i40e_txrx.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /*******************************************************************************
  3. *
  4. * Intel Ethernet Controller XL710 Family Linux Driver
  5. * Copyright(c) 2013 - 2016 Intel Corporation.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program. If not, see <http://www.gnu.org/licenses/>.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. *
  22. * Contact Information:
  23. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25. *
  26. ******************************************************************************/
  27. #ifndef _I40E_TXRX_H_
  28. #define _I40E_TXRX_H_
  29. #include <net/xdp.h>
  30. /* Interrupt Throttling and Rate Limiting Goodies */
  31. #define I40E_DEFAULT_IRQ_WORK 256
  32. /* The datasheet for the X710 and XL710 indicate that the maximum value for
  33. * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  34. * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  35. * the register value which is divided by 2 lets use the actual values and
  36. * avoid an excessive amount of translation.
  37. */
  38. #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
  39. #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
  40. #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
  41. #define I40E_ITR_100K 10 /* all values below must be even */
  42. #define I40E_ITR_50K 20
  43. #define I40E_ITR_20K 50
  44. #define I40E_ITR_18K 60
  45. #define I40E_ITR_8K 122
  46. #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
  47. #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
  48. #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
  49. #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
  50. #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  51. #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  52. /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  53. * the value of the rate limit is non-zero
  54. */
  55. #define INTRL_ENA BIT(6)
  56. #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
  57. #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  58. /**
  59. * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  60. * @intrl: interrupt rate limit to convert
  61. *
  62. * This function converts a decimal interrupt rate limit to the appropriate
  63. * register format expected by the firmware when setting interrupt rate limit.
  64. */
  65. static inline u16 i40e_intrl_usec_to_reg(int intrl)
  66. {
  67. if (intrl >> 2)
  68. return ((intrl >> 2) | INTRL_ENA);
  69. else
  70. return 0;
  71. }
  72. #define I40E_INTRL_8K 125 /* 8000 ints/sec */
  73. #define I40E_INTRL_62K 16 /* 62500 ints/sec */
  74. #define I40E_INTRL_83K 12 /* 83333 ints/sec */
  75. #define I40E_QUEUE_END_OF_LIST 0x7FF
  76. /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  77. * registers and QINT registers or more generally anywhere in the manual
  78. * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  79. * register but instead is a special value meaning "don't update" ITR0/1/2.
  80. */
  81. enum i40e_dyn_idx_t {
  82. I40E_IDX_ITR0 = 0,
  83. I40E_IDX_ITR1 = 1,
  84. I40E_IDX_ITR2 = 2,
  85. I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
  86. };
  87. /* these are indexes into ITRN registers */
  88. #define I40E_RX_ITR I40E_IDX_ITR0
  89. #define I40E_TX_ITR I40E_IDX_ITR1
  90. #define I40E_PE_ITR I40E_IDX_ITR2
  91. /* Supported RSS offloads */
  92. #define I40E_DEFAULT_RSS_HENA ( \
  93. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  94. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  95. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  96. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  97. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  98. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  99. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  100. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  101. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  102. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  103. BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  104. #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  105. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  106. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  107. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  108. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  109. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  110. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  111. #define i40e_pf_get_default_rss_hena(pf) \
  112. (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
  113. I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
  114. /* Supported Rx Buffer Sizes (a multiple of 128) */
  115. #define I40E_RXBUFFER_256 256
  116. #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
  117. #define I40E_RXBUFFER_2048 2048
  118. #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
  119. #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
  120. /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
  121. * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
  122. * this adds up to 512 bytes of extra data meaning the smallest allocation
  123. * we could have is 1K.
  124. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
  125. * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
  126. */
  127. #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
  128. #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
  129. #define i40e_rx_desc i40e_32byte_rx_desc
  130. #define I40E_RX_DMA_ATTR \
  131. (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
  132. /* Attempt to maximize the headroom available for incoming frames. We
  133. * use a 2K buffer for receives and need 1536/1534 to store the data for
  134. * the frame. This leaves us with 512 bytes of room. From that we need
  135. * to deduct the space needed for the shared info and the padding needed
  136. * to IP align the frame.
  137. *
  138. * Note: For cache line sizes 256 or larger this value is going to end
  139. * up negative. In these cases we should fall back to the legacy
  140. * receive path.
  141. */
  142. #if (PAGE_SIZE < 8192)
  143. #define I40E_2K_TOO_SMALL_WITH_PADDING \
  144. ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
  145. static inline int i40e_compute_pad(int rx_buf_len)
  146. {
  147. int page_size, pad_size;
  148. page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
  149. pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
  150. return pad_size;
  151. }
  152. static inline int i40e_skb_pad(void)
  153. {
  154. int rx_buf_len;
  155. /* If a 2K buffer cannot handle a standard Ethernet frame then
  156. * optimize padding for a 3K buffer instead of a 1.5K buffer.
  157. *
  158. * For a 3K buffer we need to add enough padding to allow for
  159. * tailroom due to NET_IP_ALIGN possibly shifting us out of
  160. * cache-line alignment.
  161. */
  162. if (I40E_2K_TOO_SMALL_WITH_PADDING)
  163. rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
  164. else
  165. rx_buf_len = I40E_RXBUFFER_1536;
  166. /* if needed make room for NET_IP_ALIGN */
  167. rx_buf_len -= NET_IP_ALIGN;
  168. return i40e_compute_pad(rx_buf_len);
  169. }
  170. #define I40E_SKB_PAD i40e_skb_pad()
  171. #else
  172. #define I40E_2K_TOO_SMALL_WITH_PADDING false
  173. #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
  174. #endif
  175. /**
  176. * i40e_test_staterr - tests bits in Rx descriptor status and error fields
  177. * @rx_desc: pointer to receive descriptor (in le64 format)
  178. * @stat_err_bits: value to mask
  179. *
  180. * This function does some fast chicanery in order to return the
  181. * value of the mask which is really only used for boolean tests.
  182. * The status_error_len doesn't need to be shifted because it begins
  183. * at offset zero.
  184. */
  185. static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
  186. const u64 stat_err_bits)
  187. {
  188. return !!(rx_desc->wb.qword1.status_error_len &
  189. cpu_to_le64(stat_err_bits));
  190. }
  191. /* How many Rx Buffers do we bundle into one write to the hardware ? */
  192. #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
  193. #define I40E_RX_INCREMENT(r, i) \
  194. do { \
  195. (i)++; \
  196. if ((i) == (r)->count) \
  197. i = 0; \
  198. r->next_to_clean = i; \
  199. } while (0)
  200. #define I40E_RX_NEXT_DESC(r, i, n) \
  201. do { \
  202. (i)++; \
  203. if ((i) == (r)->count) \
  204. i = 0; \
  205. (n) = I40E_RX_DESC((r), (i)); \
  206. } while (0)
  207. #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
  208. do { \
  209. I40E_RX_NEXT_DESC((r), (i), (n)); \
  210. prefetch((n)); \
  211. } while (0)
  212. #define I40E_MAX_BUFFER_TXD 8
  213. #define I40E_MIN_TX_LEN 17
  214. /* The size limit for a transmit buffer in a descriptor is (16K - 1).
  215. * In order to align with the read requests we will align the value to
  216. * the nearest 4K which represents our maximum read request size.
  217. */
  218. #define I40E_MAX_READ_REQ_SIZE 4096
  219. #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
  220. #define I40E_MAX_DATA_PER_TXD_ALIGNED \
  221. (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
  222. /**
  223. * i40e_txd_use_count - estimate the number of descriptors needed for Tx
  224. * @size: transmit request size in bytes
  225. *
  226. * Due to hardware alignment restrictions (4K alignment), we need to
  227. * assume that we can have no more than 12K of data per descriptor, even
  228. * though each descriptor can take up to 16K - 1 bytes of aligned memory.
  229. * Thus, we need to divide by 12K. But division is slow! Instead,
  230. * we decompose the operation into shifts and one relatively cheap
  231. * multiply operation.
  232. *
  233. * To divide by 12K, we first divide by 4K, then divide by 3:
  234. * To divide by 4K, shift right by 12 bits
  235. * To divide by 3, multiply by 85, then divide by 256
  236. * (Divide by 256 is done by shifting right by 8 bits)
  237. * Finally, we add one to round up. Because 256 isn't an exact multiple of
  238. * 3, we'll underestimate near each multiple of 12K. This is actually more
  239. * accurate as we have 4K - 1 of wiggle room that we can fit into the last
  240. * segment. For our purposes this is accurate out to 1M which is orders of
  241. * magnitude greater than our largest possible GSO size.
  242. *
  243. * This would then be implemented as:
  244. * return (((size >> 12) * 85) >> 8) + 1;
  245. *
  246. * Since multiplication and division are commutative, we can reorder
  247. * operations into:
  248. * return ((size * 85) >> 20) + 1;
  249. */
  250. static inline unsigned int i40e_txd_use_count(unsigned int size)
  251. {
  252. return ((size * 85) >> 20) + 1;
  253. }
  254. /* Tx Descriptors needed, worst case */
  255. #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
  256. #define I40E_MIN_DESC_PENDING 4
  257. #define I40E_TX_FLAGS_HW_VLAN BIT(1)
  258. #define I40E_TX_FLAGS_SW_VLAN BIT(2)
  259. #define I40E_TX_FLAGS_TSO BIT(3)
  260. #define I40E_TX_FLAGS_IPV4 BIT(4)
  261. #define I40E_TX_FLAGS_IPV6 BIT(5)
  262. #define I40E_TX_FLAGS_FCCRC BIT(6)
  263. #define I40E_TX_FLAGS_FSO BIT(7)
  264. #define I40E_TX_FLAGS_TSYN BIT(8)
  265. #define I40E_TX_FLAGS_FD_SB BIT(9)
  266. #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
  267. #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
  268. #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
  269. #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
  270. #define I40E_TX_FLAGS_VLAN_SHIFT 16
  271. struct i40e_tx_buffer {
  272. struct i40e_tx_desc *next_to_watch;
  273. union {
  274. struct sk_buff *skb;
  275. void *raw_buf;
  276. };
  277. unsigned int bytecount;
  278. unsigned short gso_segs;
  279. DEFINE_DMA_UNMAP_ADDR(dma);
  280. DEFINE_DMA_UNMAP_LEN(len);
  281. u32 tx_flags;
  282. };
  283. struct i40e_rx_buffer {
  284. dma_addr_t dma;
  285. struct page *page;
  286. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  287. __u32 page_offset;
  288. #else
  289. __u16 page_offset;
  290. #endif
  291. __u16 pagecnt_bias;
  292. };
  293. struct i40e_queue_stats {
  294. u64 packets;
  295. u64 bytes;
  296. };
  297. struct i40e_tx_queue_stats {
  298. u64 restart_queue;
  299. u64 tx_busy;
  300. u64 tx_done_old;
  301. u64 tx_linearize;
  302. u64 tx_force_wb;
  303. int prev_pkt_ctr;
  304. };
  305. struct i40e_rx_queue_stats {
  306. u64 non_eop_descs;
  307. u64 alloc_page_failed;
  308. u64 alloc_buff_failed;
  309. u64 page_reuse_count;
  310. u64 realloc_count;
  311. };
  312. enum i40e_ring_state_t {
  313. __I40E_TX_FDIR_INIT_DONE,
  314. __I40E_TX_XPS_INIT_DONE,
  315. __I40E_RING_STATE_NBITS /* must be last */
  316. };
  317. /* some useful defines for virtchannel interface, which
  318. * is the only remaining user of header split
  319. */
  320. #define I40E_RX_DTYPE_NO_SPLIT 0
  321. #define I40E_RX_DTYPE_HEADER_SPLIT 1
  322. #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
  323. #define I40E_RX_SPLIT_L2 0x1
  324. #define I40E_RX_SPLIT_IP 0x2
  325. #define I40E_RX_SPLIT_TCP_UDP 0x4
  326. #define I40E_RX_SPLIT_SCTP 0x8
  327. /* struct that defines a descriptor ring, associated with a VSI */
  328. struct i40e_ring {
  329. struct i40e_ring *next; /* pointer to next ring in q_vector */
  330. void *desc; /* Descriptor ring memory */
  331. struct device *dev; /* Used for DMA mapping */
  332. struct net_device *netdev; /* netdev ring maps to */
  333. struct bpf_prog *xdp_prog;
  334. union {
  335. struct i40e_tx_buffer *tx_bi;
  336. struct i40e_rx_buffer *rx_bi;
  337. };
  338. DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
  339. u16 queue_index; /* Queue number of ring */
  340. u8 dcb_tc; /* Traffic class of ring */
  341. u8 __iomem *tail;
  342. /* high bit set means dynamic, use accessor routines to read/write.
  343. * hardware only supports 2us resolution for the ITR registers.
  344. * these values always store the USER setting, and must be converted
  345. * before programming to a register.
  346. */
  347. u16 itr_setting;
  348. u16 count; /* Number of descriptors */
  349. u16 reg_idx; /* HW register index of the ring */
  350. u16 rx_buf_len;
  351. /* used in interrupt processing */
  352. u16 next_to_use;
  353. u16 next_to_clean;
  354. u8 atr_sample_rate;
  355. u8 atr_count;
  356. bool ring_active; /* is ring online or not */
  357. bool arm_wb; /* do something to arm write back */
  358. u8 packet_stride;
  359. u16 flags;
  360. #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
  361. #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
  362. #define I40E_TXR_FLAGS_XDP BIT(2)
  363. /* stats structs */
  364. struct i40e_queue_stats stats;
  365. struct u64_stats_sync syncp;
  366. union {
  367. struct i40e_tx_queue_stats tx_stats;
  368. struct i40e_rx_queue_stats rx_stats;
  369. };
  370. unsigned int size; /* length of descriptor ring in bytes */
  371. dma_addr_t dma; /* physical address of ring */
  372. struct i40e_vsi *vsi; /* Backreference to associated VSI */
  373. struct i40e_q_vector *q_vector; /* Backreference to associated vector */
  374. struct rcu_head rcu; /* to avoid race on free */
  375. u16 next_to_alloc;
  376. struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
  377. * return before it sees the EOP for
  378. * the current packet, we save that skb
  379. * here and resume receiving this
  380. * packet the next time
  381. * i40e_clean_rx_ring_irq() is called
  382. * for this ring.
  383. */
  384. struct i40e_channel *ch;
  385. struct xdp_rxq_info xdp_rxq;
  386. } ____cacheline_internodealigned_in_smp;
  387. static inline bool ring_uses_build_skb(struct i40e_ring *ring)
  388. {
  389. return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
  390. }
  391. static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
  392. {
  393. ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  394. }
  395. static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
  396. {
  397. ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  398. }
  399. static inline bool ring_is_xdp(struct i40e_ring *ring)
  400. {
  401. return !!(ring->flags & I40E_TXR_FLAGS_XDP);
  402. }
  403. static inline void set_ring_xdp(struct i40e_ring *ring)
  404. {
  405. ring->flags |= I40E_TXR_FLAGS_XDP;
  406. }
  407. #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
  408. #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
  409. #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
  410. #define I40E_ITR_ADAPTIVE_LATENCY 0x8000
  411. #define I40E_ITR_ADAPTIVE_BULK 0x0000
  412. #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
  413. struct i40e_ring_container {
  414. struct i40e_ring *ring; /* pointer to linked list of ring(s) */
  415. unsigned long next_update; /* jiffies value of next update */
  416. unsigned int total_bytes; /* total bytes processed this int */
  417. unsigned int total_packets; /* total packets processed this int */
  418. u16 count;
  419. u16 target_itr; /* target ITR setting for ring(s) */
  420. u16 current_itr; /* current ITR setting for ring(s) */
  421. };
  422. /* iterator for handling rings in ring container */
  423. #define i40e_for_each_ring(pos, head) \
  424. for (pos = (head).ring; pos != NULL; pos = pos->next)
  425. static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
  426. {
  427. #if (PAGE_SIZE < 8192)
  428. if (ring->rx_buf_len > (PAGE_SIZE / 2))
  429. return 1;
  430. #endif
  431. return 0;
  432. }
  433. #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
  434. bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
  435. netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  436. void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
  437. void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
  438. int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
  439. int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
  440. void i40e_free_tx_resources(struct i40e_ring *tx_ring);
  441. void i40e_free_rx_resources(struct i40e_ring *rx_ring);
  442. int i40e_napi_poll(struct napi_struct *napi, int budget);
  443. void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
  444. u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
  445. void i40e_detect_recover_hung(struct i40e_vsi *vsi);
  446. int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
  447. bool __i40e_chk_linearize(struct sk_buff *skb);
  448. int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp);
  449. void i40e_xdp_flush(struct net_device *dev);
  450. /**
  451. * i40e_get_head - Retrieve head from head writeback
  452. * @tx_ring: tx ring to fetch head of
  453. *
  454. * Returns value of Tx ring head based on value stored
  455. * in head write-back location
  456. **/
  457. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  458. {
  459. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  460. return le32_to_cpu(*(volatile __le32 *)head);
  461. }
  462. /**
  463. * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
  464. * @skb: send buffer
  465. * @tx_ring: ring to send buffer on
  466. *
  467. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  468. * there is not enough descriptors available in this ring since we need at least
  469. * one descriptor.
  470. **/
  471. static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
  472. {
  473. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  474. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  475. int count = 0, size = skb_headlen(skb);
  476. for (;;) {
  477. count += i40e_txd_use_count(size);
  478. if (!nr_frags--)
  479. break;
  480. size = skb_frag_size(frag++);
  481. }
  482. return count;
  483. }
  484. /**
  485. * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
  486. * @tx_ring: the ring to be checked
  487. * @size: the size buffer we want to assure is available
  488. *
  489. * Returns 0 if stop is not needed
  490. **/
  491. static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  492. {
  493. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  494. return 0;
  495. return __i40e_maybe_stop_tx(tx_ring, size);
  496. }
  497. /**
  498. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  499. * @skb: send buffer
  500. * @count: number of buffers used
  501. *
  502. * Note: Our HW can't scatter-gather more than 8 fragments to build
  503. * a packet on the wire and so we need to figure out the cases where we
  504. * need to linearize the skb.
  505. **/
  506. static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
  507. {
  508. /* Both TSO and single send will work if count is less than 8 */
  509. if (likely(count < I40E_MAX_BUFFER_TXD))
  510. return false;
  511. if (skb_is_gso(skb))
  512. return __i40e_chk_linearize(skb);
  513. /* we can support up to 8 data buffers for a single send */
  514. return count != I40E_MAX_BUFFER_TXD;
  515. }
  516. /**
  517. * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
  518. * @ring: Tx ring to find the netdev equivalent of
  519. **/
  520. static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
  521. {
  522. return netdev_get_tx_queue(ring->netdev, ring->queue_index);
  523. }
  524. #endif /* _I40E_TXRX_H_ */