cadence-quadspi.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*
  2. * Driver for Cadence QSPI Controller
  3. *
  4. * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/err.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/io.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/partitions.h>
  30. #include <linux/mtd/spi-nor.h>
  31. #include <linux/of_device.h>
  32. #include <linux/of.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/sched.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/timer.h>
  38. #define CQSPI_NAME "cadence-qspi"
  39. #define CQSPI_MAX_CHIPSELECT 16
  40. /* Quirks */
  41. #define CQSPI_NEEDS_WR_DELAY BIT(0)
  42. struct cqspi_st;
  43. struct cqspi_flash_pdata {
  44. struct spi_nor nor;
  45. struct cqspi_st *cqspi;
  46. u32 clk_rate;
  47. u32 read_delay;
  48. u32 tshsl_ns;
  49. u32 tsd2d_ns;
  50. u32 tchsh_ns;
  51. u32 tslch_ns;
  52. u8 inst_width;
  53. u8 addr_width;
  54. u8 data_width;
  55. u8 cs;
  56. bool registered;
  57. bool use_direct_mode;
  58. };
  59. struct cqspi_st {
  60. struct platform_device *pdev;
  61. struct clk *clk;
  62. unsigned int sclk;
  63. void __iomem *iobase;
  64. void __iomem *ahb_base;
  65. resource_size_t ahb_size;
  66. struct completion transfer_complete;
  67. struct mutex bus_mutex;
  68. int current_cs;
  69. int current_page_size;
  70. int current_erase_size;
  71. int current_addr_width;
  72. unsigned long master_ref_clk_hz;
  73. bool is_decoded_cs;
  74. u32 fifo_depth;
  75. u32 fifo_width;
  76. bool rclk_en;
  77. u32 trigger_address;
  78. u32 wr_delay;
  79. struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  80. };
  81. /* Operation timeout value */
  82. #define CQSPI_TIMEOUT_MS 500
  83. #define CQSPI_READ_TIMEOUT_MS 10
  84. /* Instruction type */
  85. #define CQSPI_INST_TYPE_SINGLE 0
  86. #define CQSPI_INST_TYPE_DUAL 1
  87. #define CQSPI_INST_TYPE_QUAD 2
  88. #define CQSPI_DUMMY_CLKS_PER_BYTE 8
  89. #define CQSPI_DUMMY_BYTES_MAX 4
  90. #define CQSPI_DUMMY_CLKS_MAX 31
  91. #define CQSPI_STIG_DATA_LEN_MAX 8
  92. /* Register map */
  93. #define CQSPI_REG_CONFIG 0x00
  94. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  95. #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
  96. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  97. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  98. #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
  99. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  100. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  101. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  102. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  103. #define CQSPI_REG_RD_INSTR 0x04
  104. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  105. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  106. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  107. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  108. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  109. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  110. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  111. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  112. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  113. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  114. #define CQSPI_REG_WR_INSTR 0x08
  115. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  116. #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
  117. #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
  118. #define CQSPI_REG_DELAY 0x0C
  119. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  120. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  121. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  122. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  123. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  124. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  125. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  126. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  127. #define CQSPI_REG_READCAPTURE 0x10
  128. #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
  129. #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
  130. #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
  131. #define CQSPI_REG_SIZE 0x14
  132. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  133. #define CQSPI_REG_SIZE_PAGE_LSB 4
  134. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  135. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  136. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  137. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  138. #define CQSPI_REG_SRAMPARTITION 0x18
  139. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  140. #define CQSPI_REG_DMA 0x20
  141. #define CQSPI_REG_DMA_SINGLE_LSB 0
  142. #define CQSPI_REG_DMA_BURST_LSB 8
  143. #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
  144. #define CQSPI_REG_DMA_BURST_MASK 0xFF
  145. #define CQSPI_REG_REMAP 0x24
  146. #define CQSPI_REG_MODE_BIT 0x28
  147. #define CQSPI_REG_SDRAMLEVEL 0x2C
  148. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  149. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  150. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  151. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  152. #define CQSPI_REG_IRQSTATUS 0x40
  153. #define CQSPI_REG_IRQMASK 0x44
  154. #define CQSPI_REG_INDIRECTRD 0x60
  155. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  156. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  157. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  158. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  159. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  160. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  161. #define CQSPI_REG_CMDCTRL 0x90
  162. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  163. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  164. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  165. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  166. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  167. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  168. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  169. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  170. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  171. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  172. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  173. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  174. #define CQSPI_REG_INDIRECTWR 0x70
  175. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  176. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  177. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  178. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  179. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  180. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  181. #define CQSPI_REG_CMDADDRESS 0x94
  182. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  183. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  184. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  185. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  186. /* Interrupt status bits */
  187. #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
  188. #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
  189. #define CQSPI_REG_IRQ_IND_COMP BIT(2)
  190. #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
  191. #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
  192. #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
  193. #define CQSPI_REG_IRQ_WATERMARK BIT(6)
  194. #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
  195. #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
  196. CQSPI_REG_IRQ_IND_SRAM_FULL | \
  197. CQSPI_REG_IRQ_IND_COMP)
  198. #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
  199. CQSPI_REG_IRQ_WATERMARK | \
  200. CQSPI_REG_IRQ_UNDERFLOW)
  201. #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
  202. static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
  203. {
  204. unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  205. u32 val;
  206. while (1) {
  207. val = readl(reg);
  208. if (clear)
  209. val = ~val;
  210. val &= mask;
  211. if (val == mask)
  212. return 0;
  213. if (time_after(jiffies, end))
  214. return -ETIMEDOUT;
  215. }
  216. }
  217. static bool cqspi_is_idle(struct cqspi_st *cqspi)
  218. {
  219. u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  220. return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
  221. }
  222. static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
  223. {
  224. u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
  225. reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
  226. return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
  227. }
  228. static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
  229. {
  230. struct cqspi_st *cqspi = dev;
  231. unsigned int irq_status;
  232. /* Read interrupt status */
  233. irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
  234. /* Clear interrupt */
  235. writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
  236. irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
  237. if (irq_status)
  238. complete(&cqspi->transfer_complete);
  239. return IRQ_HANDLED;
  240. }
  241. static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
  242. {
  243. struct cqspi_flash_pdata *f_pdata = nor->priv;
  244. u32 rdreg = 0;
  245. rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
  246. rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
  247. rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  248. return rdreg;
  249. }
  250. static int cqspi_wait_idle(struct cqspi_st *cqspi)
  251. {
  252. const unsigned int poll_idle_retry = 3;
  253. unsigned int count = 0;
  254. unsigned long timeout;
  255. timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  256. while (1) {
  257. /*
  258. * Read few times in succession to ensure the controller
  259. * is indeed idle, that is, the bit does not transition
  260. * low again.
  261. */
  262. if (cqspi_is_idle(cqspi))
  263. count++;
  264. else
  265. count = 0;
  266. if (count >= poll_idle_retry)
  267. return 0;
  268. if (time_after(jiffies, timeout)) {
  269. /* Timeout, in busy mode. */
  270. dev_err(&cqspi->pdev->dev,
  271. "QSPI is still busy after %dms timeout.\n",
  272. CQSPI_TIMEOUT_MS);
  273. return -ETIMEDOUT;
  274. }
  275. cpu_relax();
  276. }
  277. }
  278. static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
  279. {
  280. void __iomem *reg_base = cqspi->iobase;
  281. int ret;
  282. /* Write the CMDCTRL without start execution. */
  283. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  284. /* Start execute */
  285. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  286. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  287. /* Polling for completion. */
  288. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
  289. CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
  290. if (ret) {
  291. dev_err(&cqspi->pdev->dev,
  292. "Flash command execution timed out.\n");
  293. return ret;
  294. }
  295. /* Polling QSPI idle status. */
  296. return cqspi_wait_idle(cqspi);
  297. }
  298. static int cqspi_command_read(struct spi_nor *nor,
  299. const u8 *txbuf, const unsigned n_tx,
  300. u8 *rxbuf, const unsigned n_rx)
  301. {
  302. struct cqspi_flash_pdata *f_pdata = nor->priv;
  303. struct cqspi_st *cqspi = f_pdata->cqspi;
  304. void __iomem *reg_base = cqspi->iobase;
  305. unsigned int rdreg;
  306. unsigned int reg;
  307. unsigned int read_len;
  308. int status;
  309. if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
  310. dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
  311. n_rx, rxbuf);
  312. return -EINVAL;
  313. }
  314. reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  315. rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
  316. writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
  317. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  318. /* 0 means 1 byte. */
  319. reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  320. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  321. status = cqspi_exec_flash_cmd(cqspi, reg);
  322. if (status)
  323. return status;
  324. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  325. /* Put the read value into rx_buf */
  326. read_len = (n_rx > 4) ? 4 : n_rx;
  327. memcpy(rxbuf, &reg, read_len);
  328. rxbuf += read_len;
  329. if (n_rx > 4) {
  330. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  331. read_len = n_rx - read_len;
  332. memcpy(rxbuf, &reg, read_len);
  333. }
  334. return 0;
  335. }
  336. static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
  337. const u8 *txbuf, const unsigned n_tx)
  338. {
  339. struct cqspi_flash_pdata *f_pdata = nor->priv;
  340. struct cqspi_st *cqspi = f_pdata->cqspi;
  341. void __iomem *reg_base = cqspi->iobase;
  342. unsigned int reg;
  343. unsigned int data;
  344. int ret;
  345. if (n_tx > 4 || (n_tx && !txbuf)) {
  346. dev_err(nor->dev,
  347. "Invalid input argument, cmdlen %d txbuf 0x%p\n",
  348. n_tx, txbuf);
  349. return -EINVAL;
  350. }
  351. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  352. if (n_tx) {
  353. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  354. reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  355. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  356. data = 0;
  357. memcpy(&data, txbuf, n_tx);
  358. writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
  359. }
  360. ret = cqspi_exec_flash_cmd(cqspi, reg);
  361. return ret;
  362. }
  363. static int cqspi_command_write_addr(struct spi_nor *nor,
  364. const u8 opcode, const unsigned int addr)
  365. {
  366. struct cqspi_flash_pdata *f_pdata = nor->priv;
  367. struct cqspi_st *cqspi = f_pdata->cqspi;
  368. void __iomem *reg_base = cqspi->iobase;
  369. unsigned int reg;
  370. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  371. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  372. reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  373. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  374. writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
  375. return cqspi_exec_flash_cmd(cqspi, reg);
  376. }
  377. static int cqspi_read_setup(struct spi_nor *nor)
  378. {
  379. struct cqspi_flash_pdata *f_pdata = nor->priv;
  380. struct cqspi_st *cqspi = f_pdata->cqspi;
  381. void __iomem *reg_base = cqspi->iobase;
  382. unsigned int dummy_clk = 0;
  383. unsigned int reg;
  384. reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  385. reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
  386. /* Setup dummy clock cycles */
  387. dummy_clk = nor->read_dummy;
  388. if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
  389. dummy_clk = CQSPI_DUMMY_CLKS_MAX;
  390. if (dummy_clk / 8) {
  391. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  392. /* Set mode bits high to ensure chip doesn't enter XIP */
  393. writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
  394. /* Need to subtract the mode byte (8 clocks). */
  395. if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
  396. dummy_clk -= 8;
  397. if (dummy_clk)
  398. reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  399. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  400. }
  401. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  402. /* Set address width */
  403. reg = readl(reg_base + CQSPI_REG_SIZE);
  404. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  405. reg |= (nor->addr_width - 1);
  406. writel(reg, reg_base + CQSPI_REG_SIZE);
  407. return 0;
  408. }
  409. static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
  410. loff_t from_addr, const size_t n_rx)
  411. {
  412. struct cqspi_flash_pdata *f_pdata = nor->priv;
  413. struct cqspi_st *cqspi = f_pdata->cqspi;
  414. void __iomem *reg_base = cqspi->iobase;
  415. void __iomem *ahb_base = cqspi->ahb_base;
  416. unsigned int remaining = n_rx;
  417. unsigned int mod_bytes = n_rx % 4;
  418. unsigned int bytes_to_read = 0;
  419. u8 *rxbuf_end = rxbuf + n_rx;
  420. int ret = 0;
  421. writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
  422. writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
  423. /* Clear all interrupts. */
  424. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  425. writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
  426. reinit_completion(&cqspi->transfer_complete);
  427. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  428. reg_base + CQSPI_REG_INDIRECTRD);
  429. while (remaining > 0) {
  430. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  431. msecs_to_jiffies
  432. (CQSPI_READ_TIMEOUT_MS));
  433. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  434. if (!ret && bytes_to_read == 0) {
  435. dev_err(nor->dev, "Indirect read timeout, no bytes\n");
  436. ret = -ETIMEDOUT;
  437. goto failrd;
  438. }
  439. while (bytes_to_read != 0) {
  440. unsigned int word_remain = round_down(remaining, 4);
  441. bytes_to_read *= cqspi->fifo_width;
  442. bytes_to_read = bytes_to_read > remaining ?
  443. remaining : bytes_to_read;
  444. bytes_to_read = round_down(bytes_to_read, 4);
  445. /* Read 4 byte word chunks then single bytes */
  446. if (bytes_to_read) {
  447. ioread32_rep(ahb_base, rxbuf,
  448. (bytes_to_read / 4));
  449. } else if (!word_remain && mod_bytes) {
  450. unsigned int temp = ioread32(ahb_base);
  451. bytes_to_read = mod_bytes;
  452. memcpy(rxbuf, &temp, min((unsigned int)
  453. (rxbuf_end - rxbuf),
  454. bytes_to_read));
  455. }
  456. rxbuf += bytes_to_read;
  457. remaining -= bytes_to_read;
  458. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  459. }
  460. if (remaining > 0)
  461. reinit_completion(&cqspi->transfer_complete);
  462. }
  463. /* Check indirect done status */
  464. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
  465. CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
  466. if (ret) {
  467. dev_err(nor->dev,
  468. "Indirect read completion error (%i)\n", ret);
  469. goto failrd;
  470. }
  471. /* Disable interrupt */
  472. writel(0, reg_base + CQSPI_REG_IRQMASK);
  473. /* Clear indirect completion status */
  474. writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
  475. return 0;
  476. failrd:
  477. /* Disable interrupt */
  478. writel(0, reg_base + CQSPI_REG_IRQMASK);
  479. /* Cancel the indirect read */
  480. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  481. reg_base + CQSPI_REG_INDIRECTRD);
  482. return ret;
  483. }
  484. static int cqspi_write_setup(struct spi_nor *nor)
  485. {
  486. unsigned int reg;
  487. struct cqspi_flash_pdata *f_pdata = nor->priv;
  488. struct cqspi_st *cqspi = f_pdata->cqspi;
  489. void __iomem *reg_base = cqspi->iobase;
  490. /* Set opcode. */
  491. reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  492. writel(reg, reg_base + CQSPI_REG_WR_INSTR);
  493. reg = cqspi_calc_rdreg(nor, nor->program_opcode);
  494. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  495. reg = readl(reg_base + CQSPI_REG_SIZE);
  496. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  497. reg |= (nor->addr_width - 1);
  498. writel(reg, reg_base + CQSPI_REG_SIZE);
  499. return 0;
  500. }
  501. static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
  502. const u8 *txbuf, const size_t n_tx)
  503. {
  504. const unsigned int page_size = nor->page_size;
  505. struct cqspi_flash_pdata *f_pdata = nor->priv;
  506. struct cqspi_st *cqspi = f_pdata->cqspi;
  507. void __iomem *reg_base = cqspi->iobase;
  508. unsigned int remaining = n_tx;
  509. unsigned int write_bytes;
  510. int ret;
  511. writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
  512. writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
  513. /* Clear all interrupts. */
  514. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  515. writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
  516. reinit_completion(&cqspi->transfer_complete);
  517. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  518. reg_base + CQSPI_REG_INDIRECTWR);
  519. /*
  520. * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
  521. * Controller programming sequence, couple of cycles of
  522. * QSPI_REF_CLK delay is required for the above bit to
  523. * be internally synchronized by the QSPI module. Provide 5
  524. * cycles of delay.
  525. */
  526. if (cqspi->wr_delay)
  527. ndelay(cqspi->wr_delay);
  528. while (remaining > 0) {
  529. write_bytes = remaining > page_size ? page_size : remaining;
  530. iowrite32_rep(cqspi->ahb_base, txbuf,
  531. DIV_ROUND_UP(write_bytes, 4));
  532. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  533. msecs_to_jiffies
  534. (CQSPI_TIMEOUT_MS));
  535. if (!ret) {
  536. dev_err(nor->dev, "Indirect write timeout\n");
  537. ret = -ETIMEDOUT;
  538. goto failwr;
  539. }
  540. txbuf += write_bytes;
  541. remaining -= write_bytes;
  542. if (remaining > 0)
  543. reinit_completion(&cqspi->transfer_complete);
  544. }
  545. /* Check indirect done status */
  546. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
  547. CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
  548. if (ret) {
  549. dev_err(nor->dev,
  550. "Indirect write completion error (%i)\n", ret);
  551. goto failwr;
  552. }
  553. /* Disable interrupt. */
  554. writel(0, reg_base + CQSPI_REG_IRQMASK);
  555. /* Clear indirect completion status */
  556. writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
  557. cqspi_wait_idle(cqspi);
  558. return 0;
  559. failwr:
  560. /* Disable interrupt. */
  561. writel(0, reg_base + CQSPI_REG_IRQMASK);
  562. /* Cancel the indirect write */
  563. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  564. reg_base + CQSPI_REG_INDIRECTWR);
  565. return ret;
  566. }
  567. static void cqspi_chipselect(struct spi_nor *nor)
  568. {
  569. struct cqspi_flash_pdata *f_pdata = nor->priv;
  570. struct cqspi_st *cqspi = f_pdata->cqspi;
  571. void __iomem *reg_base = cqspi->iobase;
  572. unsigned int chip_select = f_pdata->cs;
  573. unsigned int reg;
  574. reg = readl(reg_base + CQSPI_REG_CONFIG);
  575. if (cqspi->is_decoded_cs) {
  576. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  577. } else {
  578. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  579. /* Convert CS if without decoder.
  580. * CS0 to 4b'1110
  581. * CS1 to 4b'1101
  582. * CS2 to 4b'1011
  583. * CS3 to 4b'0111
  584. */
  585. chip_select = 0xF & ~(1 << chip_select);
  586. }
  587. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  588. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  589. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  590. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  591. writel(reg, reg_base + CQSPI_REG_CONFIG);
  592. }
  593. static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
  594. {
  595. struct cqspi_flash_pdata *f_pdata = nor->priv;
  596. struct cqspi_st *cqspi = f_pdata->cqspi;
  597. void __iomem *iobase = cqspi->iobase;
  598. unsigned int reg;
  599. /* configure page size and block size. */
  600. reg = readl(iobase + CQSPI_REG_SIZE);
  601. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  602. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  603. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  604. reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  605. reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
  606. reg |= (nor->addr_width - 1);
  607. writel(reg, iobase + CQSPI_REG_SIZE);
  608. /* configure the chip select */
  609. cqspi_chipselect(nor);
  610. /* Store the new configuration of the controller */
  611. cqspi->current_page_size = nor->page_size;
  612. cqspi->current_erase_size = nor->mtd.erasesize;
  613. cqspi->current_addr_width = nor->addr_width;
  614. }
  615. static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
  616. const unsigned int ns_val)
  617. {
  618. unsigned int ticks;
  619. ticks = ref_clk_hz / 1000; /* kHz */
  620. ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
  621. return ticks;
  622. }
  623. static void cqspi_delay(struct spi_nor *nor)
  624. {
  625. struct cqspi_flash_pdata *f_pdata = nor->priv;
  626. struct cqspi_st *cqspi = f_pdata->cqspi;
  627. void __iomem *iobase = cqspi->iobase;
  628. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  629. unsigned int tshsl, tchsh, tslch, tsd2d;
  630. unsigned int reg;
  631. unsigned int tsclk;
  632. /* calculate the number of ref ticks for one sclk tick */
  633. tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
  634. tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
  635. /* this particular value must be at least one sclk */
  636. if (tshsl < tsclk)
  637. tshsl = tsclk;
  638. tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
  639. tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
  640. tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
  641. reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  642. << CQSPI_REG_DELAY_TSHSL_LSB;
  643. reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  644. << CQSPI_REG_DELAY_TCHSH_LSB;
  645. reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  646. << CQSPI_REG_DELAY_TSLCH_LSB;
  647. reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  648. << CQSPI_REG_DELAY_TSD2D_LSB;
  649. writel(reg, iobase + CQSPI_REG_DELAY);
  650. }
  651. static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
  652. {
  653. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  654. void __iomem *reg_base = cqspi->iobase;
  655. u32 reg, div;
  656. /* Recalculate the baudrate divisor based on QSPI specification. */
  657. div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
  658. reg = readl(reg_base + CQSPI_REG_CONFIG);
  659. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  660. reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  661. writel(reg, reg_base + CQSPI_REG_CONFIG);
  662. }
  663. static void cqspi_readdata_capture(struct cqspi_st *cqspi,
  664. const bool bypass,
  665. const unsigned int delay)
  666. {
  667. void __iomem *reg_base = cqspi->iobase;
  668. unsigned int reg;
  669. reg = readl(reg_base + CQSPI_REG_READCAPTURE);
  670. if (bypass)
  671. reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  672. else
  673. reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  674. reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
  675. << CQSPI_REG_READCAPTURE_DELAY_LSB);
  676. reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
  677. << CQSPI_REG_READCAPTURE_DELAY_LSB;
  678. writel(reg, reg_base + CQSPI_REG_READCAPTURE);
  679. }
  680. static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
  681. {
  682. void __iomem *reg_base = cqspi->iobase;
  683. unsigned int reg;
  684. reg = readl(reg_base + CQSPI_REG_CONFIG);
  685. if (enable)
  686. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  687. else
  688. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  689. writel(reg, reg_base + CQSPI_REG_CONFIG);
  690. }
  691. static void cqspi_configure(struct spi_nor *nor)
  692. {
  693. struct cqspi_flash_pdata *f_pdata = nor->priv;
  694. struct cqspi_st *cqspi = f_pdata->cqspi;
  695. const unsigned int sclk = f_pdata->clk_rate;
  696. int switch_cs = (cqspi->current_cs != f_pdata->cs);
  697. int switch_ck = (cqspi->sclk != sclk);
  698. if ((cqspi->current_page_size != nor->page_size) ||
  699. (cqspi->current_erase_size != nor->mtd.erasesize) ||
  700. (cqspi->current_addr_width != nor->addr_width))
  701. switch_cs = 1;
  702. if (switch_cs || switch_ck)
  703. cqspi_controller_enable(cqspi, 0);
  704. /* Switch chip select. */
  705. if (switch_cs) {
  706. cqspi->current_cs = f_pdata->cs;
  707. cqspi_configure_cs_and_sizes(nor);
  708. }
  709. /* Setup baudrate divisor and delays */
  710. if (switch_ck) {
  711. cqspi->sclk = sclk;
  712. cqspi_config_baudrate_div(cqspi);
  713. cqspi_delay(nor);
  714. cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
  715. f_pdata->read_delay);
  716. }
  717. if (switch_cs || switch_ck)
  718. cqspi_controller_enable(cqspi, 1);
  719. }
  720. static int cqspi_set_protocol(struct spi_nor *nor, const int read)
  721. {
  722. struct cqspi_flash_pdata *f_pdata = nor->priv;
  723. f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
  724. f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
  725. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  726. if (read) {
  727. switch (nor->read_proto) {
  728. case SNOR_PROTO_1_1_1:
  729. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  730. break;
  731. case SNOR_PROTO_1_1_2:
  732. f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
  733. break;
  734. case SNOR_PROTO_1_1_4:
  735. f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
  736. break;
  737. default:
  738. return -EINVAL;
  739. }
  740. }
  741. cqspi_configure(nor);
  742. return 0;
  743. }
  744. static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
  745. size_t len, const u_char *buf)
  746. {
  747. struct cqspi_flash_pdata *f_pdata = nor->priv;
  748. struct cqspi_st *cqspi = f_pdata->cqspi;
  749. int ret;
  750. ret = cqspi_set_protocol(nor, 0);
  751. if (ret)
  752. return ret;
  753. ret = cqspi_write_setup(nor);
  754. if (ret)
  755. return ret;
  756. if (f_pdata->use_direct_mode)
  757. memcpy_toio(cqspi->ahb_base + to, buf, len);
  758. else
  759. ret = cqspi_indirect_write_execute(nor, to, buf, len);
  760. if (ret)
  761. return ret;
  762. return len;
  763. }
  764. static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
  765. size_t len, u_char *buf)
  766. {
  767. struct cqspi_flash_pdata *f_pdata = nor->priv;
  768. struct cqspi_st *cqspi = f_pdata->cqspi;
  769. int ret;
  770. ret = cqspi_set_protocol(nor, 1);
  771. if (ret)
  772. return ret;
  773. ret = cqspi_read_setup(nor);
  774. if (ret)
  775. return ret;
  776. if (f_pdata->use_direct_mode)
  777. memcpy_fromio(buf, cqspi->ahb_base + from, len);
  778. else
  779. ret = cqspi_indirect_read_execute(nor, buf, from, len);
  780. if (ret)
  781. return ret;
  782. return len;
  783. }
  784. static int cqspi_erase(struct spi_nor *nor, loff_t offs)
  785. {
  786. int ret;
  787. ret = cqspi_set_protocol(nor, 0);
  788. if (ret)
  789. return ret;
  790. /* Send write enable, then erase commands. */
  791. ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
  792. if (ret)
  793. return ret;
  794. /* Set up command buffer. */
  795. ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
  796. if (ret)
  797. return ret;
  798. return 0;
  799. }
  800. static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  801. {
  802. struct cqspi_flash_pdata *f_pdata = nor->priv;
  803. struct cqspi_st *cqspi = f_pdata->cqspi;
  804. mutex_lock(&cqspi->bus_mutex);
  805. return 0;
  806. }
  807. static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  808. {
  809. struct cqspi_flash_pdata *f_pdata = nor->priv;
  810. struct cqspi_st *cqspi = f_pdata->cqspi;
  811. mutex_unlock(&cqspi->bus_mutex);
  812. }
  813. static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  814. {
  815. int ret;
  816. ret = cqspi_set_protocol(nor, 0);
  817. if (!ret)
  818. ret = cqspi_command_read(nor, &opcode, 1, buf, len);
  819. return ret;
  820. }
  821. static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  822. {
  823. int ret;
  824. ret = cqspi_set_protocol(nor, 0);
  825. if (!ret)
  826. ret = cqspi_command_write(nor, opcode, buf, len);
  827. return ret;
  828. }
  829. static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
  830. struct cqspi_flash_pdata *f_pdata,
  831. struct device_node *np)
  832. {
  833. if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
  834. dev_err(&pdev->dev, "couldn't determine read-delay\n");
  835. return -ENXIO;
  836. }
  837. if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
  838. dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
  839. return -ENXIO;
  840. }
  841. if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
  842. dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
  843. return -ENXIO;
  844. }
  845. if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
  846. dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
  847. return -ENXIO;
  848. }
  849. if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
  850. dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
  851. return -ENXIO;
  852. }
  853. if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
  854. dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
  855. return -ENXIO;
  856. }
  857. return 0;
  858. }
  859. static int cqspi_of_get_pdata(struct platform_device *pdev)
  860. {
  861. struct device_node *np = pdev->dev.of_node;
  862. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  863. cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
  864. if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
  865. dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
  866. return -ENXIO;
  867. }
  868. if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
  869. dev_err(&pdev->dev, "couldn't determine fifo-width\n");
  870. return -ENXIO;
  871. }
  872. if (of_property_read_u32(np, "cdns,trigger-address",
  873. &cqspi->trigger_address)) {
  874. dev_err(&pdev->dev, "couldn't determine trigger-address\n");
  875. return -ENXIO;
  876. }
  877. cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
  878. return 0;
  879. }
  880. static void cqspi_controller_init(struct cqspi_st *cqspi)
  881. {
  882. u32 reg;
  883. cqspi_controller_enable(cqspi, 0);
  884. /* Configure the remap address register, no remap */
  885. writel(0, cqspi->iobase + CQSPI_REG_REMAP);
  886. /* Disable all interrupts. */
  887. writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
  888. /* Configure the SRAM split to 1:1 . */
  889. writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
  890. /* Load indirect trigger address. */
  891. writel(cqspi->trigger_address,
  892. cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
  893. /* Program read watermark -- 1/2 of the FIFO. */
  894. writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
  895. cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
  896. /* Program write watermark -- 1/8 of the FIFO. */
  897. writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
  898. cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
  899. /* Enable Direct Access Controller */
  900. reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  901. reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
  902. writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
  903. cqspi_controller_enable(cqspi, 1);
  904. }
  905. static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
  906. {
  907. const struct spi_nor_hwcaps hwcaps = {
  908. .mask = SNOR_HWCAPS_READ |
  909. SNOR_HWCAPS_READ_FAST |
  910. SNOR_HWCAPS_READ_1_1_2 |
  911. SNOR_HWCAPS_READ_1_1_4 |
  912. SNOR_HWCAPS_PP,
  913. };
  914. struct platform_device *pdev = cqspi->pdev;
  915. struct device *dev = &pdev->dev;
  916. struct cqspi_flash_pdata *f_pdata;
  917. struct spi_nor *nor;
  918. struct mtd_info *mtd;
  919. unsigned int cs;
  920. int i, ret;
  921. /* Get flash device data */
  922. for_each_available_child_of_node(dev->of_node, np) {
  923. ret = of_property_read_u32(np, "reg", &cs);
  924. if (ret) {
  925. dev_err(dev, "Couldn't determine chip select.\n");
  926. goto err;
  927. }
  928. if (cs >= CQSPI_MAX_CHIPSELECT) {
  929. ret = -EINVAL;
  930. dev_err(dev, "Chip select %d out of range.\n", cs);
  931. goto err;
  932. }
  933. f_pdata = &cqspi->f_pdata[cs];
  934. f_pdata->cqspi = cqspi;
  935. f_pdata->cs = cs;
  936. ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
  937. if (ret)
  938. goto err;
  939. nor = &f_pdata->nor;
  940. mtd = &nor->mtd;
  941. mtd->priv = nor;
  942. nor->dev = dev;
  943. spi_nor_set_flash_node(nor, np);
  944. nor->priv = f_pdata;
  945. nor->read_reg = cqspi_read_reg;
  946. nor->write_reg = cqspi_write_reg;
  947. nor->read = cqspi_read;
  948. nor->write = cqspi_write;
  949. nor->erase = cqspi_erase;
  950. nor->prepare = cqspi_prep;
  951. nor->unprepare = cqspi_unprep;
  952. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
  953. dev_name(dev), cs);
  954. if (!mtd->name) {
  955. ret = -ENOMEM;
  956. goto err;
  957. }
  958. ret = spi_nor_scan(nor, NULL, &hwcaps);
  959. if (ret)
  960. goto err;
  961. ret = mtd_device_register(mtd, NULL, 0);
  962. if (ret)
  963. goto err;
  964. f_pdata->registered = true;
  965. if (mtd->size <= cqspi->ahb_size) {
  966. f_pdata->use_direct_mode = true;
  967. dev_dbg(nor->dev, "using direct mode for %s\n",
  968. mtd->name);
  969. }
  970. }
  971. return 0;
  972. err:
  973. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  974. if (cqspi->f_pdata[i].registered)
  975. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  976. return ret;
  977. }
  978. static int cqspi_probe(struct platform_device *pdev)
  979. {
  980. struct device_node *np = pdev->dev.of_node;
  981. struct device *dev = &pdev->dev;
  982. struct cqspi_st *cqspi;
  983. struct resource *res;
  984. struct resource *res_ahb;
  985. unsigned long data;
  986. int ret;
  987. int irq;
  988. cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
  989. if (!cqspi)
  990. return -ENOMEM;
  991. mutex_init(&cqspi->bus_mutex);
  992. cqspi->pdev = pdev;
  993. platform_set_drvdata(pdev, cqspi);
  994. /* Obtain configuration from OF. */
  995. ret = cqspi_of_get_pdata(pdev);
  996. if (ret) {
  997. dev_err(dev, "Cannot get mandatory OF data.\n");
  998. return -ENODEV;
  999. }
  1000. /* Obtain QSPI clock. */
  1001. cqspi->clk = devm_clk_get(dev, NULL);
  1002. if (IS_ERR(cqspi->clk)) {
  1003. dev_err(dev, "Cannot claim QSPI clock.\n");
  1004. return PTR_ERR(cqspi->clk);
  1005. }
  1006. /* Obtain and remap controller address. */
  1007. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1008. cqspi->iobase = devm_ioremap_resource(dev, res);
  1009. if (IS_ERR(cqspi->iobase)) {
  1010. dev_err(dev, "Cannot remap controller address.\n");
  1011. return PTR_ERR(cqspi->iobase);
  1012. }
  1013. /* Obtain and remap AHB address. */
  1014. res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1015. cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
  1016. if (IS_ERR(cqspi->ahb_base)) {
  1017. dev_err(dev, "Cannot remap AHB address.\n");
  1018. return PTR_ERR(cqspi->ahb_base);
  1019. }
  1020. cqspi->ahb_size = resource_size(res_ahb);
  1021. init_completion(&cqspi->transfer_complete);
  1022. /* Obtain IRQ line. */
  1023. irq = platform_get_irq(pdev, 0);
  1024. if (irq < 0) {
  1025. dev_err(dev, "Cannot obtain IRQ.\n");
  1026. return -ENXIO;
  1027. }
  1028. pm_runtime_enable(dev);
  1029. ret = pm_runtime_get_sync(dev);
  1030. if (ret < 0) {
  1031. pm_runtime_put_noidle(dev);
  1032. return ret;
  1033. }
  1034. ret = clk_prepare_enable(cqspi->clk);
  1035. if (ret) {
  1036. dev_err(dev, "Cannot enable QSPI clock.\n");
  1037. goto probe_clk_failed;
  1038. }
  1039. cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
  1040. data = (unsigned long)of_device_get_match_data(dev);
  1041. if (data & CQSPI_NEEDS_WR_DELAY)
  1042. cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
  1043. cqspi->master_ref_clk_hz);
  1044. ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
  1045. pdev->name, cqspi);
  1046. if (ret) {
  1047. dev_err(dev, "Cannot request IRQ.\n");
  1048. goto probe_irq_failed;
  1049. }
  1050. cqspi_wait_idle(cqspi);
  1051. cqspi_controller_init(cqspi);
  1052. cqspi->current_cs = -1;
  1053. cqspi->sclk = 0;
  1054. ret = cqspi_setup_flash(cqspi, np);
  1055. if (ret) {
  1056. dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
  1057. goto probe_setup_failed;
  1058. }
  1059. return ret;
  1060. probe_setup_failed:
  1061. cqspi_controller_enable(cqspi, 0);
  1062. probe_irq_failed:
  1063. clk_disable_unprepare(cqspi->clk);
  1064. probe_clk_failed:
  1065. pm_runtime_put_sync(dev);
  1066. pm_runtime_disable(dev);
  1067. return ret;
  1068. }
  1069. static int cqspi_remove(struct platform_device *pdev)
  1070. {
  1071. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  1072. int i;
  1073. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1074. if (cqspi->f_pdata[i].registered)
  1075. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1076. cqspi_controller_enable(cqspi, 0);
  1077. clk_disable_unprepare(cqspi->clk);
  1078. pm_runtime_put_sync(&pdev->dev);
  1079. pm_runtime_disable(&pdev->dev);
  1080. return 0;
  1081. }
  1082. #ifdef CONFIG_PM_SLEEP
  1083. static int cqspi_suspend(struct device *dev)
  1084. {
  1085. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1086. cqspi_controller_enable(cqspi, 0);
  1087. return 0;
  1088. }
  1089. static int cqspi_resume(struct device *dev)
  1090. {
  1091. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1092. cqspi_controller_enable(cqspi, 1);
  1093. return 0;
  1094. }
  1095. static const struct dev_pm_ops cqspi__dev_pm_ops = {
  1096. .suspend = cqspi_suspend,
  1097. .resume = cqspi_resume,
  1098. };
  1099. #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
  1100. #else
  1101. #define CQSPI_DEV_PM_OPS NULL
  1102. #endif
  1103. static const struct of_device_id cqspi_dt_ids[] = {
  1104. {
  1105. .compatible = "cdns,qspi-nor",
  1106. .data = (void *)0,
  1107. },
  1108. {
  1109. .compatible = "ti,k2g-qspi",
  1110. .data = (void *)CQSPI_NEEDS_WR_DELAY,
  1111. },
  1112. { /* end of table */ }
  1113. };
  1114. MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
  1115. static struct platform_driver cqspi_platform_driver = {
  1116. .probe = cqspi_probe,
  1117. .remove = cqspi_remove,
  1118. .driver = {
  1119. .name = CQSPI_NAME,
  1120. .pm = CQSPI_DEV_PM_OPS,
  1121. .of_match_table = cqspi_dt_ids,
  1122. },
  1123. };
  1124. module_platform_driver(cqspi_platform_driver);
  1125. MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
  1126. MODULE_LICENSE("GPL v2");
  1127. MODULE_ALIAS("platform:" CQSPI_NAME);
  1128. MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
  1129. MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");