_irqsave(&np->lock, flags);
  1048. err = link_status_mii(np, link_up_p);
  1049. lp->supported |= SUPPORTED_TP;
  1050. lp->active_advertising |= ADVERTISED_TP;
  1051. spin_unlock_irqrestore(&np->lock, flags);
  1052. return err;
  1053. }
  1054. static int bcm8704_reset(struct niu *np)
  1055. {
  1056. int err, limit;
  1057. err = mdio_read(np, np->phy_addr,
  1058. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1059. if (err < 0 || err == 0xffff)
  1060. return err;
  1061. err |= BMCR_RESET;
  1062. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1063. MII_BMCR, err);
  1064. if (err)
  1065. return err;
  1066. limit = 1000;
  1067. while (--limit >= 0) {
  1068. err = mdio_read(np, np->phy_addr,
  1069. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1070. if (err < 0)
  1071. return err;
  1072. if (!(err & BMCR_RESET))
  1073. break;
  1074. }
  1075. if (limit < 0) {
  1076. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1077. np->port, (err & 0xffff));
  1078. return -ENODEV;
  1079. }
  1080. return 0;
  1081. }
  1082. /* When written, certain PHY registers need to be read back twice
  1083. * in order for the bits to settle properly.
  1084. */
  1085. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1086. {
  1087. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1088. if (err < 0)
  1089. return err;
  1090. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1091. if (err < 0)
  1092. return err;
  1093. return 0;
  1094. }
  1095. static int bcm8706_init_user_dev3(struct niu *np)
  1096. {
  1097. int err;
  1098. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1099. BCM8704_USER_OPT_DIGITAL_CTRL);
  1100. if (err < 0)
  1101. return err;
  1102. err &= ~USER_ODIG_CTRL_GPIOS;
  1103. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1104. err |= USER_ODIG_CTRL_RESV2;
  1105. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1106. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1107. if (err)
  1108. return err;
  1109. mdelay(1000);
  1110. return 0;
  1111. }
  1112. static int bcm8704_init_user_dev3(struct niu *np)
  1113. {
  1114. int err;
  1115. err = mdio_write(np, np->phy_addr,
  1116. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1117. (USER_CONTROL_OPTXRST_LVL |
  1118. USER_CONTROL_OPBIASFLT_LVL |
  1119. USER_CONTROL_OBTMPFLT_LVL |
  1120. USER_CONTROL_OPPRFLT_LVL |
  1121. USER_CONTROL_OPTXFLT_LVL |
  1122. USER_CONTROL_OPRXLOS_LVL |
  1123. USER_CONTROL_OPRXFLT_LVL |
  1124. USER_CONTROL_OPTXON_LVL |
  1125. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1126. if (err)
  1127. return err;
  1128. err = mdio_write(np, np->phy_addr,
  1129. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1130. (USER_PMD_TX_CTL_XFP_CLKEN |
  1131. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1132. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1133. USER_PMD_TX_CTL_TSCK_LPWREN));
  1134. if (err)
  1135. return err;
  1136. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1137. if (err)
  1138. return err;
  1139. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1140. if (err)
  1141. return err;
  1142. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1143. BCM8704_USER_OPT_DIGITAL_CTRL);
  1144. if (err < 0)
  1145. return err;
  1146. err &= ~USER_ODIG_CTRL_GPIOS;
  1147. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1148. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1149. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1150. if (err)
  1151. return err;
  1152. mdelay(1000);
  1153. return 0;
  1154. }
  1155. static int mrvl88x2011_act_led(struct niu *np, int val)
  1156. {
  1157. int err;
  1158. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1159. MRVL88X2011_LED_8_TO_11_CTL);
  1160. if (err < 0)
  1161. return err;
  1162. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1163. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1164. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1165. MRVL88X2011_LED_8_TO_11_CTL, err);
  1166. }
  1167. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1168. {
  1169. int err;
  1170. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1171. MRVL88X2011_LED_BLINK_CTL);
  1172. if (err >= 0) {
  1173. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1174. err |= (rate << 4);
  1175. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1176. MRVL88X2011_LED_BLINK_CTL, err);
  1177. }
  1178. return err;
  1179. }
  1180. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1181. {
  1182. int err;
  1183. /* Set LED functions */
  1184. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1185. if (err)
  1186. return err;
  1187. /* led activity */
  1188. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1189. if (err)
  1190. return err;
  1191. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1192. MRVL88X2011_GENERAL_CTL);
  1193. if (err < 0)
  1194. return err;
  1195. err |= MRVL88X2011_ENA_XFPREFCLK;
  1196. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1197. MRVL88X2011_GENERAL_CTL, err);
  1198. if (err < 0)
  1199. return err;
  1200. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1201. MRVL88X2011_PMA_PMD_CTL_1);
  1202. if (err < 0)
  1203. return err;
  1204. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1205. err |= MRVL88X2011_LOOPBACK;
  1206. else
  1207. err &= ~MRVL88X2011_LOOPBACK;
  1208. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1209. MRVL88X2011_PMA_PMD_CTL_1, err);
  1210. if (err < 0)
  1211. return err;
  1212. /* Enable PMD */
  1213. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1214. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1215. }
  1216. static int xcvr_diag_bcm870x(struct niu *np)
  1217. {
  1218. u16 analog_stat0, tx_alarm_status;
  1219. int err = 0;
  1220. #if 1
  1221. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1222. MII_STAT1000);
  1223. if (err < 0)
  1224. return err;
  1225. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1226. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1227. if (err < 0)
  1228. return err;
  1229. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1230. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1231. MII_NWAYTEST);
  1232. if (err < 0)
  1233. return err;
  1234. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1235. #endif
  1236. /* XXX dig this out it might not be so useful XXX */
  1237. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1238. BCM8704_USER_ANALOG_STATUS0);
  1239. if (err < 0)
  1240. return err;
  1241. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1242. BCM8704_USER_ANALOG_STATUS0);
  1243. if (err < 0)
  1244. return err;
  1245. analog_stat0 = err;
  1246. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1247. BCM8704_USER_TX_ALARM_STATUS);
  1248. if (err < 0)
  1249. return err;
  1250. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1251. BCM8704_USER_TX_ALARM_STATUS);
  1252. if (err < 0)
  1253. return err;
  1254. tx_alarm_status = err;
  1255. if (analog_stat0 != 0x03fc) {
  1256. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1257. pr_info("Port %u cable not connected or bad cable\n",
  1258. np->port);
  1259. } else if (analog_stat0 == 0x639c) {
  1260. pr_info("Port %u optical module is bad or missing\n",
  1261. np->port);
  1262. }
  1263. }
  1264. return 0;
  1265. }
  1266. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1267. {
  1268. struct niu_link_config *lp = &np->link_config;
  1269. int err;
  1270. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1271. MII_BMCR);
  1272. if (err < 0)
  1273. return err;
  1274. err &= ~BMCR_LOOPBACK;
  1275. if (lp->loopback_mode == LOOPBACK_MAC)
  1276. err |= BMCR_LOOPBACK;
  1277. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1278. MII_BMCR, err);
  1279. if (err)
  1280. return err;
  1281. return 0;
  1282. }
  1283. static int xcvr_init_10g_bcm8706(struct niu *np)
  1284. {
  1285. int err = 0;
  1286. u64 val;
  1287. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1288. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1289. return err;
  1290. val = nr64_mac(XMAC_CONFIG);
  1291. val &= ~XMAC_CONFIG_LED_POLARITY;
  1292. val |= XMAC_CONFIG_FORCE_LED_ON;
  1293. nw64_mac(XMAC_CONFIG, val);
  1294. val = nr64(MIF_CONFIG);
  1295. val |= MIF_CONFIG_INDIRECT_MODE;
  1296. nw64(MIF_CONFIG, val);
  1297. err = bcm8704_reset(np);
  1298. if (err)
  1299. return err;
  1300. err = xcvr_10g_set_lb_bcm870x(np);
  1301. if (err)
  1302. return err;
  1303. err = bcm8706_init_user_dev3(np);
  1304. if (err)
  1305. return err;
  1306. err = xcvr_diag_bcm870x(np);
  1307. if (err)
  1308. return err;
  1309. return 0;
  1310. }
  1311. static int xcvr_init_10g_bcm8704(struct niu *np)
  1312. {
  1313. int err;
  1314. err = bcm8704_reset(np);
  1315. if (err)
  1316. return err;
  1317. err = bcm8704_init_user_dev3(np);
  1318. if (err)
  1319. return err;
  1320. err = xcvr_10g_set_lb_bcm870x(np);
  1321. if (err)
  1322. return err;
  1323. err = xcvr_diag_bcm870x(np);
  1324. if (err)
  1325. return err;
  1326. return 0;
  1327. }
  1328. static int xcvr_init_10g(struct niu *np)
  1329. {
  1330. int phy_id, err;
  1331. u64 val;
  1332. val = nr64_mac(XMAC_CONFIG);
  1333. val &= ~XMAC_CONFIG_LED_POLARITY;
  1334. val |= XMAC_CONFIG_FORCE_LED_ON;
  1335. nw64_mac(XMAC_CONFIG, val);
  1336. /* XXX shared resource, lock parent XXX */
  1337. val = nr64(MIF_CONFIG);
  1338. val |= MIF_CONFIG_INDIRECT_MODE;
  1339. nw64(MIF_CONFIG, val);
  1340. phy_id = phy_decode(np->parent->port_phy, np->port);
  1341. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1342. /* handle different phy types */
  1343. switch (phy_id & NIU_PHY_ID_MASK) {
  1344. case NIU_PHY_ID_MRVL88X2011:
  1345. err = xcvr_init_10g_mrvl88x2011(np);
  1346. break;
  1347. default: /* bcom 8704 */
  1348. err = xcvr_init_10g_bcm8704(np);
  1349. break;
  1350. }
  1351. return err;
  1352. }
  1353. static int mii_reset(struct niu *np)
  1354. {
  1355. int limit, err;
  1356. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1357. if (err)
  1358. return err;
  1359. limit = 1000;
  1360. while (--limit >= 0) {
  1361. udelay(500);
  1362. err = mii_read(np, np->phy_addr, MII_BMCR);
  1363. if (err < 0)
  1364. return err;
  1365. if (!(err & BMCR_RESET))
  1366. break;
  1367. }
  1368. if (limit < 0) {
  1369. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1370. np->port, err);
  1371. return -ENODEV;
  1372. }
  1373. return 0;
  1374. }
  1375. static int xcvr_init_1g_rgmii(struct niu *np)
  1376. {
  1377. int err;
  1378. u64 val;
  1379. u16 bmcr, bmsr, estat;
  1380. val = nr64(MIF_CONFIG);
  1381. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1382. nw64(MIF_CONFIG, val);
  1383. err = mii_reset(np);
  1384. if (err)
  1385. return err;
  1386. err = mii_read(np, np->phy_addr, MII_BMSR);
  1387. if (err < 0)
  1388. return err;
  1389. bmsr = err;
  1390. estat = 0;
  1391. if (bmsr & BMSR_ESTATEN) {
  1392. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1393. if (err < 0)
  1394. return err;
  1395. estat = err;
  1396. }
  1397. bmcr = 0;
  1398. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1399. if (err)
  1400. return err;
  1401. if (bmsr & BMSR_ESTATEN) {
  1402. u16 ctrl1000 = 0;
  1403. if (estat & ESTATUS_1000_TFULL)
  1404. ctrl1000 |= ADVERTISE_1000FULL;
  1405. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1406. if (err)
  1407. return err;
  1408. }
  1409. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1410. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1411. if (err)
  1412. return err;
  1413. err = mii_read(np, np->phy_addr, MII_BMCR);
  1414. if (err < 0)
  1415. return err;
  1416. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1417. err = mii_read(np, np->phy_addr, MII_BMSR);
  1418. if (err < 0)
  1419. return err;
  1420. return 0;
  1421. }
  1422. static int mii_init_common(struct niu *np)
  1423. {
  1424. struct niu_link_config *lp = &np->link_config;
  1425. u16 bmcr, bmsr, adv, estat;
  1426. int err;
  1427. err = mii_reset(np);
  1428. if (err)
  1429. return err;
  1430. err = mii_read(np, np->phy_addr, MII_BMSR);
  1431. if (err < 0)
  1432. return err;
  1433. bmsr = err;
  1434. estat = 0;
  1435. if (bmsr & BMSR_ESTATEN) {
  1436. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1437. if (err < 0)
  1438. return err;
  1439. estat = err;
  1440. }
  1441. bmcr = 0;
  1442. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1443. if (err)
  1444. return err;
  1445. if (lp->loopback_mode == LOOPBACK_MAC) {
  1446. bmcr |= BMCR_LOOPBACK;
  1447. if (lp->active_speed == SPEED_1000)
  1448. bmcr |= BMCR_SPEED1000;
  1449. if (lp->active_duplex == DUPLEX_FULL)
  1450. bmcr |= BMCR_FULLDPLX;
  1451. }
  1452. if (lp->loopback_mode == LOOPBACK_PHY) {
  1453. u16 aux;
  1454. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1455. BCM5464R_AUX_CTL_WRITE_1);
  1456. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1457. if (err)
  1458. return err;
  1459. }
  1460. if (lp->autoneg) {
  1461. u16 ctrl1000;
  1462. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1463. if ((bmsr & BMSR_10HALF) &&
  1464. (lp->advertising & ADVERTISED_10baseT_Half))
  1465. adv |= ADVERTISE_10HALF;
  1466. if ((bmsr & BMSR_10FULL) &&
  1467. (lp->advertising & ADVERTISED_10baseT_Full))
  1468. adv |= ADVERTISE_10FULL;
  1469. if ((bmsr & BMSR_100HALF) &&
  1470. (lp->advertising & ADVERTISED_100baseT_Half))
  1471. adv |= ADVERTISE_100HALF;
  1472. if ((bmsr & BMSR_100FULL) &&
  1473. (lp->advertising & ADVERTISED_100baseT_Full))
  1474. adv |= ADVERTISE_100FULL;
  1475. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1476. if (err)
  1477. return err;
  1478. if (likely(bmsr & BMSR_ESTATEN)) {
  1479. ctrl1000 = 0;
  1480. if ((estat & ESTATUS_1000_THALF) &&
  1481. (lp->advertising & ADVERTISED_1000baseT_Half))
  1482. ctrl1000 |= ADVERTISE_1000HALF;
  1483. if ((estat & ESTATUS_1000_TFULL) &&
  1484. (lp->advertising & ADVERTISED_1000baseT_Full))
  1485. ctrl1000 |= ADVERTISE_1000FULL;
  1486. err = mii_write(np, np->phy_addr,
  1487. MII_CTRL1000, ctrl1000);
  1488. if (err)
  1489. return err;
  1490. }
  1491. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1492. } else {
  1493. /* !lp->autoneg */
  1494. int fulldpx;
  1495. if (lp->duplex == DUPLEX_FULL) {
  1496. bmcr |= BMCR_FULLDPLX;
  1497. fulldpx = 1;
  1498. } else if (lp->duplex == DUPLEX_HALF)
  1499. fulldpx = 0;
  1500. else
  1501. return -EINVAL;
  1502. if (lp->speed == SPEED_1000) {
  1503. /* if X-full requested while not supported, or
  1504. X-half requested while not supported... */
  1505. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1506. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1507. return -EINVAL;
  1508. bmcr |= BMCR_SPEED1000;
  1509. } else if (lp->speed == SPEED_100) {
  1510. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1511. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1512. return -EINVAL;
  1513. bmcr |= BMCR_SPEED100;
  1514. } else if (lp->speed == SPEED_10) {
  1515. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1516. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1517. return -EINVAL;
  1518. } else
  1519. return -EINVAL;
  1520. }
  1521. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1522. if (err)
  1523. return err;
  1524. #if 0
  1525. err = mii_read(np, np->phy_addr, MII_BMCR);
  1526. if (err < 0)
  1527. return err;
  1528. bmcr = err;
  1529. err = mii_read(np, np->phy_addr, MII_BMSR);
  1530. if (err < 0)
  1531. return err;
  1532. bmsr = err;
  1533. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1534. np->port, bmcr, bmsr);
  1535. #endif
  1536. return 0;
  1537. }
  1538. static int xcvr_init_1g(struct niu *np)
  1539. {
  1540. u64 val;
  1541. /* XXX shared resource, lock parent XXX */
  1542. val = nr64(MIF_CONFIG);
  1543. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1544. nw64(MIF_CONFIG, val);
  1545. return mii_init_common(np);
  1546. }
  1547. static int niu_xcvr_init(struct niu *np)
  1548. {
  1549. const struct niu_phy_ops *ops = np->phy_ops;
  1550. int err;
  1551. err = 0;
  1552. if (ops->xcvr_init)
  1553. err = ops->xcvr_init(np);
  1554. return err;
  1555. }
  1556. static int niu_serdes_init(struct niu *np)
  1557. {
  1558. const struct niu_phy_ops *ops = np->phy_ops;
  1559. int err;
  1560. err = 0;
  1561. if (ops->serdes_init)
  1562. err = ops->serdes_init(np);
  1563. return err;
  1564. }
  1565. static void niu_init_xif(struct niu *);
  1566. static void niu_handle_led(struct niu *, int status);
  1567. static int niu_link_status_common(struct niu *np, int link_up)
  1568. {
  1569. struct niu_link_config *lp = &np->link_config;
  1570. struct net_device *dev = np->dev;
  1571. unsigned long flags;
  1572. if (!netif_carrier_ok(dev) && link_up) {
  1573. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1574. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1575. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1576. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1577. "10Mbit/sec",
  1578. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1579. spin_lock_irqsave(&np->lock, flags);
  1580. niu_init_xif(np);
  1581. niu_handle_led(np, 1);
  1582. spin_unlock_irqrestore(&np->lock, flags);
  1583. netif_carrier_on(dev);
  1584. } else if (netif_carrier_ok(dev) && !link_up) {
  1585. netif_warn(np, link, dev, "Link is down\n");
  1586. spin_lock_irqsave(&np->lock, flags);
  1587. niu_handle_led(np, 0);
  1588. spin_unlock_irqrestore(&np->lock, flags);
  1589. netif_carrier_off(dev);
  1590. }
  1591. return 0;
  1592. }
  1593. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1594. {
  1595. int err, link_up, pma_status, pcs_status;
  1596. link_up = 0;
  1597. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1598. MRVL88X2011_10G_PMD_STATUS_2);
  1599. if (err < 0)
  1600. goto out;
  1601. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1602. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1603. MRVL88X2011_PMA_PMD_STATUS_1);
  1604. if (err < 0)
  1605. goto out;
  1606. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1607. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1608. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1609. MRVL88X2011_PMA_PMD_STATUS_1);
  1610. if (err < 0)
  1611. goto out;
  1612. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1613. MRVL88X2011_PMA_PMD_STATUS_1);
  1614. if (err < 0)
  1615. goto out;
  1616. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1617. /* Check XGXS Register : 4.0018.[0-3,12] */
  1618. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1619. MRVL88X2011_10G_XGXS_LANE_STAT);
  1620. if (err < 0)
  1621. goto out;
  1622. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1623. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1624. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1625. 0x800))
  1626. link_up = (pma_status && pcs_status) ? 1 : 0;
  1627. np->link_config.active_speed = SPEED_10000;
  1628. np->link_config.active_duplex = DUPLEX_FULL;
  1629. err = 0;
  1630. out:
  1631. mrvl88x2011_act_led(np, (link_up ?
  1632. MRVL88X2011_LED_CTL_PCS_ACT :
  1633. MRVL88X2011_LED_CTL_OFF));
  1634. *link_up_p = link_up;
  1635. return err;
  1636. }
  1637. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1638. {
  1639. int err, link_up;
  1640. link_up = 0;
  1641. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1642. BCM8704_PMD_RCV_SIGDET);
  1643. if (err < 0 || err == 0xffff)
  1644. goto out;
  1645. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1646. err = 0;
  1647. goto out;
  1648. }
  1649. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1650. BCM8704_PCS_10G_R_STATUS);
  1651. if (err < 0)
  1652. goto out;
  1653. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1654. err = 0;
  1655. goto out;
  1656. }
  1657. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1658. BCM8704_PHYXS_XGXS_LANE_STAT);
  1659. if (err < 0)
  1660. goto out;
  1661. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1662. PHYXS_XGXS_LANE_STAT_MAGIC |
  1663. PHYXS_XGXS_LANE_STAT_PATTEST |
  1664. PHYXS_XGXS_LANE_STAT_LANE3 |
  1665. PHYXS_XGXS_LANE_STAT_LANE2 |
  1666. PHYXS_XGXS_LANE_STAT_LANE1 |
  1667. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1668. err = 0;
  1669. np->link_config.active_speed = SPEED_INVALID;
  1670. np->link_config.active_duplex = DUPLEX_INVALID;
  1671. goto out;
  1672. }
  1673. link_up = 1;
  1674. np->link_config.active_speed = SPEED_10000;
  1675. np->link_config.active_duplex = DUPLEX_FULL;
  1676. err = 0;
  1677. out:
  1678. *link_up_p = link_up;
  1679. return err;
  1680. }
  1681. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1682. {
  1683. int err, link_up;
  1684. link_up = 0;
  1685. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1686. BCM8704_PMD_RCV_SIGDET);
  1687. if (err < 0)
  1688. goto out;
  1689. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1690. err = 0;
  1691. goto out;
  1692. }
  1693. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1694. BCM8704_PCS_10G_R_STATUS);
  1695. if (err < 0)
  1696. goto out;
  1697. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1698. err = 0;
  1699. goto out;
  1700. }
  1701. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1702. BCM8704_PHYXS_XGXS_LANE_STAT);
  1703. if (err < 0)
  1704. goto out;
  1705. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1706. PHYXS_XGXS_LANE_STAT_MAGIC |
  1707. PHYXS_XGXS_LANE_STAT_LANE3 |
  1708. PHYXS_XGXS_LANE_STAT_LANE2 |
  1709. PHYXS_XGXS_LANE_STAT_LANE1 |
  1710. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1711. err = 0;
  1712. goto out;
  1713. }
  1714. link_up = 1;
  1715. np->link_config.active_speed = SPEED_10000;
  1716. np->link_config.active_duplex = DUPLEX_FULL;
  1717. err = 0;
  1718. out:
  1719. *link_up_p = link_up;
  1720. return err;
  1721. }
  1722. static int link_status_10g(struct niu *np, int *link_up_p)
  1723. {
  1724. unsigned long flags;
  1725. int err = -EINVAL;
  1726. spin_lock_irqsave(&np->lock, flags);
  1727. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1728. int phy_id;
  1729. phy_id = phy_decode(np->parent->port_phy, np->port);
  1730. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1731. /* handle different phy types */
  1732. switch (phy_id & NIU_PHY_ID_MASK) {
  1733. case NIU_PHY_ID_MRVL88X2011:
  1734. err = link_status_10g_mrvl(np, link_up_p);
  1735. break;
  1736. default: /* bcom 8704 */
  1737. err = link_status_10g_bcom(np, link_up_p);
  1738. break;
  1739. }
  1740. }
  1741. spin_unlock_irqrestore(&np->lock, flags);
  1742. return err;
  1743. }
  1744. static int niu_10g_phy_present(struct niu *np)
  1745. {
  1746. u64 sig, mask, val;
  1747. sig = nr64(ESR_INT_SIGNALS);
  1748. switch (np->port) {
  1749. case 0:
  1750. mask = ESR_INT_SIGNALS_P0_BITS;
  1751. val = (ESR_INT_SRDY0_P0 |
  1752. ESR_INT_DET0_P0 |
  1753. ESR_INT_XSRDY_P0 |
  1754. ESR_INT_XDP_P0_CH3 |
  1755. ESR_INT_XDP_P0_CH2 |
  1756. ESR_INT_XDP_P0_CH1 |
  1757. ESR_INT_XDP_P0_CH0);
  1758. break;
  1759. case 1:
  1760. mask = ESR_INT_SIGNALS_P1_BITS;
  1761. val = (ESR_INT_SRDY0_P1 |
  1762. ESR_INT_DET0_P1 |
  1763. ESR_INT_XSRDY_P1 |
  1764. ESR_INT_XDP_P1_CH3 |
  1765. ESR_INT_XDP_P1_CH2 |
  1766. ESR_INT_XDP_P1_CH1 |
  1767. ESR_INT_XDP_P1_CH0);
  1768. break;
  1769. default:
  1770. return 0;
  1771. }
  1772. if ((sig & mask) != val)
  1773. return 0;
  1774. return 1;
  1775. }
  1776. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1777. {
  1778. unsigned long flags;
  1779. int err = 0;
  1780. int phy_present;
  1781. int phy_present_prev;
  1782. spin_lock_irqsave(&np->lock, flags);
  1783. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1784. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1785. 1 : 0;
  1786. phy_present = niu_10g_phy_present(np);
  1787. if (phy_present != phy_present_prev) {
  1788. /* state change */
  1789. if (phy_present) {
  1790. /* A NEM was just plugged in */
  1791. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1792. if (np->phy_ops->xcvr_init)
  1793. err = np->phy_ops->xcvr_init(np);
  1794. if (err) {
  1795. err = mdio_read(np, np->phy_addr,
  1796. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1797. if (err == 0xffff) {
  1798. /* No mdio, back-to-back XAUI */
  1799. goto out;
  1800. }
  1801. /* debounce */
  1802. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1803. }
  1804. } else {
  1805. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1806. *link_up_p = 0;
  1807. netif_warn(np, link, np->dev,
  1808. "Hotplug PHY Removed\n");
  1809. }
  1810. }
  1811. out:
  1812. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1813. err = link_status_10g_bcm8706(np, link_up_p);
  1814. if (err == 0xffff) {
  1815. /* No mdio, back-to-back XAUI: it is C10NEM */
  1816. *link_up_p = 1;
  1817. np->link_config.active_speed = SPEED_10000;
  1818. np->link_config.active_duplex = DUPLEX_FULL;
  1819. }
  1820. }
  1821. }
  1822. spin_unlock_irqrestore(&np->lock, flags);
  1823. return 0;
  1824. }
  1825. static int niu_link_status(struct niu *np, int *link_up_p)
  1826. {
  1827. const struct niu_phy_ops *ops = np->phy_ops;
  1828. int err;
  1829. err = 0;
  1830. if (ops->link_status)
  1831. err = ops->link_status(np, link_up_p);
  1832. return err;
  1833. }
  1834. static void niu_timer(struct timer_list *t)
  1835. {
  1836. struct niu *np = from_timer(np, t, timer);
  1837. unsigned long off;
  1838. int err, link_up;
  1839. err = niu_link_status(np, &link_up);
  1840. if (!err)
  1841. niu_link_status_common(np, link_up);
  1842. if (netif_carrier_ok(np->dev))
  1843. off = 5 * HZ;
  1844. else
  1845. off = 1 * HZ;
  1846. np->timer.expires = jiffies + off;
  1847. add_timer(&np->timer);
  1848. }
  1849. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1850. .serdes_init = serdes_init_10g_serdes,
  1851. .link_status = link_status_10g_serdes,
  1852. };
  1853. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1854. .serdes_init = serdes_init_niu_10g_serdes,
  1855. .link_status = link_status_10g_serdes,
  1856. };
  1857. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1858. .serdes_init = serdes_init_niu_1g_serdes,
  1859. .link_status = link_status_1g_serdes,
  1860. };
  1861. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1862. .xcvr_init = xcvr_init_1g_rgmii,
  1863. .link_status = link_status_1g_rgmii,
  1864. };
  1865. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1866. .serdes_init = serdes_init_niu_10g_fiber,
  1867. .xcvr_init = xcvr_init_10g,
  1868. .link_status = link_status_10g,
  1869. };
  1870. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1871. .serdes_init = serdes_init_10g,
  1872. .xcvr_init = xcvr_init_10g,
  1873. .link_status = link_status_10g,
  1874. };
  1875. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1876. .serdes_init = serdes_init_10g,
  1877. .xcvr_init = xcvr_init_10g_bcm8706,
  1878. .link_status = link_status_10g_hotplug,
  1879. };
  1880. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1881. .serdes_init = serdes_init_niu_10g_fiber,
  1882. .xcvr_init = xcvr_init_10g_bcm8706,
  1883. .link_status = link_status_10g_hotplug,
  1884. };
  1885. static const struct niu_phy_ops phy_ops_10g_copper = {
  1886. .serdes_init = serdes_init_10g,
  1887. .link_status = link_status_10g, /* XXX */
  1888. };
  1889. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1890. .serdes_init = serdes_init_1g,
  1891. .xcvr_init = xcvr_init_1g,
  1892. .link_status = link_status_1g,
  1893. };
  1894. static const struct niu_phy_ops phy_ops_1g_copper = {
  1895. .xcvr_init = xcvr_init_1g,
  1896. .link_status = link_status_1g,
  1897. };
  1898. struct niu_phy_template {
  1899. const struct niu_phy_ops *ops;
  1900. u32 phy_addr_base;
  1901. };
  1902. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1903. .ops = &phy_ops_10g_fiber_niu,
  1904. .phy_addr_base = 16,
  1905. };
  1906. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1907. .ops = &phy_ops_10g_serdes_niu,
  1908. .phy_addr_base = 0,
  1909. };
  1910. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1911. .ops = &phy_ops_1g_serdes_niu,
  1912. .phy_addr_base = 0,
  1913. };
  1914. static const struct niu_phy_template phy_template_10g_fiber = {
  1915. .ops = &phy_ops_10g_fiber,
  1916. .phy_addr_base = 8,
  1917. };
  1918. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1919. .ops = &phy_ops_10g_fiber_hotplug,
  1920. .phy_addr_base = 8,
  1921. };
  1922. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1923. .ops = &phy_ops_niu_10g_hotplug,
  1924. .phy_addr_base = 8,
  1925. };
  1926. static const struct niu_phy_template phy_template_10g_copper = {
  1927. .ops = &phy_ops_10g_copper,
  1928. .phy_addr_base = 10,
  1929. };
  1930. static const struct niu_phy_template phy_template_1g_fiber = {
  1931. .ops = &phy_ops_1g_fiber,
  1932. .phy_addr_base = 0,
  1933. };
  1934. static const struct niu_phy_template phy_template_1g_copper = {
  1935. .ops = &phy_ops_1g_copper,
  1936. .phy_addr_base = 0,
  1937. };
  1938. static const struct niu_phy_template phy_template_1g_rgmii = {
  1939. .ops = &phy_ops_1g_rgmii,
  1940. .phy_addr_base = 0,
  1941. };
  1942. static const struct niu_phy_template phy_template_10g_serdes = {
  1943. .ops = &phy_ops_10g_serdes,
  1944. .phy_addr_base = 0,
  1945. };
  1946. static int niu_atca_port_num[4] = {
  1947. 0, 0, 11, 10
  1948. };
  1949. static int serdes_init_10g_serdes(struct niu *np)
  1950. {
  1951. struct niu_link_config *lp = &np->link_config;
  1952. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1953. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1954. switch (np->port) {
  1955. case 0:
  1956. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1957. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1958. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1959. break;
  1960. case 1:
  1961. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1962. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1963. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1964. break;
  1965. default:
  1966. return -EINVAL;
  1967. }
  1968. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1969. ENET_SERDES_CTRL_SDET_1 |
  1970. ENET_SERDES_CTRL_SDET_2 |
  1971. ENET_SERDES_CTRL_SDET_3 |
  1972. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1973. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1974. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1975. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1976. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1977. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1978. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1979. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1980. test_cfg_val = 0;
  1981. if (lp->loopback_mode == LOOPBACK_PHY) {
  1982. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1983. ENET_SERDES_TEST_MD_0_SHIFT) |
  1984. (ENET_TEST_MD_PAD_LOOPBACK <<
  1985. ENET_SERDES_TEST_MD_1_SHIFT) |
  1986. (ENET_TEST_MD_PAD_LOOPBACK <<
  1987. ENET_SERDES_TEST_MD_2_SHIFT) |
  1988. (ENET_TEST_MD_PAD_LOOPBACK <<
  1989. ENET_SERDES_TEST_MD_3_SHIFT));
  1990. }
  1991. esr_reset(np);
  1992. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1993. nw64(ctrl_reg, ctrl_val);
  1994. nw64(test_cfg_reg, test_cfg_val);
  1995. /* Initialize all 4 lanes of the SERDES. */
  1996. for (i = 0; i < 4; i++) {
  1997. u32 rxtx_ctrl, glue0;
  1998. int err;
  1999. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2000. if (err)
  2001. return err;
  2002. err = esr_read_glue0(np, i, &glue0);
  2003. if (err)
  2004. return err;
  2005. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2006. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2007. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2008. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2009. ESR_GLUE_CTRL0_THCNT |
  2010. ESR_GLUE_CTRL0_BLTIME);
  2011. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2012. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2013. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2014. (BLTIME_300_CYCLES <<
  2015. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2016. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2017. if (err)
  2018. return err;
  2019. err = esr_write_glue0(np, i, glue0);
  2020. if (err)
  2021. return err;
  2022. }
  2023. sig = nr64(ESR_INT_SIGNALS);
  2024. switch (np->port) {
  2025. case 0:
  2026. mask = ESR_INT_SIGNALS_P0_BITS;
  2027. val = (ESR_INT_SRDY0_P0 |
  2028. ESR_INT_DET0_P0 |
  2029. ESR_INT_XSRDY_P0 |
  2030. ESR_INT_XDP_P0_CH3 |
  2031. ESR_INT_XDP_P0_CH2 |
  2032. ESR_INT_XDP_P0_CH1 |
  2033. ESR_INT_XDP_P0_CH0);
  2034. break;
  2035. case 1:
  2036. mask = ESR_INT_SIGNALS_P1_BITS;
  2037. val = (ESR_INT_SRDY0_P1 |
  2038. ESR_INT_DET0_P1 |
  2039. ESR_INT_XSRDY_P1 |
  2040. ESR_INT_XDP_P1_CH3 |
  2041. ESR_INT_XDP_P1_CH2 |
  2042. ESR_INT_XDP_P1_CH1 |
  2043. ESR_INT_XDP_P1_CH0);
  2044. break;
  2045. default:
  2046. return -EINVAL;
  2047. }
  2048. if ((sig & mask) != val) {
  2049. int err;
  2050. err = serdes_init_1g_serdes(np);
  2051. if (!err) {
  2052. np->flags &= ~NIU_FLAGS_10G;
  2053. np->mac_xcvr = MAC_XCVR_PCS;
  2054. } else {
  2055. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2056. np->port);
  2057. return -ENODEV;
  2058. }
  2059. }
  2060. return 0;
  2061. }
  2062. static int niu_determine_phy_disposition(struct niu *np)
  2063. {
  2064. struct niu_parent *parent = np->parent;
  2065. u8 plat_type = parent->plat_type;
  2066. const struct niu_phy_template *tp;
  2067. u32 phy_addr_off = 0;
  2068. if (plat_type == PLAT_TYPE_NIU) {
  2069. switch (np->flags &
  2070. (NIU_FLAGS_10G |
  2071. NIU_FLAGS_FIBER |
  2072. NIU_FLAGS_XCVR_SERDES)) {
  2073. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2074. /* 10G Serdes */
  2075. tp = &phy_template_niu_10g_serdes;
  2076. break;
  2077. case NIU_FLAGS_XCVR_SERDES:
  2078. /* 1G Serdes */
  2079. tp = &phy_template_niu_1g_serdes;
  2080. break;
  2081. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2082. /* 10G Fiber */
  2083. default:
  2084. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2085. tp = &phy_template_niu_10g_hotplug;
  2086. if (np->port == 0)
  2087. phy_addr_off = 8;
  2088. if (np->port == 1)
  2089. phy_addr_off = 12;
  2090. } else {
  2091. tp = &phy_template_niu_10g_fiber;
  2092. phy_addr_off += np->port;
  2093. }
  2094. break;
  2095. }
  2096. } else {
  2097. switch (np->flags &
  2098. (NIU_FLAGS_10G |
  2099. NIU_FLAGS_FIBER |
  2100. NIU_FLAGS_XCVR_SERDES)) {
  2101. case 0:
  2102. /* 1G copper */
  2103. tp = &phy_template_1g_copper;
  2104. if (plat_type == PLAT_TYPE_VF_P0)
  2105. phy_addr_off = 10;
  2106. else if (plat_type == PLAT_TYPE_VF_P1)
  2107. phy_addr_off = 26;
  2108. phy_addr_off += (np->port ^ 0x3);
  2109. break;
  2110. case NIU_FLAGS_10G:
  2111. /* 10G copper */
  2112. tp = &phy_template_10g_copper;
  2113. break;
  2114. case NIU_FLAGS_FIBER:
  2115. /* 1G fiber */
  2116. tp = &phy_template_1g_fiber;
  2117. break;
  2118. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2119. /* 10G fiber */
  2120. tp = &phy_template_10g_fiber;
  2121. if (plat_type == PLAT_TYPE_VF_P0 ||
  2122. plat_type == PLAT_TYPE_VF_P1)
  2123. phy_addr_off = 8;
  2124. phy_addr_off += np->port;
  2125. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2126. tp = &phy_template_10g_fiber_hotplug;
  2127. if (np->port == 0)
  2128. phy_addr_off = 8;
  2129. if (np->port == 1)
  2130. phy_addr_off = 12;
  2131. }
  2132. break;
  2133. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2134. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2135. case NIU_FLAGS_XCVR_SERDES:
  2136. switch(np->port) {
  2137. case 0:
  2138. case 1:
  2139. tp = &phy_template_10g_serdes;
  2140. break;
  2141. case 2:
  2142. case 3:
  2143. tp = &phy_template_1g_rgmii;
  2144. break;
  2145. default:
  2146. return -EINVAL;
  2147. }
  2148. phy_addr_off = niu_atca_port_num[np->port];
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. }
  2154. np->phy_ops = tp->ops;
  2155. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2156. return 0;
  2157. }
  2158. static int niu_init_link(struct niu *np)
  2159. {
  2160. struct niu_parent *parent = np->parent;
  2161. int err, ignore;
  2162. if (parent->plat_type == PLAT_TYPE_NIU) {
  2163. err = niu_xcvr_init(np);
  2164. if (err)
  2165. return err;
  2166. msleep(200);
  2167. }
  2168. err = niu_serdes_init(np);
  2169. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2170. return err;
  2171. msleep(200);
  2172. err = niu_xcvr_init(np);
  2173. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2174. niu_link_status(np, &ignore);
  2175. return 0;
  2176. }
  2177. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2178. {
  2179. u16 reg0 = addr[4] << 8 | addr[5];
  2180. u16 reg1 = addr[2] << 8 | addr[3];
  2181. u16 reg2 = addr[0] << 8 | addr[1];
  2182. if (np->flags & NIU_FLAGS_XMAC) {
  2183. nw64_mac(XMAC_ADDR0, reg0);
  2184. nw64_mac(XMAC_ADDR1, reg1);
  2185. nw64_mac(XMAC_ADDR2, reg2);
  2186. } else {
  2187. nw64_mac(BMAC_ADDR0, reg0);
  2188. nw64_mac(BMAC_ADDR1, reg1);
  2189. nw64_mac(BMAC_ADDR2, reg2);
  2190. }
  2191. }
  2192. static int niu_num_alt_addr(struct niu *np)
  2193. {
  2194. if (np->flags & NIU_FLAGS_XMAC)
  2195. return XMAC_NUM_ALT_ADDR;
  2196. else
  2197. return BMAC_NUM_ALT_ADDR;
  2198. }
  2199. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2200. {
  2201. u16 reg0 = addr[4] << 8 | addr[5];
  2202. u16 reg1 = addr[2] << 8 | addr[3];
  2203. u16 reg2 = addr[0] << 8 | addr[1];
  2204. if (index >= niu_num_alt_addr(np))
  2205. return -EINVAL;
  2206. if (np->flags & NIU_FLAGS_XMAC) {
  2207. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2208. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2209. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2210. } else {
  2211. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2212. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2213. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2214. }
  2215. return 0;
  2216. }
  2217. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2218. {
  2219. unsigned long reg;
  2220. u64 val, mask;
  2221. if (index >= niu_num_alt_addr(np))
  2222. return -EINVAL;
  2223. if (np->flags & NIU_FLAGS_XMAC) {
  2224. reg = XMAC_ADDR_CMPEN;
  2225. mask = 1 << index;
  2226. } else {
  2227. reg = BMAC_ADDR_CMPEN;
  2228. mask = 1 << (index + 1);
  2229. }
  2230. val = nr64_mac(reg);
  2231. if (on)
  2232. val |= mask;
  2233. else
  2234. val &= ~mask;
  2235. nw64_mac(reg, val);
  2236. return 0;
  2237. }
  2238. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2239. int num, int mac_pref)
  2240. {
  2241. u64 val = nr64_mac(reg);
  2242. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2243. val |= num;
  2244. if (mac_pref)
  2245. val |= HOST_INFO_MPR;
  2246. nw64_mac(reg, val);
  2247. }
  2248. static int __set_rdc_table_num(struct niu *np,
  2249. int xmac_index, int bmac_index,
  2250. int rdc_table_num, int mac_pref)
  2251. {
  2252. unsigned long reg;
  2253. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2254. return -EINVAL;
  2255. if (np->flags & NIU_FLAGS_XMAC)
  2256. reg = XMAC_HOST_INFO(xmac_index);
  2257. else
  2258. reg = BMAC_HOST_INFO(bmac_index);
  2259. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2260. return 0;
  2261. }
  2262. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2263. int mac_pref)
  2264. {
  2265. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2266. }
  2267. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2268. int mac_pref)
  2269. {
  2270. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2271. }
  2272. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2273. int table_num, int mac_pref)
  2274. {
  2275. if (idx >= niu_num_alt_addr(np))
  2276. return -EINVAL;
  2277. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2278. }
  2279. static u64 vlan_entry_set_parity(u64 reg_val)
  2280. {
  2281. u64 port01_mask;
  2282. u64 port23_mask;
  2283. port01_mask = 0x00ff;
  2284. port23_mask = 0xff00;
  2285. if (hweight64(reg_val & port01_mask) & 1)
  2286. reg_val |= ENET_VLAN_TBL_PARITY0;
  2287. else
  2288. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2289. if (hweight64(reg_val & port23_mask) & 1)
  2290. reg_val |= ENET_VLAN_TBL_PARITY1;
  2291. else
  2292. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2293. return reg_val;
  2294. }
  2295. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2296. int port, int vpr, int rdc_table)
  2297. {
  2298. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2299. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2300. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2301. ENET_VLAN_TBL_SHIFT(port));
  2302. if (vpr)
  2303. reg_val |= (ENET_VLAN_TBL_VPR <<
  2304. ENET_VLAN_TBL_SHIFT(port));
  2305. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2306. reg_val = vlan_entry_set_parity(reg_val);
  2307. nw64(ENET_VLAN_TBL(index), reg_val);
  2308. }
  2309. static void vlan_tbl_clear(struct niu *np)
  2310. {
  2311. int i;
  2312. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2313. nw64(ENET_VLAN_TBL(i), 0);
  2314. }
  2315. static int tcam_wait_bit(struct niu *np, u64 bit)
  2316. {
  2317. int limit = 1000;
  2318. while (--limit > 0) {
  2319. if (nr64(TCAM_CTL) & bit)
  2320. break;
  2321. udelay(1);
  2322. }
  2323. if (limit <= 0)
  2324. return -ENODEV;
  2325. return 0;
  2326. }
  2327. static int tcam_flush(struct niu *np, int index)
  2328. {
  2329. nw64(TCAM_KEY_0, 0x00);
  2330. nw64(TCAM_KEY_MASK_0, 0xff);
  2331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2333. }
  2334. #if 0
  2335. static int tcam_read(struct niu *np, int index,
  2336. u64 *key, u64 *mask)
  2337. {
  2338. int err;
  2339. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2340. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2341. if (!err) {
  2342. key[0] = nr64(TCAM_KEY_0);
  2343. key[1] = nr64(TCAM_KEY_1);
  2344. key[2] = nr64(TCAM_KEY_2);
  2345. key[3] = nr64(TCAM_KEY_3);
  2346. mask[0] = nr64(TCAM_KEY_MASK_0);
  2347. mask[1] = nr64(TCAM_KEY_MASK_1);
  2348. mask[2] = nr64(TCAM_KEY_MASK_2);
  2349. mask[3] = nr64(TCAM_KEY_MASK_3);
  2350. }
  2351. return err;
  2352. }
  2353. #endif
  2354. static int tcam_write(struct niu *np, int index,
  2355. u64 *key, u64 *mask)
  2356. {
  2357. nw64(TCAM_KEY_0, key[0]);
  2358. nw64(TCAM_KEY_1, key[1]);
  2359. nw64(TCAM_KEY_2, key[2]);
  2360. nw64(TCAM_KEY_3, key[3]);
  2361. nw64(TCAM_KEY_MASK_0, mask[0]);
  2362. nw64(TCAM_KEY_MASK_1, mask[1]);
  2363. nw64(TCAM_KEY_MASK_2, mask[2]);
  2364. nw64(TCAM_KEY_MASK_3, mask[3]);
  2365. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2366. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2367. }
  2368. #if 0
  2369. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2370. {
  2371. int err;
  2372. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2373. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2374. if (!err)
  2375. *data = nr64(TCAM_KEY_1);
  2376. return err;
  2377. }
  2378. #endif
  2379. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2380. {
  2381. nw64(TCAM_KEY_1, assoc_data);
  2382. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2383. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2384. }
  2385. static void tcam_enable(struct niu *np, int on)
  2386. {
  2387. u64 val = nr64(FFLP_CFG_1);
  2388. if (on)
  2389. val &= ~FFLP_CFG_1_TCAM_DIS;
  2390. else
  2391. val |= FFLP_CFG_1_TCAM_DIS;
  2392. nw64(FFLP_CFG_1, val);
  2393. }
  2394. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2395. {
  2396. u64 val = nr64(FFLP_CFG_1);
  2397. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2398. FFLP_CFG_1_CAMLAT |
  2399. FFLP_CFG_1_CAMRATIO);
  2400. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2401. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2402. nw64(FFLP_CFG_1, val);
  2403. val = nr64(FFLP_CFG_1);
  2404. val |= FFLP_CFG_1_FFLPINITDONE;
  2405. nw64(FFLP_CFG_1, val);
  2406. }
  2407. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2408. int on)
  2409. {
  2410. unsigned long reg;
  2411. u64 val;
  2412. if (class < CLASS_CODE_ETHERTYPE1 ||
  2413. class > CLASS_CODE_ETHERTYPE2)
  2414. return -EINVAL;
  2415. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2416. val = nr64(reg);
  2417. if (on)
  2418. val |= L2_CLS_VLD;
  2419. else
  2420. val &= ~L2_CLS_VLD;
  2421. nw64(reg, val);
  2422. return 0;
  2423. }
  2424. #if 0
  2425. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2426. u64 ether_type)
  2427. {
  2428. unsigned long reg;
  2429. u64 val;
  2430. if (class < CLASS_CODE_ETHERTYPE1 ||
  2431. class > CLASS_CODE_ETHERTYPE2 ||
  2432. (ether_type & ~(u64)0xffff) != 0)
  2433. return -EINVAL;
  2434. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2435. val = nr64(reg);
  2436. val &= ~L2_CLS_ETYPE;
  2437. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2438. nw64(reg, val);
  2439. return 0;
  2440. }
  2441. #endif
  2442. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2443. int on)
  2444. {
  2445. unsigned long reg;
  2446. u64 val;
  2447. if (class < CLASS_CODE_USER_PROG1 ||
  2448. class > CLASS_CODE_USER_PROG4)
  2449. return -EINVAL;
  2450. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2451. val = nr64(reg);
  2452. if (on)
  2453. val |= L3_CLS_VALID;
  2454. else
  2455. val &= ~L3_CLS_VALID;
  2456. nw64(reg, val);
  2457. return 0;
  2458. }
  2459. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2460. int ipv6, u64 protocol_id,
  2461. u64 tos_mask, u64 tos_val)
  2462. {
  2463. unsigned long reg;
  2464. u64 val;
  2465. if (class < CLASS_CODE_USER_PROG1 ||
  2466. class > CLASS_CODE_USER_PROG4 ||
  2467. (protocol_id & ~(u64)0xff) != 0 ||
  2468. (tos_mask & ~(u64)0xff) != 0 ||
  2469. (tos_val & ~(u64)0xff) != 0)
  2470. return -EINVAL;
  2471. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2472. val = nr64(reg);
  2473. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2474. L3_CLS_TOSMASK | L3_CLS_TOS);
  2475. if (ipv6)
  2476. val |= L3_CLS_IPVER;
  2477. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2478. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2479. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2480. nw64(reg, val);
  2481. return 0;
  2482. }
  2483. static int tcam_early_init(struct niu *np)
  2484. {
  2485. unsigned long i;
  2486. int err;
  2487. tcam_enable(np, 0);
  2488. tcam_set_lat_and_ratio(np,
  2489. DEFAULT_TCAM_LATENCY,
  2490. DEFAULT_TCAM_ACCESS_RATIO);
  2491. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2492. err = tcam_user_eth_class_enable(np, i, 0);
  2493. if (err)
  2494. return err;
  2495. }
  2496. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2497. err = tcam_user_ip_class_enable(np, i, 0);
  2498. if (err)
  2499. return err;
  2500. }
  2501. return 0;
  2502. }
  2503. static int tcam_flush_all(struct niu *np)
  2504. {
  2505. unsigned long i;
  2506. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2507. int err = tcam_flush(np, i);
  2508. if (err)
  2509. return err;
  2510. }
  2511. return 0;
  2512. }
  2513. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2514. {
  2515. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2516. }
  2517. #if 0
  2518. static int hash_read(struct niu *np, unsigned long partition,
  2519. unsigned long index, unsigned long num_entries,
  2520. u64 *data)
  2521. {
  2522. u64 val = hash_addr_regval(index, num_entries);
  2523. unsigned long i;
  2524. if (partition >= FCRAM_NUM_PARTITIONS ||
  2525. index + num_entries > FCRAM_SIZE)
  2526. return -EINVAL;
  2527. nw64(HASH_TBL_ADDR(partition), val);
  2528. for (i = 0; i < num_entries; i++)
  2529. data[i] = nr64(HASH_TBL_DATA(partition));
  2530. return 0;
  2531. }
  2532. #endif
  2533. static int hash_write(struct niu *np, unsigned long partition,
  2534. unsigned long index, unsigned long num_entries,
  2535. u64 *data)
  2536. {
  2537. u64 val = hash_addr_regval(index, num_entries);
  2538. unsigned long i;
  2539. if (partition >= FCRAM_NUM_PARTITIONS ||
  2540. index + (num_entries * 8) > FCRAM_SIZE)
  2541. return -EINVAL;
  2542. nw64(HASH_TBL_ADDR(partition), val);
  2543. for (i = 0; i < num_entries; i++)
  2544. nw64(HASH_TBL_DATA(partition), data[i]);
  2545. return 0;
  2546. }
  2547. static void fflp_reset(struct niu *np)
  2548. {
  2549. u64 val;
  2550. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2551. udelay(10);
  2552. nw64(FFLP_CFG_1, 0);
  2553. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2554. nw64(FFLP_CFG_1, val);
  2555. }
  2556. static void fflp_set_timings(struct niu *np)
  2557. {
  2558. u64 val = nr64(FFLP_CFG_1);
  2559. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2560. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2561. nw64(FFLP_CFG_1, val);
  2562. val = nr64(FFLP_CFG_1);
  2563. val |= FFLP_CFG_1_FFLPINITDONE;
  2564. nw64(FFLP_CFG_1, val);
  2565. val = nr64(FCRAM_REF_TMR);
  2566. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2567. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2568. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2569. nw64(FCRAM_REF_TMR, val);
  2570. }
  2571. static int fflp_set_partition(struct niu *np, u64 partition,
  2572. u64 mask, u64 base, int enable)
  2573. {
  2574. unsigned long reg;
  2575. u64 val;
  2576. if (partition >= FCRAM_NUM_PARTITIONS ||
  2577. (mask & ~(u64)0x1f) != 0 ||
  2578. (base & ~(u64)0x1f) != 0)
  2579. return -EINVAL;
  2580. reg = FLW_PRT_SEL(partition);
  2581. val = nr64(reg);
  2582. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2583. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2584. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2585. if (enable)
  2586. val |= FLW_PRT_SEL_EXT;
  2587. nw64(reg, val);
  2588. return 0;
  2589. }
  2590. static int fflp_disable_all_partitions(struct niu *np)
  2591. {
  2592. unsigned long i;
  2593. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2594. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2595. if (err)
  2596. return err;
  2597. }
  2598. return 0;
  2599. }
  2600. static void fflp_llcsnap_enable(struct niu *np, int on)
  2601. {
  2602. u64 val = nr64(FFLP_CFG_1);
  2603. if (on)
  2604. val |= FFLP_CFG_1_LLCSNAP;
  2605. else
  2606. val &= ~FFLP_CFG_1_LLCSNAP;
  2607. nw64(FFLP_CFG_1, val);
  2608. }
  2609. static void fflp_errors_enable(struct niu *np, int on)
  2610. {
  2611. u64 val = nr64(FFLP_CFG_1);
  2612. if (on)
  2613. val &= ~FFLP_CFG_1_ERRORDIS;
  2614. else
  2615. val |= FFLP_CFG_1_ERRORDIS;
  2616. nw64(FFLP_CFG_1, val);
  2617. }
  2618. static int fflp_hash_clear(struct niu *np)
  2619. {
  2620. struct fcram_hash_ipv4 ent;
  2621. unsigned long i;
  2622. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2623. memset(&ent, 0, sizeof(ent));
  2624. ent.header = HASH_HEADER_EXT;
  2625. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2626. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2627. if (err)
  2628. return err;
  2629. }
  2630. return 0;
  2631. }
  2632. static int fflp_early_init(struct niu *np)
  2633. {
  2634. struct niu_parent *parent;
  2635. unsigned long flags;
  2636. int err;
  2637. niu_lock_parent(np, flags);
  2638. parent = np->parent;
  2639. err = 0;
  2640. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2641. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2642. fflp_reset(np);
  2643. fflp_set_timings(np);
  2644. err = fflp_disable_all_partitions(np);
  2645. if (err) {
  2646. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2647. "fflp_disable_all_partitions failed, err=%d\n",
  2648. err);
  2649. goto out;
  2650. }
  2651. }
  2652. err = tcam_early_init(np);
  2653. if (err) {
  2654. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2655. "tcam_early_init failed, err=%d\n", err);
  2656. goto out;
  2657. }
  2658. fflp_llcsnap_enable(np, 1);
  2659. fflp_errors_enable(np, 0);
  2660. nw64(H1POLY, 0);
  2661. nw64(H2POLY, 0);
  2662. err = tcam_flush_all(np);
  2663. if (err) {
  2664. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2665. "tcam_flush_all failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2669. err = fflp_hash_clear(np);
  2670. if (err) {
  2671. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2672. "fflp_hash_clear failed, err=%d\n",
  2673. err);
  2674. goto out;
  2675. }
  2676. }
  2677. vlan_tbl_clear(np);
  2678. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2679. }
  2680. out:
  2681. niu_unlock_parent(np, flags);
  2682. return err;
  2683. }
  2684. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2685. {
  2686. if (class_code < CLASS_CODE_USER_PROG1 ||
  2687. class_code > CLASS_CODE_SCTP_IPV6)
  2688. return -EINVAL;
  2689. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2690. return 0;
  2691. }
  2692. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2693. {
  2694. if (class_code < CLASS_CODE_USER_PROG1 ||
  2695. class_code > CLASS_CODE_SCTP_IPV6)
  2696. return -EINVAL;
  2697. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2698. return 0;
  2699. }
  2700. /* Entries for the ports are interleaved in the TCAM */
  2701. static u16 tcam_get_index(struct niu *np, u16 idx)
  2702. {
  2703. /* One entry reserved for IP fragment rule */
  2704. if (idx >= (np->clas.tcam_sz - 1))
  2705. idx = 0;
  2706. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2707. }
  2708. static u16 tcam_get_size(struct niu *np)
  2709. {
  2710. /* One entry reserved for IP fragment rule */
  2711. return np->clas.tcam_sz - 1;
  2712. }
  2713. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2714. {
  2715. /* One entry reserved for IP fragment rule */
  2716. return np->clas.tcam_valid_entries - 1;
  2717. }
  2718. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2719. u32 offset, u32 size, u32 truesize)
  2720. {
  2721. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2722. skb->len += size;
  2723. skb->data_len += size;
  2724. skb->truesize += truesize;
  2725. }
  2726. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2727. {
  2728. a >>= PAGE_SHIFT;
  2729. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2730. return a & (MAX_RBR_RING_SIZE - 1);
  2731. }
  2732. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2733. struct page ***link)
  2734. {
  2735. unsigned int h = niu_hash_rxaddr(rp, addr);
  2736. struct page *p, **pp;
  2737. addr &= PAGE_MASK;
  2738. pp = &rp->rxhash[h];
  2739. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2740. if (p->index == addr) {
  2741. *link = pp;
  2742. goto found;
  2743. }
  2744. }
  2745. BUG();
  2746. found:
  2747. return p;
  2748. }
  2749. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2750. {
  2751. unsigned int h = niu_hash_rxaddr(rp, base);
  2752. page->index = base;
  2753. page->mapping = (struct address_space *) rp->rxhash[h];
  2754. rp->rxhash[h] = page;
  2755. }
  2756. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2757. gfp_t mask, int start_index)
  2758. {
  2759. struct page *page;
  2760. u64 addr;
  2761. int i;
  2762. page = alloc_page(mask);
  2763. if (!page)
  2764. return -ENOMEM;
  2765. addr = np->ops->map_page(np->device, page, 0,
  2766. PAGE_SIZE, DMA_FROM_DEVICE);
  2767. if (!addr) {
  2768. __free_page(page);
  2769. return -ENOMEM;
  2770. }
  2771. niu_hash_page(rp, page, addr);
  2772. if (rp->rbr_blocks_per_page > 1)
  2773. page_ref_add(page, rp->rbr_blocks_per_page - 1);
  2774. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2775. __le32 *rbr = &rp->rbr[start_index + i];
  2776. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2777. addr += rp->rbr_block_size;
  2778. }
  2779. return 0;
  2780. }
  2781. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2782. {
  2783. int index = rp->rbr_index;
  2784. rp->rbr_pending++;
  2785. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2786. int err = niu_rbr_add_page(np, rp, mask, index);
  2787. if (unlikely(err)) {
  2788. rp->rbr_pending--;
  2789. return;
  2790. }
  2791. rp->rbr_index += rp->rbr_blocks_per_page;
  2792. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2793. if (rp->rbr_index == rp->rbr_table_size)
  2794. rp->rbr_index = 0;
  2795. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2796. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2797. rp->rbr_pending = 0;
  2798. }
  2799. }
  2800. }
  2801. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2802. {
  2803. unsigned int index = rp->rcr_index;
  2804. int num_rcr = 0;
  2805. rp->rx_dropped++;
  2806. while (1) {
  2807. struct page *page, **link;
  2808. u64 addr, val;
  2809. u32 rcr_size;
  2810. num_rcr++;
  2811. val = le64_to_cpup(&rp->rcr[index]);
  2812. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2813. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2814. page = niu_find_rxpage(rp, addr, &link);
  2815. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2816. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2817. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2818. *link = (struct page *) page->mapping;
  2819. np->ops->unmap_page(np->device, page->index,
  2820. PAGE_SIZE, DMA_FROM_DEVICE);
  2821. page->index = 0;
  2822. page->mapping = NULL;
  2823. __free_page(page);
  2824. rp->rbr_refill_pending++;
  2825. }
  2826. index = NEXT_RCR(rp, index);
  2827. if (!(val & RCR_ENTRY_MULTI))
  2828. break;
  2829. }
  2830. rp->rcr_index = index;
  2831. return num_rcr;
  2832. }
  2833. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2834. struct rx_ring_info *rp)
  2835. {
  2836. unsigned int index = rp->rcr_index;
  2837. struct rx_pkt_hdr1 *rh;
  2838. struct sk_buff *skb;
  2839. int len, num_rcr;
  2840. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2841. if (unlikely(!skb))
  2842. return niu_rx_pkt_ignore(np, rp);
  2843. num_rcr = 0;
  2844. while (1) {
  2845. struct page *page, **link;
  2846. u32 rcr_size, append_size;
  2847. u64 addr, val, off;
  2848. num_rcr++;
  2849. val = le64_to_cpup(&rp->rcr[index]);
  2850. len = (val & RCR_ENTRY_L2_LEN) >>
  2851. RCR_ENTRY_L2_LEN_SHIFT;
  2852. len -= ETH_FCS_LEN;
  2853. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2854. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2855. page = niu_find_rxpage(rp, addr, &link);
  2856. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2857. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2858. off = addr & ~PAGE_MASK;
  2859. append_size = rcr_size;
  2860. if (num_rcr == 1) {
  2861. int ptype;
  2862. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2863. if ((ptype == RCR_PKT_TYPE_TCP ||
  2864. ptype == RCR_PKT_TYPE_UDP) &&
  2865. !(val & (RCR_ENTRY_NOPORT |
  2866. RCR_ENTRY_ERROR)))
  2867. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2868. else
  2869. skb_checksum_none_assert(skb);
  2870. } else if (!(val & RCR_ENTRY_MULTI))
  2871. append_size = len - skb->len;
  2872. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2873. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2874. *link = (struct page *) page->mapping;
  2875. np->ops->unmap_page(np->device, page->index,
  2876. PAGE_SIZE, DMA_FROM_DEVICE);
  2877. page->index = 0;
  2878. page->mapping = NULL;
  2879. rp->rbr_refill_pending++;
  2880. } else
  2881. get_page(page);
  2882. index = NEXT_RCR(rp, index);
  2883. if (!(val & RCR_ENTRY_MULTI))
  2884. break;
  2885. }
  2886. rp->rcr_index = index;
  2887. len += sizeof(*rh);
  2888. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2889. __pskb_pull_tail(skb, len);
  2890. rh = (struct rx_pkt_hdr1 *) skb->data;
  2891. if (np->dev->features & NETIF_F_RXHASH)
  2892. skb_set_hash(skb,
  2893. ((u32)rh->hashval2_0 << 24 |
  2894. (u32)rh->hashval2_1 << 16 |
  2895. (u32)rh->hashval1_1 << 8 |
  2896. (u32)rh->hashval1_2 << 0),
  2897. PKT_HASH_TYPE_L3);
  2898. skb_pull(skb, sizeof(*rh));
  2899. rp->rx_packets++;
  2900. rp->rx_bytes += skb->len;
  2901. skb->protocol = eth_type_trans(skb, np->dev);
  2902. skb_record_rx_queue(skb, rp->rx_channel);
  2903. napi_gro_receive(napi, skb);
  2904. return num_rcr;
  2905. }
  2906. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2907. {
  2908. int blocks_per_page = rp->rbr_blocks_per_page;
  2909. int err, index = rp->rbr_index;
  2910. err = 0;
  2911. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2912. err = niu_rbr_add_page(np, rp, mask, index);
  2913. if (unlikely(err))
  2914. break;
  2915. index += blocks_per_page;
  2916. }
  2917. rp->rbr_index = index;
  2918. return err;
  2919. }
  2920. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2921. {
  2922. int i;
  2923. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2924. struct page *page;
  2925. page = rp->rxhash[i];
  2926. while (page) {
  2927. struct page *next = (struct page *) page->mapping;
  2928. u64 base = page->index;
  2929. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2930. DMA_FROM_DEVICE);
  2931. page->index = 0;
  2932. page->mapping = NULL;
  2933. __free_page(page);
  2934. page = next;
  2935. }
  2936. }
  2937. for (i = 0; i < rp->rbr_table_size; i++)
  2938. rp->rbr[i] = cpu_to_le32(0);
  2939. rp->rbr_index = 0;
  2940. }
  2941. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2942. {
  2943. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2944. struct sk_buff *skb = tb->skb;
  2945. struct tx_pkt_hdr *tp;
  2946. u64 tx_flags;
  2947. int i, len;
  2948. tp = (struct tx_pkt_hdr *) skb->data;
  2949. tx_flags = le64_to_cpup(&tp->flags);
  2950. rp->tx_packets++;
  2951. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2952. ((tx_flags & TXHDR_PAD) / 2));
  2953. len = skb_headlen(skb);
  2954. np->ops->unmap_single(np->device, tb->mapping,
  2955. len, DMA_TO_DEVICE);
  2956. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2957. rp->mark_pending--;
  2958. tb->skb = NULL;
  2959. do {
  2960. idx = NEXT_TX(rp, idx);
  2961. len -= MAX_TX_DESC_LEN;
  2962. } while (len > 0);
  2963. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2964. tb = &rp->tx_buffs[idx];
  2965. BUG_ON(tb->skb != NULL);
  2966. np->ops->unmap_page(np->device, tb->mapping,
  2967. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2968. DMA_TO_DEVICE);
  2969. idx = NEXT_TX(rp, idx);
  2970. }
  2971. dev_kfree_skb(skb);
  2972. return idx;
  2973. }
  2974. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2975. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2976. {
  2977. struct netdev_queue *txq;
  2978. u16 pkt_cnt, tmp;
  2979. int cons, index;
  2980. u64 cs;
  2981. index = (rp - np->tx_rings);
  2982. txq = netdev_get_tx_queue(np->dev, index);
  2983. cs = rp->tx_cs;
  2984. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2985. goto out;
  2986. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2987. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2988. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2989. rp->last_pkt_cnt = tmp;
  2990. cons = rp->cons;
  2991. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2992. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2993. while (pkt_cnt--)
  2994. cons = release_tx_packet(np, rp, cons);
  2995. rp->cons = cons;
  2996. smp_mb();
  2997. out:
  2998. if (unlikely(netif_tx_queue_stopped(txq) &&
  2999. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3000. __netif_tx_lock(txq, smp_processor_id());
  3001. if (netif_tx_queue_stopped(txq) &&
  3002. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3003. netif_tx_wake_queue(txq);
  3004. __netif_tx_unlock(txq);
  3005. }
  3006. }
  3007. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3008. struct rx_ring_info *rp,
  3009. const int limit)
  3010. {
  3011. /* This elaborate scheme is needed for reading the RX discard
  3012. * counters, as they are only 16-bit and can overflow quickly,
  3013. * and because the overflow indication bit is not usable as
  3014. * the counter value does not wrap, but remains at max value
  3015. * 0xFFFF.
  3016. *
  3017. * In theory and in practice counters can be lost in between
  3018. * reading nr64() and clearing the counter nw64(). For this
  3019. * reason, the number of counter clearings nw64() is
  3020. * limited/reduced though the limit parameter.
  3021. */
  3022. int rx_channel = rp->rx_channel;
  3023. u32 misc, wred;
  3024. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3025. * following discard events: IPP (Input Port Process),
  3026. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3027. * Block Ring) prefetch buffer is empty.
  3028. */
  3029. misc = nr64(RXMISC(rx_channel));
  3030. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3031. nw64(RXMISC(rx_channel), 0);
  3032. rp->rx_errors += misc & RXMISC_COUNT;
  3033. if (unlikely(misc & RXMISC_OFLOW))
  3034. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3035. rx_channel);
  3036. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3037. "rx-%d: MISC drop=%u over=%u\n",
  3038. rx_channel, misc, misc-limit);
  3039. }
  3040. /* WRED (Weighted Random Early Discard) by hardware */
  3041. wred = nr64(RED_DIS_CNT(rx_channel));
  3042. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3043. nw64(RED_DIS_CNT(rx_channel), 0);
  3044. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3045. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3046. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3047. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3048. "rx-%d: WRED drop=%u over=%u\n",
  3049. rx_channel, wred, wred-limit);
  3050. }
  3051. }
  3052. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3053. struct rx_ring_info *rp, int budget)
  3054. {
  3055. int qlen, rcr_done = 0, work_done = 0;
  3056. struct rxdma_mailbox *mbox = rp->mbox;
  3057. u64 stat;
  3058. #if 1
  3059. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3060. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3061. #else
  3062. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3063. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3064. #endif
  3065. mbox->rx_dma_ctl_stat = 0;
  3066. mbox->rcrstat_a = 0;
  3067. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3068. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3069. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3070. rcr_done = work_done = 0;
  3071. qlen = min(qlen, budget);
  3072. while (work_done < qlen) {
  3073. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3074. work_done++;
  3075. }
  3076. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3077. unsigned int i;
  3078. for (i = 0; i < rp->rbr_refill_pending; i++)
  3079. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3080. rp->rbr_refill_pending = 0;
  3081. }
  3082. stat = (RX_DMA_CTL_STAT_MEX |
  3083. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3084. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3085. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3086. /* Only sync discards stats when qlen indicate potential for drops */
  3087. if (qlen > 10)
  3088. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3089. return work_done;
  3090. }
  3091. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3092. {
  3093. u64 v0 = lp->v0;
  3094. u32 tx_vec = (v0 >> 32);
  3095. u32 rx_vec = (v0 & 0xffffffff);
  3096. int i, work_done = 0;
  3097. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3098. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3099. for (i = 0; i < np->num_tx_rings; i++) {
  3100. struct tx_ring_info *rp = &np->tx_rings[i];
  3101. if (tx_vec & (1 << rp->tx_channel))
  3102. niu_tx_work(np, rp);
  3103. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3104. }
  3105. for (i = 0; i < np->num_rx_rings; i++) {
  3106. struct rx_ring_info *rp = &np->rx_rings[i];
  3107. if (rx_vec & (1 << rp->rx_channel)) {
  3108. int this_work_done;
  3109. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3110. budget);
  3111. budget -= this_work_done;
  3112. work_done += this_work_done;
  3113. }
  3114. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3115. }
  3116. return work_done;
  3117. }
  3118. static int niu_poll(struct napi_struct *napi, int budget)
  3119. {
  3120. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3121. struct niu *np = lp->np;
  3122. int work_done;
  3123. work_done = niu_poll_core(np, lp, budget);
  3124. if (work_done < budget) {
  3125. napi_complete_done(napi, work_done);
  3126. niu_ldg_rearm(np, lp, 1);
  3127. }
  3128. return work_done;
  3129. }
  3130. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3131. u64 stat)
  3132. {
  3133. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3134. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3135. pr_cont("RBR_TMOUT ");
  3136. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3137. pr_cont("RSP_CNT ");
  3138. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3139. pr_cont("BYTE_EN_BUS ");
  3140. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3141. pr_cont("RSP_DAT ");
  3142. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3143. pr_cont("RCR_ACK ");
  3144. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3145. pr_cont("RCR_SHA_PAR ");
  3146. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3147. pr_cont("RBR_PRE_PAR ");
  3148. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3149. pr_cont("CONFIG ");
  3150. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3151. pr_cont("RCRINCON ");
  3152. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3153. pr_cont("RCRFULL ");
  3154. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3155. pr_cont("RBRFULL ");
  3156. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3157. pr_cont("RBRLOGPAGE ");
  3158. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3159. pr_cont("CFIGLOGPAGE ");
  3160. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3161. pr_cont("DC_FIDO ");
  3162. pr_cont(")\n");
  3163. }
  3164. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3165. {
  3166. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3167. int err = 0;
  3168. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3169. RX_DMA_CTL_STAT_PORT_FATAL))
  3170. err = -EINVAL;
  3171. if (err) {
  3172. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3173. rp->rx_channel,
  3174. (unsigned long long) stat);
  3175. niu_log_rxchan_errors(np, rp, stat);
  3176. }
  3177. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3178. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3179. return err;
  3180. }
  3181. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3182. u64 cs)
  3183. {
  3184. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3185. if (cs & TX_CS_MBOX_ERR)
  3186. pr_cont("MBOX ");
  3187. if (cs & TX_CS_PKT_SIZE_ERR)
  3188. pr_cont("PKT_SIZE ");
  3189. if (cs & TX_CS_TX_RING_OFLOW)
  3190. pr_cont("TX_RING_OFLOW ");
  3191. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3192. pr_cont("PREF_BUF_PAR ");
  3193. if (cs & TX_CS_NACK_PREF)
  3194. pr_cont("NACK_PREF ");
  3195. if (cs & TX_CS_NACK_PKT_RD)
  3196. pr_cont("NACK_PKT_RD ");
  3197. if (cs & TX_CS_CONF_PART_ERR)
  3198. pr_cont("CONF_PART ");
  3199. if (cs & TX_CS_PKT_PRT_ERR)
  3200. pr_cont("PKT_PTR ");
  3201. pr_cont(")\n");
  3202. }
  3203. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3204. {
  3205. u64 cs, logh, logl;
  3206. cs = nr64(TX_CS(rp->tx_channel));
  3207. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3208. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3209. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3210. rp->tx_channel,
  3211. (unsigned long long)cs,
  3212. (unsigned long long)logh,
  3213. (unsigned long long)logl);
  3214. niu_log_txchan_errors(np, rp, cs);
  3215. return -ENODEV;
  3216. }
  3217. static int niu_mif_interrupt(struct niu *np)
  3218. {
  3219. u64 mif_status = nr64(MIF_STATUS);
  3220. int phy_mdint = 0;
  3221. if (np->flags & NIU_FLAGS_XMAC) {
  3222. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3223. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3224. phy_mdint = 1;
  3225. }
  3226. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3227. (unsigned long long)mif_status, phy_mdint);
  3228. return -ENODEV;
  3229. }
  3230. static void niu_xmac_interrupt(struct niu *np)
  3231. {
  3232. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3233. u64 val;
  3234. val = nr64_mac(XTXMAC_STATUS);
  3235. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3236. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3237. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3238. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3239. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3240. mp->tx_fifo_errors++;
  3241. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3242. mp->tx_overflow_errors++;
  3243. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3244. mp->tx_max_pkt_size_errors++;
  3245. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3246. mp->tx_underflow_errors++;
  3247. val = nr64_mac(XRXMAC_STATUS);
  3248. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3249. mp->rx_local_faults++;
  3250. if (val & XRXMAC_STATUS_RFLT_DET)
  3251. mp->rx_remote_faults++;
  3252. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3253. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3254. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3255. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3256. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3257. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3258. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3259. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3260. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3261. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3262. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3263. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3264. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3265. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3266. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3267. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3268. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3269. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3270. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3271. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3272. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3273. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3274. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3275. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3276. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3277. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3278. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3279. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3280. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3281. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3282. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3283. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3284. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3285. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3286. if (val & XRXMAC_STATUS_RXUFLOW)
  3287. mp->rx_underflows++;
  3288. if (val & XRXMAC_STATUS_RXOFLOW)
  3289. mp->rx_overflows++;
  3290. val = nr64_mac(XMAC_FC_STAT);
  3291. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3292. mp->pause_off_state++;
  3293. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3294. mp->pause_on_state++;
  3295. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3296. mp->pause_received++;
  3297. }
  3298. static void niu_bmac_interrupt(struct niu *np)
  3299. {
  3300. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3301. u64 val;
  3302. val = nr64_mac(BTXMAC_STATUS);
  3303. if (val & BTXMAC_STATUS_UNDERRUN)
  3304. mp->tx_underflow_errors++;
  3305. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3306. mp->tx_max_pkt_size_errors++;
  3307. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3308. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3309. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3310. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3311. val = nr64_mac(BRXMAC_STATUS);
  3312. if (val & BRXMAC_STATUS_OVERFLOW)
  3313. mp->rx_overflows++;
  3314. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3315. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3316. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3317. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3318. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3319. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3320. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3321. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3322. val = nr64_mac(BMAC_CTRL_STATUS);
  3323. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3324. mp->pause_off_state++;
  3325. if (val & BMAC_CTRL_STATUS_PAUSE)
  3326. mp->pause_on_state++;
  3327. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3328. mp->pause_received++;
  3329. }
  3330. static int niu_mac_interrupt(struct niu *np)
  3331. {
  3332. if (np->flags & NIU_FLAGS_XMAC)
  3333. niu_xmac_interrupt(np);
  3334. else
  3335. niu_bmac_interrupt(np);
  3336. return 0;
  3337. }
  3338. static void niu_log_device_error(struct niu *np, u64 stat)
  3339. {
  3340. netdev_err(np->dev, "Core device errors ( ");
  3341. if (stat & SYS_ERR_MASK_META2)
  3342. pr_cont("META2 ");
  3343. if (stat & SYS_ERR_MASK_META1)
  3344. pr_cont("META1 ");
  3345. if (stat & SYS_ERR_MASK_PEU)
  3346. pr_cont("PEU ");
  3347. if (stat & SYS_ERR_MASK_TXC)
  3348. pr_cont("TXC ");
  3349. if (stat & SYS_ERR_MASK_RDMC)
  3350. pr_cont("RDMC ");
  3351. if (stat & SYS_ERR_MASK_TDMC)
  3352. pr_cont("TDMC ");
  3353. if (stat & SYS_ERR_MASK_ZCP)
  3354. pr_cont("ZCP ");
  3355. if (stat & SYS_ERR_MASK_FFLP)
  3356. pr_cont("FFLP ");
  3357. if (stat & SYS_ERR_MASK_IPP)
  3358. pr_cont("IPP ");
  3359. if (stat & SYS_ERR_MASK_MAC)
  3360. pr_cont("MAC ");
  3361. if (stat & SYS_ERR_MASK_SMX)
  3362. pr_cont("SMX ");
  3363. pr_cont(")\n");
  3364. }
  3365. static int niu_device_error(struct niu *np)
  3366. {
  3367. u64 stat = nr64(SYS_ERR_STAT);
  3368. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3369. (unsigned long long)stat);
  3370. niu_log_device_error(np, stat);
  3371. return -ENODEV;
  3372. }
  3373. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3374. u64 v0, u64 v1, u64 v2)
  3375. {
  3376. int i, err = 0;
  3377. lp->v0 = v0;
  3378. lp->v1 = v1;
  3379. lp->v2 = v2;
  3380. if (v1 & 0x00000000ffffffffULL) {
  3381. u32 rx_vec = (v1 & 0xffffffff);
  3382. for (i = 0; i < np->num_rx_rings; i++) {
  3383. struct rx_ring_info *rp = &np->rx_rings[i];
  3384. if (rx_vec & (1 << rp->rx_channel)) {
  3385. int r = niu_rx_error(np, rp);
  3386. if (r) {
  3387. err = r;
  3388. } else {
  3389. if (!v0)
  3390. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3391. RX_DMA_CTL_STAT_MEX);
  3392. }
  3393. }
  3394. }
  3395. }
  3396. if (v1 & 0x7fffffff00000000ULL) {
  3397. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3398. for (i = 0; i < np->num_tx_rings; i++) {
  3399. struct tx_ring_info *rp = &np->tx_rings[i];
  3400. if (tx_vec & (1 << rp->tx_channel)) {
  3401. int r = niu_tx_error(np, rp);
  3402. if (r)
  3403. err = r;
  3404. }
  3405. }
  3406. }
  3407. if ((v0 | v1) & 0x8000000000000000ULL) {
  3408. int r = niu_mif_interrupt(np);
  3409. if (r)
  3410. err = r;
  3411. }
  3412. if (v2) {
  3413. if (v2 & 0x01ef) {
  3414. int r = niu_mac_interrupt(np);
  3415. if (r)
  3416. err = r;
  3417. }
  3418. if (v2 & 0x0210) {
  3419. int r = niu_device_error(np);
  3420. if (r)
  3421. err = r;
  3422. }
  3423. }
  3424. if (err)
  3425. niu_enable_interrupts(np, 0);
  3426. return err;
  3427. }
  3428. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3429. int ldn)
  3430. {
  3431. struct rxdma_mailbox *mbox = rp->mbox;
  3432. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3433. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3434. RX_DMA_CTL_STAT_RCRTO);
  3435. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3436. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3437. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3438. }
  3439. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3440. int ldn)
  3441. {
  3442. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3443. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3444. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3445. }
  3446. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3447. {
  3448. struct niu_parent *parent = np->parent;
  3449. u32 rx_vec, tx_vec;
  3450. int i;
  3451. tx_vec = (v0 >> 32);
  3452. rx_vec = (v0 & 0xffffffff);
  3453. for (i = 0; i < np->num_rx_rings; i++) {
  3454. struct rx_ring_info *rp = &np->rx_rings[i];
  3455. int ldn = LDN_RXDMA(rp->rx_channel);
  3456. if (parent->ldg_map[ldn] != ldg)
  3457. continue;
  3458. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3459. if (rx_vec & (1 << rp->rx_channel))
  3460. niu_rxchan_intr(np, rp, ldn);
  3461. }
  3462. for (i = 0; i < np->num_tx_rings; i++) {
  3463. struct tx_ring_info *rp = &np->tx_rings[i];
  3464. int ldn = LDN_TXDMA(rp->tx_channel);
  3465. if (parent->ldg_map[ldn] != ldg)
  3466. continue;
  3467. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3468. if (tx_vec & (1 << rp->tx_channel))
  3469. niu_txchan_intr(np, rp, ldn);
  3470. }
  3471. }
  3472. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3473. u64 v0, u64 v1, u64 v2)
  3474. {
  3475. if (likely(napi_schedule_prep(&lp->napi))) {
  3476. lp->v0 = v0;
  3477. lp->v1 = v1;
  3478. lp->v2 = v2;
  3479. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3480. __napi_schedule(&lp->napi);
  3481. }
  3482. }
  3483. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3484. {
  3485. struct niu_ldg *lp = dev_id;
  3486. struct niu *np = lp->np;
  3487. int ldg = lp->ldg_num;
  3488. unsigned long flags;
  3489. u64 v0, v1, v2;
  3490. if (netif_msg_intr(np))
  3491. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3492. __func__, lp, ldg);
  3493. spin_lock_irqsave(&np->lock, flags);
  3494. v0 = nr64(LDSV0(ldg));
  3495. v1 = nr64(LDSV1(ldg));
  3496. v2 = nr64(LDSV2(ldg));
  3497. if (netif_msg_intr(np))
  3498. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3499. (unsigned long long) v0,
  3500. (unsigned long long) v1,
  3501. (unsigned long long) v2);
  3502. if (unlikely(!v0 && !v1 && !v2)) {
  3503. spin_unlock_irqrestore(&np->lock, flags);
  3504. return IRQ_NONE;
  3505. }
  3506. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3507. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3508. if (err)
  3509. goto out;
  3510. }
  3511. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3512. niu_schedule_napi(np, lp, v0, v1, v2);
  3513. else
  3514. niu_ldg_rearm(np, lp, 1);
  3515. out:
  3516. spin_unlock_irqrestore(&np->lock, flags);
  3517. return IRQ_HANDLED;
  3518. }
  3519. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3520. {
  3521. if (rp->mbox) {
  3522. np->ops->free_coherent(np->device,
  3523. sizeof(struct rxdma_mailbox),
  3524. rp->mbox, rp->mbox_dma);
  3525. rp->mbox = NULL;
  3526. }
  3527. if (rp->rcr) {
  3528. np->ops->free_coherent(np->device,
  3529. MAX_RCR_RING_SIZE * sizeof(__le64),
  3530. rp->rcr, rp->rcr_dma);
  3531. rp->rcr = NULL;
  3532. rp->rcr_table_size = 0;
  3533. rp->rcr_index = 0;
  3534. }
  3535. if (rp->rbr) {
  3536. niu_rbr_free(np, rp);
  3537. np->ops->free_coherent(np->device,
  3538. MAX_RBR_RING_SIZE * sizeof(__le32),
  3539. rp->rbr, rp->rbr_dma);
  3540. rp->rbr = NULL;
  3541. rp->rbr_table_size = 0;
  3542. rp->rbr_index = 0;
  3543. }
  3544. kfree(rp->rxhash);
  3545. rp->rxhash = NULL;
  3546. }
  3547. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3548. {
  3549. if (rp->mbox) {
  3550. np->ops->free_coherent(np->device,
  3551. sizeof(struct txdma_mailbox),
  3552. rp->mbox, rp->mbox_dma);
  3553. rp->mbox = NULL;
  3554. }
  3555. if (rp->descr) {
  3556. int i;
  3557. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3558. if (rp->tx_buffs[i].skb)
  3559. (void) release_tx_packet(np, rp, i);
  3560. }
  3561. np->ops->free_coherent(np->device,
  3562. MAX_TX_RING_SIZE * sizeof(__le64),
  3563. rp->descr, rp->descr_dma);
  3564. rp->descr = NULL;
  3565. rp->pending = 0;
  3566. rp->prod = 0;
  3567. rp->cons = 0;
  3568. rp->wrap_bit = 0;
  3569. }
  3570. }
  3571. static void niu_free_channels(struct niu *np)
  3572. {
  3573. int i;
  3574. if (np->rx_rings) {
  3575. for (i = 0; i < np->num_rx_rings; i++) {
  3576. struct rx_ring_info *rp = &np->rx_rings[i];
  3577. niu_free_rx_ring_info(np, rp);
  3578. }
  3579. kfree(np->rx_rings);
  3580. np->rx_rings = NULL;
  3581. np->num_rx_rings = 0;
  3582. }
  3583. if (np->tx_rings) {
  3584. for (i = 0; i < np->num_tx_rings; i++) {
  3585. struct tx_ring_info *rp = &np->tx_rings[i];
  3586. niu_free_tx_ring_info(np, rp);
  3587. }
  3588. kfree(np->tx_rings);
  3589. np->tx_rings = NULL;
  3590. np->num_tx_rings = 0;
  3591. }
  3592. }
  3593. static int niu_alloc_rx_ring_info(struct niu *np,
  3594. struct rx_ring_info *rp)
  3595. {
  3596. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3597. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3598. GFP_KERNEL);
  3599. if (!rp->rxhash)
  3600. return -ENOMEM;
  3601. rp->mbox = np->ops->alloc_coherent(np->device,
  3602. sizeof(struct rxdma_mailbox),
  3603. &rp->mbox_dma, GFP_KERNEL);
  3604. if (!rp->mbox)
  3605. return -ENOMEM;
  3606. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3607. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3608. rp->mbox);
  3609. return -EINVAL;
  3610. }
  3611. rp->rcr = np->ops->alloc_coherent(np->device,
  3612. MAX_RCR_RING_SIZE * sizeof(__le64),
  3613. &rp->rcr_dma, GFP_KERNEL);
  3614. if (!rp->rcr)
  3615. return -ENOMEM;
  3616. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3617. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3618. rp->rcr);
  3619. return -EINVAL;
  3620. }
  3621. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3622. rp->rcr_index = 0;
  3623. rp->rbr = np->ops->alloc_coherent(np->device,
  3624. MAX_RBR_RING_SIZE * sizeof(__le32),
  3625. &rp->rbr_dma, GFP_KERNEL);
  3626. if (!rp->rbr)
  3627. return -ENOMEM;
  3628. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3629. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3630. rp->rbr);
  3631. return -EINVAL;
  3632. }
  3633. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3634. rp->rbr_index = 0;
  3635. rp->rbr_pending = 0;
  3636. return 0;
  3637. }
  3638. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3639. {
  3640. int mtu = np->dev->mtu;
  3641. /* These values are recommended by the HW designers for fair
  3642. * utilization of DRR amongst the rings.
  3643. */
  3644. rp->max_burst = mtu + 32;
  3645. if (rp->max_burst > 4096)
  3646. rp->max_burst = 4096;
  3647. }
  3648. static int niu_alloc_tx_ring_info(struct niu *np,
  3649. struct tx_ring_info *rp)
  3650. {
  3651. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3652. rp->mbox = np->ops->alloc_coherent(np->device,
  3653. sizeof(struct txdma_mailbox),
  3654. &rp->mbox_dma, GFP_KERNEL);
  3655. if (!rp->mbox)
  3656. return -ENOMEM;
  3657. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3658. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3659. rp->mbox);
  3660. return -EINVAL;
  3661. }
  3662. rp->descr = np->ops->alloc_coherent(np->device,
  3663. MAX_TX_RING_SIZE * sizeof(__le64),
  3664. &rp->descr_dma, GFP_KERNEL);
  3665. if (!rp->descr)
  3666. return -ENOMEM;
  3667. if ((unsigned long)rp->descr & (64UL - 1)) {
  3668. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3669. rp->descr);
  3670. return -EINVAL;
  3671. }
  3672. rp->pending = MAX_TX_RING_SIZE;
  3673. rp->prod = 0;
  3674. rp->cons = 0;
  3675. rp->wrap_bit = 0;
  3676. /* XXX make these configurable... XXX */
  3677. rp->mark_freq = rp->pending / 4;
  3678. niu_set_max_burst(np, rp);
  3679. return 0;
  3680. }
  3681. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3682. {
  3683. u16 bss;
  3684. bss = min(PAGE_SHIFT, 15);
  3685. rp->rbr_block_size = 1 << bss;
  3686. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3687. rp->rbr_sizes[0] = 256;
  3688. rp->rbr_sizes[1] = 1024;
  3689. if (np->dev->mtu > ETH_DATA_LEN) {
  3690. switch (PAGE_SIZE) {
  3691. case 4 * 1024:
  3692. rp->rbr_sizes[2] = 4096;
  3693. break;
  3694. default:
  3695. rp->rbr_sizes[2] = 8192;
  3696. break;
  3697. }
  3698. } else {
  3699. rp->rbr_sizes[2] = 2048;
  3700. }
  3701. rp->rbr_sizes[3] = rp->rbr_block_size;
  3702. }
  3703. static int niu_alloc_channels(struct niu *np)
  3704. {
  3705. struct niu_parent *parent = np->parent;
  3706. int first_rx_channel, first_tx_channel;
  3707. int num_rx_rings, num_tx_rings;
  3708. struct rx_ring_info *rx_rings;
  3709. struct tx_ring_info *tx_rings;
  3710. int i, port, err;
  3711. port = np->port;
  3712. first_rx_channel = first_tx_channel = 0;
  3713. for (i = 0; i < port; i++) {
  3714. first_rx_channel += parent->rxchan_per_port[i];
  3715. first_tx_channel += parent->txchan_per_port[i];
  3716. }
  3717. num_rx_rings = parent->rxchan_per_port[port];
  3718. num_tx_rings = parent->txchan_per_port[port];
  3719. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3720. GFP_KERNEL);
  3721. err = -ENOMEM;
  3722. if (!rx_rings)
  3723. goto out_err;
  3724. np->num_rx_rings = num_rx_rings;
  3725. smp_wmb();
  3726. np->rx_rings = rx_rings;
  3727. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3728. for (i = 0; i < np->num_rx_rings; i++) {
  3729. struct rx_ring_info *rp = &np->rx_rings[i];
  3730. rp->np = np;
  3731. rp->rx_channel = first_rx_channel + i;
  3732. err = niu_alloc_rx_ring_info(np, rp);
  3733. if (err)
  3734. goto out_err;
  3735. niu_size_rbr(np, rp);
  3736. /* XXX better defaults, configurable, etc... XXX */
  3737. rp->nonsyn_window = 64;
  3738. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3739. rp->syn_window = 64;
  3740. rp->syn_threshold = rp->rcr_table_size - 64;
  3741. rp->rcr_pkt_threshold = 16;
  3742. rp->rcr_timeout = 8;
  3743. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3744. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3745. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3746. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3747. if (err)
  3748. return err;
  3749. }
  3750. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3751. GFP_KERNEL);
  3752. err = -ENOMEM;
  3753. if (!tx_rings)
  3754. goto out_err;
  3755. np->num_tx_rings = num_tx_rings;
  3756. smp_wmb();
  3757. np->tx_rings = tx_rings;
  3758. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3759. for (i = 0; i < np->num_tx_rings; i++) {
  3760. struct tx_ring_info *rp = &np->tx_rings[i];
  3761. rp->np = np;
  3762. rp->tx_channel = first_tx_channel + i;
  3763. err = niu_alloc_tx_ring_info(np, rp);
  3764. if (err)
  3765. goto out_err;
  3766. }
  3767. return 0;
  3768. out_err:
  3769. niu_free_channels(np);
  3770. return err;
  3771. }
  3772. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3773. {
  3774. int limit = 1000;
  3775. while (--limit > 0) {
  3776. u64 val = nr64(TX_CS(channel));
  3777. if (val & TX_CS_SNG_STATE)
  3778. return 0;
  3779. }
  3780. return -ENODEV;
  3781. }
  3782. static int niu_tx_channel_stop(struct niu *np, int channel)
  3783. {
  3784. u64 val = nr64(TX_CS(channel));
  3785. val |= TX_CS_STOP_N_GO;
  3786. nw64(TX_CS(channel), val);
  3787. return niu_tx_cs_sng_poll(np, channel);
  3788. }
  3789. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3790. {
  3791. int limit = 1000;
  3792. while (--limit > 0) {
  3793. u64 val = nr64(TX_CS(channel));
  3794. if (!(val & TX_CS_RST))
  3795. return 0;
  3796. }
  3797. return -ENODEV;
  3798. }
  3799. static int niu_tx_channel_reset(struct niu *np, int channel)
  3800. {
  3801. u64 val = nr64(TX_CS(channel));
  3802. int err;
  3803. val |= TX_CS_RST;
  3804. nw64(TX_CS(channel), val);
  3805. err = niu_tx_cs_reset_poll(np, channel);
  3806. if (!err)
  3807. nw64(TX_RING_KICK(channel), 0);
  3808. return err;
  3809. }
  3810. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3811. {
  3812. u64 val;
  3813. nw64(TX_LOG_MASK1(channel), 0);
  3814. nw64(TX_LOG_VAL1(channel), 0);
  3815. nw64(TX_LOG_MASK2(channel), 0);
  3816. nw64(TX_LOG_VAL2(channel), 0);
  3817. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3818. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3819. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3820. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3821. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3822. nw64(TX_LOG_PAGE_VLD(channel), val);
  3823. /* XXX TXDMA 32bit mode? XXX */
  3824. return 0;
  3825. }
  3826. static void niu_txc_enable_port(struct niu *np, int on)
  3827. {
  3828. unsigned long flags;
  3829. u64 val, mask;
  3830. niu_lock_parent(np, flags);
  3831. val = nr64(TXC_CONTROL);
  3832. mask = (u64)1 << np->port;
  3833. if (on) {
  3834. val |= TXC_CONTROL_ENABLE | mask;
  3835. } else {
  3836. val &= ~mask;
  3837. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3838. val &= ~TXC_CONTROL_ENABLE;
  3839. }
  3840. nw64(TXC_CONTROL, val);
  3841. niu_unlock_parent(np, flags);
  3842. }
  3843. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3844. {
  3845. unsigned long flags;
  3846. u64 val;
  3847. niu_lock_parent(np, flags);
  3848. val = nr64(TXC_INT_MASK);
  3849. val &= ~TXC_INT_MASK_VAL(np->port);
  3850. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3851. niu_unlock_parent(np, flags);
  3852. }
  3853. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3854. {
  3855. u64 val = 0;
  3856. if (on) {
  3857. int i;
  3858. for (i = 0; i < np->num_tx_rings; i++)
  3859. val |= (1 << np->tx_rings[i].tx_channel);
  3860. }
  3861. nw64(TXC_PORT_DMA(np->port), val);
  3862. }
  3863. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3864. {
  3865. int err, channel = rp->tx_channel;
  3866. u64 val, ring_len;
  3867. err = niu_tx_channel_stop(np, channel);
  3868. if (err)
  3869. return err;
  3870. err = niu_tx_channel_reset(np, channel);
  3871. if (err)
  3872. return err;
  3873. err = niu_tx_channel_lpage_init(np, channel);
  3874. if (err)
  3875. return err;
  3876. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3877. nw64(TX_ENT_MSK(channel), 0);
  3878. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3879. TX_RNG_CFIG_STADDR)) {
  3880. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3881. channel, (unsigned long long)rp->descr_dma);
  3882. return -EINVAL;
  3883. }
  3884. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3885. * blocks. rp->pending is the number of TX descriptors in
  3886. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3887. * to get the proper value the chip wants.
  3888. */
  3889. ring_len = (rp->pending / 8);
  3890. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3891. rp->descr_dma);
  3892. nw64(TX_RNG_CFIG(channel), val);
  3893. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3894. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3895. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3896. channel, (unsigned long long)rp->mbox_dma);
  3897. return -EINVAL;
  3898. }
  3899. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3900. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3901. nw64(TX_CS(channel), 0);
  3902. rp->last_pkt_cnt = 0;
  3903. return 0;
  3904. }
  3905. static void niu_init_rdc_groups(struct niu *np)
  3906. {
  3907. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3908. int i, first_table_num = tp->first_table_num;
  3909. for (i = 0; i < tp->num_tables; i++) {
  3910. struct rdc_table *tbl = &tp->tables[i];
  3911. int this_table = first_table_num + i;
  3912. int slot;
  3913. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3914. nw64(RDC_TBL(this_table, slot),
  3915. tbl->rxdma_channel[slot]);
  3916. }
  3917. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3918. }
  3919. static void niu_init_drr_weight(struct niu *np)
  3920. {
  3921. int type = phy_decode(np->parent->port_phy, np->port);
  3922. u64 val;
  3923. switch (type) {
  3924. case PORT_TYPE_10G:
  3925. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3926. break;
  3927. case PORT_TYPE_1G:
  3928. default:
  3929. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3930. break;
  3931. }
  3932. nw64(PT_DRR_WT(np->port), val);
  3933. }
  3934. static int niu_init_hostinfo(struct niu *np)
  3935. {
  3936. struct niu_parent *parent = np->parent;
  3937. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3938. int i, err, num_alt = niu_num_alt_addr(np);
  3939. int first_rdc_table = tp->first_table_num;
  3940. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3941. if (err)
  3942. return err;
  3943. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3944. if (err)
  3945. return err;
  3946. for (i = 0; i < num_alt; i++) {
  3947. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3948. if (err)
  3949. return err;
  3950. }
  3951. return 0;
  3952. }
  3953. static int niu_rx_channel_reset(struct niu *np, int channel)
  3954. {
  3955. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3956. RXDMA_CFIG1_RST, 1000, 10,
  3957. "RXDMA_CFIG1");
  3958. }
  3959. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3960. {
  3961. u64 val;
  3962. nw64(RX_LOG_MASK1(channel), 0);
  3963. nw64(RX_LOG_VAL1(channel), 0);
  3964. nw64(RX_LOG_MASK2(channel), 0);
  3965. nw64(RX_LOG_VAL2(channel), 0);
  3966. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3967. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3968. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3969. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3970. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3971. nw64(RX_LOG_PAGE_VLD(channel), val);
  3972. return 0;
  3973. }
  3974. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3975. {
  3976. u64 val;
  3977. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3978. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3979. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3980. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3981. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3982. }
  3983. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3984. {
  3985. u64 val = 0;
  3986. *ret = 0;
  3987. switch (rp->rbr_block_size) {
  3988. case 4 * 1024:
  3989. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3990. break;
  3991. case 8 * 1024:
  3992. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3993. break;
  3994. case 16 * 1024:
  3995. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3996. break;
  3997. case 32 * 1024:
  3998. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3999. break;
  4000. default:
  4001. return -EINVAL;
  4002. }
  4003. val |= RBR_CFIG_B_VLD2;
  4004. switch (rp->rbr_sizes[2]) {
  4005. case 2 * 1024:
  4006. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4007. break;
  4008. case 4 * 1024:
  4009. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4010. break;
  4011. case 8 * 1024:
  4012. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4013. break;
  4014. case 16 * 1024:
  4015. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4016. break;
  4017. default:
  4018. return -EINVAL;
  4019. }
  4020. val |= RBR_CFIG_B_VLD1;
  4021. switch (rp->rbr_sizes[1]) {
  4022. case 1 * 1024:
  4023. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4024. break;
  4025. case 2 * 1024:
  4026. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4027. break;
  4028. case 4 * 1024:
  4029. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4030. break;
  4031. case 8 * 1024:
  4032. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4033. break;
  4034. default:
  4035. return -EINVAL;
  4036. }
  4037. val |= RBR_CFIG_B_VLD0;
  4038. switch (rp->rbr_sizes[0]) {
  4039. case 256:
  4040. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4041. break;
  4042. case 512:
  4043. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4044. break;
  4045. case 1 * 1024:
  4046. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4047. break;
  4048. case 2 * 1024:
  4049. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4050. break;
  4051. default:
  4052. return -EINVAL;
  4053. }
  4054. *ret = val;
  4055. return 0;
  4056. }
  4057. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4058. {
  4059. u64 val = nr64(RXDMA_CFIG1(channel));
  4060. int limit;
  4061. if (on)
  4062. val |= RXDMA_CFIG1_EN;
  4063. else
  4064. val &= ~RXDMA_CFIG1_EN;
  4065. nw64(RXDMA_CFIG1(channel), val);
  4066. limit = 1000;
  4067. while (--limit > 0) {
  4068. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4069. break;
  4070. udelay(10);
  4071. }
  4072. if (limit <= 0)
  4073. return -ENODEV;
  4074. return 0;
  4075. }
  4076. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4077. {
  4078. int err, channel = rp->rx_channel;
  4079. u64 val;
  4080. err = niu_rx_channel_reset(np, channel);
  4081. if (err)
  4082. return err;
  4083. err = niu_rx_channel_lpage_init(np, channel);
  4084. if (err)
  4085. return err;
  4086. niu_rx_channel_wred_init(np, rp);
  4087. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4088. nw64(RX_DMA_CTL_STAT(channel),
  4089. (RX_DMA_CTL_STAT_MEX |
  4090. RX_DMA_CTL_STAT_RCRTHRES |
  4091. RX_DMA_CTL_STAT_RCRTO |
  4092. RX_DMA_CTL_STAT_RBR_EMPTY));
  4093. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4094. nw64(RXDMA_CFIG2(channel),
  4095. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4096. RXDMA_CFIG2_FULL_HDR));
  4097. nw64(RBR_CFIG_A(channel),
  4098. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4099. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4100. err = niu_compute_rbr_cfig_b(rp, &val);
  4101. if (err)
  4102. return err;
  4103. nw64(RBR_CFIG_B(channel), val);
  4104. nw64(RCRCFIG_A(channel),
  4105. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4106. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4107. nw64(RCRCFIG_B(channel),
  4108. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4109. RCRCFIG_B_ENTOUT |
  4110. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4111. err = niu_enable_rx_channel(np, channel, 1);
  4112. if (err)
  4113. return err;
  4114. nw64(RBR_KICK(channel), rp->rbr_index);
  4115. val = nr64(RX_DMA_CTL_STAT(channel));
  4116. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4117. nw64(RX_DMA_CTL_STAT(channel), val);
  4118. return 0;
  4119. }
  4120. static int niu_init_rx_channels(struct niu *np)
  4121. {
  4122. unsigned long flags;
  4123. u64 seed = jiffies_64;
  4124. int err, i;
  4125. niu_lock_parent(np, flags);
  4126. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4127. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4128. niu_unlock_parent(np, flags);
  4129. /* XXX RXDMA 32bit mode? XXX */
  4130. niu_init_rdc_groups(np);
  4131. niu_init_drr_weight(np);
  4132. err = niu_init_hostinfo(np);
  4133. if (err)
  4134. return err;
  4135. for (i = 0; i < np->num_rx_rings; i++) {
  4136. struct rx_ring_info *rp = &np->rx_rings[i];
  4137. err = niu_init_one_rx_channel(np, rp);
  4138. if (err)
  4139. return err;
  4140. }
  4141. return 0;
  4142. }
  4143. static int niu_set_ip_frag_rule(struct niu *np)
  4144. {
  4145. struct niu_parent *parent = np->parent;
  4146. struct niu_classifier *cp = &np->clas;
  4147. struct niu_tcam_entry *tp;
  4148. int index, err;
  4149. index = cp->tcam_top;
  4150. tp = &parent->tcam[index];
  4151. /* Note that the noport bit is the same in both ipv4 and
  4152. * ipv6 format TCAM entries.
  4153. */
  4154. memset(tp, 0, sizeof(*tp));
  4155. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4156. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4157. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4158. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4159. err = tcam_write(np, index, tp->key, tp->key_mask);
  4160. if (err)
  4161. return err;
  4162. err = tcam_assoc_write(np, index, tp->assoc_data);
  4163. if (err)
  4164. return err;
  4165. tp->valid = 1;
  4166. cp->tcam_valid_entries++;
  4167. return 0;
  4168. }
  4169. static int niu_init_classifier_hw(struct niu *np)
  4170. {
  4171. struct niu_parent *parent = np->parent;
  4172. struct niu_classifier *cp = &np->clas;
  4173. int i, err;
  4174. nw64(H1POLY, cp->h1_init);
  4175. nw64(H2POLY, cp->h2_init);
  4176. err = niu_init_hostinfo(np);
  4177. if (err)
  4178. return err;
  4179. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4180. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4181. vlan_tbl_write(np, i, np->port,
  4182. vp->vlan_pref, vp->rdc_num);
  4183. }
  4184. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4185. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4186. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4187. ap->rdc_num, ap->mac_pref);
  4188. if (err)
  4189. return err;
  4190. }
  4191. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4192. int index = i - CLASS_CODE_USER_PROG1;
  4193. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4194. if (err)
  4195. return err;
  4196. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4197. if (err)
  4198. return err;
  4199. }
  4200. err = niu_set_ip_frag_rule(np);
  4201. if (err)
  4202. return err;
  4203. tcam_enable(np, 1);
  4204. return 0;
  4205. }
  4206. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4207. {
  4208. nw64(ZCP_RAM_DATA0, data[0]);
  4209. nw64(ZCP_RAM_DATA1, data[1]);
  4210. nw64(ZCP_RAM_DATA2, data[2]);
  4211. nw64(ZCP_RAM_DATA3, data[3]);
  4212. nw64(ZCP_RAM_DATA4, data[4]);
  4213. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4214. nw64(ZCP_RAM_ACC,
  4215. (ZCP_RAM_ACC_WRITE |
  4216. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4217. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4218. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4219. 1000, 100);
  4220. }
  4221. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4222. {
  4223. int err;
  4224. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4225. 1000, 100);
  4226. if (err) {
  4227. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4228. (unsigned long long)nr64(ZCP_RAM_ACC));
  4229. return err;
  4230. }
  4231. nw64(ZCP_RAM_ACC,
  4232. (ZCP_RAM_ACC_READ |
  4233. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4234. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4235. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4236. 1000, 100);
  4237. if (err) {
  4238. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4239. (unsigned long long)nr64(ZCP_RAM_ACC));
  4240. return err;
  4241. }
  4242. data[0] = nr64(ZCP_RAM_DATA0);
  4243. data[1] = nr64(ZCP_RAM_DATA1);
  4244. data[2] = nr64(ZCP_RAM_DATA2);
  4245. data[3] = nr64(ZCP_RAM_DATA3);
  4246. data[4] = nr64(ZCP_RAM_DATA4);
  4247. return 0;
  4248. }
  4249. static void niu_zcp_cfifo_reset(struct niu *np)
  4250. {
  4251. u64 val = nr64(RESET_CFIFO);
  4252. val |= RESET_CFIFO_RST(np->port);
  4253. nw64(RESET_CFIFO, val);
  4254. udelay(10);
  4255. val &= ~RESET_CFIFO_RST(np->port);
  4256. nw64(RESET_CFIFO, val);
  4257. }
  4258. static int niu_init_zcp(struct niu *np)
  4259. {
  4260. u64 data[5], rbuf[5];
  4261. int i, max, err;
  4262. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4263. if (np->port == 0 || np->port == 1)
  4264. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4265. else
  4266. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4267. } else
  4268. max = NIU_CFIFO_ENTRIES;
  4269. data[0] = 0;
  4270. data[1] = 0;
  4271. data[2] = 0;
  4272. data[3] = 0;
  4273. data[4] = 0;
  4274. for (i = 0; i < max; i++) {
  4275. err = niu_zcp_write(np, i, data);
  4276. if (err)
  4277. return err;
  4278. err = niu_zcp_read(np, i, rbuf);
  4279. if (err)
  4280. return err;
  4281. }
  4282. niu_zcp_cfifo_reset(np);
  4283. nw64(CFIFO_ECC(np->port), 0);
  4284. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4285. (void) nr64(ZCP_INT_STAT);
  4286. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4287. return 0;
  4288. }
  4289. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4290. {
  4291. u64 val = nr64_ipp(IPP_CFIG);
  4292. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4293. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4294. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4295. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4296. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4297. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4298. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4299. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4300. }
  4301. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4302. {
  4303. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4304. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4305. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4306. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4307. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4308. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4309. }
  4310. static int niu_ipp_reset(struct niu *np)
  4311. {
  4312. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4313. 1000, 100, "IPP_CFIG");
  4314. }
  4315. static int niu_init_ipp(struct niu *np)
  4316. {
  4317. u64 data[5], rbuf[5], val;
  4318. int i, max, err;
  4319. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4320. if (np->port == 0 || np->port == 1)
  4321. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4322. else
  4323. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4324. } else
  4325. max = NIU_DFIFO_ENTRIES;
  4326. data[0] = 0;
  4327. data[1] = 0;
  4328. data[2] = 0;
  4329. data[3] = 0;
  4330. data[4] = 0;
  4331. for (i = 0; i < max; i++) {
  4332. niu_ipp_write(np, i, data);
  4333. niu_ipp_read(np, i, rbuf);
  4334. }
  4335. (void) nr64_ipp(IPP_INT_STAT);
  4336. (void) nr64_ipp(IPP_INT_STAT);
  4337. err = niu_ipp_reset(np);
  4338. if (err)
  4339. return err;
  4340. (void) nr64_ipp(IPP_PKT_DIS);
  4341. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4342. (void) nr64_ipp(IPP_ECC);
  4343. (void) nr64_ipp(IPP_INT_STAT);
  4344. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4345. val = nr64_ipp(IPP_CFIG);
  4346. val &= ~IPP_CFIG_IP_MAX_PKT;
  4347. val |= (IPP_CFIG_IPP_ENABLE |
  4348. IPP_CFIG_DFIFO_ECC_EN |
  4349. IPP_CFIG_DROP_BAD_CRC |
  4350. IPP_CFIG_CKSUM_EN |
  4351. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4352. nw64_ipp(IPP_CFIG, val);
  4353. return 0;
  4354. }
  4355. static void niu_handle_led(struct niu *np, int status)
  4356. {
  4357. u64 val;
  4358. val = nr64_mac(XMAC_CONFIG);
  4359. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4360. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4361. if (status) {
  4362. val |= XMAC_CONFIG_LED_POLARITY;
  4363. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4364. } else {
  4365. val |= XMAC_CONFIG_FORCE_LED_ON;
  4366. val &= ~XMAC_CONFIG_LED_POLARITY;
  4367. }
  4368. }
  4369. nw64_mac(XMAC_CONFIG, val);
  4370. }
  4371. static void niu_init_xif_xmac(struct niu *np)
  4372. {
  4373. struct niu_link_config *lp = &np->link_config;
  4374. u64 val;
  4375. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4376. val = nr64(MIF_CONFIG);
  4377. val |= MIF_CONFIG_ATCA_GE;
  4378. nw64(MIF_CONFIG, val);
  4379. }
  4380. val = nr64_mac(XMAC_CONFIG);
  4381. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4382. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4383. if (lp->loopback_mode == LOOPBACK_MAC) {
  4384. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4385. val |= XMAC_CONFIG_LOOPBACK;
  4386. } else {
  4387. val &= ~XMAC_CONFIG_LOOPBACK;
  4388. }
  4389. if (np->flags & NIU_FLAGS_10G) {
  4390. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4391. } else {
  4392. val |= XMAC_CONFIG_LFS_DISABLE;
  4393. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4394. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4395. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4396. else
  4397. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4398. }
  4399. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4400. if (lp->active_speed == SPEED_100)
  4401. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4402. else
  4403. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4404. nw64_mac(XMAC_CONFIG, val);
  4405. val = nr64_mac(XMAC_CONFIG);
  4406. val &= ~XMAC_CONFIG_MODE_MASK;
  4407. if (np->flags & NIU_FLAGS_10G) {
  4408. val |= XMAC_CONFIG_MODE_XGMII;
  4409. } else {
  4410. if (lp->active_speed == SPEED_1000)
  4411. val |= XMAC_CONFIG_MODE_GMII;
  4412. else
  4413. val |= XMAC_CONFIG_MODE_MII;
  4414. }
  4415. nw64_mac(XMAC_CONFIG, val);
  4416. }
  4417. static void niu_init_xif_bmac(struct niu *np)
  4418. {
  4419. struct niu_link_config *lp = &np->link_config;
  4420. u64 val;
  4421. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4422. if (lp->loopback_mode == LOOPBACK_MAC)
  4423. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4424. else
  4425. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4426. if (lp->active_speed == SPEED_1000)
  4427. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4428. else
  4429. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4430. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4431. BMAC_XIF_CONFIG_LED_POLARITY);
  4432. if (!(np->flags & NIU_FLAGS_10G) &&
  4433. !(np->flags & NIU_FLAGS_FIBER) &&
  4434. lp->active_speed == SPEED_100)
  4435. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4436. else
  4437. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4438. nw64_mac(BMAC_XIF_CONFIG, val);
  4439. }
  4440. static void niu_init_xif(struct niu *np)
  4441. {
  4442. if (np->flags & NIU_FLAGS_XMAC)
  4443. niu_init_xif_xmac(np);
  4444. else
  4445. niu_init_xif_bmac(np);
  4446. }
  4447. static void niu_pcs_mii_reset(struct niu *np)
  4448. {
  4449. int limit = 1000;
  4450. u64 val = nr64_pcs(PCS_MII_CTL);
  4451. val |= PCS_MII_CTL_RST;
  4452. nw64_pcs(PCS_MII_CTL, val);
  4453. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4454. udelay(100);
  4455. val = nr64_pcs(PCS_MII_CTL);
  4456. }
  4457. }
  4458. static void niu_xpcs_reset(struct niu *np)
  4459. {
  4460. int limit = 1000;
  4461. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4462. val |= XPCS_CONTROL1_RESET;
  4463. nw64_xpcs(XPCS_CONTROL1, val);
  4464. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4465. udelay(100);
  4466. val = nr64_xpcs(XPCS_CONTROL1);
  4467. }
  4468. }
  4469. static int niu_init_pcs(struct niu *np)
  4470. {
  4471. struct niu_link_config *lp = &np->link_config;
  4472. u64 val;
  4473. switch (np->flags & (NIU_FLAGS_10G |
  4474. NIU_FLAGS_FIBER |
  4475. NIU_FLAGS_XCVR_SERDES)) {
  4476. case NIU_FLAGS_FIBER:
  4477. /* 1G fiber */
  4478. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4479. nw64_pcs(PCS_DPATH_MODE, 0);
  4480. niu_pcs_mii_reset(np);
  4481. break;
  4482. case NIU_FLAGS_10G:
  4483. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4484. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4485. /* 10G SERDES */
  4486. if (!(np->flags & NIU_FLAGS_XMAC))
  4487. return -EINVAL;
  4488. /* 10G copper or fiber */
  4489. val = nr64_mac(XMAC_CONFIG);
  4490. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4491. nw64_mac(XMAC_CONFIG, val);
  4492. niu_xpcs_reset(np);
  4493. val = nr64_xpcs(XPCS_CONTROL1);
  4494. if (lp->loopback_mode == LOOPBACK_PHY)
  4495. val |= XPCS_CONTROL1_LOOPBACK;
  4496. else
  4497. val &= ~XPCS_CONTROL1_LOOPBACK;
  4498. nw64_xpcs(XPCS_CONTROL1, val);
  4499. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4500. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4501. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4502. break;
  4503. case NIU_FLAGS_XCVR_SERDES:
  4504. /* 1G SERDES */
  4505. niu_pcs_mii_reset(np);
  4506. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4507. nw64_pcs(PCS_DPATH_MODE, 0);
  4508. break;
  4509. case 0:
  4510. /* 1G copper */
  4511. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4512. /* 1G RGMII FIBER */
  4513. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4514. niu_pcs_mii_reset(np);
  4515. break;
  4516. default:
  4517. return -EINVAL;
  4518. }
  4519. return 0;
  4520. }
  4521. static int niu_reset_tx_xmac(struct niu *np)
  4522. {
  4523. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4524. (XTXMAC_SW_RST_REG_RS |
  4525. XTXMAC_SW_RST_SOFT_RST),
  4526. 1000, 100, "XTXMAC_SW_RST");
  4527. }
  4528. static int niu_reset_tx_bmac(struct niu *np)
  4529. {
  4530. int limit;
  4531. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4532. limit = 1000;
  4533. while (--limit >= 0) {
  4534. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4535. break;
  4536. udelay(100);
  4537. }
  4538. if (limit < 0) {
  4539. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4540. np->port,
  4541. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4542. return -ENODEV;
  4543. }
  4544. return 0;
  4545. }
  4546. static int niu_reset_tx_mac(struct niu *np)
  4547. {
  4548. if (np->flags & NIU_FLAGS_XMAC)
  4549. return niu_reset_tx_xmac(np);
  4550. else
  4551. return niu_reset_tx_bmac(np);
  4552. }
  4553. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4554. {
  4555. u64 val;
  4556. val = nr64_mac(XMAC_MIN);
  4557. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4558. XMAC_MIN_RX_MIN_PKT_SIZE);
  4559. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4560. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4561. nw64_mac(XMAC_MIN, val);
  4562. nw64_mac(XMAC_MAX, max);
  4563. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4564. val = nr64_mac(XMAC_IPG);
  4565. if (np->flags & NIU_FLAGS_10G) {
  4566. val &= ~XMAC_IPG_IPG_XGMII;
  4567. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4568. } else {
  4569. val &= ~XMAC_IPG_IPG_MII_GMII;
  4570. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4571. }
  4572. nw64_mac(XMAC_IPG, val);
  4573. val = nr64_mac(XMAC_CONFIG);
  4574. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4575. XMAC_CONFIG_STRETCH_MODE |
  4576. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4577. XMAC_CONFIG_TX_ENABLE);
  4578. nw64_mac(XMAC_CONFIG, val);
  4579. nw64_mac(TXMAC_FRM_CNT, 0);
  4580. nw64_mac(TXMAC_BYTE_CNT, 0);
  4581. }
  4582. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4583. {
  4584. u64 val;
  4585. nw64_mac(BMAC_MIN_FRAME, min);
  4586. nw64_mac(BMAC_MAX_FRAME, max);
  4587. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4588. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4589. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4590. val = nr64_mac(BTXMAC_CONFIG);
  4591. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4592. BTXMAC_CONFIG_ENABLE);
  4593. nw64_mac(BTXMAC_CONFIG, val);
  4594. }
  4595. static void niu_init_tx_mac(struct niu *np)
  4596. {
  4597. u64 min, max;
  4598. min = 64;
  4599. if (np->dev->mtu > ETH_DATA_LEN)
  4600. max = 9216;
  4601. else
  4602. max = 1522;
  4603. /* The XMAC_MIN register only accepts values for TX min which
  4604. * have the low 3 bits cleared.
  4605. */
  4606. BUG_ON(min & 0x7);
  4607. if (np->flags & NIU_FLAGS_XMAC)
  4608. niu_init_tx_xmac(np, min, max);
  4609. else
  4610. niu_init_tx_bmac(np, min, max);
  4611. }
  4612. static int niu_reset_rx_xmac(struct niu *np)
  4613. {
  4614. int limit;
  4615. nw64_mac(XRXMAC_SW_RST,
  4616. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4617. limit = 1000;
  4618. while (--limit >= 0) {
  4619. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4620. XRXMAC_SW_RST_SOFT_RST)))
  4621. break;
  4622. udelay(100);
  4623. }
  4624. if (limit < 0) {
  4625. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4626. np->port,
  4627. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4628. return -ENODEV;
  4629. }
  4630. return 0;
  4631. }
  4632. static int niu_reset_rx_bmac(struct niu *np)
  4633. {
  4634. int limit;
  4635. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4636. limit = 1000;
  4637. while (--limit >= 0) {
  4638. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4639. break;
  4640. udelay(100);
  4641. }
  4642. if (limit < 0) {
  4643. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4644. np->port,
  4645. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4646. return -ENODEV;
  4647. }
  4648. return 0;
  4649. }
  4650. static int niu_reset_rx_mac(struct niu *np)
  4651. {
  4652. if (np->flags & NIU_FLAGS_XMAC)
  4653. return niu_reset_rx_xmac(np);
  4654. else
  4655. return niu_reset_rx_bmac(np);
  4656. }
  4657. static void niu_init_rx_xmac(struct niu *np)
  4658. {
  4659. struct niu_parent *parent = np->parent;
  4660. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4661. int first_rdc_table = tp->first_table_num;
  4662. unsigned long i;
  4663. u64 val;
  4664. nw64_mac(XMAC_ADD_FILT0, 0);
  4665. nw64_mac(XMAC_ADD_FILT1, 0);
  4666. nw64_mac(XMAC_ADD_FILT2, 0);
  4667. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4668. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4669. for (i = 0; i < MAC_NUM_HASH; i++)
  4670. nw64_mac(XMAC_HASH_TBL(i), 0);
  4671. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4672. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4673. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4674. val = nr64_mac(XMAC_CONFIG);
  4675. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4676. XMAC_CONFIG_PROMISCUOUS |
  4677. XMAC_CONFIG_PROMISC_GROUP |
  4678. XMAC_CONFIG_ERR_CHK_DIS |
  4679. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4680. XMAC_CONFIG_RESERVED_MULTICAST |
  4681. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4682. XMAC_CONFIG_ADDR_FILTER_EN |
  4683. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4684. XMAC_CONFIG_STRIP_CRC |
  4685. XMAC_CONFIG_PASS_FLOW_CTRL |
  4686. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4687. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4688. nw64_mac(XMAC_CONFIG, val);
  4689. nw64_mac(RXMAC_BT_CNT, 0);
  4690. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4691. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4692. nw64_mac(RXMAC_FRAG_CNT, 0);
  4693. nw64_mac(RXMAC_HIST_CNT1, 0);
  4694. nw64_mac(RXMAC_HIST_CNT2, 0);
  4695. nw64_mac(RXMAC_HIST_CNT3, 0);
  4696. nw64_mac(RXMAC_HIST_CNT4, 0);
  4697. nw64_mac(RXMAC_HIST_CNT5, 0);
  4698. nw64_mac(RXMAC_HIST_CNT6, 0);
  4699. nw64_mac(RXMAC_HIST_CNT7, 0);
  4700. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4701. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4702. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4703. nw64_mac(LINK_FAULT_CNT, 0);
  4704. }
  4705. static void niu_init_rx_bmac(struct niu *np)
  4706. {
  4707. struct niu_parent *parent = np->parent;
  4708. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4709. int first_rdc_table = tp->first_table_num;
  4710. unsigned long i;
  4711. u64 val;
  4712. nw64_mac(BMAC_ADD_FILT0, 0);
  4713. nw64_mac(BMAC_ADD_FILT1, 0);
  4714. nw64_mac(BMAC_ADD_FILT2, 0);
  4715. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4716. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4717. for (i = 0; i < MAC_NUM_HASH; i++)
  4718. nw64_mac(BMAC_HASH_TBL(i), 0);
  4719. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4720. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4721. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4722. val = nr64_mac(BRXMAC_CONFIG);
  4723. val &= ~(BRXMAC_CONFIG_ENABLE |
  4724. BRXMAC_CONFIG_STRIP_PAD |
  4725. BRXMAC_CONFIG_STRIP_FCS |
  4726. BRXMAC_CONFIG_PROMISC |
  4727. BRXMAC_CONFIG_PROMISC_GRP |
  4728. BRXMAC_CONFIG_ADDR_FILT_EN |
  4729. BRXMAC_CONFIG_DISCARD_DIS);
  4730. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4731. nw64_mac(BRXMAC_CONFIG, val);
  4732. val = nr64_mac(BMAC_ADDR_CMPEN);
  4733. val |= BMAC_ADDR_CMPEN_EN0;
  4734. nw64_mac(BMAC_ADDR_CMPEN, val);
  4735. }
  4736. static void niu_init_rx_mac(struct niu *np)
  4737. {
  4738. niu_set_primary_mac(np, np->dev->dev_addr);
  4739. if (np->flags & NIU_FLAGS_XMAC)
  4740. niu_init_rx_xmac(np);
  4741. else
  4742. niu_init_rx_bmac(np);
  4743. }
  4744. static void niu_enable_tx_xmac(struct niu *np, int on)
  4745. {
  4746. u64 val = nr64_mac(XMAC_CONFIG);
  4747. if (on)
  4748. val |= XMAC_CONFIG_TX_ENABLE;
  4749. else
  4750. val &= ~XMAC_CONFIG_TX_ENABLE;
  4751. nw64_mac(XMAC_CONFIG, val);
  4752. }
  4753. static void niu_enable_tx_bmac(struct niu *np, int on)
  4754. {
  4755. u64 val = nr64_mac(BTXMAC_CONFIG);
  4756. if (on)
  4757. val |= BTXMAC_CONFIG_ENABLE;
  4758. else
  4759. val &= ~BTXMAC_CONFIG_ENABLE;
  4760. nw64_mac(BTXMAC_CONFIG, val);
  4761. }
  4762. static void niu_enable_tx_mac(struct niu *np, int on)
  4763. {
  4764. if (np->flags & NIU_FLAGS_XMAC)
  4765. niu_enable_tx_xmac(np, on);
  4766. else
  4767. niu_enable_tx_bmac(np, on);
  4768. }
  4769. static void niu_enable_rx_xmac(struct niu *np, int on)
  4770. {
  4771. u64 val = nr64_mac(XMAC_CONFIG);
  4772. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4773. XMAC_CONFIG_PROMISCUOUS);
  4774. if (np->flags & NIU_FLAGS_MCAST)
  4775. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4776. if (np->flags & NIU_FLAGS_PROMISC)
  4777. val |= XMAC_CONFIG_PROMISCUOUS;
  4778. if (on)
  4779. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4780. else
  4781. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4782. nw64_mac(XMAC_CONFIG, val);
  4783. }
  4784. static void niu_enable_rx_bmac(struct niu *np, int on)
  4785. {
  4786. u64 val = nr64_mac(BRXMAC_CONFIG);
  4787. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4788. BRXMAC_CONFIG_PROMISC);
  4789. if (np->flags & NIU_FLAGS_MCAST)
  4790. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4791. if (np->flags & NIU_FLAGS_PROMISC)
  4792. val |= BRXMAC_CONFIG_PROMISC;
  4793. if (on)
  4794. val |= BRXMAC_CONFIG_ENABLE;
  4795. else
  4796. val &= ~BRXMAC_CONFIG_ENABLE;
  4797. nw64_mac(BRXMAC_CONFIG, val);
  4798. }
  4799. static void niu_enable_rx_mac(struct niu *np, int on)
  4800. {
  4801. if (np->flags & NIU_FLAGS_XMAC)
  4802. niu_enable_rx_xmac(np, on);
  4803. else
  4804. niu_enable_rx_bmac(np, on);
  4805. }
  4806. static int niu_init_mac(struct niu *np)
  4807. {
  4808. int err;
  4809. niu_init_xif(np);
  4810. err = niu_init_pcs(np);
  4811. if (err)
  4812. return err;
  4813. err = niu_reset_tx_mac(np);
  4814. if (err)
  4815. return err;
  4816. niu_init_tx_mac(np);
  4817. err = niu_reset_rx_mac(np);
  4818. if (err)
  4819. return err;
  4820. niu_init_rx_mac(np);
  4821. /* This looks hookey but the RX MAC reset we just did will
  4822. * undo some of the state we setup in niu_init_tx_mac() so we
  4823. * have to call it again. In particular, the RX MAC reset will
  4824. * set the XMAC_MAX register back to it's default value.
  4825. */
  4826. niu_init_tx_mac(np);
  4827. niu_enable_tx_mac(np, 1);
  4828. niu_enable_rx_mac(np, 1);
  4829. return 0;
  4830. }
  4831. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4832. {
  4833. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4834. }
  4835. static void niu_stop_tx_channels(struct niu *np)
  4836. {
  4837. int i;
  4838. for (i = 0; i < np->num_tx_rings; i++) {
  4839. struct tx_ring_info *rp = &np->tx_rings[i];
  4840. niu_stop_one_tx_channel(np, rp);
  4841. }
  4842. }
  4843. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4844. {
  4845. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4846. }
  4847. static void niu_reset_tx_channels(struct niu *np)
  4848. {
  4849. int i;
  4850. for (i = 0; i < np->num_tx_rings; i++) {
  4851. struct tx_ring_info *rp = &np->tx_rings[i];
  4852. niu_reset_one_tx_channel(np, rp);
  4853. }
  4854. }
  4855. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4856. {
  4857. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4858. }
  4859. static void niu_stop_rx_channels(struct niu *np)
  4860. {
  4861. int i;
  4862. for (i = 0; i < np->num_rx_rings; i++) {
  4863. struct rx_ring_info *rp = &np->rx_rings[i];
  4864. niu_stop_one_rx_channel(np, rp);
  4865. }
  4866. }
  4867. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4868. {
  4869. int channel = rp->rx_channel;
  4870. (void) niu_rx_channel_reset(np, channel);
  4871. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4872. nw64(RX_DMA_CTL_STAT(channel), 0);
  4873. (void) niu_enable_rx_channel(np, channel, 0);
  4874. }
  4875. static void niu_reset_rx_channels(struct niu *np)
  4876. {
  4877. int i;
  4878. for (i = 0; i < np->num_rx_rings; i++) {
  4879. struct rx_ring_info *rp = &np->rx_rings[i];
  4880. niu_reset_one_rx_channel(np, rp);
  4881. }
  4882. }
  4883. static void niu_disable_ipp(struct niu *np)
  4884. {
  4885. u64 rd, wr, val;
  4886. int limit;
  4887. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4888. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4889. limit = 100;
  4890. while (--limit >= 0 && (rd != wr)) {
  4891. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4892. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4893. }
  4894. if (limit < 0 &&
  4895. (rd != 0 && wr != 1)) {
  4896. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4897. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4898. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4899. }
  4900. val = nr64_ipp(IPP_CFIG);
  4901. val &= ~(IPP_CFIG_IPP_ENABLE |
  4902. IPP_CFIG_DFIFO_ECC_EN |
  4903. IPP_CFIG_DROP_BAD_CRC |
  4904. IPP_CFIG_CKSUM_EN);
  4905. nw64_ipp(IPP_CFIG, val);
  4906. (void) niu_ipp_reset(np);
  4907. }
  4908. static int niu_init_hw(struct niu *np)
  4909. {
  4910. int i, err;
  4911. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4912. niu_txc_enable_port(np, 1);
  4913. niu_txc_port_dma_enable(np, 1);
  4914. niu_txc_set_imask(np, 0);
  4915. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4916. for (i = 0; i < np->num_tx_rings; i++) {
  4917. struct tx_ring_info *rp = &np->tx_rings[i];
  4918. err = niu_init_one_tx_channel(np, rp);
  4919. if (err)
  4920. return err;
  4921. }
  4922. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4923. err = niu_init_rx_channels(np);
  4924. if (err)
  4925. goto out_uninit_tx_channels;
  4926. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4927. err = niu_init_classifier_hw(np);
  4928. if (err)
  4929. goto out_uninit_rx_channels;
  4930. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4931. err = niu_init_zcp(np);
  4932. if (err)
  4933. goto out_uninit_rx_channels;
  4934. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4935. err = niu_init_ipp(np);
  4936. if (err)
  4937. goto out_uninit_rx_channels;
  4938. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4939. err = niu_init_mac(np);
  4940. if (err)
  4941. goto out_uninit_ipp;
  4942. return 0;
  4943. out_uninit_ipp:
  4944. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4945. niu_disable_ipp(np);
  4946. out_uninit_rx_channels:
  4947. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4948. niu_stop_rx_channels(np);
  4949. niu_reset_rx_channels(np);
  4950. out_uninit_tx_channels:
  4951. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4952. niu_stop_tx_channels(np);
  4953. niu_reset_tx_channels(np);
  4954. return err;
  4955. }
  4956. static void niu_stop_hw(struct niu *np)
  4957. {
  4958. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4959. niu_enable_interrupts(np, 0);
  4960. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4961. niu_enable_rx_mac(np, 0);
  4962. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4963. niu_disable_ipp(np);
  4964. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4965. niu_stop_tx_channels(np);
  4966. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4967. niu_stop_rx_channels(np);
  4968. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4969. niu_reset_tx_channels(np);
  4970. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4971. niu_reset_rx_channels(np);
  4972. }
  4973. static void niu_set_irq_name(struct niu *np)
  4974. {
  4975. int port = np->port;
  4976. int i, j = 1;
  4977. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4978. if (port == 0) {
  4979. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4980. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4981. j = 3;
  4982. }
  4983. for (i = 0; i < np->num_ldg - j; i++) {
  4984. if (i < np->num_rx_rings)
  4985. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4986. np->dev->name, i);
  4987. else if (i < np->num_tx_rings + np->num_rx_rings)
  4988. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4989. i - np->num_rx_rings);
  4990. }
  4991. }
  4992. static int niu_request_irq(struct niu *np)
  4993. {
  4994. int i, j, err;
  4995. niu_set_irq_name(np);
  4996. err = 0;
  4997. for (i = 0; i < np->num_ldg; i++) {
  4998. struct niu_ldg *lp = &np->ldg[i];
  4999. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  5000. np->irq_name[i], lp);
  5001. if (err)
  5002. goto out_free_irqs;
  5003. }
  5004. return 0;
  5005. out_free_irqs:
  5006. for (j = 0; j < i; j++) {
  5007. struct niu_ldg *lp = &np->ldg[j];
  5008. free_irq(lp->irq, lp);
  5009. }
  5010. return err;
  5011. }
  5012. static void niu_free_irq(struct niu *np)
  5013. {
  5014. int i;
  5015. for (i = 0; i < np->num_ldg; i++) {
  5016. struct niu_ldg *lp = &np->ldg[i];
  5017. free_irq(lp->irq, lp);
  5018. }
  5019. }
  5020. static void niu_enable_napi(struct niu *np)
  5021. {
  5022. int i;
  5023. for (i = 0; i < np->num_ldg; i++)
  5024. napi_enable(&np->ldg[i].napi);
  5025. }
  5026. static void niu_disable_napi(struct niu *np)
  5027. {
  5028. int i;
  5029. for (i = 0; i < np->num_ldg; i++)
  5030. napi_disable(&np->ldg[i].napi);
  5031. }
  5032. static int niu_open(struct net_device *dev)
  5033. {
  5034. struct niu *np = netdev_priv(dev);
  5035. int err;
  5036. netif_carrier_off(dev);
  5037. err = niu_alloc_channels(np);
  5038. if (err)
  5039. goto out_err;
  5040. err = niu_enable_interrupts(np, 0);
  5041. if (err)
  5042. goto out_free_channels;
  5043. err = niu_request_irq(np);
  5044. if (err)
  5045. goto out_free_channels;
  5046. niu_enable_napi(np);
  5047. spin_lock_irq(&np->lock);
  5048. err = niu_init_hw(np);
  5049. if (!err) {
  5050. timer_setup(&np->timer, niu_timer, 0);
  5051. np->timer.expires = jiffies + HZ;
  5052. err = niu_enable_interrupts(np, 1);
  5053. if (err)
  5054. niu_stop_hw(np);
  5055. }
  5056. spin_unlock_irq(&np->lock);
  5057. if (err) {
  5058. niu_disable_napi(np);
  5059. goto out_free_irq;
  5060. }
  5061. netif_tx_start_all_queues(dev);
  5062. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5063. netif_carrier_on(dev);
  5064. add_timer(&np->timer);
  5065. return 0;
  5066. out_free_irq:
  5067. niu_free_irq(np);
  5068. out_free_channels:
  5069. niu_free_channels(np);
  5070. out_err:
  5071. return err;
  5072. }
  5073. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5074. {
  5075. cancel_work_sync(&np->reset_task);
  5076. niu_disable_napi(np);
  5077. netif_tx_stop_all_queues(dev);
  5078. del_timer_sync(&np->timer);
  5079. spin_lock_irq(&np->lock);
  5080. niu_stop_hw(np);
  5081. spin_unlock_irq(&np->lock);
  5082. }
  5083. static int niu_close(struct net_device *dev)
  5084. {
  5085. struct niu *np = netdev_priv(dev);
  5086. niu_full_shutdown(np, dev);
  5087. niu_free_irq(np);
  5088. niu_free_channels(np);
  5089. niu_handle_led(np, 0);
  5090. return 0;
  5091. }
  5092. static void niu_sync_xmac_stats(struct niu *np)
  5093. {
  5094. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5095. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5096. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5097. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5098. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5099. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5100. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5101. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5102. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5103. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5104. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5105. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5106. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5107. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5108. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5109. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5110. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5111. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5112. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5113. }
  5114. static void niu_sync_bmac_stats(struct niu *np)
  5115. {
  5116. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5117. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5118. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5119. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5120. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5121. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5122. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5123. }
  5124. static void niu_sync_mac_stats(struct niu *np)
  5125. {
  5126. if (np->flags & NIU_FLAGS_XMAC)
  5127. niu_sync_xmac_stats(np);
  5128. else
  5129. niu_sync_bmac_stats(np);
  5130. }
  5131. static void niu_get_rx_stats(struct niu *np,
  5132. struct rtnl_link_stats64 *stats)
  5133. {
  5134. u64 pkts, dropped, errors, bytes;
  5135. struct rx_ring_info *rx_rings;
  5136. int i;
  5137. pkts = dropped = errors = bytes = 0;
  5138. rx_rings = READ_ONCE(np->rx_rings);
  5139. if (!rx_rings)
  5140. goto no_rings;
  5141. for (i = 0; i < np->num_rx_rings; i++) {
  5142. struct rx_ring_info *rp = &rx_rings[i];
  5143. niu_sync_rx_discard_stats(np, rp, 0);
  5144. pkts += rp->rx_packets;
  5145. bytes += rp->rx_bytes;
  5146. dropped += rp->rx_dropped;
  5147. errors += rp->rx_errors;
  5148. }
  5149. no_rings:
  5150. stats->rx_packets = pkts;
  5151. stats->rx_bytes = bytes;
  5152. stats->rx_dropped = dropped;
  5153. stats->rx_errors = errors;
  5154. }
  5155. static void niu_get_tx_stats(struct niu *np,
  5156. struct rtnl_link_stats64 *stats)
  5157. {
  5158. u64 pkts, errors, bytes;
  5159. struct tx_ring_info *tx_rings;
  5160. int i;
  5161. pkts = errors = bytes = 0;
  5162. tx_rings = READ_ONCE(np->tx_rings);
  5163. if (!tx_rings)
  5164. goto no_rings;
  5165. for (i = 0; i < np->num_tx_rings; i++) {
  5166. struct tx_ring_info *rp = &tx_rings[i];
  5167. pkts += rp->tx_packets;
  5168. bytes += rp->tx_bytes;
  5169. errors += rp->tx_errors;
  5170. }
  5171. no_rings:
  5172. stats->tx_packets = pkts;
  5173. stats->tx_bytes = bytes;
  5174. stats->tx_errors = errors;
  5175. }
  5176. static void niu_get_stats(struct net_device *dev,
  5177. struct rtnl_link_stats64 *stats)
  5178. {
  5179. struct niu *np = netdev_priv(dev);
  5180. if (netif_running(dev)) {
  5181. niu_get_rx_stats(np, stats);
  5182. niu_get_tx_stats(np, stats);
  5183. }
  5184. }
  5185. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5186. {
  5187. int i;
  5188. for (i = 0; i < 16; i++)
  5189. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5190. }
  5191. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5192. {
  5193. int i;
  5194. for (i = 0; i < 16; i++)
  5195. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5196. }
  5197. static void niu_load_hash(struct niu *np, u16 *hash)
  5198. {
  5199. if (np->flags & NIU_FLAGS_XMAC)
  5200. niu_load_hash_xmac(np, hash);
  5201. else
  5202. niu_load_hash_bmac(np, hash);
  5203. }
  5204. static void niu_set_rx_mode(struct net_device *dev)
  5205. {
  5206. struct niu *np = netdev_priv(dev);
  5207. int i, alt_cnt, err;
  5208. struct netdev_hw_addr *ha;
  5209. unsigned long flags;
  5210. u16 hash[16] = { 0, };
  5211. spin_lock_irqsave(&np->lock, flags);
  5212. niu_enable_rx_mac(np, 0);
  5213. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5214. if (dev->flags & IFF_PROMISC)
  5215. np->flags |= NIU_FLAGS_PROMISC;
  5216. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5217. np->flags |= NIU_FLAGS_MCAST;
  5218. alt_cnt = netdev_uc_count(dev);
  5219. if (alt_cnt > niu_num_alt_addr(np)) {
  5220. alt_cnt = 0;
  5221. np->flags |= NIU_FLAGS_PROMISC;
  5222. }
  5223. if (alt_cnt) {
  5224. int index = 0;
  5225. netdev_for_each_uc_addr(ha, dev) {
  5226. err = niu_set_alt_mac(np, index, ha->addr);
  5227. if (err)
  5228. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5229. err, index);
  5230. err = niu_enable_alt_mac(np, index, 1);
  5231. if (err)
  5232. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5233. err, index);
  5234. index++;
  5235. }
  5236. } else {
  5237. int alt_start;
  5238. if (np->flags & NIU_FLAGS_XMAC)
  5239. alt_start = 0;
  5240. else
  5241. alt_start = 1;
  5242. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5243. err = niu_enable_alt_mac(np, i, 0);
  5244. if (err)
  5245. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5246. err, i);
  5247. }
  5248. }
  5249. if (dev->flags & IFF_ALLMULTI) {
  5250. for (i = 0; i < 16; i++)
  5251. hash[i] = 0xffff;
  5252. } else if (!netdev_mc_empty(dev)) {
  5253. netdev_for_each_mc_addr(ha, dev) {
  5254. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5255. crc >>= 24;
  5256. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5257. }
  5258. }
  5259. if (np->flags & NIU_FLAGS_MCAST)
  5260. niu_load_hash(np, hash);
  5261. niu_enable_rx_mac(np, 1);
  5262. spin_unlock_irqrestore(&np->lock, flags);
  5263. }
  5264. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5265. {
  5266. struct niu *np = netdev_priv(dev);
  5267. struct sockaddr *addr = p;
  5268. unsigned long flags;
  5269. if (!is_valid_ether_addr(addr->sa_data))
  5270. return -EADDRNOTAVAIL;
  5271. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5272. if (!netif_running(dev))
  5273. return 0;
  5274. spin_lock_irqsave(&np->lock, flags);
  5275. niu_enable_rx_mac(np, 0);
  5276. niu_set_primary_mac(np, dev->dev_addr);
  5277. niu_enable_rx_mac(np, 1);
  5278. spin_unlock_irqrestore(&np->lock, flags);
  5279. return 0;
  5280. }
  5281. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5282. {
  5283. return -EOPNOTSUPP;
  5284. }
  5285. static void niu_netif_stop(struct niu *np)
  5286. {
  5287. netif_trans_update(np->dev); /* prevent tx timeout */
  5288. niu_disable_napi(np);
  5289. netif_tx_disable(np->dev);
  5290. }
  5291. static void niu_netif_start(struct niu *np)
  5292. {
  5293. /* NOTE: unconditional netif_wake_queue is only appropriate
  5294. * so long as all callers are assured to have free tx slots
  5295. * (such as after niu_init_hw).
  5296. */
  5297. netif_tx_wake_all_queues(np->dev);
  5298. niu_enable_napi(np);
  5299. niu_enable_interrupts(np, 1);
  5300. }
  5301. static void niu_reset_buffers(struct niu *np)
  5302. {
  5303. int i, j, k, err;
  5304. if (np->rx_rings) {
  5305. for (i = 0; i < np->num_rx_rings; i++) {
  5306. struct rx_ring_info *rp = &np->rx_rings[i];
  5307. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5308. struct page *page;
  5309. page = rp->rxhash[j];
  5310. while (page) {
  5311. struct page *next =
  5312. (struct page *) page->mapping;
  5313. u64 base = page->index;
  5314. base = base >> RBR_DESCR_ADDR_SHIFT;
  5315. rp->rbr[k++] = cpu_to_le32(base);
  5316. page = next;
  5317. }
  5318. }
  5319. for (; k < MAX_RBR_RING_SIZE; k++) {
  5320. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5321. if (unlikely(err))
  5322. break;
  5323. }
  5324. rp->rbr_index = rp->rbr_table_size - 1;
  5325. rp->rcr_index = 0;
  5326. rp->rbr_pending = 0;
  5327. rp->rbr_refill_pending = 0;
  5328. }
  5329. }
  5330. if (np->tx_rings) {
  5331. for (i = 0; i < np->num_tx_rings; i++) {
  5332. struct tx_ring_info *rp = &np->tx_rings[i];
  5333. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5334. if (rp->tx_buffs[j].skb)
  5335. (void) release_tx_packet(np, rp, j);
  5336. }
  5337. rp->pending = MAX_TX_RING_SIZE;
  5338. rp->prod = 0;
  5339. rp->cons = 0;
  5340. rp->wrap_bit = 0;
  5341. }
  5342. }
  5343. }
  5344. static void niu_reset_task(struct work_struct *work)
  5345. {
  5346. struct niu *np = container_of(work, struct niu, reset_task);
  5347. unsigned long flags;
  5348. int err;
  5349. spin_lock_irqsave(&np->lock, flags);
  5350. if (!netif_running(np->dev)) {
  5351. spin_unlock_irqrestore(&np->lock, flags);
  5352. return;
  5353. }
  5354. spin_unlock_irqrestore(&np->lock, flags);
  5355. del_timer_sync(&np->timer);
  5356. niu_netif_stop(np);
  5357. spin_lock_irqsave(&np->lock, flags);
  5358. niu_stop_hw(np);
  5359. spin_unlock_irqrestore(&np->lock, flags);
  5360. niu_reset_buffers(np);
  5361. spin_lock_irqsave(&np->lock, flags);
  5362. err = niu_init_hw(np);
  5363. if (!err) {
  5364. np->timer.expires = jiffies + HZ;
  5365. add_timer(&np->timer);
  5366. niu_netif_start(np);
  5367. }
  5368. spin_unlock_irqrestore(&np->lock, flags);
  5369. }
  5370. static void niu_tx_timeout(struct net_device *dev)
  5371. {
  5372. struct niu *np = netdev_priv(dev);
  5373. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5374. dev->name);
  5375. schedule_work(&np->reset_task);
  5376. }
  5377. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5378. u64 mapping, u64 len, u64 mark,
  5379. u64 n_frags)
  5380. {
  5381. __le64 *desc = &rp->descr[index];
  5382. *desc = cpu_to_le64(mark |
  5383. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5384. (len << TX_DESC_TR_LEN_SHIFT) |
  5385. (mapping & TX_DESC_SAD));
  5386. }
  5387. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5388. u64 pad_bytes, u64 len)
  5389. {
  5390. u16 eth_proto, eth_proto_inner;
  5391. u64 csum_bits, l3off, ihl, ret;
  5392. u8 ip_proto;
  5393. int ipv6;
  5394. eth_proto = be16_to_cpu(ehdr->h_proto);
  5395. eth_proto_inner = eth_proto;
  5396. if (eth_proto == ETH_P_8021Q) {
  5397. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5398. __be16 val = vp->h_vlan_encapsulated_proto;
  5399. eth_proto_inner = be16_to_cpu(val);
  5400. }
  5401. ipv6 = ihl = 0;
  5402. switch (skb->protocol) {
  5403. case cpu_to_be16(ETH_P_IP):
  5404. ip_proto = ip_hdr(skb)->protocol;
  5405. ihl = ip_hdr(skb)->ihl;
  5406. break;
  5407. case cpu_to_be16(ETH_P_IPV6):
  5408. ip_proto = ipv6_hdr(skb)->nexthdr;
  5409. ihl = (40 >> 2);
  5410. ipv6 = 1;
  5411. break;
  5412. default:
  5413. ip_proto = ihl = 0;
  5414. break;
  5415. }
  5416. csum_bits = TXHDR_CSUM_NONE;
  5417. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5418. u64 start, stuff;
  5419. csum_bits = (ip_proto == IPPROTO_TCP ?
  5420. TXHDR_CSUM_TCP :
  5421. (ip_proto == IPPROTO_UDP ?
  5422. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5423. start = skb_checksum_start_offset(skb) -
  5424. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5425. stuff = start + skb->csum_offset;
  5426. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5427. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5428. }
  5429. l3off = skb_network_offset(skb) -
  5430. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5431. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5432. (len << TXHDR_LEN_SHIFT) |
  5433. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5434. (ihl << TXHDR_IHL_SHIFT) |
  5435. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5436. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5437. (ipv6 ? TXHDR_IP_VER : 0) |
  5438. csum_bits);
  5439. return ret;
  5440. }
  5441. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5442. struct net_device *dev)
  5443. {
  5444. struct niu *np = netdev_priv(dev);
  5445. unsigned long align, headroom;
  5446. struct netdev_queue *txq;
  5447. struct tx_ring_info *rp;
  5448. struct tx_pkt_hdr *tp;
  5449. unsigned int len, nfg;
  5450. struct ethhdr *ehdr;
  5451. int prod, i, tlen;
  5452. u64 mapping, mrk;
  5453. i = skb_get_queue_mapping(skb);
  5454. rp = &np->tx_rings[i];
  5455. txq = netdev_get_tx_queue(dev, i);
  5456. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5457. netif_tx_stop_queue(txq);
  5458. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5459. rp->tx_errors++;
  5460. return NETDEV_TX_BUSY;
  5461. }
  5462. if (eth_skb_pad(skb))
  5463. goto out;
  5464. len = sizeof(struct tx_pkt_hdr) + 15;
  5465. if (skb_headroom(skb) < len) {
  5466. struct sk_buff *skb_new;
  5467. skb_new = skb_realloc_headroom(skb, len);
  5468. if (!skb_new)
  5469. goto out_drop;
  5470. kfree_skb(skb);
  5471. skb = skb_new;
  5472. } else
  5473. skb_orphan(skb);
  5474. align = ((unsigned long) skb->data & (16 - 1));
  5475. headroom = align + sizeof(struct tx_pkt_hdr);
  5476. ehdr = (struct ethhdr *) skb->data;
  5477. tp = skb_push(skb, headroom);
  5478. len = skb->len - sizeof(struct tx_pkt_hdr);
  5479. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5480. tp->resv = 0;
  5481. len = skb_headlen(skb);
  5482. mapping = np->ops->map_single(np->device, skb->data,
  5483. len, DMA_TO_DEVICE);
  5484. prod = rp->prod;
  5485. rp->tx_buffs[prod].skb = skb;
  5486. rp->tx_buffs[prod].mapping = mapping;
  5487. mrk = TX_DESC_SOP;
  5488. if (++rp->mark_counter == rp->mark_freq) {
  5489. rp->mark_counter = 0;
  5490. mrk |= TX_DESC_MARK;
  5491. rp->mark_pending++;
  5492. }
  5493. tlen = len;
  5494. nfg = skb_shinfo(skb)->nr_frags;
  5495. while (tlen > 0) {
  5496. tlen -= MAX_TX_DESC_LEN;
  5497. nfg++;
  5498. }
  5499. while (len > 0) {
  5500. unsigned int this_len = len;
  5501. if (this_len > MAX_TX_DESC_LEN)
  5502. this_len = MAX_TX_DESC_LEN;
  5503. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5504. mrk = nfg = 0;
  5505. prod = NEXT_TX(rp, prod);
  5506. mapping += this_len;
  5507. len -= this_len;
  5508. }
  5509. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5510. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5511. len = skb_frag_size(frag);
  5512. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5513. frag->page_offset, len,
  5514. DMA_TO_DEVICE);
  5515. rp->tx_buffs[prod].skb = NULL;
  5516. rp->tx_buffs[prod].mapping = mapping;
  5517. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5518. prod = NEXT_TX(rp, prod);
  5519. }
  5520. if (prod < rp->prod)
  5521. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5522. rp->prod = prod;
  5523. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5524. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5525. netif_tx_stop_queue(txq);
  5526. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5527. netif_tx_wake_queue(txq);
  5528. }
  5529. out:
  5530. return NETDEV_TX_OK;
  5531. out_drop:
  5532. rp->tx_errors++;
  5533. kfree_skb(skb);
  5534. goto out;
  5535. }
  5536. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5537. {
  5538. struct niu *np = netdev_priv(dev);
  5539. int err, orig_jumbo, new_jumbo;
  5540. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5541. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5542. dev->mtu = new_mtu;
  5543. if (!netif_running(dev) ||
  5544. (orig_jumbo == new_jumbo))
  5545. return 0;
  5546. niu_full_shutdown(np, dev);
  5547. niu_free_channels(np);
  5548. niu_enable_napi(np);
  5549. err = niu_alloc_channels(np);
  5550. if (err)
  5551. return err;
  5552. spin_lock_irq(&np->lock);
  5553. err = niu_init_hw(np);
  5554. if (!err) {
  5555. timer_setup(&np->timer, niu_timer, 0);
  5556. np->timer.expires = jiffies + HZ;
  5557. err = niu_enable_interrupts(np, 1);
  5558. if (err)
  5559. niu_stop_hw(np);
  5560. }
  5561. spin_unlock_irq(&np->lock);
  5562. if (!err) {
  5563. netif_tx_start_all_queues(dev);
  5564. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5565. netif_carrier_on(dev);
  5566. add_timer(&np->timer);
  5567. }
  5568. return err;
  5569. }
  5570. static void niu_get_drvinfo(struct net_device *dev,
  5571. struct ethtool_drvinfo *info)
  5572. {
  5573. struct niu *np = netdev_priv(dev);
  5574. struct niu_vpd *vpd = &np->vpd;
  5575. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5576. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5577. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5578. vpd->fcode_major, vpd->fcode_minor);
  5579. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5580. strlcpy(info->bus_info, pci_name(np->pdev),
  5581. sizeof(info->bus_info));
  5582. }
  5583. static int niu_get_link_ksettings(struct net_device *dev,
  5584. struct ethtool_link_ksettings *cmd)
  5585. {
  5586. struct niu *np = netdev_priv(dev);
  5587. struct niu_link_config *lp;
  5588. lp = &np->link_config;
  5589. memset(cmd, 0, sizeof(*cmd));
  5590. cmd->base.phy_address = np->phy_addr;
  5591. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  5592. lp->supported);
  5593. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  5594. lp->active_advertising);
  5595. cmd->base.autoneg = lp->active_autoneg;
  5596. cmd->base.speed = lp->active_speed;
  5597. cmd->base.duplex = lp->active_duplex;
  5598. cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5599. return 0;
  5600. }
  5601. static int niu_set_link_ksettings(struct net_device *dev,
  5602. const struct ethtool_link_ksettings *cmd)
  5603. {
  5604. struct niu *np = netdev_priv(dev);
  5605. struct niu_link_config *lp = &np->link_config;
  5606. ethtool_convert_link_mode_to_legacy_u32(&lp->advertising,
  5607. cmd->link_modes.advertising);
  5608. lp->speed = cmd->base.speed;
  5609. lp->duplex = cmd->base.duplex;
  5610. lp->autoneg = cmd->base.autoneg;
  5611. return niu_init_link(np);
  5612. }
  5613. static u32 niu_get_msglevel(struct net_device *dev)
  5614. {
  5615. struct niu *np = netdev_priv(dev);
  5616. return np->msg_enable;
  5617. }
  5618. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5619. {
  5620. struct niu *np = netdev_priv(dev);
  5621. np->msg_enable = value;
  5622. }
  5623. static int niu_nway_reset(struct net_device *dev)
  5624. {
  5625. struct niu *np = netdev_priv(dev);
  5626. if (np->link_config.autoneg)
  5627. return niu_init_link(np);
  5628. return 0;
  5629. }
  5630. static int niu_get_eeprom_len(struct net_device *dev)
  5631. {
  5632. struct niu *np = netdev_priv(dev);
  5633. return np->eeprom_len;
  5634. }
  5635. static int niu_get_eeprom(struct net_device *dev,
  5636. struct ethtool_eeprom *eeprom, u8 *data)
  5637. {
  5638. struct niu *np = netdev_priv(dev);
  5639. u32 offset, len, val;
  5640. offset = eeprom->offset;
  5641. len = eeprom->len;
  5642. if (offset + len < offset)
  5643. return -EINVAL;
  5644. if (offset >= np->eeprom_len)
  5645. return -EINVAL;
  5646. if (offset + len > np->eeprom_len)
  5647. len = eeprom->len = np->eeprom_len - offset;
  5648. if (offset & 3) {
  5649. u32 b_offset, b_count;
  5650. b_offset = offset & 3;
  5651. b_count = 4 - b_offset;
  5652. if (b_count > len)
  5653. b_count = len;
  5654. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5655. memcpy(data, ((char *)&val) + b_offset, b_count);
  5656. data += b_count;
  5657. len -= b_count;
  5658. offset += b_count;
  5659. }
  5660. while (len >= 4) {
  5661. val = nr64(ESPC_NCR(offset / 4));
  5662. memcpy(data, &val, 4);
  5663. data += 4;
  5664. len -= 4;
  5665. offset += 4;
  5666. }
  5667. if (len) {
  5668. val = nr64(ESPC_NCR(offset / 4));
  5669. memcpy(data, &val, len);
  5670. }
  5671. return 0;
  5672. }
  5673. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5674. {
  5675. switch (flow_type) {
  5676. case TCP_V4_FLOW:
  5677. case TCP_V6_FLOW:
  5678. *pid = IPPROTO_TCP;
  5679. break;
  5680. case UDP_V4_FLOW:
  5681. case UDP_V6_FLOW:
  5682. *pid = IPPROTO_UDP;
  5683. break;
  5684. case SCTP_V4_FLOW:
  5685. case SCTP_V6_FLOW:
  5686. *pid = IPPROTO_SCTP;
  5687. break;
  5688. case AH_V4_FLOW:
  5689. case AH_V6_FLOW:
  5690. *pid = IPPROTO_AH;
  5691. break;
  5692. case ESP_V4_FLOW:
  5693. case ESP_V6_FLOW:
  5694. *pid = IPPROTO_ESP;
  5695. break;
  5696. default:
  5697. *pid = 0;
  5698. break;
  5699. }
  5700. }
  5701. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5702. {
  5703. switch (class) {
  5704. case CLASS_CODE_TCP_IPV4:
  5705. *flow_type = TCP_V4_FLOW;
  5706. break;
  5707. case CLASS_CODE_UDP_IPV4:
  5708. *flow_type = UDP_V4_FLOW;
  5709. break;
  5710. case CLASS_CODE_AH_ESP_IPV4:
  5711. *flow_type = AH_V4_FLOW;
  5712. break;
  5713. case CLASS_CODE_SCTP_IPV4:
  5714. *flow_type = SCTP_V4_FLOW;
  5715. break;
  5716. case CLASS_CODE_TCP_IPV6:
  5717. *flow_type = TCP_V6_FLOW;
  5718. break;
  5719. case CLASS_CODE_UDP_IPV6:
  5720. *flow_type = UDP_V6_FLOW;
  5721. break;
  5722. case CLASS_CODE_AH_ESP_IPV6:
  5723. *flow_type = AH_V6_FLOW;
  5724. break;
  5725. case CLASS_CODE_SCTP_IPV6:
  5726. *flow_type = SCTP_V6_FLOW;
  5727. break;
  5728. case CLASS_CODE_USER_PROG1:
  5729. case CLASS_CODE_USER_PROG2:
  5730. case CLASS_CODE_USER_PROG3:
  5731. case CLASS_CODE_USER_PROG4:
  5732. *flow_type = IP_USER_FLOW;
  5733. break;
  5734. default:
  5735. return -EINVAL;
  5736. }
  5737. return 0;
  5738. }
  5739. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5740. {
  5741. switch (flow_type) {
  5742. case TCP_V4_FLOW:
  5743. *class = CLASS_CODE_TCP_IPV4;
  5744. break;
  5745. case UDP_V4_FLOW:
  5746. *class = CLASS_CODE_UDP_IPV4;
  5747. break;
  5748. case AH_ESP_V4_FLOW:
  5749. case AH_V4_FLOW:
  5750. case ESP_V4_FLOW:
  5751. *class = CLASS_CODE_AH_ESP_IPV4;
  5752. break;
  5753. case SCTP_V4_FLOW:
  5754. *class = CLASS_CODE_SCTP_IPV4;
  5755. break;
  5756. case TCP_V6_FLOW:
  5757. *class = CLASS_CODE_TCP_IPV6;
  5758. break;
  5759. case UDP_V6_FLOW:
  5760. *class = CLASS_CODE_UDP_IPV6;
  5761. break;
  5762. case AH_ESP_V6_FLOW:
  5763. case AH_V6_FLOW:
  5764. case ESP_V6_FLOW:
  5765. *class = CLASS_CODE_AH_ESP_IPV6;
  5766. break;
  5767. case SCTP_V6_FLOW:
  5768. *class = CLASS_CODE_SCTP_IPV6;
  5769. break;
  5770. default:
  5771. return 0;
  5772. }
  5773. return 1;
  5774. }
  5775. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5776. {
  5777. u64 ethflow = 0;
  5778. if (flow_key & FLOW_KEY_L2DA)
  5779. ethflow |= RXH_L2DA;
  5780. if (flow_key & FLOW_KEY_VLAN)
  5781. ethflow |= RXH_VLAN;
  5782. if (flow_key & FLOW_KEY_IPSA)
  5783. ethflow |= RXH_IP_SRC;
  5784. if (flow_key & FLOW_KEY_IPDA)
  5785. ethflow |= RXH_IP_DST;
  5786. if (flow_key & FLOW_KEY_PROTO)
  5787. ethflow |= RXH_L3_PROTO;
  5788. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5789. ethflow |= RXH_L4_B_0_1;
  5790. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5791. ethflow |= RXH_L4_B_2_3;
  5792. return ethflow;
  5793. }
  5794. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5795. {
  5796. u64 key = 0;
  5797. if (ethflow & RXH_L2DA)
  5798. key |= FLOW_KEY_L2DA;
  5799. if (ethflow & RXH_VLAN)
  5800. key |= FLOW_KEY_VLAN;
  5801. if (ethflow & RXH_IP_SRC)
  5802. key |= FLOW_KEY_IPSA;
  5803. if (ethflow & RXH_IP_DST)
  5804. key |= FLOW_KEY_IPDA;
  5805. if (ethflow & RXH_L3_PROTO)
  5806. key |= FLOW_KEY_PROTO;
  5807. if (ethflow & RXH_L4_B_0_1)
  5808. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5809. if (ethflow & RXH_L4_B_2_3)
  5810. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5811. *flow_key = key;
  5812. return 1;
  5813. }
  5814. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5815. {
  5816. u64 class;
  5817. nfc->data = 0;
  5818. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5819. return -EINVAL;
  5820. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5821. TCAM_KEY_DISC)
  5822. nfc->data = RXH_DISCARD;
  5823. else
  5824. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5825. CLASS_CODE_USER_PROG1]);
  5826. return 0;
  5827. }
  5828. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5829. struct ethtool_rx_flow_spec *fsp)
  5830. {
  5831. u32 tmp;
  5832. u16 prt;
  5833. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5834. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5835. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5836. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5837. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5838. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5839. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5840. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5841. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5842. TCAM_V4KEY2_TOS_SHIFT;
  5843. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5844. TCAM_V4KEY2_TOS_SHIFT;
  5845. switch (fsp->flow_type) {
  5846. case TCP_V4_FLOW:
  5847. case UDP_V4_FLOW:
  5848. case SCTP_V4_FLOW:
  5849. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5850. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5851. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5852. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5853. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5854. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5855. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5856. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5857. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5858. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5859. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5860. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5861. break;
  5862. case AH_V4_FLOW:
  5863. case ESP_V4_FLOW:
  5864. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5865. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5866. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5867. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5868. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5869. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5870. break;
  5871. case IP_USER_FLOW:
  5872. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5873. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5874. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5875. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5876. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5877. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5878. fsp->h_u.usr_ip4_spec.proto =
  5879. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5880. TCAM_V4KEY2_PROTO_SHIFT;
  5881. fsp->m_u.usr_ip4_spec.proto =
  5882. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5883. TCAM_V4KEY2_PROTO_SHIFT;
  5884. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5885. break;
  5886. default:
  5887. break;
  5888. }
  5889. }
  5890. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5891. struct ethtool_rxnfc *nfc)
  5892. {
  5893. struct niu_parent *parent = np->parent;
  5894. struct niu_tcam_entry *tp;
  5895. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5896. u16 idx;
  5897. u64 class;
  5898. int ret = 0;
  5899. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5900. tp = &parent->tcam[idx];
  5901. if (!tp->valid) {
  5902. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5903. parent->index, (u16)nfc->fs.location, idx);
  5904. return -EINVAL;
  5905. }
  5906. /* fill the flow spec entry */
  5907. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5908. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5909. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5910. if (ret < 0) {
  5911. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5912. parent->index);
  5913. goto out;
  5914. }
  5915. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5916. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5917. TCAM_V4KEY2_PROTO_SHIFT;
  5918. if (proto == IPPROTO_ESP) {
  5919. if (fsp->flow_type == AH_V4_FLOW)
  5920. fsp->flow_type = ESP_V4_FLOW;
  5921. else
  5922. fsp->flow_type = ESP_V6_FLOW;
  5923. }
  5924. }
  5925. switch (fsp->flow_type) {
  5926. case TCP_V4_FLOW:
  5927. case UDP_V4_FLOW:
  5928. case SCTP_V4_FLOW:
  5929. case AH_V4_FLOW:
  5930. case ESP_V4_FLOW:
  5931. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5932. break;
  5933. case TCP_V6_FLOW:
  5934. case UDP_V6_FLOW:
  5935. case SCTP_V6_FLOW:
  5936. case AH_V6_FLOW:
  5937. case ESP_V6_FLOW:
  5938. /* Not yet implemented */
  5939. ret = -EINVAL;
  5940. break;
  5941. case IP_USER_FLOW:
  5942. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5943. break;
  5944. default:
  5945. ret = -EINVAL;
  5946. break;
  5947. }
  5948. if (ret < 0)
  5949. goto out;
  5950. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5951. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5952. else
  5953. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5954. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5955. /* put the tcam size here */
  5956. nfc->data = tcam_get_size(np);
  5957. out:
  5958. return ret;
  5959. }
  5960. static int niu_get_ethtool_tcam_all(struct niu *np,
  5961. struct ethtool_rxnfc *nfc,
  5962. u32 *rule_locs)
  5963. {
  5964. struct niu_parent *parent = np->parent;
  5965. struct niu_tcam_entry *tp;
  5966. int i, idx, cnt;
  5967. unsigned long flags;
  5968. int ret = 0;
  5969. /* put the tcam size here */
  5970. nfc->data = tcam_get_size(np);
  5971. niu_lock_parent(np, flags);
  5972. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5973. idx = tcam_get_index(np, i);
  5974. tp = &parent->tcam[idx];
  5975. if (!tp->valid)
  5976. continue;
  5977. if (cnt == nfc->rule_cnt) {
  5978. ret = -EMSGSIZE;
  5979. break;
  5980. }
  5981. rule_locs[cnt] = i;
  5982. cnt++;
  5983. }
  5984. niu_unlock_parent(np, flags);
  5985. nfc->rule_cnt = cnt;
  5986. return ret;
  5987. }
  5988. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  5989. u32 *rule_locs)
  5990. {
  5991. struct niu *np = netdev_priv(dev);
  5992. int ret = 0;
  5993. switch (cmd->cmd) {
  5994. case ETHTOOL_GRXFH:
  5995. ret = niu_get_hash_opts(np, cmd);
  5996. break;
  5997. case ETHTOOL_GRXRINGS:
  5998. cmd->data = np->num_rx_rings;
  5999. break;
  6000. case ETHTOOL_GRXCLSRLCNT:
  6001. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6002. break;
  6003. case ETHTOOL_GRXCLSRULE:
  6004. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6005. break;
  6006. case ETHTOOL_GRXCLSRLALL:
  6007. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6008. break;
  6009. default:
  6010. ret = -EINVAL;
  6011. break;
  6012. }
  6013. return ret;
  6014. }
  6015. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6016. {
  6017. u64 class;
  6018. u64 flow_key = 0;
  6019. unsigned long flags;
  6020. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6021. return -EINVAL;
  6022. if (class < CLASS_CODE_USER_PROG1 ||
  6023. class > CLASS_CODE_SCTP_IPV6)
  6024. return -EINVAL;
  6025. if (nfc->data & RXH_DISCARD) {
  6026. niu_lock_parent(np, flags);
  6027. flow_key = np->parent->tcam_key[class -
  6028. CLASS_CODE_USER_PROG1];
  6029. flow_key |= TCAM_KEY_DISC;
  6030. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6031. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6032. niu_unlock_parent(np, flags);
  6033. return 0;
  6034. } else {
  6035. /* Discard was set before, but is not set now */
  6036. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6037. TCAM_KEY_DISC) {
  6038. niu_lock_parent(np, flags);
  6039. flow_key = np->parent->tcam_key[class -
  6040. CLASS_CODE_USER_PROG1];
  6041. flow_key &= ~TCAM_KEY_DISC;
  6042. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6043. flow_key);
  6044. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6045. flow_key;
  6046. niu_unlock_parent(np, flags);
  6047. }
  6048. }
  6049. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6050. return -EINVAL;
  6051. niu_lock_parent(np, flags);
  6052. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6053. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6054. niu_unlock_parent(np, flags);
  6055. return 0;
  6056. }
  6057. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6058. struct niu_tcam_entry *tp,
  6059. int l2_rdc_tab, u64 class)
  6060. {
  6061. u8 pid = 0;
  6062. u32 sip, dip, sipm, dipm, spi, spim;
  6063. u16 sport, dport, spm, dpm;
  6064. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6065. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6066. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6067. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6068. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6069. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6070. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6071. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6072. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6073. tp->key[3] |= dip;
  6074. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6075. tp->key_mask[3] |= dipm;
  6076. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6077. TCAM_V4KEY2_TOS_SHIFT);
  6078. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6079. TCAM_V4KEY2_TOS_SHIFT);
  6080. switch (fsp->flow_type) {
  6081. case TCP_V4_FLOW:
  6082. case UDP_V4_FLOW:
  6083. case SCTP_V4_FLOW:
  6084. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6085. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6086. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6087. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6088. tp->key[2] |= (((u64)sport << 16) | dport);
  6089. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6090. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6091. break;
  6092. case AH_V4_FLOW:
  6093. case ESP_V4_FLOW:
  6094. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6095. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6096. tp->key[2] |= spi;
  6097. tp->key_mask[2] |= spim;
  6098. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6099. break;
  6100. case IP_USER_FLOW:
  6101. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6102. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6103. tp->key[2] |= spi;
  6104. tp->key_mask[2] |= spim;
  6105. pid = fsp->h_u.usr_ip4_spec.proto;
  6106. break;
  6107. default:
  6108. break;
  6109. }
  6110. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6111. if (pid) {
  6112. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6113. }
  6114. }
  6115. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6116. struct ethtool_rxnfc *nfc)
  6117. {
  6118. struct niu_parent *parent = np->parent;
  6119. struct niu_tcam_entry *tp;
  6120. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6121. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6122. int l2_rdc_table = rdc_table->first_table_num;
  6123. u16 idx;
  6124. u64 class;
  6125. unsigned long flags;
  6126. int err, ret;
  6127. ret = 0;
  6128. idx = nfc->fs.location;
  6129. if (idx >= tcam_get_size(np))
  6130. return -EINVAL;
  6131. if (fsp->flow_type == IP_USER_FLOW) {
  6132. int i;
  6133. int add_usr_cls = 0;
  6134. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6135. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6136. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6137. return -EINVAL;
  6138. niu_lock_parent(np, flags);
  6139. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6140. if (parent->l3_cls[i]) {
  6141. if (uspec->proto == parent->l3_cls_pid[i]) {
  6142. class = parent->l3_cls[i];
  6143. parent->l3_cls_refcnt[i]++;
  6144. add_usr_cls = 1;
  6145. break;
  6146. }
  6147. } else {
  6148. /* Program new user IP class */
  6149. switch (i) {
  6150. case 0:
  6151. class = CLASS_CODE_USER_PROG1;
  6152. break;
  6153. case 1:
  6154. class = CLASS_CODE_USER_PROG2;
  6155. break;
  6156. case 2:
  6157. class = CLASS_CODE_USER_PROG3;
  6158. break;
  6159. case 3:
  6160. class = CLASS_CODE_USER_PROG4;
  6161. break;
  6162. default:
  6163. break;
  6164. }
  6165. ret = tcam_user_ip_class_set(np, class, 0,
  6166. uspec->proto,
  6167. uspec->tos,
  6168. umask->tos);
  6169. if (ret)
  6170. goto out;
  6171. ret = tcam_user_ip_class_enable(np, class, 1);
  6172. if (ret)
  6173. goto out;
  6174. parent->l3_cls[i] = class;
  6175. parent->l3_cls_pid[i] = uspec->proto;
  6176. parent->l3_cls_refcnt[i]++;
  6177. add_usr_cls = 1;
  6178. break;
  6179. }
  6180. }
  6181. if (!add_usr_cls) {
  6182. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6183. parent->index, __func__, uspec->proto);
  6184. ret = -EINVAL;
  6185. goto out;
  6186. }
  6187. niu_unlock_parent(np, flags);
  6188. } else {
  6189. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6190. return -EINVAL;
  6191. }
  6192. }
  6193. niu_lock_parent(np, flags);
  6194. idx = tcam_get_index(np, idx);
  6195. tp = &parent->tcam[idx];
  6196. memset(tp, 0, sizeof(*tp));
  6197. /* fill in the tcam key and mask */
  6198. switch (fsp->flow_type) {
  6199. case TCP_V4_FLOW:
  6200. case UDP_V4_FLOW:
  6201. case SCTP_V4_FLOW:
  6202. case AH_V4_FLOW:
  6203. case ESP_V4_FLOW:
  6204. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6205. break;
  6206. case TCP_V6_FLOW:
  6207. case UDP_V6_FLOW:
  6208. case SCTP_V6_FLOW:
  6209. case AH_V6_FLOW:
  6210. case ESP_V6_FLOW:
  6211. /* Not yet implemented */
  6212. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6213. parent->index, __func__, fsp->flow_type);
  6214. ret = -EINVAL;
  6215. goto out;
  6216. case IP_USER_FLOW:
  6217. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6218. break;
  6219. default:
  6220. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6221. parent->index, __func__, fsp->flow_type);
  6222. ret = -EINVAL;
  6223. goto out;
  6224. }
  6225. /* fill in the assoc data */
  6226. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6227. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6228. } else {
  6229. if (fsp->ring_cookie >= np->num_rx_rings) {
  6230. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6231. parent->index, __func__,
  6232. (long long)fsp->ring_cookie);
  6233. ret = -EINVAL;
  6234. goto out;
  6235. }
  6236. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6237. (fsp->ring_cookie <<
  6238. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6239. }
  6240. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6241. if (err) {
  6242. ret = -EINVAL;
  6243. goto out;
  6244. }
  6245. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6246. if (err) {
  6247. ret = -EINVAL;
  6248. goto out;
  6249. }
  6250. /* validate the entry */
  6251. tp->valid = 1;
  6252. np->clas.tcam_valid_entries++;
  6253. out:
  6254. niu_unlock_parent(np, flags);
  6255. return ret;
  6256. }
  6257. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6258. {
  6259. struct niu_parent *parent = np->parent;
  6260. struct niu_tcam_entry *tp;
  6261. u16 idx;
  6262. unsigned long flags;
  6263. u64 class;
  6264. int ret = 0;
  6265. if (loc >= tcam_get_size(np))
  6266. return -EINVAL;
  6267. niu_lock_parent(np, flags);
  6268. idx = tcam_get_index(np, loc);
  6269. tp = &parent->tcam[idx];
  6270. /* if the entry is of a user defined class, then update*/
  6271. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6272. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6273. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6274. int i;
  6275. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6276. if (parent->l3_cls[i] == class) {
  6277. parent->l3_cls_refcnt[i]--;
  6278. if (!parent->l3_cls_refcnt[i]) {
  6279. /* disable class */
  6280. ret = tcam_user_ip_class_enable(np,
  6281. class,
  6282. 0);
  6283. if (ret)
  6284. goto out;
  6285. parent->l3_cls[i] = 0;
  6286. parent->l3_cls_pid[i] = 0;
  6287. }
  6288. break;
  6289. }
  6290. }
  6291. if (i == NIU_L3_PROG_CLS) {
  6292. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6293. parent->index, __func__,
  6294. (unsigned long long)class);
  6295. ret = -EINVAL;
  6296. goto out;
  6297. }
  6298. }
  6299. ret = tcam_flush(np, idx);
  6300. if (ret)
  6301. goto out;
  6302. /* invalidate the entry */
  6303. tp->valid = 0;
  6304. np->clas.tcam_valid_entries--;
  6305. out:
  6306. niu_unlock_parent(np, flags);
  6307. return ret;
  6308. }
  6309. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6310. {
  6311. struct niu *np = netdev_priv(dev);
  6312. int ret = 0;
  6313. switch (cmd->cmd) {
  6314. case ETHTOOL_SRXFH:
  6315. ret = niu_set_hash_opts(np, cmd);
  6316. break;
  6317. case ETHTOOL_SRXCLSRLINS:
  6318. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6319. break;
  6320. case ETHTOOL_SRXCLSRLDEL:
  6321. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6322. break;
  6323. default:
  6324. ret = -EINVAL;
  6325. break;
  6326. }
  6327. return ret;
  6328. }
  6329. static const struct {
  6330. const char string[ETH_GSTRING_LEN];
  6331. } niu_xmac_stat_keys[] = {
  6332. { "tx_frames" },
  6333. { "tx_bytes" },
  6334. { "tx_fifo_errors" },
  6335. { "tx_overflow_errors" },
  6336. { "tx_max_pkt_size_errors" },
  6337. { "tx_underflow_errors" },
  6338. { "rx_local_faults" },
  6339. { "rx_remote_faults" },
  6340. { "rx_link_faults" },
  6341. { "rx_align_errors" },
  6342. { "rx_frags" },
  6343. { "rx_mcasts" },
  6344. { "rx_bcasts" },
  6345. { "rx_hist_cnt1" },
  6346. { "rx_hist_cnt2" },
  6347. { "rx_hist_cnt3" },
  6348. { "rx_hist_cnt4" },
  6349. { "rx_hist_cnt5" },
  6350. { "rx_hist_cnt6" },
  6351. { "rx_hist_cnt7" },
  6352. { "rx_octets" },
  6353. { "rx_code_violations" },
  6354. { "rx_len_errors" },
  6355. { "rx_crc_errors" },
  6356. { "rx_underflows" },
  6357. { "rx_overflows" },
  6358. { "pause_off_state" },
  6359. { "pause_on_state" },
  6360. { "pause_received" },
  6361. };
  6362. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6363. static const struct {
  6364. const char string[ETH_GSTRING_LEN];
  6365. } niu_bmac_stat_keys[] = {
  6366. { "tx_underflow_errors" },
  6367. { "tx_max_pkt_size_errors" },
  6368. { "tx_bytes" },
  6369. { "tx_frames" },
  6370. { "rx_overflows" },
  6371. { "rx_frames" },
  6372. { "rx_align_errors" },
  6373. { "rx_crc_errors" },
  6374. { "rx_len_errors" },
  6375. { "pause_off_state" },
  6376. { "pause_on_state" },
  6377. { "pause_received" },
  6378. };
  6379. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6380. static const struct {
  6381. const char string[ETH_GSTRING_LEN];
  6382. } niu_rxchan_stat_keys[] = {
  6383. { "rx_channel" },
  6384. { "rx_packets" },
  6385. { "rx_bytes" },
  6386. { "rx_dropped" },
  6387. { "rx_errors" },
  6388. };
  6389. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6390. static const struct {
  6391. const char string[ETH_GSTRING_LEN];
  6392. } niu_txchan_stat_keys[] = {
  6393. { "tx_channel" },
  6394. { "tx_packets" },
  6395. { "tx_bytes" },
  6396. { "tx_errors" },
  6397. };
  6398. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6399. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6400. {
  6401. struct niu *np = netdev_priv(dev);
  6402. int i;
  6403. if (stringset != ETH_SS_STATS)
  6404. return;
  6405. if (np->flags & NIU_FLAGS_XMAC) {
  6406. memcpy(data, niu_xmac_stat_keys,
  6407. sizeof(niu_xmac_stat_keys));
  6408. data += sizeof(niu_xmac_stat_keys);
  6409. } else {
  6410. memcpy(data, niu_bmac_stat_keys,
  6411. sizeof(niu_bmac_stat_keys));
  6412. data += sizeof(niu_bmac_stat_keys);
  6413. }
  6414. for (i = 0; i < np->num_rx_rings; i++) {
  6415. memcpy(data, niu_rxchan_stat_keys,
  6416. sizeof(niu_rxchan_stat_keys));
  6417. data += sizeof(niu_rxchan_stat_keys);
  6418. }
  6419. for (i = 0; i < np->num_tx_rings; i++) {
  6420. memcpy(data, niu_txchan_stat_keys,
  6421. sizeof(niu_txchan_stat_keys));
  6422. data += sizeof(niu_txchan_stat_keys);
  6423. }
  6424. }
  6425. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6426. {
  6427. struct niu *np = netdev_priv(dev);
  6428. if (stringset != ETH_SS_STATS)
  6429. return -EINVAL;
  6430. return (np->flags & NIU_FLAGS_XMAC ?
  6431. NUM_XMAC_STAT_KEYS :
  6432. NUM_BMAC_STAT_KEYS) +
  6433. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6434. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6435. }
  6436. static void niu_get_ethtool_stats(struct net_device *dev,
  6437. struct ethtool_stats *stats, u64 *data)
  6438. {
  6439. struct niu *np = netdev_priv(dev);
  6440. int i;
  6441. niu_sync_mac_stats(np);
  6442. if (np->flags & NIU_FLAGS_XMAC) {
  6443. memcpy(data, &np->mac_stats.xmac,
  6444. sizeof(struct niu_xmac_stats));
  6445. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6446. } else {
  6447. memcpy(data, &np->mac_stats.bmac,
  6448. sizeof(struct niu_bmac_stats));
  6449. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6450. }
  6451. for (i = 0; i < np->num_rx_rings; i++) {
  6452. struct rx_ring_info *rp = &np->rx_rings[i];
  6453. niu_sync_rx_discard_stats(np, rp, 0);
  6454. data[0] = rp->rx_channel;
  6455. data[1] = rp->rx_packets;
  6456. data[2] = rp->rx_bytes;
  6457. data[3] = rp->rx_dropped;
  6458. data[4] = rp->rx_errors;
  6459. data += 5;
  6460. }
  6461. for (i = 0; i < np->num_tx_rings; i++) {
  6462. struct tx_ring_info *rp = &np->tx_rings[i];
  6463. data[0] = rp->tx_channel;
  6464. data[1] = rp->tx_packets;
  6465. data[2] = rp->tx_bytes;
  6466. data[3] = rp->tx_errors;
  6467. data += 4;
  6468. }
  6469. }
  6470. static u64 niu_led_state_save(struct niu *np)
  6471. {
  6472. if (np->flags & NIU_FLAGS_XMAC)
  6473. return nr64_mac(XMAC_CONFIG);
  6474. else
  6475. return nr64_mac(BMAC_XIF_CONFIG);
  6476. }
  6477. static void niu_led_state_restore(struct niu *np, u64 val)
  6478. {
  6479. if (np->flags & NIU_FLAGS_XMAC)
  6480. nw64_mac(XMAC_CONFIG, val);
  6481. else
  6482. nw64_mac(BMAC_XIF_CONFIG, val);
  6483. }
  6484. static void niu_force_led(struct niu *np, int on)
  6485. {
  6486. u64 val, reg, bit;
  6487. if (np->flags & NIU_FLAGS_XMAC) {
  6488. reg = XMAC_CONFIG;
  6489. bit = XMAC_CONFIG_FORCE_LED_ON;
  6490. } else {
  6491. reg = BMAC_XIF_CONFIG;
  6492. bit = BMAC_XIF_CONFIG_LINK_LED;
  6493. }
  6494. val = nr64_mac(reg);
  6495. if (on)
  6496. val |= bit;
  6497. else
  6498. val &= ~bit;
  6499. nw64_mac(reg, val);
  6500. }
  6501. static int niu_set_phys_id(struct net_device *dev,
  6502. enum ethtool_phys_id_state state)
  6503. {
  6504. struct niu *np = netdev_priv(dev);
  6505. if (!netif_running(dev))
  6506. return -EAGAIN;
  6507. switch (state) {
  6508. case ETHTOOL_ID_ACTIVE:
  6509. np->orig_led_state = niu_led_state_save(np);
  6510. return 1; /* cycle on/off once per second */
  6511. case ETHTOOL_ID_ON:
  6512. niu_force_led(np, 1);
  6513. break;
  6514. case ETHTOOL_ID_OFF:
  6515. niu_force_led(np, 0);
  6516. break;
  6517. case ETHTOOL_ID_INACTIVE:
  6518. niu_led_state_restore(np, np->orig_led_state);
  6519. }
  6520. return 0;
  6521. }
  6522. static const struct ethtool_ops niu_ethtool_ops = {
  6523. .get_drvinfo = niu_get_drvinfo,
  6524. .get_link = ethtool_op_get_link,
  6525. .get_msglevel = niu_get_msglevel,
  6526. .set_msglevel = niu_set_msglevel,
  6527. .nway_reset = niu_nway_reset,
  6528. .get_eeprom_len = niu_get_eeprom_len,
  6529. .get_eeprom = niu_get_eeprom,
  6530. .get_strings = niu_get_strings,
  6531. .get_sset_count = niu_get_sset_count,
  6532. .get_ethtool_stats = niu_get_ethtool_stats,
  6533. .set_phys_id = niu_set_phys_id,
  6534. .get_rxnfc = niu_get_nfc,
  6535. .set_rxnfc = niu_set_nfc,
  6536. .get_link_ksettings = niu_get_link_ksettings,
  6537. .set_link_ksettings = niu_set_link_ksettings,
  6538. };
  6539. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6540. int ldg, int ldn)
  6541. {
  6542. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6543. return -EINVAL;
  6544. if (ldn < 0 || ldn > LDN_MAX)
  6545. return -EINVAL;
  6546. parent->ldg_map[ldn] = ldg;
  6547. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6548. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6549. * the firmware, and we're not supposed to change them.
  6550. * Validate the mapping, because if it's wrong we probably
  6551. * won't get any interrupts and that's painful to debug.
  6552. */
  6553. if (nr64(LDG_NUM(ldn)) != ldg) {
  6554. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6555. np->port, ldn, ldg,
  6556. (unsigned long long) nr64(LDG_NUM(ldn)));
  6557. return -EINVAL;
  6558. }
  6559. } else
  6560. nw64(LDG_NUM(ldn), ldg);
  6561. return 0;
  6562. }
  6563. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6564. {
  6565. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6566. return -EINVAL;
  6567. nw64(LDG_TIMER_RES, res);
  6568. return 0;
  6569. }
  6570. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6571. {
  6572. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6573. (func < 0 || func > 3) ||
  6574. (vector < 0 || vector > 0x1f))
  6575. return -EINVAL;
  6576. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6577. return 0;
  6578. }
  6579. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6580. {
  6581. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6582. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6583. int limit;
  6584. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6585. return -EINVAL;
  6586. frame = frame_base;
  6587. nw64(ESPC_PIO_STAT, frame);
  6588. limit = 64;
  6589. do {
  6590. udelay(5);
  6591. frame = nr64(ESPC_PIO_STAT);
  6592. if (frame & ESPC_PIO_STAT_READ_END)
  6593. break;
  6594. } while (limit--);
  6595. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6596. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6597. (unsigned long long) frame);
  6598. return -ENODEV;
  6599. }
  6600. frame = frame_base;
  6601. nw64(ESPC_PIO_STAT, frame);
  6602. limit = 64;
  6603. do {
  6604. udelay(5);
  6605. frame = nr64(ESPC_PIO_STAT);
  6606. if (frame & ESPC_PIO_STAT_READ_END)
  6607. break;
  6608. } while (limit--);
  6609. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6610. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6611. (unsigned long long) frame);
  6612. return -ENODEV;
  6613. }
  6614. frame = nr64(ESPC_PIO_STAT);
  6615. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6616. }
  6617. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6618. {
  6619. int err = niu_pci_eeprom_read(np, off);
  6620. u16 val;
  6621. if (err < 0)
  6622. return err;
  6623. val = (err << 8);
  6624. err = niu_pci_eeprom_read(np, off + 1);
  6625. if (err < 0)
  6626. return err;
  6627. val |= (err & 0xff);
  6628. return val;
  6629. }
  6630. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6631. {
  6632. int err = niu_pci_eeprom_read(np, off);
  6633. u16 val;
  6634. if (err < 0)
  6635. return err;
  6636. val = (err & 0xff);
  6637. err = niu_pci_eeprom_read(np, off + 1);
  6638. if (err < 0)
  6639. return err;
  6640. val |= (err & 0xff) << 8;
  6641. return val;
  6642. }
  6643. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6644. int namebuf_len)
  6645. {
  6646. int i;
  6647. for (i = 0; i < namebuf_len; i++) {
  6648. int err = niu_pci_eeprom_read(np, off + i);
  6649. if (err < 0)
  6650. return err;
  6651. *namebuf++ = err;
  6652. if (!err)
  6653. break;
  6654. }
  6655. if (i >= namebuf_len)
  6656. return -EINVAL;
  6657. return i + 1;
  6658. }
  6659. static void niu_vpd_parse_version(struct niu *np)
  6660. {
  6661. struct niu_vpd *vpd = &np->vpd;
  6662. int len = strlen(vpd->version) + 1;
  6663. const char *s = vpd->version;
  6664. int i;
  6665. for (i = 0; i < len - 5; i++) {
  6666. if (!strncmp(s + i, "FCode ", 6))
  6667. break;
  6668. }
  6669. if (i >= len - 5)
  6670. return;
  6671. s += i + 5;
  6672. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6673. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6674. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6675. vpd->fcode_major, vpd->fcode_minor);
  6676. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6677. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6678. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6679. np->flags |= NIU_FLAGS_VPD_VALID;
  6680. }
  6681. /* ESPC_PIO_EN_ENABLE must be set */
  6682. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6683. {
  6684. unsigned int found_mask = 0;
  6685. #define FOUND_MASK_MODEL 0x00000001
  6686. #define FOUND_MASK_BMODEL 0x00000002
  6687. #define FOUND_MASK_VERS 0x00000004
  6688. #define FOUND_MASK_MAC 0x00000008
  6689. #define FOUND_MASK_NMAC 0x00000010
  6690. #define FOUND_MASK_PHY 0x00000020
  6691. #define FOUND_MASK_ALL 0x0000003f
  6692. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6693. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6694. while (start < end) {
  6695. int len, err, prop_len;
  6696. char namebuf[64];
  6697. u8 *prop_buf;
  6698. int max_len;
  6699. if (found_mask == FOUND_MASK_ALL) {
  6700. niu_vpd_parse_version(np);
  6701. return 1;
  6702. }
  6703. err = niu_pci_eeprom_read(np, start + 2);
  6704. if (err < 0)
  6705. return err;
  6706. len = err;
  6707. start += 3;
  6708. prop_len = niu_pci_eeprom_read(np, start + 4);
  6709. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6710. if (err < 0)
  6711. return err;
  6712. prop_buf = NULL;
  6713. max_len = 0;
  6714. if (!strcmp(namebuf, "model")) {
  6715. prop_buf = np->vpd.model;
  6716. max_len = NIU_VPD_MODEL_MAX;
  6717. found_mask |= FOUND_MASK_MODEL;
  6718. } else if (!strcmp(namebuf, "board-model")) {
  6719. prop_buf = np->vpd.board_model;
  6720. max_len = NIU_VPD_BD_MODEL_MAX;
  6721. found_mask |= FOUND_MASK_BMODEL;
  6722. } else if (!strcmp(namebuf, "version")) {
  6723. prop_buf = np->vpd.version;
  6724. max_len = NIU_VPD_VERSION_MAX;
  6725. found_mask |= FOUND_MASK_VERS;
  6726. } else if (!strcmp(namebuf, "local-mac-address")) {
  6727. prop_buf = np->vpd.local_mac;
  6728. max_len = ETH_ALEN;
  6729. found_mask |= FOUND_MASK_MAC;
  6730. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6731. prop_buf = &np->vpd.mac_num;
  6732. max_len = 1;
  6733. found_mask |= FOUND_MASK_NMAC;
  6734. } else if (!strcmp(namebuf, "phy-type")) {
  6735. prop_buf = np->vpd.phy_type;
  6736. max_len = NIU_VPD_PHY_TYPE_MAX;
  6737. found_mask |= FOUND_MASK_PHY;
  6738. }
  6739. if (max_len && prop_len > max_len) {
  6740. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6741. return -EINVAL;
  6742. }
  6743. if (prop_buf) {
  6744. u32 off = start + 5 + err;
  6745. int i;
  6746. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6747. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6748. namebuf, prop_len);
  6749. for (i = 0; i < prop_len; i++)
  6750. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6751. }
  6752. start += len;
  6753. }
  6754. return 0;
  6755. }
  6756. /* ESPC_PIO_EN_ENABLE must be set */
  6757. static void niu_pci_vpd_fetch(struct niu *np, u32 start)
  6758. {
  6759. u32 offset;
  6760. int err;
  6761. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6762. if (err < 0)
  6763. return;
  6764. offset = err + 3;
  6765. while (start + offset < ESPC_EEPROM_SIZE) {
  6766. u32 here = start + offset;
  6767. u32 end;
  6768. err = niu_pci_eeprom_read(np, here);
  6769. if (err != 0x90)
  6770. return;
  6771. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6772. if (err < 0)
  6773. return;
  6774. here = start + offset + 3;
  6775. end = start + offset + err;
  6776. offset += err;
  6777. err = niu_pci_vpd_scan_props(np, here, end);
  6778. if (err < 0 || err == 1)
  6779. return;
  6780. }
  6781. }
  6782. /* ESPC_PIO_EN_ENABLE must be set */
  6783. static u32 niu_pci_vpd_offset(struct niu *np)
  6784. {
  6785. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6786. int err;
  6787. while (start < end) {
  6788. ret = start;
  6789. /* ROM header signature? */
  6790. err = niu_pci_eeprom_read16(np, start + 0);
  6791. if (err != 0x55aa)
  6792. return 0;
  6793. /* Apply offset to PCI data structure. */
  6794. err = niu_pci_eeprom_read16(np, start + 23);
  6795. if (err < 0)
  6796. return 0;
  6797. start += err;
  6798. /* Check for "PCIR" signature. */
  6799. err = niu_pci_eeprom_read16(np, start + 0);
  6800. if (err != 0x5043)
  6801. return 0;
  6802. err = niu_pci_eeprom_read16(np, start + 2);
  6803. if (err != 0x4952)
  6804. return 0;
  6805. /* Check for OBP image type. */
  6806. err = niu_pci_eeprom_read(np, start + 20);
  6807. if (err < 0)
  6808. return 0;
  6809. if (err != 0x01) {
  6810. err = niu_pci_eeprom_read(np, ret + 2);
  6811. if (err < 0)
  6812. return 0;
  6813. start = ret + (err * 512);
  6814. continue;
  6815. }
  6816. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6817. if (err < 0)
  6818. return err;
  6819. ret += err;
  6820. err = niu_pci_eeprom_read(np, ret + 0);
  6821. if (err != 0x82)
  6822. return 0;
  6823. return ret;
  6824. }
  6825. return 0;
  6826. }
  6827. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6828. {
  6829. if (!strcmp(phy_prop, "mif")) {
  6830. /* 1G copper, MII */
  6831. np->flags &= ~(NIU_FLAGS_FIBER |
  6832. NIU_FLAGS_10G);
  6833. np->mac_xcvr = MAC_XCVR_MII;
  6834. } else if (!strcmp(phy_prop, "xgf")) {
  6835. /* 10G fiber, XPCS */
  6836. np->flags |= (NIU_FLAGS_10G |
  6837. NIU_FLAGS_FIBER);
  6838. np->mac_xcvr = MAC_XCVR_XPCS;
  6839. } else if (!strcmp(phy_prop, "pcs")) {
  6840. /* 1G fiber, PCS */
  6841. np->flags &= ~NIU_FLAGS_10G;
  6842. np->flags |= NIU_FLAGS_FIBER;
  6843. np->mac_xcvr = MAC_XCVR_PCS;
  6844. } else if (!strcmp(phy_prop, "xgc")) {
  6845. /* 10G copper, XPCS */
  6846. np->flags |= NIU_FLAGS_10G;
  6847. np->flags &= ~NIU_FLAGS_FIBER;
  6848. np->mac_xcvr = MAC_XCVR_XPCS;
  6849. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6850. /* 10G Serdes or 1G Serdes, default to 10G */
  6851. np->flags |= NIU_FLAGS_10G;
  6852. np->flags &= ~NIU_FLAGS_FIBER;
  6853. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6854. np->mac_xcvr = MAC_XCVR_XPCS;
  6855. } else {
  6856. return -EINVAL;
  6857. }
  6858. return 0;
  6859. }
  6860. static int niu_pci_vpd_get_nports(struct niu *np)
  6861. {
  6862. int ports = 0;
  6863. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6864. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6865. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6866. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6867. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6868. ports = 4;
  6869. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6870. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6871. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6872. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6873. ports = 2;
  6874. }
  6875. return ports;
  6876. }
  6877. static void niu_pci_vpd_validate(struct niu *np)
  6878. {
  6879. struct net_device *dev = np->dev;
  6880. struct niu_vpd *vpd = &np->vpd;
  6881. u8 val8;
  6882. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6883. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6884. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6885. return;
  6886. }
  6887. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6888. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6889. np->flags |= NIU_FLAGS_10G;
  6890. np->flags &= ~NIU_FLAGS_FIBER;
  6891. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6892. np->mac_xcvr = MAC_XCVR_PCS;
  6893. if (np->port > 1) {
  6894. np->flags |= NIU_FLAGS_FIBER;
  6895. np->flags &= ~NIU_FLAGS_10G;
  6896. }
  6897. if (np->flags & NIU_FLAGS_10G)
  6898. np->mac_xcvr = MAC_XCVR_XPCS;
  6899. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6900. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6901. NIU_FLAGS_HOTPLUG_PHY);
  6902. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6903. dev_err(np->device, "Illegal phy string [%s]\n",
  6904. np->vpd.phy_type);
  6905. dev_err(np->device, "Falling back to SPROM\n");
  6906. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6907. return;
  6908. }
  6909. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6910. val8 = dev->dev_addr[5];
  6911. dev->dev_addr[5] += np->port;
  6912. if (dev->dev_addr[5] < val8)
  6913. dev->dev_addr[4]++;
  6914. }
  6915. static int niu_pci_probe_sprom(struct niu *np)
  6916. {
  6917. struct net_device *dev = np->dev;
  6918. int len, i;
  6919. u64 val, sum;
  6920. u8 val8;
  6921. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6922. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6923. len = val / 4;
  6924. np->eeprom_len = len;
  6925. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6926. "SPROM: Image size %llu\n", (unsigned long long)val);
  6927. sum = 0;
  6928. for (i = 0; i < len; i++) {
  6929. val = nr64(ESPC_NCR(i));
  6930. sum += (val >> 0) & 0xff;
  6931. sum += (val >> 8) & 0xff;
  6932. sum += (val >> 16) & 0xff;
  6933. sum += (val >> 24) & 0xff;
  6934. }
  6935. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6936. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6937. if ((sum & 0xff) != 0xab) {
  6938. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6939. return -EINVAL;
  6940. }
  6941. val = nr64(ESPC_PHY_TYPE);
  6942. switch (np->port) {
  6943. case 0:
  6944. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6945. ESPC_PHY_TYPE_PORT0_SHIFT;
  6946. break;
  6947. case 1:
  6948. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6949. ESPC_PHY_TYPE_PORT1_SHIFT;
  6950. break;
  6951. case 2:
  6952. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6953. ESPC_PHY_TYPE_PORT2_SHIFT;
  6954. break;
  6955. case 3:
  6956. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6957. ESPC_PHY_TYPE_PORT3_SHIFT;
  6958. break;
  6959. default:
  6960. dev_err(np->device, "Bogus port number %u\n",
  6961. np->port);
  6962. return -EINVAL;
  6963. }
  6964. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6965. "SPROM: PHY type %x\n", val8);
  6966. switch (val8) {
  6967. case ESPC_PHY_TYPE_1G_COPPER:
  6968. /* 1G copper, MII */
  6969. np->flags &= ~(NIU_FLAGS_FIBER |
  6970. NIU_FLAGS_10G);
  6971. np->mac_xcvr = MAC_XCVR_MII;
  6972. break;
  6973. case ESPC_PHY_TYPE_1G_FIBER:
  6974. /* 1G fiber, PCS */
  6975. np->flags &= ~NIU_FLAGS_10G;
  6976. np->flags |= NIU_FLAGS_FIBER;
  6977. np->mac_xcvr = MAC_XCVR_PCS;
  6978. break;
  6979. case ESPC_PHY_TYPE_10G_COPPER:
  6980. /* 10G copper, XPCS */
  6981. np->flags |= NIU_FLAGS_10G;
  6982. np->flags &= ~NIU_FLAGS_FIBER;
  6983. np->mac_xcvr = MAC_XCVR_XPCS;
  6984. break;
  6985. case ESPC_PHY_TYPE_10G_FIBER:
  6986. /* 10G fiber, XPCS */
  6987. np->flags |= (NIU_FLAGS_10G |
  6988. NIU_FLAGS_FIBER);
  6989. np->mac_xcvr = MAC_XCVR_XPCS;
  6990. break;
  6991. default:
  6992. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  6993. return -EINVAL;
  6994. }
  6995. val = nr64(ESPC_MAC_ADDR0);
  6996. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6997. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  6998. dev->dev_addr[0] = (val >> 0) & 0xff;
  6999. dev->dev_addr[1] = (val >> 8) & 0xff;
  7000. dev->dev_addr[2] = (val >> 16) & 0xff;
  7001. dev->dev_addr[3] = (val >> 24) & 0xff;
  7002. val = nr64(ESPC_MAC_ADDR1);
  7003. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7004. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7005. dev->dev_addr[4] = (val >> 0) & 0xff;
  7006. dev->dev_addr[5] = (val >> 8) & 0xff;
  7007. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7008. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7009. dev->dev_addr);
  7010. return -EINVAL;
  7011. }
  7012. val8 = dev->dev_addr[5];
  7013. dev->dev_addr[5] += np->port;
  7014. if (dev->dev_addr[5] < val8)
  7015. dev->dev_addr[4]++;
  7016. val = nr64(ESPC_MOD_STR_LEN);
  7017. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7018. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7019. if (val >= 8 * 4)
  7020. return -EINVAL;
  7021. for (i = 0; i < val; i += 4) {
  7022. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7023. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7024. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7025. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7026. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7027. }
  7028. np->vpd.model[val] = '\0';
  7029. val = nr64(ESPC_BD_MOD_STR_LEN);
  7030. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7031. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7032. if (val >= 4 * 4)
  7033. return -EINVAL;
  7034. for (i = 0; i < val; i += 4) {
  7035. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7036. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7037. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7038. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7039. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7040. }
  7041. np->vpd.board_model[val] = '\0';
  7042. np->vpd.mac_num =
  7043. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7044. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7045. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7046. return 0;
  7047. }
  7048. static int niu_get_and_validate_port(struct niu *np)
  7049. {
  7050. struct niu_parent *parent = np->parent;
  7051. if (np->port <= 1)
  7052. np->flags |= NIU_FLAGS_XMAC;
  7053. if (!parent->num_ports) {
  7054. if (parent->plat_type == PLAT_TYPE_NIU) {
  7055. parent->num_ports = 2;
  7056. } else {
  7057. parent->num_ports = niu_pci_vpd_get_nports(np);
  7058. if (!parent->num_ports) {
  7059. /* Fall back to SPROM as last resort.
  7060. * This will fail on most cards.
  7061. */
  7062. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7063. ESPC_NUM_PORTS_MACS_VAL;
  7064. /* All of the current probing methods fail on
  7065. * Maramba on-board parts.
  7066. */
  7067. if (!parent->num_ports)
  7068. parent->num_ports = 4;
  7069. }
  7070. }
  7071. }
  7072. if (np->port >= parent->num_ports)
  7073. return -ENODEV;
  7074. return 0;
  7075. }
  7076. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7077. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7078. {
  7079. u32 id = (dev_id_1 << 16) | dev_id_2;
  7080. u8 idx;
  7081. if (dev_id_1 < 0 || dev_id_2 < 0)
  7082. return 0;
  7083. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7084. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7085. * test covers the 8706 as well.
  7086. */
  7087. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7088. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7089. return 0;
  7090. } else {
  7091. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7092. return 0;
  7093. }
  7094. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7095. parent->index, id,
  7096. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7097. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7098. phy_port);
  7099. if (p->cur[type] >= NIU_MAX_PORTS) {
  7100. pr_err("Too many PHY ports\n");
  7101. return -EINVAL;
  7102. }
  7103. idx = p->cur[type];
  7104. p->phy_id[type][idx] = id;
  7105. p->phy_port[type][idx] = phy_port;
  7106. p->cur[type] = idx + 1;
  7107. return 0;
  7108. }
  7109. static int port_has_10g(struct phy_probe_info *p, int port)
  7110. {
  7111. int i;
  7112. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7113. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7114. return 1;
  7115. }
  7116. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7117. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7118. return 1;
  7119. }
  7120. return 0;
  7121. }
  7122. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7123. {
  7124. int port, cnt;
  7125. cnt = 0;
  7126. *lowest = 32;
  7127. for (port = 8; port < 32; port++) {
  7128. if (port_has_10g(p, port)) {
  7129. if (!cnt)
  7130. *lowest = port;
  7131. cnt++;
  7132. }
  7133. }
  7134. return cnt;
  7135. }
  7136. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7137. {
  7138. *lowest = 32;
  7139. if (p->cur[PHY_TYPE_MII])
  7140. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7141. return p->cur[PHY_TYPE_MII];
  7142. }
  7143. static void niu_n2_divide_channels(struct niu_parent *parent)
  7144. {
  7145. int num_ports = parent->num_ports;
  7146. int i;
  7147. for (i = 0; i < num_ports; i++) {
  7148. parent->rxchan_per_port[i] = (16 / num_ports);
  7149. parent->txchan_per_port[i] = (16 / num_ports);
  7150. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7151. parent->index, i,
  7152. parent->rxchan_per_port[i],
  7153. parent->txchan_per_port[i]);
  7154. }
  7155. }
  7156. static void niu_divide_channels(struct niu_parent *parent,
  7157. int num_10g, int num_1g)
  7158. {
  7159. int num_ports = parent->num_ports;
  7160. int rx_chans_per_10g, rx_chans_per_1g;
  7161. int tx_chans_per_10g, tx_chans_per_1g;
  7162. int i, tot_rx, tot_tx;
  7163. if (!num_10g || !num_1g) {
  7164. rx_chans_per_10g = rx_chans_per_1g =
  7165. (NIU_NUM_RXCHAN / num_ports);
  7166. tx_chans_per_10g = tx_chans_per_1g =
  7167. (NIU_NUM_TXCHAN / num_ports);
  7168. } else {
  7169. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7170. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7171. (rx_chans_per_1g * num_1g)) /
  7172. num_10g;
  7173. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7174. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7175. (tx_chans_per_1g * num_1g)) /
  7176. num_10g;
  7177. }
  7178. tot_rx = tot_tx = 0;
  7179. for (i = 0; i < num_ports; i++) {
  7180. int type = phy_decode(parent->port_phy, i);
  7181. if (type == PORT_TYPE_10G) {
  7182. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7183. parent->txchan_per_port[i] = tx_chans_per_10g;
  7184. } else {
  7185. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7186. parent->txchan_per_port[i] = tx_chans_per_1g;
  7187. }
  7188. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7189. parent->index, i,
  7190. parent->rxchan_per_port[i],
  7191. parent->txchan_per_port[i]);
  7192. tot_rx += parent->rxchan_per_port[i];
  7193. tot_tx += parent->txchan_per_port[i];
  7194. }
  7195. if (tot_rx > NIU_NUM_RXCHAN) {
  7196. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7197. parent->index, tot_rx);
  7198. for (i = 0; i < num_ports; i++)
  7199. parent->rxchan_per_port[i] = 1;
  7200. }
  7201. if (tot_tx > NIU_NUM_TXCHAN) {
  7202. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7203. parent->index, tot_tx);
  7204. for (i = 0; i < num_ports; i++)
  7205. parent->txchan_per_port[i] = 1;
  7206. }
  7207. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7208. pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7209. parent->index, tot_rx, tot_tx);
  7210. }
  7211. }
  7212. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7213. int num_10g, int num_1g)
  7214. {
  7215. int i, num_ports = parent->num_ports;
  7216. int rdc_group, rdc_groups_per_port;
  7217. int rdc_channel_base;
  7218. rdc_group = 0;
  7219. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7220. rdc_channel_base = 0;
  7221. for (i = 0; i < num_ports; i++) {
  7222. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7223. int grp, num_channels = parent->rxchan_per_port[i];
  7224. int this_channel_offset;
  7225. tp->first_table_num = rdc_group;
  7226. tp->num_tables = rdc_groups_per_port;
  7227. this_channel_offset = 0;
  7228. for (grp = 0; grp < tp->num_tables; grp++) {
  7229. struct rdc_table *rt = &tp->tables[grp];
  7230. int slot;
  7231. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7232. parent->index, i, tp->first_table_num + grp);
  7233. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7234. rt->rxdma_channel[slot] =
  7235. rdc_channel_base + this_channel_offset;
  7236. pr_cont("%d ", rt->rxdma_channel[slot]);
  7237. if (++this_channel_offset == num_channels)
  7238. this_channel_offset = 0;
  7239. }
  7240. pr_cont("]\n");
  7241. }
  7242. parent->rdc_default[i] = rdc_channel_base;
  7243. rdc_channel_base += num_channels;
  7244. rdc_group += rdc_groups_per_port;
  7245. }
  7246. }
  7247. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7248. struct phy_probe_info *info)
  7249. {
  7250. unsigned long flags;
  7251. int port, err;
  7252. memset(info, 0, sizeof(*info));
  7253. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7254. niu_lock_parent(np, flags);
  7255. err = 0;
  7256. for (port = 8; port < 32; port++) {
  7257. int dev_id_1, dev_id_2;
  7258. dev_id_1 = mdio_read(np, port,
  7259. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7260. dev_id_2 = mdio_read(np, port,
  7261. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7262. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7263. PHY_TYPE_PMA_PMD);
  7264. if (err)
  7265. break;
  7266. dev_id_1 = mdio_read(np, port,
  7267. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7268. dev_id_2 = mdio_read(np, port,
  7269. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7270. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7271. PHY_TYPE_PCS);
  7272. if (err)
  7273. break;
  7274. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7275. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7276. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7277. PHY_TYPE_MII);
  7278. if (err)
  7279. break;
  7280. }
  7281. niu_unlock_parent(np, flags);
  7282. return err;
  7283. }
  7284. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7285. {
  7286. struct phy_probe_info *info = &parent->phy_probe_info;
  7287. int lowest_10g, lowest_1g;
  7288. int num_10g, num_1g;
  7289. u32 val;
  7290. int err;
  7291. num_10g = num_1g = 0;
  7292. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7293. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7294. num_10g = 0;
  7295. num_1g = 2;
  7296. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7297. parent->num_ports = 4;
  7298. val = (phy_encode(PORT_TYPE_1G, 0) |
  7299. phy_encode(PORT_TYPE_1G, 1) |
  7300. phy_encode(PORT_TYPE_1G, 2) |
  7301. phy_encode(PORT_TYPE_1G, 3));
  7302. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7303. num_10g = 2;
  7304. num_1g = 0;
  7305. parent->num_ports = 2;
  7306. val = (phy_encode(PORT_TYPE_10G, 0) |
  7307. phy_encode(PORT_TYPE_10G, 1));
  7308. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7309. (parent->plat_type == PLAT_TYPE_NIU)) {
  7310. /* this is the Monza case */
  7311. if (np->flags & NIU_FLAGS_10G) {
  7312. val = (phy_encode(PORT_TYPE_10G, 0) |
  7313. phy_encode(PORT_TYPE_10G, 1));
  7314. } else {
  7315. val = (phy_encode(PORT_TYPE_1G, 0) |
  7316. phy_encode(PORT_TYPE_1G, 1));
  7317. }
  7318. } else {
  7319. err = fill_phy_probe_info(np, parent, info);
  7320. if (err)
  7321. return err;
  7322. num_10g = count_10g_ports(info, &lowest_10g);
  7323. num_1g = count_1g_ports(info, &lowest_1g);
  7324. switch ((num_10g << 4) | num_1g) {
  7325. case 0x24:
  7326. if (lowest_1g == 10)
  7327. parent->plat_type = PLAT_TYPE_VF_P0;
  7328. else if (lowest_1g == 26)
  7329. parent->plat_type = PLAT_TYPE_VF_P1;
  7330. else
  7331. goto unknown_vg_1g_port;
  7332. /* fallthru */
  7333. case 0x22:
  7334. val = (phy_encode(PORT_TYPE_10G, 0) |
  7335. phy_encode(PORT_TYPE_10G, 1) |
  7336. phy_encode(PORT_TYPE_1G, 2) |
  7337. phy_encode(PORT_TYPE_1G, 3));
  7338. break;
  7339. case 0x20:
  7340. val = (phy_encode(PORT_TYPE_10G, 0) |
  7341. phy_encode(PORT_TYPE_10G, 1));
  7342. break;
  7343. case 0x10:
  7344. val = phy_encode(PORT_TYPE_10G, np->port);
  7345. break;
  7346. case 0x14:
  7347. if (lowest_1g == 10)
  7348. parent->plat_type = PLAT_TYPE_VF_P0;
  7349. else if (lowest_1g == 26)
  7350. parent->plat_type = PLAT_TYPE_VF_P1;
  7351. else
  7352. goto unknown_vg_1g_port;
  7353. /* fallthru */
  7354. case 0x13:
  7355. if ((lowest_10g & 0x7) == 0)
  7356. val = (phy_encode(PORT_TYPE_10G, 0) |
  7357. phy_encode(PORT_TYPE_1G, 1) |
  7358. phy_encode(PORT_TYPE_1G, 2) |
  7359. phy_encode(PORT_TYPE_1G, 3));
  7360. else
  7361. val = (phy_encode(PORT_TYPE_1G, 0) |
  7362. phy_encode(PORT_TYPE_10G, 1) |
  7363. phy_encode(PORT_TYPE_1G, 2) |
  7364. phy_encode(PORT_TYPE_1G, 3));
  7365. break;
  7366. case 0x04:
  7367. if (lowest_1g == 10)
  7368. parent->plat_type = PLAT_TYPE_VF_P0;
  7369. else if (lowest_1g == 26)
  7370. parent->plat_type = PLAT_TYPE_VF_P1;
  7371. else
  7372. goto unknown_vg_1g_port;
  7373. val = (phy_encode(PORT_TYPE_1G, 0) |
  7374. phy_encode(PORT_TYPE_1G, 1) |
  7375. phy_encode(PORT_TYPE_1G, 2) |
  7376. phy_encode(PORT_TYPE_1G, 3));
  7377. break;
  7378. default:
  7379. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7380. num_10g, num_1g);
  7381. return -EINVAL;
  7382. }
  7383. }
  7384. parent->port_phy = val;
  7385. if (parent->plat_type == PLAT_TYPE_NIU)
  7386. niu_n2_divide_channels(parent);
  7387. else
  7388. niu_divide_channels(parent, num_10g, num_1g);
  7389. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7390. return 0;
  7391. unknown_vg_1g_port:
  7392. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7393. return -EINVAL;
  7394. }
  7395. static int niu_probe_ports(struct niu *np)
  7396. {
  7397. struct niu_parent *parent = np->parent;
  7398. int err, i;
  7399. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7400. err = walk_phys(np, parent);
  7401. if (err)
  7402. return err;
  7403. niu_set_ldg_timer_res(np, 2);
  7404. for (i = 0; i <= LDN_MAX; i++)
  7405. niu_ldn_irq_enable(np, i, 0);
  7406. }
  7407. if (parent->port_phy == PORT_PHY_INVALID)
  7408. return -EINVAL;
  7409. return 0;
  7410. }
  7411. static int niu_classifier_swstate_init(struct niu *np)
  7412. {
  7413. struct niu_classifier *cp = &np->clas;
  7414. cp->tcam_top = (u16) np->port;
  7415. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7416. cp->h1_init = 0xffffffff;
  7417. cp->h2_init = 0xffff;
  7418. return fflp_early_init(np);
  7419. }
  7420. static void niu_link_config_init(struct niu *np)
  7421. {
  7422. struct niu_link_config *lp = &np->link_config;
  7423. lp->advertising = (ADVERTISED_10baseT_Half |
  7424. ADVERTISED_10baseT_Full |
  7425. ADVERTISED_100baseT_Half |
  7426. ADVERTISED_100baseT_Full |
  7427. ADVERTISED_1000baseT_Half |
  7428. ADVERTISED_1000baseT_Full |
  7429. ADVERTISED_10000baseT_Full |
  7430. ADVERTISED_Autoneg);
  7431. lp->speed = lp->active_speed = SPEED_INVALID;
  7432. lp->duplex = DUPLEX_FULL;
  7433. lp->active_duplex = DUPLEX_INVALID;
  7434. lp->autoneg = 1;
  7435. #if 0
  7436. lp->loopback_mode = LOOPBACK_MAC;
  7437. lp->active_speed = SPEED_10000;
  7438. lp->active_duplex = DUPLEX_FULL;
  7439. #else
  7440. lp->loopback_mode = LOOPBACK_DISABLED;
  7441. #endif
  7442. }
  7443. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7444. {
  7445. switch (np->port) {
  7446. case 0:
  7447. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7448. np->ipp_off = 0x00000;
  7449. np->pcs_off = 0x04000;
  7450. np->xpcs_off = 0x02000;
  7451. break;
  7452. case 1:
  7453. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7454. np->ipp_off = 0x08000;
  7455. np->pcs_off = 0x0a000;
  7456. np->xpcs_off = 0x08000;
  7457. break;
  7458. case 2:
  7459. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7460. np->ipp_off = 0x04000;
  7461. np->pcs_off = 0x0e000;
  7462. np->xpcs_off = ~0UL;
  7463. break;
  7464. case 3:
  7465. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7466. np->ipp_off = 0x0c000;
  7467. np->pcs_off = 0x12000;
  7468. np->xpcs_off = ~0UL;
  7469. break;
  7470. default:
  7471. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7472. return -EINVAL;
  7473. }
  7474. return 0;
  7475. }
  7476. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7477. {
  7478. struct msix_entry msi_vec[NIU_NUM_LDG];
  7479. struct niu_parent *parent = np->parent;
  7480. struct pci_dev *pdev = np->pdev;
  7481. int i, num_irqs;
  7482. u8 first_ldg;
  7483. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7484. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7485. ldg_num_map[i] = first_ldg + i;
  7486. num_irqs = (parent->rxchan_per_port[np->port] +
  7487. parent->txchan_per_port[np->port] +
  7488. (np->port == 0 ? 3 : 1));
  7489. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7490. for (i = 0; i < num_irqs; i++) {
  7491. msi_vec[i].vector = 0;
  7492. msi_vec[i].entry = i;
  7493. }
  7494. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7495. if (num_irqs < 0) {
  7496. np->flags &= ~NIU_FLAGS_MSIX;
  7497. return;
  7498. }
  7499. np->flags |= NIU_FLAGS_MSIX;
  7500. for (i = 0; i < num_irqs; i++)
  7501. np->ldg[i].irq = msi_vec[i].vector;
  7502. np->num_ldg = num_irqs;
  7503. }
  7504. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7505. {
  7506. #ifdef CONFIG_SPARC64
  7507. struct platform_device *op = np->op;
  7508. const u32 *int_prop;
  7509. int i;
  7510. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7511. if (!int_prop)
  7512. return -ENODEV;
  7513. for (i = 0; i < op->archdata.num_irqs; i++) {
  7514. ldg_num_map[i] = int_prop[i];
  7515. np->ldg[i].irq = op->archdata.irqs[i];
  7516. }
  7517. np->num_ldg = op->archdata.num_irqs;
  7518. return 0;
  7519. #else
  7520. return -EINVAL;
  7521. #endif
  7522. }
  7523. static int niu_ldg_init(struct niu *np)
  7524. {
  7525. struct niu_parent *parent = np->parent;
  7526. u8 ldg_num_map[NIU_NUM_LDG];
  7527. int first_chan, num_chan;
  7528. int i, err, ldg_rotor;
  7529. u8 port;
  7530. np->num_ldg = 1;
  7531. np->ldg[0].irq = np->dev->irq;
  7532. if (parent->plat_type == PLAT_TYPE_NIU) {
  7533. err = niu_n2_irq_init(np, ldg_num_map);
  7534. if (err)
  7535. return err;
  7536. } else
  7537. niu_try_msix(np, ldg_num_map);
  7538. port = np->port;
  7539. for (i = 0; i < np->num_ldg; i++) {
  7540. struct niu_ldg *lp = &np->ldg[i];
  7541. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7542. lp->np = np;
  7543. lp->ldg_num = ldg_num_map[i];
  7544. lp->timer = 2; /* XXX */
  7545. /* On N2 NIU the firmware has setup the SID mappings so they go
  7546. * to the correct values that will route the LDG to the proper
  7547. * interrupt in the NCU interrupt table.
  7548. */
  7549. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7550. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7551. if (err)
  7552. return err;
  7553. }
  7554. }
  7555. /* We adopt the LDG assignment ordering used by the N2 NIU
  7556. * 'interrupt' properties because that simplifies a lot of
  7557. * things. This ordering is:
  7558. *
  7559. * MAC
  7560. * MIF (if port zero)
  7561. * SYSERR (if port zero)
  7562. * RX channels
  7563. * TX channels
  7564. */
  7565. ldg_rotor = 0;
  7566. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7567. LDN_MAC(port));
  7568. if (err)
  7569. return err;
  7570. ldg_rotor++;
  7571. if (ldg_rotor == np->num_ldg)
  7572. ldg_rotor = 0;
  7573. if (port == 0) {
  7574. err = niu_ldg_assign_ldn(np, parent,
  7575. ldg_num_map[ldg_rotor],
  7576. LDN_MIF);
  7577. if (err)
  7578. return err;
  7579. ldg_rotor++;
  7580. if (ldg_rotor == np->num_ldg)
  7581. ldg_rotor = 0;
  7582. err = niu_ldg_assign_ldn(np, parent,
  7583. ldg_num_map[ldg_rotor],
  7584. LDN_DEVICE_ERROR);
  7585. if (err)
  7586. return err;
  7587. ldg_rotor++;
  7588. if (ldg_rotor == np->num_ldg)
  7589. ldg_rotor = 0;
  7590. }
  7591. first_chan = 0;
  7592. for (i = 0; i < port; i++)
  7593. first_chan += parent->rxchan_per_port[i];
  7594. num_chan = parent->rxchan_per_port[port];
  7595. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7596. err = niu_ldg_assign_ldn(np, parent,
  7597. ldg_num_map[ldg_rotor],
  7598. LDN_RXDMA(i));
  7599. if (err)
  7600. return err;
  7601. ldg_rotor++;
  7602. if (ldg_rotor == np->num_ldg)
  7603. ldg_rotor = 0;
  7604. }
  7605. first_chan = 0;
  7606. for (i = 0; i < port; i++)
  7607. first_chan += parent->txchan_per_port[i];
  7608. num_chan = parent->txchan_per_port[port];
  7609. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7610. err = niu_ldg_assign_ldn(np, parent,
  7611. ldg_num_map[ldg_rotor],
  7612. LDN_TXDMA(i));
  7613. if (err)
  7614. return err;
  7615. ldg_rotor++;
  7616. if (ldg_rotor == np->num_ldg)
  7617. ldg_rotor = 0;
  7618. }
  7619. return 0;
  7620. }
  7621. static void niu_ldg_free(struct niu *np)
  7622. {
  7623. if (np->flags & NIU_FLAGS_MSIX)
  7624. pci_disable_msix(np->pdev);
  7625. }
  7626. static int niu_get_of_props(struct niu *np)
  7627. {
  7628. #ifdef CONFIG_SPARC64
  7629. struct net_device *dev = np->dev;
  7630. struct device_node *dp;
  7631. const char *phy_type;
  7632. const u8 *mac_addr;
  7633. const char *model;
  7634. int prop_len;
  7635. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7636. dp = np->op->dev.of_node;
  7637. else
  7638. dp = pci_device_to_OF_node(np->pdev);
  7639. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7640. if (!phy_type) {
  7641. netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp);
  7642. return -EINVAL;
  7643. }
  7644. if (!strcmp(phy_type, "none"))
  7645. return -ENODEV;
  7646. strcpy(np->vpd.phy_type, phy_type);
  7647. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7648. netdev_err(dev, "%pOF: Illegal phy string [%s]\n",
  7649. dp, np->vpd.phy_type);
  7650. return -EINVAL;
  7651. }
  7652. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7653. if (!mac_addr) {
  7654. netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n",
  7655. dp);
  7656. return -EINVAL;
  7657. }
  7658. if (prop_len != dev->addr_len) {
  7659. netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n",
  7660. dp, prop_len);
  7661. }
  7662. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7663. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7664. netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp);
  7665. netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr);
  7666. return -EINVAL;
  7667. }
  7668. model = of_get_property(dp, "model", &prop_len);
  7669. if (model)
  7670. strcpy(np->vpd.model, model);
  7671. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7672. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7673. NIU_FLAGS_HOTPLUG_PHY);
  7674. }
  7675. return 0;
  7676. #else
  7677. return -EINVAL;
  7678. #endif
  7679. }
  7680. static int niu_get_invariants(struct niu *np)
  7681. {
  7682. int err, have_props;
  7683. u32 offset;
  7684. err = niu_get_of_props(np);
  7685. if (err == -ENODEV)
  7686. return err;
  7687. have_props = !err;
  7688. err = niu_init_mac_ipp_pcs_base(np);
  7689. if (err)
  7690. return err;
  7691. if (have_props) {
  7692. err = niu_get_and_validate_port(np);
  7693. if (err)
  7694. return err;
  7695. } else {
  7696. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7697. return -EINVAL;
  7698. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7699. offset = niu_pci_vpd_offset(np);
  7700. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7701. "%s() VPD offset [%08x]\n", __func__, offset);
  7702. if (offset)
  7703. niu_pci_vpd_fetch(np, offset);
  7704. nw64(ESPC_PIO_EN, 0);
  7705. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7706. niu_pci_vpd_validate(np);
  7707. err = niu_get_and_validate_port(np);
  7708. if (err)
  7709. return err;
  7710. }
  7711. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7712. err = niu_get_and_validate_port(np);
  7713. if (err)
  7714. return err;
  7715. err = niu_pci_probe_sprom(np);
  7716. if (err)
  7717. return err;
  7718. }
  7719. }
  7720. err = niu_probe_ports(np);
  7721. if (err)
  7722. return err;
  7723. niu_ldg_init(np);
  7724. niu_classifier_swstate_init(np);
  7725. niu_link_config_init(np);
  7726. err = niu_determine_phy_disposition(np);
  7727. if (!err)
  7728. err = niu_init_link(np);
  7729. return err;
  7730. }
  7731. static LIST_HEAD(niu_parent_list);
  7732. static DEFINE_MUTEX(niu_parent_lock);
  7733. static int niu_parent_index;
  7734. static ssize_t show_port_phy(struct device *dev,
  7735. struct device_attribute *attr, char *buf)
  7736. {
  7737. struct platform_device *plat_dev = to_platform_device(dev);
  7738. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7739. u32 port_phy = p->port_phy;
  7740. char *orig_buf = buf;
  7741. int i;
  7742. if (port_phy == PORT_PHY_UNKNOWN ||
  7743. port_phy == PORT_PHY_INVALID)
  7744. return 0;
  7745. for (i = 0; i < p->num_ports; i++) {
  7746. const char *type_str;
  7747. int type;
  7748. type = phy_decode(port_phy, i);
  7749. if (type == PORT_TYPE_10G)
  7750. type_str = "10G";
  7751. else
  7752. type_str = "1G";
  7753. buf += sprintf(buf,
  7754. (i == 0) ? "%s" : " %s",
  7755. type_str);
  7756. }
  7757. buf += sprintf(buf, "\n");
  7758. return buf - orig_buf;
  7759. }
  7760. static ssize_t show_plat_type(struct device *dev,
  7761. struct device_attribute *attr, char *buf)
  7762. {
  7763. struct platform_device *plat_dev = to_platform_device(dev);
  7764. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7765. const char *type_str;
  7766. switch (p->plat_type) {
  7767. case PLAT_TYPE_ATLAS:
  7768. type_str = "atlas";
  7769. break;
  7770. case PLAT_TYPE_NIU:
  7771. type_str = "niu";
  7772. break;
  7773. case PLAT_TYPE_VF_P0:
  7774. type_str = "vf_p0";
  7775. break;
  7776. case PLAT_TYPE_VF_P1:
  7777. type_str = "vf_p1";
  7778. break;
  7779. default:
  7780. type_str = "unknown";
  7781. break;
  7782. }
  7783. return sprintf(buf, "%s\n", type_str);
  7784. }
  7785. static ssize_t __show_chan_per_port(struct device *dev,
  7786. struct device_attribute *attr, char *buf,
  7787. int rx)
  7788. {
  7789. struct platform_device *plat_dev = to_platform_device(dev);
  7790. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7791. char *orig_buf = buf;
  7792. u8 *arr;
  7793. int i;
  7794. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7795. for (i = 0; i < p->num_ports; i++) {
  7796. buf += sprintf(buf,
  7797. (i == 0) ? "%d" : " %d",
  7798. arr[i]);
  7799. }
  7800. buf += sprintf(buf, "\n");
  7801. return buf - orig_buf;
  7802. }
  7803. static ssize_t show_rxchan_per_port(struct device *dev,
  7804. struct device_attribute *attr, char *buf)
  7805. {
  7806. return __show_chan_per_port(dev, attr, buf, 1);
  7807. }
  7808. static ssize_t show_txchan_per_port(struct device *dev,
  7809. struct device_attribute *attr, char *buf)
  7810. {
  7811. return __show_chan_per_port(dev, attr, buf, 1);
  7812. }
  7813. static ssize_t show_num_ports(struct device *dev,
  7814. struct device_attribute *attr, char *buf)
  7815. {
  7816. struct platform_device *plat_dev = to_platform_device(dev);
  7817. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7818. return sprintf(buf, "%d\n", p->num_ports);
  7819. }
  7820. static struct device_attribute niu_parent_attributes[] = {
  7821. __ATTR(port_phy, 0444, show_port_phy, NULL),
  7822. __ATTR(plat_type, 0444, show_plat_type, NULL),
  7823. __ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL),
  7824. __ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL),
  7825. __ATTR(num_ports, 0444, show_num_ports, NULL),
  7826. {}
  7827. };
  7828. static struct niu_parent *niu_new_parent(struct niu *np,
  7829. union niu_parent_id *id, u8 ptype)
  7830. {
  7831. struct platform_device *plat_dev;
  7832. struct niu_parent *p;
  7833. int i;
  7834. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7835. NULL, 0);
  7836. if (IS_ERR(plat_dev))
  7837. return NULL;
  7838. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7839. int err = device_create_file(&plat_dev->dev,
  7840. &niu_parent_attributes[i]);
  7841. if (err)
  7842. goto fail_unregister;
  7843. }
  7844. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7845. if (!p)
  7846. goto fail_unregister;
  7847. p->index = niu_parent_index++;
  7848. plat_dev->dev.platform_data = p;
  7849. p->plat_dev = plat_dev;
  7850. memcpy(&p->id, id, sizeof(*id));
  7851. p->plat_type = ptype;
  7852. INIT_LIST_HEAD(&p->list);
  7853. atomic_set(&p->refcnt, 0);
  7854. list_add(&p->list, &niu_parent_list);
  7855. spin_lock_init(&p->lock);
  7856. p->rxdma_clock_divider = 7500;
  7857. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7858. if (p->plat_type == PLAT_TYPE_NIU)
  7859. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7860. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7861. int index = i - CLASS_CODE_USER_PROG1;
  7862. p->tcam_key[index] = TCAM_KEY_TSEL;
  7863. p->flow_key[index] = (FLOW_KEY_IPSA |
  7864. FLOW_KEY_IPDA |
  7865. FLOW_KEY_PROTO |
  7866. (FLOW_KEY_L4_BYTE12 <<
  7867. FLOW_KEY_L4_0_SHIFT) |
  7868. (FLOW_KEY_L4_BYTE12 <<
  7869. FLOW_KEY_L4_1_SHIFT));
  7870. }
  7871. for (i = 0; i < LDN_MAX + 1; i++)
  7872. p->ldg_map[i] = LDG_INVALID;
  7873. return p;
  7874. fail_unregister:
  7875. platform_device_unregister(plat_dev);
  7876. return NULL;
  7877. }
  7878. static struct niu_parent *niu_get_parent(struct niu *np,
  7879. union niu_parent_id *id, u8 ptype)
  7880. {
  7881. struct niu_parent *p, *tmp;
  7882. int port = np->port;
  7883. mutex_lock(&niu_parent_lock);
  7884. p = NULL;
  7885. list_for_each_entry(tmp, &niu_parent_list, list) {
  7886. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7887. p = tmp;
  7888. break;
  7889. }
  7890. }
  7891. if (!p)
  7892. p = niu_new_parent(np, id, ptype);
  7893. if (p) {
  7894. char port_name[8];
  7895. int err;
  7896. sprintf(port_name, "port%d", port);
  7897. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7898. &np->device->kobj,
  7899. port_name);
  7900. if (!err) {
  7901. p->ports[port] = np;
  7902. atomic_inc(&p->refcnt);
  7903. }
  7904. }
  7905. mutex_unlock(&niu_parent_lock);
  7906. return p;
  7907. }
  7908. static void niu_put_parent(struct niu *np)
  7909. {
  7910. struct niu_parent *p = np->parent;
  7911. u8 port = np->port;
  7912. char port_name[8];
  7913. BUG_ON(!p || p->ports[port] != np);
  7914. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7915. "%s() port[%u]\n", __func__, port);
  7916. sprintf(port_name, "port%d", port);
  7917. mutex_lock(&niu_parent_lock);
  7918. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7919. p->ports[port] = NULL;
  7920. np->parent = NULL;
  7921. if (atomic_dec_and_test(&p->refcnt)) {
  7922. list_del(&p->list);
  7923. platform_device_unregister(p->plat_dev);
  7924. }
  7925. mutex_unlock(&niu_parent_lock);
  7926. }
  7927. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7928. u64 *handle, gfp_t flag)
  7929. {
  7930. dma_addr_t dh;
  7931. void *ret;
  7932. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7933. if (ret)
  7934. *handle = dh;
  7935. return ret;
  7936. }
  7937. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7938. void *cpu_addr, u64 handle)
  7939. {
  7940. dma_free_coherent(dev, size, cpu_addr, handle);
  7941. }
  7942. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7943. unsigned long offset, size_t size,
  7944. enum dma_data_direction direction)
  7945. {
  7946. return dma_map_page(dev, page, offset, size, direction);
  7947. }
  7948. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7949. size_t size, enum dma_data_direction direction)
  7950. {
  7951. dma_unmap_page(dev, dma_address, size, direction);
  7952. }
  7953. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7954. size_t size,
  7955. enum dma_data_direction direction)
  7956. {
  7957. return dma_map_single(dev, cpu_addr, size, direction);
  7958. }
  7959. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7960. size_t size,
  7961. enum dma_data_direction direction)
  7962. {
  7963. dma_unmap_single(dev, dma_address, size, direction);
  7964. }
  7965. static const struct niu_ops niu_pci_ops = {
  7966. .alloc_coherent = niu_pci_alloc_coherent,
  7967. .free_coherent = niu_pci_free_coherent,
  7968. .map_page = niu_pci_map_page,
  7969. .unmap_page = niu_pci_unmap_page,
  7970. .map_single = niu_pci_map_single,
  7971. .unmap_single = niu_pci_unmap_single,
  7972. };
  7973. static void niu_driver_version(void)
  7974. {
  7975. static int niu_version_printed;
  7976. if (niu_version_printed++ == 0)
  7977. pr_info("%s", version);
  7978. }
  7979. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7980. struct pci_dev *pdev,
  7981. struct platform_device *op,
  7982. const struct niu_ops *ops, u8 port)
  7983. {
  7984. struct net_device *dev;
  7985. struct niu *np;
  7986. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  7987. if (!dev)
  7988. return NULL;
  7989. SET_NETDEV_DEV(dev, gen_dev);
  7990. np = netdev_priv(dev);
  7991. np->dev = dev;
  7992. np->pdev = pdev;
  7993. np->op = op;
  7994. np->device = gen_dev;
  7995. np->ops = ops;
  7996. np->msg_enable = niu_debug;
  7997. spin_lock_init(&np->lock);
  7998. INIT_WORK(&np->reset_task, niu_reset_task);
  7999. np->port = port;
  8000. return dev;
  8001. }
  8002. static const struct net_device_ops niu_netdev_ops = {
  8003. .ndo_open = niu_open,
  8004. .ndo_stop = niu_close,
  8005. .ndo_start_xmit = niu_start_xmit,
  8006. .ndo_get_stats64 = niu_get_stats,
  8007. .ndo_set_rx_mode = niu_set_rx_mode,
  8008. .ndo_validate_addr = eth_validate_addr,
  8009. .ndo_set_mac_address = niu_set_mac_addr,
  8010. .ndo_do_ioctl = niu_ioctl,
  8011. .ndo_tx_timeout = niu_tx_timeout,
  8012. .ndo_change_mtu = niu_change_mtu,
  8013. };
  8014. static void niu_assign_netdev_ops(struct net_device *dev)
  8015. {
  8016. dev->netdev_ops = &niu_netdev_ops;
  8017. dev->ethtool_ops = &niu_ethtool_ops;
  8018. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8019. }
  8020. static void niu_device_announce(struct niu *np)
  8021. {
  8022. struct net_device *dev = np->dev;
  8023. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8024. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8025. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8026. dev->name,
  8027. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8028. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8029. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8030. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8031. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8032. np->vpd.phy_type);
  8033. } else {
  8034. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8035. dev->name,
  8036. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8037. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8038. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8039. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8040. "COPPER")),
  8041. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8042. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8043. np->vpd.phy_type);
  8044. }
  8045. }
  8046. static void niu_set_basic_features(struct net_device *dev)
  8047. {
  8048. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8049. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8050. }
  8051. static int niu_pci_init_one(struct pci_dev *pdev,
  8052. const struct pci_device_id *ent)
  8053. {
  8054. union niu_parent_id parent_id;
  8055. struct net_device *dev;
  8056. struct niu *np;
  8057. int err;
  8058. u64 dma_mask;
  8059. niu_driver_version();
  8060. err = pci_enable_device(pdev);
  8061. if (err) {
  8062. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8063. return err;
  8064. }
  8065. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8066. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8067. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8068. err = -ENODEV;
  8069. goto err_out_disable_pdev;
  8070. }
  8071. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8072. if (err) {
  8073. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8074. goto err_out_disable_pdev;
  8075. }
  8076. if (!pci_is_pcie(pdev)) {
  8077. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8078. err = -ENODEV;
  8079. goto err_out_free_res;
  8080. }
  8081. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8082. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8083. if (!dev) {
  8084. err = -ENOMEM;
  8085. goto err_out_free_res;
  8086. }
  8087. np = netdev_priv(dev);
  8088. memset(&parent_id, 0, sizeof(parent_id));
  8089. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8090. parent_id.pci.bus = pdev->bus->number;
  8091. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8092. np->parent = niu_get_parent(np, &parent_id,
  8093. PLAT_TYPE_ATLAS);
  8094. if (!np->parent) {
  8095. err = -ENOMEM;
  8096. goto err_out_free_dev;
  8097. }
  8098. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8099. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8100. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8101. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8102. PCI_EXP_DEVCTL_RELAX_EN);
  8103. dma_mask = DMA_BIT_MASK(44);
  8104. err = pci_set_dma_mask(pdev, dma_mask);
  8105. if (!err) {
  8106. dev->features |= NETIF_F_HIGHDMA;
  8107. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8108. if (err) {
  8109. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8110. goto err_out_release_parent;
  8111. }
  8112. }
  8113. if (err) {
  8114. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8115. if (err) {
  8116. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8117. goto err_out_release_parent;
  8118. }
  8119. }
  8120. niu_set_basic_features(dev);
  8121. dev->priv_flags |= IFF_UNICAST_FLT;
  8122. np->regs = pci_ioremap_bar(pdev, 0);
  8123. if (!np->regs) {
  8124. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8125. err = -ENOMEM;
  8126. goto err_out_release_parent;
  8127. }
  8128. pci_set_master(pdev);
  8129. pci_save_state(pdev);
  8130. dev->irq = pdev->irq;
  8131. /* MTU range: 68 - 9216 */
  8132. dev->min_mtu = ETH_MIN_MTU;
  8133. dev->max_mtu = NIU_MAX_MTU;
  8134. niu_assign_netdev_ops(dev);
  8135. err = niu_get_invariants(np);
  8136. if (err) {
  8137. if (err != -ENODEV)
  8138. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8139. goto err_out_iounmap;
  8140. }
  8141. err = register_netdev(dev);
  8142. if (err) {
  8143. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8144. goto err_out_iounmap;
  8145. }
  8146. pci_set_drvdata(pdev, dev);
  8147. niu_device_announce(np);
  8148. return 0;
  8149. err_out_iounmap:
  8150. if (np->regs) {
  8151. iounmap(np->regs);
  8152. np->regs = NULL;
  8153. }
  8154. err_out_release_parent:
  8155. niu_put_parent(np);
  8156. err_out_free_dev:
  8157. free_netdev(dev);
  8158. err_out_free_res:
  8159. pci_release_regions(pdev);
  8160. err_out_disable_pdev:
  8161. pci_disable_device(pdev);
  8162. return err;
  8163. }
  8164. static void niu_pci_remove_one(struct pci_dev *pdev)
  8165. {
  8166. struct net_device *dev = pci_get_drvdata(pdev);
  8167. if (dev) {
  8168. struct niu *np = netdev_priv(dev);
  8169. unregister_netdev(dev);
  8170. if (np->regs) {
  8171. iounmap(np->regs);
  8172. np->regs = NULL;
  8173. }
  8174. niu_ldg_free(np);
  8175. niu_put_parent(np);
  8176. free_netdev(dev);
  8177. pci_release_regions(pdev);
  8178. pci_disable_device(pdev);
  8179. }
  8180. }
  8181. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8182. {
  8183. struct net_device *dev = pci_get_drvdata(pdev);
  8184. struct niu *np = netdev_priv(dev);
  8185. unsigned long flags;
  8186. if (!netif_running(dev))
  8187. return 0;
  8188. flush_work(&np->reset_task);
  8189. niu_netif_stop(np);
  8190. del_timer_sync(&np->timer);
  8191. spin_lock_irqsave(&np->lock, flags);
  8192. niu_enable_interrupts(np, 0);
  8193. spin_unlock_irqrestore(&np->lock, flags);
  8194. netif_device_detach(dev);
  8195. spin_lock_irqsave(&np->lock, flags);
  8196. niu_stop_hw(np);
  8197. spin_unlock_irqrestore(&np->lock, flags);
  8198. pci_save_state(pdev);
  8199. return 0;
  8200. }
  8201. static int niu_resume(struct pci_dev *pdev)
  8202. {
  8203. struct net_device *dev = pci_get_drvdata(pdev);
  8204. struct niu *np = netdev_priv(dev);
  8205. unsigned long flags;
  8206. int err;
  8207. if (!netif_running(dev))
  8208. return 0;
  8209. pci_restore_state(pdev);
  8210. netif_device_attach(dev);
  8211. spin_lock_irqsave(&np->lock, flags);
  8212. err = niu_init_hw(np);
  8213. if (!err) {
  8214. np->timer.expires = jiffies + HZ;
  8215. add_timer(&np->timer);
  8216. niu_netif_start(np);
  8217. }
  8218. spin_unlock_irqrestore(&np->lock, flags);
  8219. return err;
  8220. }
  8221. static struct pci_driver niu_pci_driver = {
  8222. .name = DRV_MODULE_NAME,
  8223. .id_table = niu_pci_tbl,
  8224. .probe = niu_pci_init_one,
  8225. .remove = niu_pci_remove_one,
  8226. .suspend = niu_suspend,
  8227. .resume = niu_resume,
  8228. };
  8229. #ifdef CONFIG_SPARC64
  8230. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8231. u64 *dma_addr, gfp_t flag)
  8232. {
  8233. unsigned long order = get_order(size);
  8234. unsigned long page = __get_free_pages(flag, order);
  8235. if (page == 0UL)
  8236. return NULL;
  8237. memset((char *)page, 0, PAGE_SIZE << order);
  8238. *dma_addr = __pa(page);
  8239. return (void *) page;
  8240. }
  8241. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8242. void *cpu_addr, u64 handle)
  8243. {
  8244. unsigned long order = get_order(size);
  8245. free_pages((unsigned long) cpu_addr, order);
  8246. }
  8247. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8248. unsigned long offset, size_t size,
  8249. enum dma_data_direction direction)
  8250. {
  8251. return page_to_phys(page) + offset;
  8252. }
  8253. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8254. size_t size, enum dma_data_direction direction)
  8255. {
  8256. /* Nothing to do. */
  8257. }
  8258. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8259. size_t size,
  8260. enum dma_data_direction direction)
  8261. {
  8262. return __pa(cpu_addr);
  8263. }
  8264. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8265. size_t size,
  8266. enum dma_data_direction direction)
  8267. {
  8268. /* Nothing to do. */
  8269. }
  8270. static const struct niu_ops niu_phys_ops = {
  8271. .alloc_coherent = niu_phys_alloc_coherent,
  8272. .free_coherent = niu_phys_free_coherent,
  8273. .map_page = niu_phys_map_page,
  8274. .unmap_page = niu_phys_unmap_page,
  8275. .map_single = niu_phys_map_single,
  8276. .unmap_single = niu_phys_unmap_single,
  8277. };
  8278. static int niu_of_probe(struct platform_device *op)
  8279. {
  8280. union niu_parent_id parent_id;
  8281. struct net_device *dev;
  8282. struct niu *np;
  8283. const u32 *reg;
  8284. int err;
  8285. niu_driver_version();
  8286. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8287. if (!reg) {
  8288. dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n",
  8289. op->dev.of_node);
  8290. return -ENODEV;
  8291. }
  8292. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8293. &niu_phys_ops, reg[0] & 0x1);
  8294. if (!dev) {
  8295. err = -ENOMEM;
  8296. goto err_out;
  8297. }
  8298. np = netdev_priv(dev);
  8299. memset(&parent_id, 0, sizeof(parent_id));
  8300. parent_id.of = of_get_parent(op->dev.of_node);
  8301. np->parent = niu_get_parent(np, &parent_id,
  8302. PLAT_TYPE_NIU);
  8303. if (!np->parent) {
  8304. err = -ENOMEM;
  8305. goto err_out_free_dev;
  8306. }
  8307. niu_set_basic_features(dev);
  8308. np->regs = of_ioremap(&op->resource[1], 0,
  8309. resource_size(&op->resource[1]),
  8310. "niu regs");
  8311. if (!np->regs) {
  8312. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8313. err = -ENOMEM;
  8314. goto err_out_release_parent;
  8315. }
  8316. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8317. resource_size(&op->resource[2]),
  8318. "niu vregs-1");
  8319. if (!np->vir_regs_1) {
  8320. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8321. err = -ENOMEM;
  8322. goto err_out_iounmap;
  8323. }
  8324. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8325. resource_size(&op->resource[3]),
  8326. "niu vregs-2");
  8327. if (!np->vir_regs_2) {
  8328. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8329. err = -ENOMEM;
  8330. goto err_out_iounmap;
  8331. }
  8332. niu_assign_netdev_ops(dev);
  8333. err = niu_get_invariants(np);
  8334. if (err) {
  8335. if (err != -ENODEV)
  8336. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8337. goto err_out_iounmap;
  8338. }
  8339. err = register_netdev(dev);
  8340. if (err) {
  8341. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8342. goto err_out_iounmap;
  8343. }
  8344. platform_set_drvdata(op, dev);
  8345. niu_device_announce(np);
  8346. return 0;
  8347. err_out_iounmap:
  8348. if (np->vir_regs_1) {
  8349. of_iounmap(&op->resource[2], np->vir_regs_1,
  8350. resource_size(&op->resource[2]));
  8351. np->vir_regs_1 = NULL;
  8352. }
  8353. if (np->vir_regs_2) {
  8354. of_iounmap(&op->resource[3], np->vir_regs_2,
  8355. resource_size(&op->resource[3]));
  8356. np->vir_regs_2 = NULL;
  8357. }
  8358. if (np->regs) {
  8359. of_iounmap(&op->resource[1], np->regs,
  8360. resource_size(&op->resource[1]));
  8361. np->regs = NULL;
  8362. }
  8363. err_out_release_parent:
  8364. niu_put_parent(np);
  8365. err_out_free_dev:
  8366. free_netdev(dev);
  8367. err_out:
  8368. return err;
  8369. }
  8370. static int niu_of_remove(struct platform_device *op)
  8371. {
  8372. struct net_device *dev = platform_get_drvdata(op);
  8373. if (dev) {
  8374. struct niu *np = netdev_priv(dev);
  8375. unregister_netdev(dev);
  8376. if (np->vir_regs_1) {
  8377. of_iounmap(&op->resource[2], np->vir_regs_1,
  8378. resource_size(&op->resource[2]));
  8379. np->vir_regs_1 = NULL;
  8380. }
  8381. if (np->vir_regs_2) {
  8382. of_iounmap(&op->resource[3], np->vir_regs_2,
  8383. resource_size(&op->resource[3]));
  8384. np->vir_regs_2 = NULL;
  8385. }
  8386. if (np->regs) {
  8387. of_iounmap(&op->resource[1], np->regs,
  8388. resource_size(&op->resource[1]));
  8389. np->regs = NULL;
  8390. }
  8391. niu_ldg_free(np);
  8392. niu_put_parent(np);
  8393. free_netdev(dev);
  8394. }
  8395. return 0;
  8396. }
  8397. static const struct of_device_id niu_match[] = {
  8398. {
  8399. .name = "network",
  8400. .compatible = "SUNW,niusl",
  8401. },
  8402. {},
  8403. };
  8404. MODULE_DEVICE_TABLE(of, niu_match);
  8405. static struct platform_driver niu_of_driver = {
  8406. .driver = {
  8407. .name = "niu",
  8408. .of_match_table = niu_match,
  8409. },
  8410. .probe = niu_of_probe,
  8411. .remove = niu_of_remove,
  8412. };
  8413. #endif /* CONFIG_SPARC64 */
  8414. static int __init niu_init(void)
  8415. {
  8416. int err = 0;
  8417. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8418. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8419. #ifdef CONFIG_SPARC64
  8420. err = platform_driver_register(&niu_of_driver);
  8421. #endif
  8422. if (!err) {
  8423. err = pci_register_driver(&niu_pci_driver);
  8424. #ifdef CONFIG_SPARC64
  8425. if (err)
  8426. platform_driver_unregister(&niu_of_driver);
  8427. #endif
  8428. }
  8429. return err;
  8430. }
  8431. static void __exit niu_exit(void)
  8432. {
  8433. pci_unregister_driver(&niu_pci_driver);
  8434. #ifdef CONFIG_SPARC64
  8435. platform_driver_unregister(&niu_of_driver);
  8436. #endif
  8437. }
  8438. module_init(niu_init);
  8439. module_exit(niu_exit);