sdma.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426
  1. /*
  2. * Copyright(c) 2015, 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/spinlock.h>
  48. #include <linux/seqlock.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/moduleparam.h>
  51. #include <linux/bitops.h>
  52. #include <linux/timer.h>
  53. #include <linux/vmalloc.h>
  54. #include <linux/highmem.h>
  55. #include "hfi.h"
  56. #include "common.h"
  57. #include "qp.h"
  58. #include "sdma.h"
  59. #include "iowait.h"
  60. #include "trace.h"
  61. /* must be a power of 2 >= 64 <= 32768 */
  62. #define SDMA_DESCQ_CNT 2048
  63. #define SDMA_DESC_INTR 64
  64. #define INVALID_TAIL 0xffff
  65. static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  66. module_param(sdma_descq_cnt, uint, S_IRUGO);
  67. MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  68. static uint sdma_idle_cnt = 250;
  69. module_param(sdma_idle_cnt, uint, S_IRUGO);
  70. MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  71. uint mod_num_sdma;
  72. module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  73. MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  74. static uint sdma_desct_intr = SDMA_DESC_INTR;
  75. module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  76. MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  77. #define SDMA_WAIT_BATCH_SIZE 20
  78. /* max wait time for a SDMA engine to indicate it has halted */
  79. #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  80. /* all SDMA engine errors that cause a halt */
  81. #define SD(name) SEND_DMA_##name
  82. #define ALL_SDMA_ENG_HALT_ERRS \
  83. (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  84. | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  85. | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  86. | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  87. | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  88. | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  89. | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
  90. | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
  91. | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
  92. | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
  93. | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
  94. | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
  95. | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
  96. | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
  97. | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
  98. | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
  99. | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
  100. | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
  101. /* sdma_sendctrl operations */
  102. #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
  103. #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
  104. #define SDMA_SENDCTRL_OP_HALT BIT(2)
  105. #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
  106. /* handle long defines */
  107. #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
  108. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
  109. #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
  110. SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
  111. static const char * const sdma_state_names[] = {
  112. [sdma_state_s00_hw_down] = "s00_HwDown",
  113. [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
  114. [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
  115. [sdma_state_s20_idle] = "s20_Idle",
  116. [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
  117. [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
  118. [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
  119. [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
  120. [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
  121. [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
  122. [sdma_state_s99_running] = "s99_Running",
  123. };
  124. #ifdef CONFIG_SDMA_VERBOSITY
  125. static const char * const sdma_event_names[] = {
  126. [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
  127. [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
  128. [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
  129. [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
  130. [sdma_event_e30_go_running] = "e30_GoRunning",
  131. [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
  132. [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
  133. [sdma_event_e60_hw_halted] = "e60_HwHalted",
  134. [sdma_event_e70_go_idle] = "e70_GoIdle",
  135. [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
  136. [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
  137. [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
  138. [sdma_event_e85_link_down] = "e85_LinkDown",
  139. [sdma_event_e90_sw_halted] = "e90_SwHalted",
  140. };
  141. #endif
  142. static const struct sdma_set_state_action sdma_action_table[] = {
  143. [sdma_state_s00_hw_down] = {
  144. .go_s99_running_tofalse = 1,
  145. .op_enable = 0,
  146. .op_intenable = 0,
  147. .op_halt = 0,
  148. .op_cleanup = 0,
  149. },
  150. [sdma_state_s10_hw_start_up_halt_wait] = {
  151. .op_enable = 0,
  152. .op_intenable = 0,
  153. .op_halt = 1,
  154. .op_cleanup = 0,
  155. },
  156. [sdma_state_s15_hw_start_up_clean_wait] = {
  157. .op_enable = 0,
  158. .op_intenable = 1,
  159. .op_halt = 0,
  160. .op_cleanup = 1,
  161. },
  162. [sdma_state_s20_idle] = {
  163. .op_enable = 0,
  164. .op_intenable = 1,
  165. .op_halt = 0,
  166. .op_cleanup = 0,
  167. },
  168. [sdma_state_s30_sw_clean_up_wait] = {
  169. .op_enable = 0,
  170. .op_intenable = 0,
  171. .op_halt = 0,
  172. .op_cleanup = 0,
  173. },
  174. [sdma_state_s40_hw_clean_up_wait] = {
  175. .op_enable = 0,
  176. .op_intenable = 0,
  177. .op_halt = 0,
  178. .op_cleanup = 1,
  179. },
  180. [sdma_state_s50_hw_halt_wait] = {
  181. .op_enable = 0,
  182. .op_intenable = 0,
  183. .op_halt = 0,
  184. .op_cleanup = 0,
  185. },
  186. [sdma_state_s60_idle_halt_wait] = {
  187. .go_s99_running_tofalse = 1,
  188. .op_enable = 0,
  189. .op_intenable = 0,
  190. .op_halt = 1,
  191. .op_cleanup = 0,
  192. },
  193. [sdma_state_s80_hw_freeze] = {
  194. .op_enable = 0,
  195. .op_intenable = 0,
  196. .op_halt = 0,
  197. .op_cleanup = 0,
  198. },
  199. [sdma_state_s82_freeze_sw_clean] = {
  200. .op_enable = 0,
  201. .op_intenable = 0,
  202. .op_halt = 0,
  203. .op_cleanup = 0,
  204. },
  205. [sdma_state_s99_running] = {
  206. .op_enable = 1,
  207. .op_intenable = 1,
  208. .op_halt = 0,
  209. .op_cleanup = 0,
  210. .go_s99_running_totrue = 1,
  211. },
  212. };
  213. #define SDMA_TAIL_UPDATE_THRESH 0x1F
  214. /* declare all statics here rather than keep sorting */
  215. static void sdma_complete(struct kref *);
  216. static void sdma_finalput(struct sdma_state *);
  217. static void sdma_get(struct sdma_state *);
  218. static void sdma_hw_clean_up_task(unsigned long);
  219. static void sdma_put(struct sdma_state *);
  220. static void sdma_set_state(struct sdma_engine *, enum sdma_states);
  221. static void sdma_start_hw_clean_up(struct sdma_engine *);
  222. static void sdma_sw_clean_up_task(unsigned long);
  223. static void sdma_sendctrl(struct sdma_engine *, unsigned);
  224. static void init_sdma_regs(struct sdma_engine *, u32, uint);
  225. static void sdma_process_event(
  226. struct sdma_engine *sde,
  227. enum sdma_events event);
  228. static void __sdma_process_event(
  229. struct sdma_engine *sde,
  230. enum sdma_events event);
  231. static void dump_sdma_state(struct sdma_engine *sde);
  232. static void sdma_make_progress(struct sdma_engine *sde, u64 status);
  233. static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
  234. static void sdma_flush_descq(struct sdma_engine *sde);
  235. /**
  236. * sdma_state_name() - return state string from enum
  237. * @state: state
  238. */
  239. static const char *sdma_state_name(enum sdma_states state)
  240. {
  241. return sdma_state_names[state];
  242. }
  243. static void sdma_get(struct sdma_state *ss)
  244. {
  245. kref_get(&ss->kref);
  246. }
  247. static void sdma_complete(struct kref *kref)
  248. {
  249. struct sdma_state *ss =
  250. container_of(kref, struct sdma_state, kref);
  251. complete(&ss->comp);
  252. }
  253. static void sdma_put(struct sdma_state *ss)
  254. {
  255. kref_put(&ss->kref, sdma_complete);
  256. }
  257. static void sdma_finalput(struct sdma_state *ss)
  258. {
  259. sdma_put(ss);
  260. wait_for_completion(&ss->comp);
  261. }
  262. static inline void write_sde_csr(
  263. struct sdma_engine *sde,
  264. u32 offset0,
  265. u64 value)
  266. {
  267. write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
  268. }
  269. static inline u64 read_sde_csr(
  270. struct sdma_engine *sde,
  271. u32 offset0)
  272. {
  273. return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
  274. }
  275. /*
  276. * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
  277. * sdma engine 'sde' to drop to 0.
  278. */
  279. static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
  280. int pause)
  281. {
  282. u64 off = 8 * sde->this_idx;
  283. struct hfi1_devdata *dd = sde->dd;
  284. int lcnt = 0;
  285. u64 reg_prev;
  286. u64 reg = 0;
  287. while (1) {
  288. reg_prev = reg;
  289. reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
  290. reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
  291. reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
  292. if (reg == 0)
  293. break;
  294. /* counter is reest if accupancy count changes */
  295. if (reg != reg_prev)
  296. lcnt = 0;
  297. if (lcnt++ > 500) {
  298. /* timed out - bounce the link */
  299. dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
  300. __func__, sde->this_idx, (u32)reg);
  301. queue_work(dd->pport->link_wq,
  302. &dd->pport->link_bounce_work);
  303. break;
  304. }
  305. udelay(1);
  306. }
  307. }
  308. /*
  309. * sdma_wait() - wait for packet egress to complete for all SDMA engines,
  310. * and pause for credit return.
  311. */
  312. void sdma_wait(struct hfi1_devdata *dd)
  313. {
  314. int i;
  315. for (i = 0; i < dd->num_sdma; i++) {
  316. struct sdma_engine *sde = &dd->per_sdma[i];
  317. sdma_wait_for_packet_egress(sde, 0);
  318. }
  319. }
  320. static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
  321. {
  322. u64 reg;
  323. if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
  324. return;
  325. reg = cnt;
  326. reg &= SD(DESC_CNT_CNT_MASK);
  327. reg <<= SD(DESC_CNT_CNT_SHIFT);
  328. write_sde_csr(sde, SD(DESC_CNT), reg);
  329. }
  330. static inline void complete_tx(struct sdma_engine *sde,
  331. struct sdma_txreq *tx,
  332. int res)
  333. {
  334. /* protect against complete modifying */
  335. struct iowait *wait = tx->wait;
  336. callback_t complete = tx->complete;
  337. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  338. trace_hfi1_sdma_out_sn(sde, tx->sn);
  339. if (WARN_ON_ONCE(sde->head_sn != tx->sn))
  340. dd_dev_err(sde->dd, "expected %llu got %llu\n",
  341. sde->head_sn, tx->sn);
  342. sde->head_sn++;
  343. #endif
  344. __sdma_txclean(sde->dd, tx);
  345. if (complete)
  346. (*complete)(tx, res);
  347. if (wait && iowait_sdma_dec(wait))
  348. iowait_drain_wakeup(wait);
  349. }
  350. /*
  351. * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
  352. *
  353. * Depending on timing there can be txreqs in two places:
  354. * - in the descq ring
  355. * - in the flush list
  356. *
  357. * To avoid ordering issues the descq ring needs to be flushed
  358. * first followed by the flush list.
  359. *
  360. * This routine is called from two places
  361. * - From a work queue item
  362. * - Directly from the state machine just before setting the
  363. * state to running
  364. *
  365. * Must be called with head_lock held
  366. *
  367. */
  368. static void sdma_flush(struct sdma_engine *sde)
  369. {
  370. struct sdma_txreq *txp, *txp_next;
  371. LIST_HEAD(flushlist);
  372. unsigned long flags;
  373. /* flush from head to tail */
  374. sdma_flush_descq(sde);
  375. spin_lock_irqsave(&sde->flushlist_lock, flags);
  376. /* copy flush list */
  377. list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
  378. list_del_init(&txp->list);
  379. list_add_tail(&txp->list, &flushlist);
  380. }
  381. spin_unlock_irqrestore(&sde->flushlist_lock, flags);
  382. /* flush from flush list */
  383. list_for_each_entry_safe(txp, txp_next, &flushlist, list)
  384. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  385. }
  386. /*
  387. * Fields a work request for flushing the descq ring
  388. * and the flush list
  389. *
  390. * If the engine has been brought to running during
  391. * the scheduling delay, the flush is ignored, assuming
  392. * that the process of bringing the engine to running
  393. * would have done this flush prior to going to running.
  394. *
  395. */
  396. static void sdma_field_flush(struct work_struct *work)
  397. {
  398. unsigned long flags;
  399. struct sdma_engine *sde =
  400. container_of(work, struct sdma_engine, flush_worker);
  401. write_seqlock_irqsave(&sde->head_lock, flags);
  402. if (!__sdma_running(sde))
  403. sdma_flush(sde);
  404. write_sequnlock_irqrestore(&sde->head_lock, flags);
  405. }
  406. static void sdma_err_halt_wait(struct work_struct *work)
  407. {
  408. struct sdma_engine *sde = container_of(work, struct sdma_engine,
  409. err_halt_worker);
  410. u64 statuscsr;
  411. unsigned long timeout;
  412. timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
  413. while (1) {
  414. statuscsr = read_sde_csr(sde, SD(STATUS));
  415. statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
  416. if (statuscsr)
  417. break;
  418. if (time_after(jiffies, timeout)) {
  419. dd_dev_err(sde->dd,
  420. "SDMA engine %d - timeout waiting for engine to halt\n",
  421. sde->this_idx);
  422. /*
  423. * Continue anyway. This could happen if there was
  424. * an uncorrectable error in the wrong spot.
  425. */
  426. break;
  427. }
  428. usleep_range(80, 120);
  429. }
  430. sdma_process_event(sde, sdma_event_e15_hw_halt_done);
  431. }
  432. static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
  433. {
  434. if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
  435. unsigned index;
  436. struct hfi1_devdata *dd = sde->dd;
  437. for (index = 0; index < dd->num_sdma; index++) {
  438. struct sdma_engine *curr_sdma = &dd->per_sdma[index];
  439. if (curr_sdma != sde)
  440. curr_sdma->progress_check_head =
  441. curr_sdma->descq_head;
  442. }
  443. dd_dev_err(sde->dd,
  444. "SDMA engine %d - check scheduled\n",
  445. sde->this_idx);
  446. mod_timer(&sde->err_progress_check_timer, jiffies + 10);
  447. }
  448. }
  449. static void sdma_err_progress_check(struct timer_list *t)
  450. {
  451. unsigned index;
  452. struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
  453. dd_dev_err(sde->dd, "SDE progress check event\n");
  454. for (index = 0; index < sde->dd->num_sdma; index++) {
  455. struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
  456. unsigned long flags;
  457. /* check progress on each engine except the current one */
  458. if (curr_sde == sde)
  459. continue;
  460. /*
  461. * We must lock interrupts when acquiring sde->lock,
  462. * to avoid a deadlock if interrupt triggers and spins on
  463. * the same lock on same CPU
  464. */
  465. spin_lock_irqsave(&curr_sde->tail_lock, flags);
  466. write_seqlock(&curr_sde->head_lock);
  467. /* skip non-running queues */
  468. if (curr_sde->state.current_state != sdma_state_s99_running) {
  469. write_sequnlock(&curr_sde->head_lock);
  470. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  471. continue;
  472. }
  473. if ((curr_sde->descq_head != curr_sde->descq_tail) &&
  474. (curr_sde->descq_head ==
  475. curr_sde->progress_check_head))
  476. __sdma_process_event(curr_sde,
  477. sdma_event_e90_sw_halted);
  478. write_sequnlock(&curr_sde->head_lock);
  479. spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
  480. }
  481. schedule_work(&sde->err_halt_worker);
  482. }
  483. static void sdma_hw_clean_up_task(unsigned long opaque)
  484. {
  485. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  486. u64 statuscsr;
  487. while (1) {
  488. #ifdef CONFIG_SDMA_VERBOSITY
  489. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  490. sde->this_idx, slashstrip(__FILE__), __LINE__,
  491. __func__);
  492. #endif
  493. statuscsr = read_sde_csr(sde, SD(STATUS));
  494. statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
  495. if (statuscsr)
  496. break;
  497. udelay(10);
  498. }
  499. sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
  500. }
  501. static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
  502. {
  503. return sde->tx_ring[sde->tx_head & sde->sdma_mask];
  504. }
  505. /*
  506. * flush ring for recovery
  507. */
  508. static void sdma_flush_descq(struct sdma_engine *sde)
  509. {
  510. u16 head, tail;
  511. int progress = 0;
  512. struct sdma_txreq *txp = get_txhead(sde);
  513. /* The reason for some of the complexity of this code is that
  514. * not all descriptors have corresponding txps. So, we have to
  515. * be able to skip over descs until we wander into the range of
  516. * the next txp on the list.
  517. */
  518. head = sde->descq_head & sde->sdma_mask;
  519. tail = sde->descq_tail & sde->sdma_mask;
  520. while (head != tail) {
  521. /* advance head, wrap if needed */
  522. head = ++sde->descq_head & sde->sdma_mask;
  523. /* if now past this txp's descs, do the callback */
  524. if (txp && txp->next_descq_idx == head) {
  525. /* remove from list */
  526. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  527. complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
  528. trace_hfi1_sdma_progress(sde, head, tail, txp);
  529. txp = get_txhead(sde);
  530. }
  531. progress++;
  532. }
  533. if (progress)
  534. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  535. }
  536. static void sdma_sw_clean_up_task(unsigned long opaque)
  537. {
  538. struct sdma_engine *sde = (struct sdma_engine *)opaque;
  539. unsigned long flags;
  540. spin_lock_irqsave(&sde->tail_lock, flags);
  541. write_seqlock(&sde->head_lock);
  542. /*
  543. * At this point, the following should always be true:
  544. * - We are halted, so no more descriptors are getting retired.
  545. * - We are not running, so no one is submitting new work.
  546. * - Only we can send the e40_sw_cleaned, so we can't start
  547. * running again until we say so. So, the active list and
  548. * descq are ours to play with.
  549. */
  550. /*
  551. * In the error clean up sequence, software clean must be called
  552. * before the hardware clean so we can use the hardware head in
  553. * the progress routine. A hardware clean or SPC unfreeze will
  554. * reset the hardware head.
  555. *
  556. * Process all retired requests. The progress routine will use the
  557. * latest physical hardware head - we are not running so speed does
  558. * not matter.
  559. */
  560. sdma_make_progress(sde, 0);
  561. sdma_flush(sde);
  562. /*
  563. * Reset our notion of head and tail.
  564. * Note that the HW registers have been reset via an earlier
  565. * clean up.
  566. */
  567. sde->descq_tail = 0;
  568. sde->descq_head = 0;
  569. sde->desc_avail = sdma_descq_freecnt(sde);
  570. *sde->head_dma = 0;
  571. __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
  572. write_sequnlock(&sde->head_lock);
  573. spin_unlock_irqrestore(&sde->tail_lock, flags);
  574. }
  575. static void sdma_sw_tear_down(struct sdma_engine *sde)
  576. {
  577. struct sdma_state *ss = &sde->state;
  578. /* Releasing this reference means the state machine has stopped. */
  579. sdma_put(ss);
  580. /* stop waiting for all unfreeze events to complete */
  581. atomic_set(&sde->dd->sdma_unfreeze_count, -1);
  582. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  583. }
  584. static void sdma_start_hw_clean_up(struct sdma_engine *sde)
  585. {
  586. tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
  587. }
  588. static void sdma_set_state(struct sdma_engine *sde,
  589. enum sdma_states next_state)
  590. {
  591. struct sdma_state *ss = &sde->state;
  592. const struct sdma_set_state_action *action = sdma_action_table;
  593. unsigned op = 0;
  594. trace_hfi1_sdma_state(
  595. sde,
  596. sdma_state_names[ss->current_state],
  597. sdma_state_names[next_state]);
  598. /* debugging bookkeeping */
  599. ss->previous_state = ss->current_state;
  600. ss->previous_op = ss->current_op;
  601. ss->current_state = next_state;
  602. if (ss->previous_state != sdma_state_s99_running &&
  603. next_state == sdma_state_s99_running)
  604. sdma_flush(sde);
  605. if (action[next_state].op_enable)
  606. op |= SDMA_SENDCTRL_OP_ENABLE;
  607. if (action[next_state].op_intenable)
  608. op |= SDMA_SENDCTRL_OP_INTENABLE;
  609. if (action[next_state].op_halt)
  610. op |= SDMA_SENDCTRL_OP_HALT;
  611. if (action[next_state].op_cleanup)
  612. op |= SDMA_SENDCTRL_OP_CLEANUP;
  613. if (action[next_state].go_s99_running_tofalse)
  614. ss->go_s99_running = 0;
  615. if (action[next_state].go_s99_running_totrue)
  616. ss->go_s99_running = 1;
  617. ss->current_op = op;
  618. sdma_sendctrl(sde, ss->current_op);
  619. }
  620. /**
  621. * sdma_get_descq_cnt() - called when device probed
  622. *
  623. * Return a validated descq count.
  624. *
  625. * This is currently only used in the verbs initialization to build the tx
  626. * list.
  627. *
  628. * This will probably be deleted in favor of a more scalable approach to
  629. * alloc tx's.
  630. *
  631. */
  632. u16 sdma_get_descq_cnt(void)
  633. {
  634. u16 count = sdma_descq_cnt;
  635. if (!count)
  636. return SDMA_DESCQ_CNT;
  637. /* count must be a power of 2 greater than 64 and less than
  638. * 32768. Otherwise return default.
  639. */
  640. if (!is_power_of_2(count))
  641. return SDMA_DESCQ_CNT;
  642. if (count < 64 || count > 32768)
  643. return SDMA_DESCQ_CNT;
  644. return count;
  645. }
  646. /**
  647. * sdma_engine_get_vl() - return vl for a given sdma engine
  648. * @sde: sdma engine
  649. *
  650. * This function returns the vl mapped to a given engine, or an error if
  651. * the mapping can't be found. The mapping fields are protected by RCU.
  652. */
  653. int sdma_engine_get_vl(struct sdma_engine *sde)
  654. {
  655. struct hfi1_devdata *dd = sde->dd;
  656. struct sdma_vl_map *m;
  657. u8 vl;
  658. if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
  659. return -EINVAL;
  660. rcu_read_lock();
  661. m = rcu_dereference(dd->sdma_map);
  662. if (unlikely(!m)) {
  663. rcu_read_unlock();
  664. return -EINVAL;
  665. }
  666. vl = m->engine_to_vl[sde->this_idx];
  667. rcu_read_unlock();
  668. return vl;
  669. }
  670. /**
  671. * sdma_select_engine_vl() - select sdma engine
  672. * @dd: devdata
  673. * @selector: a spreading factor
  674. * @vl: this vl
  675. *
  676. *
  677. * This function returns an engine based on the selector and a vl. The
  678. * mapping fields are protected by RCU.
  679. */
  680. struct sdma_engine *sdma_select_engine_vl(
  681. struct hfi1_devdata *dd,
  682. u32 selector,
  683. u8 vl)
  684. {
  685. struct sdma_vl_map *m;
  686. struct sdma_map_elem *e;
  687. struct sdma_engine *rval;
  688. /* NOTE This should only happen if SC->VL changed after the initial
  689. * checks on the QP/AH
  690. * Default will return engine 0 below
  691. */
  692. if (vl >= num_vls) {
  693. rval = NULL;
  694. goto done;
  695. }
  696. rcu_read_lock();
  697. m = rcu_dereference(dd->sdma_map);
  698. if (unlikely(!m)) {
  699. rcu_read_unlock();
  700. return &dd->per_sdma[0];
  701. }
  702. e = m->map[vl & m->mask];
  703. rval = e->sde[selector & e->mask];
  704. rcu_read_unlock();
  705. done:
  706. rval = !rval ? &dd->per_sdma[0] : rval;
  707. trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
  708. return rval;
  709. }
  710. /**
  711. * sdma_select_engine_sc() - select sdma engine
  712. * @dd: devdata
  713. * @selector: a spreading factor
  714. * @sc5: the 5 bit sc
  715. *
  716. *
  717. * This function returns an engine based on the selector and an sc.
  718. */
  719. struct sdma_engine *sdma_select_engine_sc(
  720. struct hfi1_devdata *dd,
  721. u32 selector,
  722. u8 sc5)
  723. {
  724. u8 vl = sc_to_vlt(dd, sc5);
  725. return sdma_select_engine_vl(dd, selector, vl);
  726. }
  727. struct sdma_rht_map_elem {
  728. u32 mask;
  729. u8 ctr;
  730. struct sdma_engine *sde[0];
  731. };
  732. struct sdma_rht_node {
  733. unsigned long cpu_id;
  734. struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
  735. struct rhash_head node;
  736. };
  737. #define NR_CPUS_HINT 192
  738. static const struct rhashtable_params sdma_rht_params = {
  739. .nelem_hint = NR_CPUS_HINT,
  740. .head_offset = offsetof(struct sdma_rht_node, node),
  741. .key_offset = offsetof(struct sdma_rht_node, cpu_id),
  742. .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
  743. .max_size = NR_CPUS,
  744. .min_size = 8,
  745. .automatic_shrinking = true,
  746. };
  747. /*
  748. * sdma_select_user_engine() - select sdma engine based on user setup
  749. * @dd: devdata
  750. * @selector: a spreading factor
  751. * @vl: this vl
  752. *
  753. * This function returns an sdma engine for a user sdma request.
  754. * User defined sdma engine affinity setting is honored when applicable,
  755. * otherwise system default sdma engine mapping is used. To ensure correct
  756. * ordering, the mapping from <selector, vl> to sde must remain unchanged.
  757. */
  758. struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
  759. u32 selector, u8 vl)
  760. {
  761. struct sdma_rht_node *rht_node;
  762. struct sdma_engine *sde = NULL;
  763. const struct cpumask *current_mask = &current->cpus_allowed;
  764. unsigned long cpu_id;
  765. /*
  766. * To ensure that always the same sdma engine(s) will be
  767. * selected make sure the process is pinned to this CPU only.
  768. */
  769. if (cpumask_weight(current_mask) != 1)
  770. goto out;
  771. cpu_id = smp_processor_id();
  772. rcu_read_lock();
  773. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
  774. sdma_rht_params);
  775. if (rht_node && rht_node->map[vl]) {
  776. struct sdma_rht_map_elem *map = rht_node->map[vl];
  777. sde = map->sde[selector & map->mask];
  778. }
  779. rcu_read_unlock();
  780. if (sde)
  781. return sde;
  782. out:
  783. return sdma_select_engine_vl(dd, selector, vl);
  784. }
  785. static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
  786. {
  787. int i;
  788. for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
  789. map->sde[map->ctr + i] = map->sde[i];
  790. }
  791. static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
  792. struct sdma_engine *sde)
  793. {
  794. unsigned int i, pow;
  795. /* only need to check the first ctr entries for a match */
  796. for (i = 0; i < map->ctr; i++) {
  797. if (map->sde[i] == sde) {
  798. memmove(&map->sde[i], &map->sde[i + 1],
  799. (map->ctr - i - 1) * sizeof(map->sde[0]));
  800. map->ctr--;
  801. pow = roundup_pow_of_two(map->ctr ? : 1);
  802. map->mask = pow - 1;
  803. sdma_populate_sde_map(map);
  804. break;
  805. }
  806. }
  807. }
  808. /*
  809. * Prevents concurrent reads and writes of the sdma engine cpu_mask
  810. */
  811. static DEFINE_MUTEX(process_to_sde_mutex);
  812. ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
  813. size_t count)
  814. {
  815. struct hfi1_devdata *dd = sde->dd;
  816. cpumask_var_t mask, new_mask;
  817. unsigned long cpu;
  818. int ret, vl, sz;
  819. vl = sdma_engine_get_vl(sde);
  820. if (unlikely(vl < 0))
  821. return -EINVAL;
  822. ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
  823. if (!ret)
  824. return -ENOMEM;
  825. ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
  826. if (!ret) {
  827. free_cpumask_var(mask);
  828. return -ENOMEM;
  829. }
  830. ret = cpulist_parse(buf, mask);
  831. if (ret)
  832. goto out_free;
  833. if (!cpumask_subset(mask, cpu_online_mask)) {
  834. dd_dev_warn(sde->dd, "Invalid CPU mask\n");
  835. ret = -EINVAL;
  836. goto out_free;
  837. }
  838. sz = sizeof(struct sdma_rht_map_elem) +
  839. (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
  840. mutex_lock(&process_to_sde_mutex);
  841. for_each_cpu(cpu, mask) {
  842. struct sdma_rht_node *rht_node;
  843. /* Check if we have this already mapped */
  844. if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
  845. cpumask_set_cpu(cpu, new_mask);
  846. continue;
  847. }
  848. if (vl >= ARRAY_SIZE(rht_node->map)) {
  849. ret = -EINVAL;
  850. goto out;
  851. }
  852. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  853. sdma_rht_params);
  854. if (!rht_node) {
  855. rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
  856. if (!rht_node) {
  857. ret = -ENOMEM;
  858. goto out;
  859. }
  860. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  861. if (!rht_node->map[vl]) {
  862. kfree(rht_node);
  863. ret = -ENOMEM;
  864. goto out;
  865. }
  866. rht_node->cpu_id = cpu;
  867. rht_node->map[vl]->mask = 0;
  868. rht_node->map[vl]->ctr = 1;
  869. rht_node->map[vl]->sde[0] = sde;
  870. ret = rhashtable_insert_fast(dd->sdma_rht,
  871. &rht_node->node,
  872. sdma_rht_params);
  873. if (ret) {
  874. kfree(rht_node->map[vl]);
  875. kfree(rht_node);
  876. dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
  877. cpu);
  878. goto out;
  879. }
  880. } else {
  881. int ctr, pow;
  882. /* Add new user mappings */
  883. if (!rht_node->map[vl])
  884. rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
  885. if (!rht_node->map[vl]) {
  886. ret = -ENOMEM;
  887. goto out;
  888. }
  889. rht_node->map[vl]->ctr++;
  890. ctr = rht_node->map[vl]->ctr;
  891. rht_node->map[vl]->sde[ctr - 1] = sde;
  892. pow = roundup_pow_of_two(ctr);
  893. rht_node->map[vl]->mask = pow - 1;
  894. /* Populate the sde map table */
  895. sdma_populate_sde_map(rht_node->map[vl]);
  896. }
  897. cpumask_set_cpu(cpu, new_mask);
  898. }
  899. /* Clean up old mappings */
  900. for_each_cpu(cpu, cpu_online_mask) {
  901. struct sdma_rht_node *rht_node;
  902. /* Don't cleanup sdes that are set in the new mask */
  903. if (cpumask_test_cpu(cpu, mask))
  904. continue;
  905. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
  906. sdma_rht_params);
  907. if (rht_node) {
  908. bool empty = true;
  909. int i;
  910. /* Remove mappings for old sde */
  911. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  912. if (rht_node->map[i])
  913. sdma_cleanup_sde_map(rht_node->map[i],
  914. sde);
  915. /* Free empty hash table entries */
  916. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  917. if (!rht_node->map[i])
  918. continue;
  919. if (rht_node->map[i]->ctr) {
  920. empty = false;
  921. break;
  922. }
  923. }
  924. if (empty) {
  925. ret = rhashtable_remove_fast(dd->sdma_rht,
  926. &rht_node->node,
  927. sdma_rht_params);
  928. WARN_ON(ret);
  929. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  930. kfree(rht_node->map[i]);
  931. kfree(rht_node);
  932. }
  933. }
  934. }
  935. cpumask_copy(&sde->cpu_mask, new_mask);
  936. out:
  937. mutex_unlock(&process_to_sde_mutex);
  938. out_free:
  939. free_cpumask_var(mask);
  940. free_cpumask_var(new_mask);
  941. return ret ? : strnlen(buf, PAGE_SIZE);
  942. }
  943. ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
  944. {
  945. mutex_lock(&process_to_sde_mutex);
  946. if (cpumask_empty(&sde->cpu_mask))
  947. snprintf(buf, PAGE_SIZE, "%s\n", "empty");
  948. else
  949. cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
  950. mutex_unlock(&process_to_sde_mutex);
  951. return strnlen(buf, PAGE_SIZE);
  952. }
  953. static void sdma_rht_free(void *ptr, void *arg)
  954. {
  955. struct sdma_rht_node *rht_node = ptr;
  956. int i;
  957. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
  958. kfree(rht_node->map[i]);
  959. kfree(rht_node);
  960. }
  961. /**
  962. * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
  963. * @s: seq file
  964. * @dd: hfi1_devdata
  965. * @cpuid: cpu id
  966. *
  967. * This routine dumps the process to sde mappings per cpu
  968. */
  969. void sdma_seqfile_dump_cpu_list(struct seq_file *s,
  970. struct hfi1_devdata *dd,
  971. unsigned long cpuid)
  972. {
  973. struct sdma_rht_node *rht_node;
  974. int i, j;
  975. rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
  976. sdma_rht_params);
  977. if (!rht_node)
  978. return;
  979. seq_printf(s, "cpu%3lu: ", cpuid);
  980. for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
  981. if (!rht_node->map[i] || !rht_node->map[i]->ctr)
  982. continue;
  983. seq_printf(s, " vl%d: [", i);
  984. for (j = 0; j < rht_node->map[i]->ctr; j++) {
  985. if (!rht_node->map[i]->sde[j])
  986. continue;
  987. if (j > 0)
  988. seq_puts(s, ",");
  989. seq_printf(s, " sdma%2d",
  990. rht_node->map[i]->sde[j]->this_idx);
  991. }
  992. seq_puts(s, " ]");
  993. }
  994. seq_puts(s, "\n");
  995. }
  996. /*
  997. * Free the indicated map struct
  998. */
  999. static void sdma_map_free(struct sdma_vl_map *m)
  1000. {
  1001. int i;
  1002. for (i = 0; m && i < m->actual_vls; i++)
  1003. kfree(m->map[i]);
  1004. kfree(m);
  1005. }
  1006. /*
  1007. * Handle RCU callback
  1008. */
  1009. static void sdma_map_rcu_callback(struct rcu_head *list)
  1010. {
  1011. struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
  1012. sdma_map_free(m);
  1013. }
  1014. /**
  1015. * sdma_map_init - called when # vls change
  1016. * @dd: hfi1_devdata
  1017. * @port: port number
  1018. * @num_vls: number of vls
  1019. * @vl_engines: per vl engine mapping (optional)
  1020. *
  1021. * This routine changes the mapping based on the number of vls.
  1022. *
  1023. * vl_engines is used to specify a non-uniform vl/engine loading. NULL
  1024. * implies auto computing the loading and giving each VLs a uniform
  1025. * distribution of engines per VL.
  1026. *
  1027. * The auto algorithm computes the sde_per_vl and the number of extra
  1028. * engines. Any extra engines are added from the last VL on down.
  1029. *
  1030. * rcu locking is used here to control access to the mapping fields.
  1031. *
  1032. * If either the num_vls or num_sdma are non-power of 2, the array sizes
  1033. * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
  1034. * up to the next highest power of 2 and the first entry is reused
  1035. * in a round robin fashion.
  1036. *
  1037. * If an error occurs the map change is not done and the mapping is
  1038. * not changed.
  1039. *
  1040. */
  1041. int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
  1042. {
  1043. int i, j;
  1044. int extra, sde_per_vl;
  1045. int engine = 0;
  1046. u8 lvl_engines[OPA_MAX_VLS];
  1047. struct sdma_vl_map *oldmap, *newmap;
  1048. if (!(dd->flags & HFI1_HAS_SEND_DMA))
  1049. return 0;
  1050. if (!vl_engines) {
  1051. /* truncate divide */
  1052. sde_per_vl = dd->num_sdma / num_vls;
  1053. /* extras */
  1054. extra = dd->num_sdma % num_vls;
  1055. vl_engines = lvl_engines;
  1056. /* add extras from last vl down */
  1057. for (i = num_vls - 1; i >= 0; i--, extra--)
  1058. vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
  1059. }
  1060. /* build new map */
  1061. newmap = kzalloc(
  1062. sizeof(struct sdma_vl_map) +
  1063. roundup_pow_of_two(num_vls) *
  1064. sizeof(struct sdma_map_elem *),
  1065. GFP_KERNEL);
  1066. if (!newmap)
  1067. goto bail;
  1068. newmap->actual_vls = num_vls;
  1069. newmap->vls = roundup_pow_of_two(num_vls);
  1070. newmap->mask = (1 << ilog2(newmap->vls)) - 1;
  1071. /* initialize back-map */
  1072. for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
  1073. newmap->engine_to_vl[i] = -1;
  1074. for (i = 0; i < newmap->vls; i++) {
  1075. /* save for wrap around */
  1076. int first_engine = engine;
  1077. if (i < newmap->actual_vls) {
  1078. int sz = roundup_pow_of_two(vl_engines[i]);
  1079. /* only allocate once */
  1080. newmap->map[i] = kzalloc(
  1081. sizeof(struct sdma_map_elem) +
  1082. sz * sizeof(struct sdma_engine *),
  1083. GFP_KERNEL);
  1084. if (!newmap->map[i])
  1085. goto bail;
  1086. newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
  1087. /* assign engines */
  1088. for (j = 0; j < sz; j++) {
  1089. newmap->map[i]->sde[j] =
  1090. &dd->per_sdma[engine];
  1091. if (++engine >= first_engine + vl_engines[i])
  1092. /* wrap back to first engine */
  1093. engine = first_engine;
  1094. }
  1095. /* assign back-map */
  1096. for (j = 0; j < vl_engines[i]; j++)
  1097. newmap->engine_to_vl[first_engine + j] = i;
  1098. } else {
  1099. /* just re-use entry without allocating */
  1100. newmap->map[i] = newmap->map[i % num_vls];
  1101. }
  1102. engine = first_engine + vl_engines[i];
  1103. }
  1104. /* newmap in hand, save old map */
  1105. spin_lock_irq(&dd->sde_map_lock);
  1106. oldmap = rcu_dereference_protected(dd->sdma_map,
  1107. lockdep_is_held(&dd->sde_map_lock));
  1108. /* publish newmap */
  1109. rcu_assign_pointer(dd->sdma_map, newmap);
  1110. spin_unlock_irq(&dd->sde_map_lock);
  1111. /* success, free any old map after grace period */
  1112. if (oldmap)
  1113. call_rcu(&oldmap->list, sdma_map_rcu_callback);
  1114. return 0;
  1115. bail:
  1116. /* free any partial allocation */
  1117. sdma_map_free(newmap);
  1118. return -ENOMEM;
  1119. }
  1120. /**
  1121. * sdma_clean() Clean up allocated memory
  1122. * @dd: struct hfi1_devdata
  1123. * @num_engines: num sdma engines
  1124. *
  1125. * This routine can be called regardless of the success of
  1126. * sdma_init()
  1127. */
  1128. void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
  1129. {
  1130. size_t i;
  1131. struct sdma_engine *sde;
  1132. if (dd->sdma_pad_dma) {
  1133. dma_free_coherent(&dd->pcidev->dev, 4,
  1134. (void *)dd->sdma_pad_dma,
  1135. dd->sdma_pad_phys);
  1136. dd->sdma_pad_dma = NULL;
  1137. dd->sdma_pad_phys = 0;
  1138. }
  1139. if (dd->sdma_heads_dma) {
  1140. dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
  1141. (void *)dd->sdma_heads_dma,
  1142. dd->sdma_heads_phys);
  1143. dd->sdma_heads_dma = NULL;
  1144. dd->sdma_heads_phys = 0;
  1145. }
  1146. for (i = 0; dd->per_sdma && i < num_engines; ++i) {
  1147. sde = &dd->per_sdma[i];
  1148. sde->head_dma = NULL;
  1149. sde->head_phys = 0;
  1150. if (sde->descq) {
  1151. dma_free_coherent(
  1152. &dd->pcidev->dev,
  1153. sde->descq_cnt * sizeof(u64[2]),
  1154. sde->descq,
  1155. sde->descq_phys
  1156. );
  1157. sde->descq = NULL;
  1158. sde->descq_phys = 0;
  1159. }
  1160. kvfree(sde->tx_ring);
  1161. sde->tx_ring = NULL;
  1162. }
  1163. spin_lock_irq(&dd->sde_map_lock);
  1164. sdma_map_free(rcu_access_pointer(dd->sdma_map));
  1165. RCU_INIT_POINTER(dd->sdma_map, NULL);
  1166. spin_unlock_irq(&dd->sde_map_lock);
  1167. synchronize_rcu();
  1168. kfree(dd->per_sdma);
  1169. dd->per_sdma = NULL;
  1170. if (dd->sdma_rht) {
  1171. rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
  1172. kfree(dd->sdma_rht);
  1173. dd->sdma_rht = NULL;
  1174. }
  1175. }
  1176. /**
  1177. * sdma_init() - called when device probed
  1178. * @dd: hfi1_devdata
  1179. * @port: port number (currently only zero)
  1180. *
  1181. * Initializes each sde and its csrs.
  1182. * Interrupts are not required to be enabled.
  1183. *
  1184. * Returns:
  1185. * 0 - success, -errno on failure
  1186. */
  1187. int sdma_init(struct hfi1_devdata *dd, u8 port)
  1188. {
  1189. unsigned this_idx;
  1190. struct sdma_engine *sde;
  1191. struct rhashtable *tmp_sdma_rht;
  1192. u16 descq_cnt;
  1193. void *curr_head;
  1194. struct hfi1_pportdata *ppd = dd->pport + port;
  1195. u32 per_sdma_credits;
  1196. uint idle_cnt = sdma_idle_cnt;
  1197. size_t num_engines = dd->chip_sdma_engines;
  1198. int ret = -ENOMEM;
  1199. if (!HFI1_CAP_IS_KSET(SDMA)) {
  1200. HFI1_CAP_CLEAR(SDMA_AHG);
  1201. return 0;
  1202. }
  1203. if (mod_num_sdma &&
  1204. /* can't exceed chip support */
  1205. mod_num_sdma <= dd->chip_sdma_engines &&
  1206. /* count must be >= vls */
  1207. mod_num_sdma >= num_vls)
  1208. num_engines = mod_num_sdma;
  1209. dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
  1210. dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
  1211. dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
  1212. dd->chip_sdma_mem_size);
  1213. per_sdma_credits =
  1214. dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
  1215. /* set up freeze waitqueue */
  1216. init_waitqueue_head(&dd->sdma_unfreeze_wq);
  1217. atomic_set(&dd->sdma_unfreeze_count, 0);
  1218. descq_cnt = sdma_get_descq_cnt();
  1219. dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
  1220. num_engines, descq_cnt);
  1221. /* alloc memory for array of send engines */
  1222. dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
  1223. GFP_KERNEL, dd->node);
  1224. if (!dd->per_sdma)
  1225. return ret;
  1226. idle_cnt = ns_to_cclock(dd, idle_cnt);
  1227. if (idle_cnt)
  1228. dd->default_desc1 =
  1229. SDMA_DESC1_HEAD_TO_HOST_FLAG;
  1230. else
  1231. dd->default_desc1 =
  1232. SDMA_DESC1_INT_REQ_FLAG;
  1233. if (!sdma_desct_intr)
  1234. sdma_desct_intr = SDMA_DESC_INTR;
  1235. /* Allocate memory for SendDMA descriptor FIFOs */
  1236. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1237. sde = &dd->per_sdma[this_idx];
  1238. sde->dd = dd;
  1239. sde->ppd = ppd;
  1240. sde->this_idx = this_idx;
  1241. sde->descq_cnt = descq_cnt;
  1242. sde->desc_avail = sdma_descq_freecnt(sde);
  1243. sde->sdma_shift = ilog2(descq_cnt);
  1244. sde->sdma_mask = (1 << sde->sdma_shift) - 1;
  1245. /* Create a mask specifically for each interrupt source */
  1246. sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
  1247. this_idx);
  1248. sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
  1249. this_idx);
  1250. sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
  1251. this_idx);
  1252. /* Create a combined mask to cover all 3 interrupt sources */
  1253. sde->imask = sde->int_mask | sde->progress_mask |
  1254. sde->idle_mask;
  1255. spin_lock_init(&sde->tail_lock);
  1256. seqlock_init(&sde->head_lock);
  1257. spin_lock_init(&sde->senddmactrl_lock);
  1258. spin_lock_init(&sde->flushlist_lock);
  1259. /* insure there is always a zero bit */
  1260. sde->ahg_bits = 0xfffffffe00000000ULL;
  1261. sdma_set_state(sde, sdma_state_s00_hw_down);
  1262. /* set up reference counting */
  1263. kref_init(&sde->state.kref);
  1264. init_completion(&sde->state.comp);
  1265. INIT_LIST_HEAD(&sde->flushlist);
  1266. INIT_LIST_HEAD(&sde->dmawait);
  1267. sde->tail_csr =
  1268. get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
  1269. tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
  1270. (unsigned long)sde);
  1271. tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
  1272. (unsigned long)sde);
  1273. INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
  1274. INIT_WORK(&sde->flush_worker, sdma_field_flush);
  1275. sde->progress_check_head = 0;
  1276. timer_setup(&sde->err_progress_check_timer,
  1277. sdma_err_progress_check, 0);
  1278. sde->descq = dma_zalloc_coherent(
  1279. &dd->pcidev->dev,
  1280. descq_cnt * sizeof(u64[2]),
  1281. &sde->descq_phys,
  1282. GFP_KERNEL
  1283. );
  1284. if (!sde->descq)
  1285. goto bail;
  1286. sde->tx_ring =
  1287. kvzalloc_node(sizeof(struct sdma_txreq *) * descq_cnt,
  1288. GFP_KERNEL, dd->node);
  1289. if (!sde->tx_ring)
  1290. goto bail;
  1291. }
  1292. dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
  1293. /* Allocate memory for DMA of head registers to memory */
  1294. dd->sdma_heads_dma = dma_zalloc_coherent(
  1295. &dd->pcidev->dev,
  1296. dd->sdma_heads_size,
  1297. &dd->sdma_heads_phys,
  1298. GFP_KERNEL
  1299. );
  1300. if (!dd->sdma_heads_dma) {
  1301. dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
  1302. goto bail;
  1303. }
  1304. /* Allocate memory for pad */
  1305. dd->sdma_pad_dma = dma_zalloc_coherent(
  1306. &dd->pcidev->dev,
  1307. sizeof(u32),
  1308. &dd->sdma_pad_phys,
  1309. GFP_KERNEL
  1310. );
  1311. if (!dd->sdma_pad_dma) {
  1312. dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
  1313. goto bail;
  1314. }
  1315. /* assign each engine to different cacheline and init registers */
  1316. curr_head = (void *)dd->sdma_heads_dma;
  1317. for (this_idx = 0; this_idx < num_engines; ++this_idx) {
  1318. unsigned long phys_offset;
  1319. sde = &dd->per_sdma[this_idx];
  1320. sde->head_dma = curr_head;
  1321. curr_head += L1_CACHE_BYTES;
  1322. phys_offset = (unsigned long)sde->head_dma -
  1323. (unsigned long)dd->sdma_heads_dma;
  1324. sde->head_phys = dd->sdma_heads_phys + phys_offset;
  1325. init_sdma_regs(sde, per_sdma_credits, idle_cnt);
  1326. }
  1327. dd->flags |= HFI1_HAS_SEND_DMA;
  1328. dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
  1329. dd->num_sdma = num_engines;
  1330. ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
  1331. if (ret < 0)
  1332. goto bail;
  1333. tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
  1334. if (!tmp_sdma_rht) {
  1335. ret = -ENOMEM;
  1336. goto bail;
  1337. }
  1338. ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
  1339. if (ret < 0)
  1340. goto bail;
  1341. dd->sdma_rht = tmp_sdma_rht;
  1342. dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
  1343. return 0;
  1344. bail:
  1345. sdma_clean(dd, num_engines);
  1346. return ret;
  1347. }
  1348. /**
  1349. * sdma_all_running() - called when the link goes up
  1350. * @dd: hfi1_devdata
  1351. *
  1352. * This routine moves all engines to the running state.
  1353. */
  1354. void sdma_all_running(struct hfi1_devdata *dd)
  1355. {
  1356. struct sdma_engine *sde;
  1357. unsigned int i;
  1358. /* move all engines to running */
  1359. for (i = 0; i < dd->num_sdma; ++i) {
  1360. sde = &dd->per_sdma[i];
  1361. sdma_process_event(sde, sdma_event_e30_go_running);
  1362. }
  1363. }
  1364. /**
  1365. * sdma_all_idle() - called when the link goes down
  1366. * @dd: hfi1_devdata
  1367. *
  1368. * This routine moves all engines to the idle state.
  1369. */
  1370. void sdma_all_idle(struct hfi1_devdata *dd)
  1371. {
  1372. struct sdma_engine *sde;
  1373. unsigned int i;
  1374. /* idle all engines */
  1375. for (i = 0; i < dd->num_sdma; ++i) {
  1376. sde = &dd->per_sdma[i];
  1377. sdma_process_event(sde, sdma_event_e70_go_idle);
  1378. }
  1379. }
  1380. /**
  1381. * sdma_start() - called to kick off state processing for all engines
  1382. * @dd: hfi1_devdata
  1383. *
  1384. * This routine is for kicking off the state processing for all required
  1385. * sdma engines. Interrupts need to be working at this point.
  1386. *
  1387. */
  1388. void sdma_start(struct hfi1_devdata *dd)
  1389. {
  1390. unsigned i;
  1391. struct sdma_engine *sde;
  1392. /* kick off the engines state processing */
  1393. for (i = 0; i < dd->num_sdma; ++i) {
  1394. sde = &dd->per_sdma[i];
  1395. sdma_process_event(sde, sdma_event_e10_go_hw_start);
  1396. }
  1397. }
  1398. /**
  1399. * sdma_exit() - used when module is removed
  1400. * @dd: hfi1_devdata
  1401. */
  1402. void sdma_exit(struct hfi1_devdata *dd)
  1403. {
  1404. unsigned this_idx;
  1405. struct sdma_engine *sde;
  1406. for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
  1407. ++this_idx) {
  1408. sde = &dd->per_sdma[this_idx];
  1409. if (!list_empty(&sde->dmawait))
  1410. dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
  1411. sde->this_idx);
  1412. sdma_process_event(sde, sdma_event_e00_go_hw_down);
  1413. del_timer_sync(&sde->err_progress_check_timer);
  1414. /*
  1415. * This waits for the state machine to exit so it is not
  1416. * necessary to kill the sdma_sw_clean_up_task to make sure
  1417. * it is not running.
  1418. */
  1419. sdma_finalput(&sde->state);
  1420. }
  1421. }
  1422. /*
  1423. * unmap the indicated descriptor
  1424. */
  1425. static inline void sdma_unmap_desc(
  1426. struct hfi1_devdata *dd,
  1427. struct sdma_desc *descp)
  1428. {
  1429. switch (sdma_mapping_type(descp)) {
  1430. case SDMA_MAP_SINGLE:
  1431. dma_unmap_single(
  1432. &dd->pcidev->dev,
  1433. sdma_mapping_addr(descp),
  1434. sdma_mapping_len(descp),
  1435. DMA_TO_DEVICE);
  1436. break;
  1437. case SDMA_MAP_PAGE:
  1438. dma_unmap_page(
  1439. &dd->pcidev->dev,
  1440. sdma_mapping_addr(descp),
  1441. sdma_mapping_len(descp),
  1442. DMA_TO_DEVICE);
  1443. break;
  1444. }
  1445. }
  1446. /*
  1447. * return the mode as indicated by the first
  1448. * descriptor in the tx.
  1449. */
  1450. static inline u8 ahg_mode(struct sdma_txreq *tx)
  1451. {
  1452. return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
  1453. >> SDMA_DESC1_HEADER_MODE_SHIFT;
  1454. }
  1455. /**
  1456. * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
  1457. * @dd: hfi1_devdata for unmapping
  1458. * @tx: tx request to clean
  1459. *
  1460. * This is used in the progress routine to clean the tx or
  1461. * by the ULP to toss an in-process tx build.
  1462. *
  1463. * The code can be called multiple times without issue.
  1464. *
  1465. */
  1466. void __sdma_txclean(
  1467. struct hfi1_devdata *dd,
  1468. struct sdma_txreq *tx)
  1469. {
  1470. u16 i;
  1471. if (tx->num_desc) {
  1472. u8 skip = 0, mode = ahg_mode(tx);
  1473. /* unmap first */
  1474. sdma_unmap_desc(dd, &tx->descp[0]);
  1475. /* determine number of AHG descriptors to skip */
  1476. if (mode > SDMA_AHG_APPLY_UPDATE1)
  1477. skip = mode >> 1;
  1478. for (i = 1 + skip; i < tx->num_desc; i++)
  1479. sdma_unmap_desc(dd, &tx->descp[i]);
  1480. tx->num_desc = 0;
  1481. }
  1482. kfree(tx->coalesce_buf);
  1483. tx->coalesce_buf = NULL;
  1484. /* kmalloc'ed descp */
  1485. if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
  1486. tx->desc_limit = ARRAY_SIZE(tx->descs);
  1487. kfree(tx->descp);
  1488. }
  1489. }
  1490. static inline u16 sdma_gethead(struct sdma_engine *sde)
  1491. {
  1492. struct hfi1_devdata *dd = sde->dd;
  1493. int use_dmahead;
  1494. u16 hwhead;
  1495. #ifdef CONFIG_SDMA_VERBOSITY
  1496. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1497. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1498. #endif
  1499. retry:
  1500. use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
  1501. (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
  1502. hwhead = use_dmahead ?
  1503. (u16)le64_to_cpu(*sde->head_dma) :
  1504. (u16)read_sde_csr(sde, SD(HEAD));
  1505. if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
  1506. u16 cnt;
  1507. u16 swtail;
  1508. u16 swhead;
  1509. int sane;
  1510. swhead = sde->descq_head & sde->sdma_mask;
  1511. /* this code is really bad for cache line trading */
  1512. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1513. cnt = sde->descq_cnt;
  1514. if (swhead < swtail)
  1515. /* not wrapped */
  1516. sane = (hwhead >= swhead) & (hwhead <= swtail);
  1517. else if (swhead > swtail)
  1518. /* wrapped around */
  1519. sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
  1520. (hwhead <= swtail);
  1521. else
  1522. /* empty */
  1523. sane = (hwhead == swhead);
  1524. if (unlikely(!sane)) {
  1525. dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
  1526. sde->this_idx,
  1527. use_dmahead ? "dma" : "kreg",
  1528. hwhead, swhead, swtail, cnt);
  1529. if (use_dmahead) {
  1530. /* try one more time, using csr */
  1531. use_dmahead = 0;
  1532. goto retry;
  1533. }
  1534. /* proceed as if no progress */
  1535. hwhead = swhead;
  1536. }
  1537. }
  1538. return hwhead;
  1539. }
  1540. /*
  1541. * This is called when there are send DMA descriptors that might be
  1542. * available.
  1543. *
  1544. * This is called with head_lock held.
  1545. */
  1546. static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
  1547. {
  1548. struct iowait *wait, *nw;
  1549. struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
  1550. uint i, n = 0, seq, max_idx = 0;
  1551. struct sdma_txreq *stx;
  1552. struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
  1553. u8 max_starved_cnt = 0;
  1554. #ifdef CONFIG_SDMA_VERBOSITY
  1555. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
  1556. slashstrip(__FILE__), __LINE__, __func__);
  1557. dd_dev_err(sde->dd, "avail: %u\n", avail);
  1558. #endif
  1559. do {
  1560. seq = read_seqbegin(&dev->iowait_lock);
  1561. if (!list_empty(&sde->dmawait)) {
  1562. /* at least one item */
  1563. write_seqlock(&dev->iowait_lock);
  1564. /* Harvest waiters wanting DMA descriptors */
  1565. list_for_each_entry_safe(
  1566. wait,
  1567. nw,
  1568. &sde->dmawait,
  1569. list) {
  1570. u16 num_desc = 0;
  1571. if (!wait->wakeup)
  1572. continue;
  1573. if (n == ARRAY_SIZE(waits))
  1574. break;
  1575. if (!list_empty(&wait->tx_head)) {
  1576. stx = list_first_entry(
  1577. &wait->tx_head,
  1578. struct sdma_txreq,
  1579. list);
  1580. num_desc = stx->num_desc;
  1581. }
  1582. if (num_desc > avail)
  1583. break;
  1584. avail -= num_desc;
  1585. /* Find the most starved wait memeber */
  1586. iowait_starve_find_max(wait, &max_starved_cnt,
  1587. n, &max_idx);
  1588. list_del_init(&wait->list);
  1589. waits[n++] = wait;
  1590. }
  1591. write_sequnlock(&dev->iowait_lock);
  1592. break;
  1593. }
  1594. } while (read_seqretry(&dev->iowait_lock, seq));
  1595. /* Schedule the most starved one first */
  1596. if (n)
  1597. waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
  1598. for (i = 0; i < n; i++)
  1599. if (i != max_idx)
  1600. waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
  1601. }
  1602. /* head_lock must be held */
  1603. static void sdma_make_progress(struct sdma_engine *sde, u64 status)
  1604. {
  1605. struct sdma_txreq *txp = NULL;
  1606. int progress = 0;
  1607. u16 hwhead, swhead;
  1608. int idle_check_done = 0;
  1609. hwhead = sdma_gethead(sde);
  1610. /* The reason for some of the complexity of this code is that
  1611. * not all descriptors have corresponding txps. So, we have to
  1612. * be able to skip over descs until we wander into the range of
  1613. * the next txp on the list.
  1614. */
  1615. retry:
  1616. txp = get_txhead(sde);
  1617. swhead = sde->descq_head & sde->sdma_mask;
  1618. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1619. while (swhead != hwhead) {
  1620. /* advance head, wrap if needed */
  1621. swhead = ++sde->descq_head & sde->sdma_mask;
  1622. /* if now past this txp's descs, do the callback */
  1623. if (txp && txp->next_descq_idx == swhead) {
  1624. /* remove from list */
  1625. sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
  1626. complete_tx(sde, txp, SDMA_TXREQ_S_OK);
  1627. /* see if there is another txp */
  1628. txp = get_txhead(sde);
  1629. }
  1630. trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
  1631. progress++;
  1632. }
  1633. /*
  1634. * The SDMA idle interrupt is not guaranteed to be ordered with respect
  1635. * to updates to the the dma_head location in host memory. The head
  1636. * value read might not be fully up to date. If there are pending
  1637. * descriptors and the SDMA idle interrupt fired then read from the
  1638. * CSR SDMA head instead to get the latest value from the hardware.
  1639. * The hardware SDMA head should be read at most once in this invocation
  1640. * of sdma_make_progress(..) which is ensured by idle_check_done flag
  1641. */
  1642. if ((status & sde->idle_mask) && !idle_check_done) {
  1643. u16 swtail;
  1644. swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1645. if (swtail != hwhead) {
  1646. hwhead = (u16)read_sde_csr(sde, SD(HEAD));
  1647. idle_check_done = 1;
  1648. goto retry;
  1649. }
  1650. }
  1651. sde->last_status = status;
  1652. if (progress)
  1653. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  1654. }
  1655. /*
  1656. * sdma_engine_interrupt() - interrupt handler for engine
  1657. * @sde: sdma engine
  1658. * @status: sdma interrupt reason
  1659. *
  1660. * Status is a mask of the 3 possible interrupts for this engine. It will
  1661. * contain bits _only_ for this SDMA engine. It will contain at least one
  1662. * bit, it may contain more.
  1663. */
  1664. void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
  1665. {
  1666. trace_hfi1_sdma_engine_interrupt(sde, status);
  1667. write_seqlock(&sde->head_lock);
  1668. sdma_set_desc_cnt(sde, sdma_desct_intr);
  1669. if (status & sde->idle_mask)
  1670. sde->idle_int_cnt++;
  1671. else if (status & sde->progress_mask)
  1672. sde->progress_int_cnt++;
  1673. else if (status & sde->int_mask)
  1674. sde->sdma_int_cnt++;
  1675. sdma_make_progress(sde, status);
  1676. write_sequnlock(&sde->head_lock);
  1677. }
  1678. /**
  1679. * sdma_engine_error() - error handler for engine
  1680. * @sde: sdma engine
  1681. * @status: sdma interrupt reason
  1682. */
  1683. void sdma_engine_error(struct sdma_engine *sde, u64 status)
  1684. {
  1685. unsigned long flags;
  1686. #ifdef CONFIG_SDMA_VERBOSITY
  1687. dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
  1688. sde->this_idx,
  1689. (unsigned long long)status,
  1690. sdma_state_names[sde->state.current_state]);
  1691. #endif
  1692. spin_lock_irqsave(&sde->tail_lock, flags);
  1693. write_seqlock(&sde->head_lock);
  1694. if (status & ALL_SDMA_ENG_HALT_ERRS)
  1695. __sdma_process_event(sde, sdma_event_e60_hw_halted);
  1696. if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
  1697. dd_dev_err(sde->dd,
  1698. "SDMA (%u) engine error: 0x%llx state %s\n",
  1699. sde->this_idx,
  1700. (unsigned long long)status,
  1701. sdma_state_names[sde->state.current_state]);
  1702. dump_sdma_state(sde);
  1703. }
  1704. write_sequnlock(&sde->head_lock);
  1705. spin_unlock_irqrestore(&sde->tail_lock, flags);
  1706. }
  1707. static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
  1708. {
  1709. u64 set_senddmactrl = 0;
  1710. u64 clr_senddmactrl = 0;
  1711. unsigned long flags;
  1712. #ifdef CONFIG_SDMA_VERBOSITY
  1713. dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
  1714. sde->this_idx,
  1715. (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
  1716. (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
  1717. (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
  1718. (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
  1719. #endif
  1720. if (op & SDMA_SENDCTRL_OP_ENABLE)
  1721. set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1722. else
  1723. clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
  1724. if (op & SDMA_SENDCTRL_OP_INTENABLE)
  1725. set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1726. else
  1727. clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
  1728. if (op & SDMA_SENDCTRL_OP_HALT)
  1729. set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1730. else
  1731. clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
  1732. spin_lock_irqsave(&sde->senddmactrl_lock, flags);
  1733. sde->p_senddmactrl |= set_senddmactrl;
  1734. sde->p_senddmactrl &= ~clr_senddmactrl;
  1735. if (op & SDMA_SENDCTRL_OP_CLEANUP)
  1736. write_sde_csr(sde, SD(CTRL),
  1737. sde->p_senddmactrl |
  1738. SD(CTRL_SDMA_CLEANUP_SMASK));
  1739. else
  1740. write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
  1741. spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
  1742. #ifdef CONFIG_SDMA_VERBOSITY
  1743. sdma_dumpstate(sde);
  1744. #endif
  1745. }
  1746. static void sdma_setlengen(struct sdma_engine *sde)
  1747. {
  1748. #ifdef CONFIG_SDMA_VERBOSITY
  1749. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1750. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1751. #endif
  1752. /*
  1753. * Set SendDmaLenGen and clear-then-set the MSB of the generation
  1754. * count to enable generation checking and load the internal
  1755. * generation counter.
  1756. */
  1757. write_sde_csr(sde, SD(LEN_GEN),
  1758. (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
  1759. write_sde_csr(sde, SD(LEN_GEN),
  1760. ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
  1761. (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
  1762. }
  1763. static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
  1764. {
  1765. /* Commit writes to memory and advance the tail on the chip */
  1766. smp_wmb(); /* see get_txhead() */
  1767. writeq(tail, sde->tail_csr);
  1768. }
  1769. /*
  1770. * This is called when changing to state s10_hw_start_up_halt_wait as
  1771. * a result of send buffer errors or send DMA descriptor errors.
  1772. */
  1773. static void sdma_hw_start_up(struct sdma_engine *sde)
  1774. {
  1775. u64 reg;
  1776. #ifdef CONFIG_SDMA_VERBOSITY
  1777. dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1778. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1779. #endif
  1780. sdma_setlengen(sde);
  1781. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1782. *sde->head_dma = 0;
  1783. reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
  1784. SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
  1785. write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
  1786. }
  1787. /*
  1788. * set_sdma_integrity
  1789. *
  1790. * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
  1791. */
  1792. static void set_sdma_integrity(struct sdma_engine *sde)
  1793. {
  1794. struct hfi1_devdata *dd = sde->dd;
  1795. write_sde_csr(sde, SD(CHECK_ENABLE),
  1796. hfi1_pkt_base_sdma_integrity(dd));
  1797. }
  1798. static void init_sdma_regs(
  1799. struct sdma_engine *sde,
  1800. u32 credits,
  1801. uint idle_cnt)
  1802. {
  1803. u8 opval, opmask;
  1804. #ifdef CONFIG_SDMA_VERBOSITY
  1805. struct hfi1_devdata *dd = sde->dd;
  1806. dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
  1807. sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
  1808. #endif
  1809. write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
  1810. sdma_setlengen(sde);
  1811. sdma_update_tail(sde, 0); /* Set SendDmaTail */
  1812. write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
  1813. write_sde_csr(sde, SD(DESC_CNT), 0);
  1814. write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
  1815. write_sde_csr(sde, SD(MEMORY),
  1816. ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
  1817. ((u64)(credits * sde->this_idx) <<
  1818. SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
  1819. write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
  1820. set_sdma_integrity(sde);
  1821. opmask = OPCODE_CHECK_MASK_DISABLED;
  1822. opval = OPCODE_CHECK_VAL_DISABLED;
  1823. write_sde_csr(sde, SD(CHECK_OPCODE),
  1824. (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
  1825. (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
  1826. }
  1827. #ifdef CONFIG_SDMA_VERBOSITY
  1828. #define sdma_dumpstate_helper0(reg) do { \
  1829. csr = read_csr(sde->dd, reg); \
  1830. dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
  1831. } while (0)
  1832. #define sdma_dumpstate_helper(reg) do { \
  1833. csr = read_sde_csr(sde, reg); \
  1834. dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
  1835. #reg, sde->this_idx, csr); \
  1836. } while (0)
  1837. #define sdma_dumpstate_helper2(reg) do { \
  1838. csr = read_csr(sde->dd, reg + (8 * i)); \
  1839. dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
  1840. #reg, i, csr); \
  1841. } while (0)
  1842. void sdma_dumpstate(struct sdma_engine *sde)
  1843. {
  1844. u64 csr;
  1845. unsigned i;
  1846. sdma_dumpstate_helper(SD(CTRL));
  1847. sdma_dumpstate_helper(SD(STATUS));
  1848. sdma_dumpstate_helper0(SD(ERR_STATUS));
  1849. sdma_dumpstate_helper0(SD(ERR_MASK));
  1850. sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
  1851. sdma_dumpstate_helper(SD(ENG_ERR_MASK));
  1852. for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
  1853. sdma_dumpstate_helper2(CCE_INT_STATUS);
  1854. sdma_dumpstate_helper2(CCE_INT_MASK);
  1855. sdma_dumpstate_helper2(CCE_INT_BLOCKED);
  1856. }
  1857. sdma_dumpstate_helper(SD(TAIL));
  1858. sdma_dumpstate_helper(SD(HEAD));
  1859. sdma_dumpstate_helper(SD(PRIORITY_THLD));
  1860. sdma_dumpstate_helper(SD(IDLE_CNT));
  1861. sdma_dumpstate_helper(SD(RELOAD_CNT));
  1862. sdma_dumpstate_helper(SD(DESC_CNT));
  1863. sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
  1864. sdma_dumpstate_helper(SD(MEMORY));
  1865. sdma_dumpstate_helper0(SD(ENGINES));
  1866. sdma_dumpstate_helper0(SD(MEM_SIZE));
  1867. /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
  1868. sdma_dumpstate_helper(SD(BASE_ADDR));
  1869. sdma_dumpstate_helper(SD(LEN_GEN));
  1870. sdma_dumpstate_helper(SD(HEAD_ADDR));
  1871. sdma_dumpstate_helper(SD(CHECK_ENABLE));
  1872. sdma_dumpstate_helper(SD(CHECK_VL));
  1873. sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
  1874. sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
  1875. sdma_dumpstate_helper(SD(CHECK_SLID));
  1876. sdma_dumpstate_helper(SD(CHECK_OPCODE));
  1877. }
  1878. #endif
  1879. static void dump_sdma_state(struct sdma_engine *sde)
  1880. {
  1881. struct hw_sdma_desc *descqp;
  1882. u64 desc[2];
  1883. u64 addr;
  1884. u8 gen;
  1885. u16 len;
  1886. u16 head, tail, cnt;
  1887. head = sde->descq_head & sde->sdma_mask;
  1888. tail = sde->descq_tail & sde->sdma_mask;
  1889. cnt = sdma_descq_freecnt(sde);
  1890. dd_dev_err(sde->dd,
  1891. "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
  1892. sde->this_idx, head, tail, cnt,
  1893. !list_empty(&sde->flushlist));
  1894. /* print info for each entry in the descriptor queue */
  1895. while (head != tail) {
  1896. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1897. descqp = &sde->descq[head];
  1898. desc[0] = le64_to_cpu(descqp->qw[0]);
  1899. desc[1] = le64_to_cpu(descqp->qw[1]);
  1900. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1901. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1902. 'H' : '-';
  1903. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1904. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1905. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1906. & SDMA_DESC0_PHY_ADDR_MASK;
  1907. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1908. & SDMA_DESC1_GENERATION_MASK;
  1909. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1910. & SDMA_DESC0_BYTE_COUNT_MASK;
  1911. dd_dev_err(sde->dd,
  1912. "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1913. head, flags, addr, gen, len);
  1914. dd_dev_err(sde->dd,
  1915. "\tdesc0:0x%016llx desc1 0x%016llx\n",
  1916. desc[0], desc[1]);
  1917. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1918. dd_dev_err(sde->dd,
  1919. "\taidx: %u amode: %u alen: %u\n",
  1920. (u8)((desc[1] &
  1921. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1922. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1923. (u8)((desc[1] &
  1924. SDMA_DESC1_HEADER_MODE_SMASK) >>
  1925. SDMA_DESC1_HEADER_MODE_SHIFT),
  1926. (u8)((desc[1] &
  1927. SDMA_DESC1_HEADER_DWS_SMASK) >>
  1928. SDMA_DESC1_HEADER_DWS_SHIFT));
  1929. head++;
  1930. head &= sde->sdma_mask;
  1931. }
  1932. }
  1933. #define SDE_FMT \
  1934. "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
  1935. /**
  1936. * sdma_seqfile_dump_sde() - debugfs dump of sde
  1937. * @s: seq file
  1938. * @sde: send dma engine to dump
  1939. *
  1940. * This routine dumps the sde to the indicated seq file.
  1941. */
  1942. void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
  1943. {
  1944. u16 head, tail;
  1945. struct hw_sdma_desc *descqp;
  1946. u64 desc[2];
  1947. u64 addr;
  1948. u8 gen;
  1949. u16 len;
  1950. head = sde->descq_head & sde->sdma_mask;
  1951. tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
  1952. seq_printf(s, SDE_FMT, sde->this_idx,
  1953. sde->cpu,
  1954. sdma_state_name(sde->state.current_state),
  1955. (unsigned long long)read_sde_csr(sde, SD(CTRL)),
  1956. (unsigned long long)read_sde_csr(sde, SD(STATUS)),
  1957. (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
  1958. (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
  1959. (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
  1960. (unsigned long long)le64_to_cpu(*sde->head_dma),
  1961. (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
  1962. (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
  1963. (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
  1964. (unsigned long long)sde->last_status,
  1965. (unsigned long long)sde->ahg_bits,
  1966. sde->tx_tail,
  1967. sde->tx_head,
  1968. sde->descq_tail,
  1969. sde->descq_head,
  1970. !list_empty(&sde->flushlist),
  1971. sde->descq_full_count,
  1972. (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
  1973. /* print info for each entry in the descriptor queue */
  1974. while (head != tail) {
  1975. char flags[6] = { 'x', 'x', 'x', 'x', 0 };
  1976. descqp = &sde->descq[head];
  1977. desc[0] = le64_to_cpu(descqp->qw[0]);
  1978. desc[1] = le64_to_cpu(descqp->qw[1]);
  1979. flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
  1980. flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
  1981. 'H' : '-';
  1982. flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
  1983. flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
  1984. addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
  1985. & SDMA_DESC0_PHY_ADDR_MASK;
  1986. gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
  1987. & SDMA_DESC1_GENERATION_MASK;
  1988. len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
  1989. & SDMA_DESC0_BYTE_COUNT_MASK;
  1990. seq_printf(s,
  1991. "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
  1992. head, flags, addr, gen, len);
  1993. if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
  1994. seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
  1995. (u8)((desc[1] &
  1996. SDMA_DESC1_HEADER_INDEX_SMASK) >>
  1997. SDMA_DESC1_HEADER_INDEX_SHIFT),
  1998. (u8)((desc[1] &
  1999. SDMA_DESC1_HEADER_MODE_SMASK) >>
  2000. SDMA_DESC1_HEADER_MODE_SHIFT));
  2001. head = (head + 1) & sde->sdma_mask;
  2002. }
  2003. }
  2004. /*
  2005. * add the generation number into
  2006. * the qw1 and return
  2007. */
  2008. static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
  2009. {
  2010. u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
  2011. qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
  2012. qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
  2013. << SDMA_DESC1_GENERATION_SHIFT;
  2014. return qw1;
  2015. }
  2016. /*
  2017. * This routine submits the indicated tx
  2018. *
  2019. * Space has already been guaranteed and
  2020. * tail side of ring is locked.
  2021. *
  2022. * The hardware tail update is done
  2023. * in the caller and that is facilitated
  2024. * by returning the new tail.
  2025. *
  2026. * There is special case logic for ahg
  2027. * to not add the generation number for
  2028. * up to 2 descriptors that follow the
  2029. * first descriptor.
  2030. *
  2031. */
  2032. static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
  2033. {
  2034. int i;
  2035. u16 tail;
  2036. struct sdma_desc *descp = tx->descp;
  2037. u8 skip = 0, mode = ahg_mode(tx);
  2038. tail = sde->descq_tail & sde->sdma_mask;
  2039. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2040. sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
  2041. trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
  2042. tail, &sde->descq[tail]);
  2043. tail = ++sde->descq_tail & sde->sdma_mask;
  2044. descp++;
  2045. if (mode > SDMA_AHG_APPLY_UPDATE1)
  2046. skip = mode >> 1;
  2047. for (i = 1; i < tx->num_desc; i++, descp++) {
  2048. u64 qw1;
  2049. sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
  2050. if (skip) {
  2051. /* edits don't have generation */
  2052. qw1 = descp->qw[1];
  2053. skip--;
  2054. } else {
  2055. /* replace generation with real one for non-edits */
  2056. qw1 = add_gen(sde, descp->qw[1]);
  2057. }
  2058. sde->descq[tail].qw[1] = cpu_to_le64(qw1);
  2059. trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
  2060. tail, &sde->descq[tail]);
  2061. tail = ++sde->descq_tail & sde->sdma_mask;
  2062. }
  2063. tx->next_descq_idx = tail;
  2064. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2065. tx->sn = sde->tail_sn++;
  2066. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2067. WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
  2068. #endif
  2069. sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
  2070. sde->desc_avail -= tx->num_desc;
  2071. return tail;
  2072. }
  2073. /*
  2074. * Check for progress
  2075. */
  2076. static int sdma_check_progress(
  2077. struct sdma_engine *sde,
  2078. struct iowait *wait,
  2079. struct sdma_txreq *tx,
  2080. bool pkts_sent)
  2081. {
  2082. int ret;
  2083. sde->desc_avail = sdma_descq_freecnt(sde);
  2084. if (tx->num_desc <= sde->desc_avail)
  2085. return -EAGAIN;
  2086. /* pulse the head_lock */
  2087. if (wait && wait->sleep) {
  2088. unsigned seq;
  2089. seq = raw_seqcount_begin(
  2090. (const seqcount_t *)&sde->head_lock.seqcount);
  2091. ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
  2092. if (ret == -EAGAIN)
  2093. sde->desc_avail = sdma_descq_freecnt(sde);
  2094. } else {
  2095. ret = -EBUSY;
  2096. }
  2097. return ret;
  2098. }
  2099. /**
  2100. * sdma_send_txreq() - submit a tx req to ring
  2101. * @sde: sdma engine to use
  2102. * @wait: wait structure to use when full (may be NULL)
  2103. * @tx: sdma_txreq to submit
  2104. * @pkts_sent: has any packet been sent yet?
  2105. *
  2106. * The call submits the tx into the ring. If a iowait structure is non-NULL
  2107. * the packet will be queued to the list in wait.
  2108. *
  2109. * Return:
  2110. * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
  2111. * ring (wait == NULL)
  2112. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2113. */
  2114. int sdma_send_txreq(struct sdma_engine *sde,
  2115. struct iowait *wait,
  2116. struct sdma_txreq *tx,
  2117. bool pkts_sent)
  2118. {
  2119. int ret = 0;
  2120. u16 tail;
  2121. unsigned long flags;
  2122. /* user should have supplied entire packet */
  2123. if (unlikely(tx->tlen))
  2124. return -EINVAL;
  2125. tx->wait = wait;
  2126. spin_lock_irqsave(&sde->tail_lock, flags);
  2127. retry:
  2128. if (unlikely(!__sdma_running(sde)))
  2129. goto unlock_noconn;
  2130. if (unlikely(tx->num_desc > sde->desc_avail))
  2131. goto nodesc;
  2132. tail = submit_tx(sde, tx);
  2133. if (wait)
  2134. iowait_sdma_inc(wait);
  2135. sdma_update_tail(sde, tail);
  2136. unlock:
  2137. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2138. return ret;
  2139. unlock_noconn:
  2140. if (wait)
  2141. iowait_sdma_inc(wait);
  2142. tx->next_descq_idx = 0;
  2143. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2144. tx->sn = sde->tail_sn++;
  2145. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2146. #endif
  2147. spin_lock(&sde->flushlist_lock);
  2148. list_add_tail(&tx->list, &sde->flushlist);
  2149. spin_unlock(&sde->flushlist_lock);
  2150. if (wait) {
  2151. wait->tx_count++;
  2152. wait->count += tx->num_desc;
  2153. }
  2154. schedule_work(&sde->flush_worker);
  2155. ret = -ECOMM;
  2156. goto unlock;
  2157. nodesc:
  2158. ret = sdma_check_progress(sde, wait, tx, pkts_sent);
  2159. if (ret == -EAGAIN) {
  2160. ret = 0;
  2161. goto retry;
  2162. }
  2163. sde->descq_full_count++;
  2164. goto unlock;
  2165. }
  2166. /**
  2167. * sdma_send_txlist() - submit a list of tx req to ring
  2168. * @sde: sdma engine to use
  2169. * @wait: wait structure to use when full (may be NULL)
  2170. * @tx_list: list of sdma_txreqs to submit
  2171. * @count: pointer to a u32 which, after return will contain the total number of
  2172. * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
  2173. * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
  2174. * which are added to SDMA engine flush list if the SDMA engine state is
  2175. * not running.
  2176. *
  2177. * The call submits the list into the ring.
  2178. *
  2179. * If the iowait structure is non-NULL and not equal to the iowait list
  2180. * the unprocessed part of the list will be appended to the list in wait.
  2181. *
  2182. * In all cases, the tx_list will be updated so the head of the tx_list is
  2183. * the list of descriptors that have yet to be transmitted.
  2184. *
  2185. * The intent of this call is to provide a more efficient
  2186. * way of submitting multiple packets to SDMA while holding the tail
  2187. * side locking.
  2188. *
  2189. * Return:
  2190. * 0 - Success,
  2191. * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
  2192. * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
  2193. */
  2194. int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
  2195. struct list_head *tx_list, u32 *count_out)
  2196. {
  2197. struct sdma_txreq *tx, *tx_next;
  2198. int ret = 0;
  2199. unsigned long flags;
  2200. u16 tail = INVALID_TAIL;
  2201. u32 submit_count = 0, flush_count = 0, total_count;
  2202. spin_lock_irqsave(&sde->tail_lock, flags);
  2203. retry:
  2204. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2205. tx->wait = wait;
  2206. if (unlikely(!__sdma_running(sde)))
  2207. goto unlock_noconn;
  2208. if (unlikely(tx->num_desc > sde->desc_avail))
  2209. goto nodesc;
  2210. if (unlikely(tx->tlen)) {
  2211. ret = -EINVAL;
  2212. goto update_tail;
  2213. }
  2214. list_del_init(&tx->list);
  2215. tail = submit_tx(sde, tx);
  2216. submit_count++;
  2217. if (tail != INVALID_TAIL &&
  2218. (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
  2219. sdma_update_tail(sde, tail);
  2220. tail = INVALID_TAIL;
  2221. }
  2222. }
  2223. update_tail:
  2224. total_count = submit_count + flush_count;
  2225. if (wait) {
  2226. iowait_sdma_add(wait, total_count);
  2227. iowait_starve_clear(submit_count > 0, wait);
  2228. }
  2229. if (tail != INVALID_TAIL)
  2230. sdma_update_tail(sde, tail);
  2231. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2232. *count_out = total_count;
  2233. return ret;
  2234. unlock_noconn:
  2235. spin_lock(&sde->flushlist_lock);
  2236. list_for_each_entry_safe(tx, tx_next, tx_list, list) {
  2237. tx->wait = wait;
  2238. list_del_init(&tx->list);
  2239. tx->next_descq_idx = 0;
  2240. #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
  2241. tx->sn = sde->tail_sn++;
  2242. trace_hfi1_sdma_in_sn(sde, tx->sn);
  2243. #endif
  2244. list_add_tail(&tx->list, &sde->flushlist);
  2245. flush_count++;
  2246. if (wait) {
  2247. wait->tx_count++;
  2248. wait->count += tx->num_desc;
  2249. }
  2250. }
  2251. spin_unlock(&sde->flushlist_lock);
  2252. schedule_work(&sde->flush_worker);
  2253. ret = -ECOMM;
  2254. goto update_tail;
  2255. nodesc:
  2256. ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
  2257. if (ret == -EAGAIN) {
  2258. ret = 0;
  2259. goto retry;
  2260. }
  2261. sde->descq_full_count++;
  2262. goto update_tail;
  2263. }
  2264. static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
  2265. {
  2266. unsigned long flags;
  2267. spin_lock_irqsave(&sde->tail_lock, flags);
  2268. write_seqlock(&sde->head_lock);
  2269. __sdma_process_event(sde, event);
  2270. if (sde->state.current_state == sdma_state_s99_running)
  2271. sdma_desc_avail(sde, sdma_descq_freecnt(sde));
  2272. write_sequnlock(&sde->head_lock);
  2273. spin_unlock_irqrestore(&sde->tail_lock, flags);
  2274. }
  2275. static void __sdma_process_event(struct sdma_engine *sde,
  2276. enum sdma_events event)
  2277. {
  2278. struct sdma_state *ss = &sde->state;
  2279. int need_progress = 0;
  2280. /* CONFIG SDMA temporary */
  2281. #ifdef CONFIG_SDMA_VERBOSITY
  2282. dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
  2283. sdma_state_names[ss->current_state],
  2284. sdma_event_names[event]);
  2285. #endif
  2286. switch (ss->current_state) {
  2287. case sdma_state_s00_hw_down:
  2288. switch (event) {
  2289. case sdma_event_e00_go_hw_down:
  2290. break;
  2291. case sdma_event_e30_go_running:
  2292. /*
  2293. * If down, but running requested (usually result
  2294. * of link up, then we need to start up.
  2295. * This can happen when hw down is requested while
  2296. * bringing the link up with traffic active on
  2297. * 7220, e.g.
  2298. */
  2299. ss->go_s99_running = 1;
  2300. /* fall through -- and start dma engine */
  2301. case sdma_event_e10_go_hw_start:
  2302. /* This reference means the state machine is started */
  2303. sdma_get(&sde->state);
  2304. sdma_set_state(sde,
  2305. sdma_state_s10_hw_start_up_halt_wait);
  2306. break;
  2307. case sdma_event_e15_hw_halt_done:
  2308. break;
  2309. case sdma_event_e25_hw_clean_up_done:
  2310. break;
  2311. case sdma_event_e40_sw_cleaned:
  2312. sdma_sw_tear_down(sde);
  2313. break;
  2314. case sdma_event_e50_hw_cleaned:
  2315. break;
  2316. case sdma_event_e60_hw_halted:
  2317. break;
  2318. case sdma_event_e70_go_idle:
  2319. break;
  2320. case sdma_event_e80_hw_freeze:
  2321. break;
  2322. case sdma_event_e81_hw_frozen:
  2323. break;
  2324. case sdma_event_e82_hw_unfreeze:
  2325. break;
  2326. case sdma_event_e85_link_down:
  2327. break;
  2328. case sdma_event_e90_sw_halted:
  2329. break;
  2330. }
  2331. break;
  2332. case sdma_state_s10_hw_start_up_halt_wait:
  2333. switch (event) {
  2334. case sdma_event_e00_go_hw_down:
  2335. sdma_set_state(sde, sdma_state_s00_hw_down);
  2336. sdma_sw_tear_down(sde);
  2337. break;
  2338. case sdma_event_e10_go_hw_start:
  2339. break;
  2340. case sdma_event_e15_hw_halt_done:
  2341. sdma_set_state(sde,
  2342. sdma_state_s15_hw_start_up_clean_wait);
  2343. sdma_start_hw_clean_up(sde);
  2344. break;
  2345. case sdma_event_e25_hw_clean_up_done:
  2346. break;
  2347. case sdma_event_e30_go_running:
  2348. ss->go_s99_running = 1;
  2349. break;
  2350. case sdma_event_e40_sw_cleaned:
  2351. break;
  2352. case sdma_event_e50_hw_cleaned:
  2353. break;
  2354. case sdma_event_e60_hw_halted:
  2355. schedule_work(&sde->err_halt_worker);
  2356. break;
  2357. case sdma_event_e70_go_idle:
  2358. ss->go_s99_running = 0;
  2359. break;
  2360. case sdma_event_e80_hw_freeze:
  2361. break;
  2362. case sdma_event_e81_hw_frozen:
  2363. break;
  2364. case sdma_event_e82_hw_unfreeze:
  2365. break;
  2366. case sdma_event_e85_link_down:
  2367. break;
  2368. case sdma_event_e90_sw_halted:
  2369. break;
  2370. }
  2371. break;
  2372. case sdma_state_s15_hw_start_up_clean_wait:
  2373. switch (event) {
  2374. case sdma_event_e00_go_hw_down:
  2375. sdma_set_state(sde, sdma_state_s00_hw_down);
  2376. sdma_sw_tear_down(sde);
  2377. break;
  2378. case sdma_event_e10_go_hw_start:
  2379. break;
  2380. case sdma_event_e15_hw_halt_done:
  2381. break;
  2382. case sdma_event_e25_hw_clean_up_done:
  2383. sdma_hw_start_up(sde);
  2384. sdma_set_state(sde, ss->go_s99_running ?
  2385. sdma_state_s99_running :
  2386. sdma_state_s20_idle);
  2387. break;
  2388. case sdma_event_e30_go_running:
  2389. ss->go_s99_running = 1;
  2390. break;
  2391. case sdma_event_e40_sw_cleaned:
  2392. break;
  2393. case sdma_event_e50_hw_cleaned:
  2394. break;
  2395. case sdma_event_e60_hw_halted:
  2396. break;
  2397. case sdma_event_e70_go_idle:
  2398. ss->go_s99_running = 0;
  2399. break;
  2400. case sdma_event_e80_hw_freeze:
  2401. break;
  2402. case sdma_event_e81_hw_frozen:
  2403. break;
  2404. case sdma_event_e82_hw_unfreeze:
  2405. break;
  2406. case sdma_event_e85_link_down:
  2407. break;
  2408. case sdma_event_e90_sw_halted:
  2409. break;
  2410. }
  2411. break;
  2412. case sdma_state_s20_idle:
  2413. switch (event) {
  2414. case sdma_event_e00_go_hw_down:
  2415. sdma_set_state(sde, sdma_state_s00_hw_down);
  2416. sdma_sw_tear_down(sde);
  2417. break;
  2418. case sdma_event_e10_go_hw_start:
  2419. break;
  2420. case sdma_event_e15_hw_halt_done:
  2421. break;
  2422. case sdma_event_e25_hw_clean_up_done:
  2423. break;
  2424. case sdma_event_e30_go_running:
  2425. sdma_set_state(sde, sdma_state_s99_running);
  2426. ss->go_s99_running = 1;
  2427. break;
  2428. case sdma_event_e40_sw_cleaned:
  2429. break;
  2430. case sdma_event_e50_hw_cleaned:
  2431. break;
  2432. case sdma_event_e60_hw_halted:
  2433. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2434. schedule_work(&sde->err_halt_worker);
  2435. break;
  2436. case sdma_event_e70_go_idle:
  2437. break;
  2438. case sdma_event_e85_link_down:
  2439. /* fall through */
  2440. case sdma_event_e80_hw_freeze:
  2441. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2442. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2443. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2444. break;
  2445. case sdma_event_e81_hw_frozen:
  2446. break;
  2447. case sdma_event_e82_hw_unfreeze:
  2448. break;
  2449. case sdma_event_e90_sw_halted:
  2450. break;
  2451. }
  2452. break;
  2453. case sdma_state_s30_sw_clean_up_wait:
  2454. switch (event) {
  2455. case sdma_event_e00_go_hw_down:
  2456. sdma_set_state(sde, sdma_state_s00_hw_down);
  2457. break;
  2458. case sdma_event_e10_go_hw_start:
  2459. break;
  2460. case sdma_event_e15_hw_halt_done:
  2461. break;
  2462. case sdma_event_e25_hw_clean_up_done:
  2463. break;
  2464. case sdma_event_e30_go_running:
  2465. ss->go_s99_running = 1;
  2466. break;
  2467. case sdma_event_e40_sw_cleaned:
  2468. sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
  2469. sdma_start_hw_clean_up(sde);
  2470. break;
  2471. case sdma_event_e50_hw_cleaned:
  2472. break;
  2473. case sdma_event_e60_hw_halted:
  2474. break;
  2475. case sdma_event_e70_go_idle:
  2476. ss->go_s99_running = 0;
  2477. break;
  2478. case sdma_event_e80_hw_freeze:
  2479. break;
  2480. case sdma_event_e81_hw_frozen:
  2481. break;
  2482. case sdma_event_e82_hw_unfreeze:
  2483. break;
  2484. case sdma_event_e85_link_down:
  2485. ss->go_s99_running = 0;
  2486. break;
  2487. case sdma_event_e90_sw_halted:
  2488. break;
  2489. }
  2490. break;
  2491. case sdma_state_s40_hw_clean_up_wait:
  2492. switch (event) {
  2493. case sdma_event_e00_go_hw_down:
  2494. sdma_set_state(sde, sdma_state_s00_hw_down);
  2495. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2496. break;
  2497. case sdma_event_e10_go_hw_start:
  2498. break;
  2499. case sdma_event_e15_hw_halt_done:
  2500. break;
  2501. case sdma_event_e25_hw_clean_up_done:
  2502. sdma_hw_start_up(sde);
  2503. sdma_set_state(sde, ss->go_s99_running ?
  2504. sdma_state_s99_running :
  2505. sdma_state_s20_idle);
  2506. break;
  2507. case sdma_event_e30_go_running:
  2508. ss->go_s99_running = 1;
  2509. break;
  2510. case sdma_event_e40_sw_cleaned:
  2511. break;
  2512. case sdma_event_e50_hw_cleaned:
  2513. break;
  2514. case sdma_event_e60_hw_halted:
  2515. break;
  2516. case sdma_event_e70_go_idle:
  2517. ss->go_s99_running = 0;
  2518. break;
  2519. case sdma_event_e80_hw_freeze:
  2520. break;
  2521. case sdma_event_e81_hw_frozen:
  2522. break;
  2523. case sdma_event_e82_hw_unfreeze:
  2524. break;
  2525. case sdma_event_e85_link_down:
  2526. ss->go_s99_running = 0;
  2527. break;
  2528. case sdma_event_e90_sw_halted:
  2529. break;
  2530. }
  2531. break;
  2532. case sdma_state_s50_hw_halt_wait:
  2533. switch (event) {
  2534. case sdma_event_e00_go_hw_down:
  2535. sdma_set_state(sde, sdma_state_s00_hw_down);
  2536. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2537. break;
  2538. case sdma_event_e10_go_hw_start:
  2539. break;
  2540. case sdma_event_e15_hw_halt_done:
  2541. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2542. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2543. break;
  2544. case sdma_event_e25_hw_clean_up_done:
  2545. break;
  2546. case sdma_event_e30_go_running:
  2547. ss->go_s99_running = 1;
  2548. break;
  2549. case sdma_event_e40_sw_cleaned:
  2550. break;
  2551. case sdma_event_e50_hw_cleaned:
  2552. break;
  2553. case sdma_event_e60_hw_halted:
  2554. schedule_work(&sde->err_halt_worker);
  2555. break;
  2556. case sdma_event_e70_go_idle:
  2557. ss->go_s99_running = 0;
  2558. break;
  2559. case sdma_event_e80_hw_freeze:
  2560. break;
  2561. case sdma_event_e81_hw_frozen:
  2562. break;
  2563. case sdma_event_e82_hw_unfreeze:
  2564. break;
  2565. case sdma_event_e85_link_down:
  2566. ss->go_s99_running = 0;
  2567. break;
  2568. case sdma_event_e90_sw_halted:
  2569. break;
  2570. }
  2571. break;
  2572. case sdma_state_s60_idle_halt_wait:
  2573. switch (event) {
  2574. case sdma_event_e00_go_hw_down:
  2575. sdma_set_state(sde, sdma_state_s00_hw_down);
  2576. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2577. break;
  2578. case sdma_event_e10_go_hw_start:
  2579. break;
  2580. case sdma_event_e15_hw_halt_done:
  2581. sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
  2582. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2583. break;
  2584. case sdma_event_e25_hw_clean_up_done:
  2585. break;
  2586. case sdma_event_e30_go_running:
  2587. ss->go_s99_running = 1;
  2588. break;
  2589. case sdma_event_e40_sw_cleaned:
  2590. break;
  2591. case sdma_event_e50_hw_cleaned:
  2592. break;
  2593. case sdma_event_e60_hw_halted:
  2594. schedule_work(&sde->err_halt_worker);
  2595. break;
  2596. case sdma_event_e70_go_idle:
  2597. ss->go_s99_running = 0;
  2598. break;
  2599. case sdma_event_e80_hw_freeze:
  2600. break;
  2601. case sdma_event_e81_hw_frozen:
  2602. break;
  2603. case sdma_event_e82_hw_unfreeze:
  2604. break;
  2605. case sdma_event_e85_link_down:
  2606. break;
  2607. case sdma_event_e90_sw_halted:
  2608. break;
  2609. }
  2610. break;
  2611. case sdma_state_s80_hw_freeze:
  2612. switch (event) {
  2613. case sdma_event_e00_go_hw_down:
  2614. sdma_set_state(sde, sdma_state_s00_hw_down);
  2615. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2616. break;
  2617. case sdma_event_e10_go_hw_start:
  2618. break;
  2619. case sdma_event_e15_hw_halt_done:
  2620. break;
  2621. case sdma_event_e25_hw_clean_up_done:
  2622. break;
  2623. case sdma_event_e30_go_running:
  2624. ss->go_s99_running = 1;
  2625. break;
  2626. case sdma_event_e40_sw_cleaned:
  2627. break;
  2628. case sdma_event_e50_hw_cleaned:
  2629. break;
  2630. case sdma_event_e60_hw_halted:
  2631. break;
  2632. case sdma_event_e70_go_idle:
  2633. ss->go_s99_running = 0;
  2634. break;
  2635. case sdma_event_e80_hw_freeze:
  2636. break;
  2637. case sdma_event_e81_hw_frozen:
  2638. sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
  2639. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2640. break;
  2641. case sdma_event_e82_hw_unfreeze:
  2642. break;
  2643. case sdma_event_e85_link_down:
  2644. break;
  2645. case sdma_event_e90_sw_halted:
  2646. break;
  2647. }
  2648. break;
  2649. case sdma_state_s82_freeze_sw_clean:
  2650. switch (event) {
  2651. case sdma_event_e00_go_hw_down:
  2652. sdma_set_state(sde, sdma_state_s00_hw_down);
  2653. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2654. break;
  2655. case sdma_event_e10_go_hw_start:
  2656. break;
  2657. case sdma_event_e15_hw_halt_done:
  2658. break;
  2659. case sdma_event_e25_hw_clean_up_done:
  2660. break;
  2661. case sdma_event_e30_go_running:
  2662. ss->go_s99_running = 1;
  2663. break;
  2664. case sdma_event_e40_sw_cleaned:
  2665. /* notify caller this engine is done cleaning */
  2666. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2667. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2668. break;
  2669. case sdma_event_e50_hw_cleaned:
  2670. break;
  2671. case sdma_event_e60_hw_halted:
  2672. break;
  2673. case sdma_event_e70_go_idle:
  2674. ss->go_s99_running = 0;
  2675. break;
  2676. case sdma_event_e80_hw_freeze:
  2677. break;
  2678. case sdma_event_e81_hw_frozen:
  2679. break;
  2680. case sdma_event_e82_hw_unfreeze:
  2681. sdma_hw_start_up(sde);
  2682. sdma_set_state(sde, ss->go_s99_running ?
  2683. sdma_state_s99_running :
  2684. sdma_state_s20_idle);
  2685. break;
  2686. case sdma_event_e85_link_down:
  2687. break;
  2688. case sdma_event_e90_sw_halted:
  2689. break;
  2690. }
  2691. break;
  2692. case sdma_state_s99_running:
  2693. switch (event) {
  2694. case sdma_event_e00_go_hw_down:
  2695. sdma_set_state(sde, sdma_state_s00_hw_down);
  2696. tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
  2697. break;
  2698. case sdma_event_e10_go_hw_start:
  2699. break;
  2700. case sdma_event_e15_hw_halt_done:
  2701. break;
  2702. case sdma_event_e25_hw_clean_up_done:
  2703. break;
  2704. case sdma_event_e30_go_running:
  2705. break;
  2706. case sdma_event_e40_sw_cleaned:
  2707. break;
  2708. case sdma_event_e50_hw_cleaned:
  2709. break;
  2710. case sdma_event_e60_hw_halted:
  2711. need_progress = 1;
  2712. sdma_err_progress_check_schedule(sde);
  2713. /* fall through */
  2714. case sdma_event_e90_sw_halted:
  2715. /*
  2716. * SW initiated halt does not perform engines
  2717. * progress check
  2718. */
  2719. sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
  2720. schedule_work(&sde->err_halt_worker);
  2721. break;
  2722. case sdma_event_e70_go_idle:
  2723. sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
  2724. break;
  2725. case sdma_event_e85_link_down:
  2726. ss->go_s99_running = 0;
  2727. /* fall through */
  2728. case sdma_event_e80_hw_freeze:
  2729. sdma_set_state(sde, sdma_state_s80_hw_freeze);
  2730. atomic_dec(&sde->dd->sdma_unfreeze_count);
  2731. wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
  2732. break;
  2733. case sdma_event_e81_hw_frozen:
  2734. break;
  2735. case sdma_event_e82_hw_unfreeze:
  2736. break;
  2737. }
  2738. break;
  2739. }
  2740. ss->last_event = event;
  2741. if (need_progress)
  2742. sdma_make_progress(sde, 0);
  2743. }
  2744. /*
  2745. * _extend_sdma_tx_descs() - helper to extend txreq
  2746. *
  2747. * This is called once the initial nominal allocation
  2748. * of descriptors in the sdma_txreq is exhausted.
  2749. *
  2750. * The code will bump the allocation up to the max
  2751. * of MAX_DESC (64) descriptors. There doesn't seem
  2752. * much point in an interim step. The last descriptor
  2753. * is reserved for coalesce buffer in order to support
  2754. * cases where input packet has >MAX_DESC iovecs.
  2755. *
  2756. */
  2757. static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2758. {
  2759. int i;
  2760. /* Handle last descriptor */
  2761. if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
  2762. /* if tlen is 0, it is for padding, release last descriptor */
  2763. if (!tx->tlen) {
  2764. tx->desc_limit = MAX_DESC;
  2765. } else if (!tx->coalesce_buf) {
  2766. /* allocate coalesce buffer with space for padding */
  2767. tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
  2768. GFP_ATOMIC);
  2769. if (!tx->coalesce_buf)
  2770. goto enomem;
  2771. tx->coalesce_idx = 0;
  2772. }
  2773. return 0;
  2774. }
  2775. if (unlikely(tx->num_desc == MAX_DESC))
  2776. goto enomem;
  2777. tx->descp = kmalloc_array(
  2778. MAX_DESC,
  2779. sizeof(struct sdma_desc),
  2780. GFP_ATOMIC);
  2781. if (!tx->descp)
  2782. goto enomem;
  2783. /* reserve last descriptor for coalescing */
  2784. tx->desc_limit = MAX_DESC - 1;
  2785. /* copy ones already built */
  2786. for (i = 0; i < tx->num_desc; i++)
  2787. tx->descp[i] = tx->descs[i];
  2788. return 0;
  2789. enomem:
  2790. __sdma_txclean(dd, tx);
  2791. return -ENOMEM;
  2792. }
  2793. /*
  2794. * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
  2795. *
  2796. * This is called once the initial nominal allocation of descriptors
  2797. * in the sdma_txreq is exhausted.
  2798. *
  2799. * This function calls _extend_sdma_tx_descs to extend or allocate
  2800. * coalesce buffer. If there is a allocated coalesce buffer, it will
  2801. * copy the input packet data into the coalesce buffer. It also adds
  2802. * coalesce buffer descriptor once when whole packet is received.
  2803. *
  2804. * Return:
  2805. * <0 - error
  2806. * 0 - coalescing, don't populate descriptor
  2807. * 1 - continue with populating descriptor
  2808. */
  2809. int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
  2810. int type, void *kvaddr, struct page *page,
  2811. unsigned long offset, u16 len)
  2812. {
  2813. int pad_len, rval;
  2814. dma_addr_t addr;
  2815. rval = _extend_sdma_tx_descs(dd, tx);
  2816. if (rval) {
  2817. __sdma_txclean(dd, tx);
  2818. return rval;
  2819. }
  2820. /* If coalesce buffer is allocated, copy data into it */
  2821. if (tx->coalesce_buf) {
  2822. if (type == SDMA_MAP_NONE) {
  2823. __sdma_txclean(dd, tx);
  2824. return -EINVAL;
  2825. }
  2826. if (type == SDMA_MAP_PAGE) {
  2827. kvaddr = kmap(page);
  2828. kvaddr += offset;
  2829. } else if (WARN_ON(!kvaddr)) {
  2830. __sdma_txclean(dd, tx);
  2831. return -EINVAL;
  2832. }
  2833. memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
  2834. tx->coalesce_idx += len;
  2835. if (type == SDMA_MAP_PAGE)
  2836. kunmap(page);
  2837. /* If there is more data, return */
  2838. if (tx->tlen - tx->coalesce_idx)
  2839. return 0;
  2840. /* Whole packet is received; add any padding */
  2841. pad_len = tx->packet_len & (sizeof(u32) - 1);
  2842. if (pad_len) {
  2843. pad_len = sizeof(u32) - pad_len;
  2844. memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
  2845. /* padding is taken care of for coalescing case */
  2846. tx->packet_len += pad_len;
  2847. tx->tlen += pad_len;
  2848. }
  2849. /* dma map the coalesce buffer */
  2850. addr = dma_map_single(&dd->pcidev->dev,
  2851. tx->coalesce_buf,
  2852. tx->tlen,
  2853. DMA_TO_DEVICE);
  2854. if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
  2855. __sdma_txclean(dd, tx);
  2856. return -ENOSPC;
  2857. }
  2858. /* Add descriptor for coalesce buffer */
  2859. tx->desc_limit = MAX_DESC;
  2860. return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
  2861. addr, tx->tlen);
  2862. }
  2863. return 1;
  2864. }
  2865. /* Update sdes when the lmc changes */
  2866. void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
  2867. {
  2868. struct sdma_engine *sde;
  2869. int i;
  2870. u64 sreg;
  2871. sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
  2872. SD(CHECK_SLID_MASK_SHIFT)) |
  2873. (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
  2874. SD(CHECK_SLID_VALUE_SHIFT));
  2875. for (i = 0; i < dd->num_sdma; i++) {
  2876. hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
  2877. i, (u32)sreg);
  2878. sde = &dd->per_sdma[i];
  2879. write_sde_csr(sde, SD(CHECK_SLID), sreg);
  2880. }
  2881. }
  2882. /* tx not dword sized - pad */
  2883. int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
  2884. {
  2885. int rval = 0;
  2886. tx->num_desc++;
  2887. if ((unlikely(tx->num_desc == tx->desc_limit))) {
  2888. rval = _extend_sdma_tx_descs(dd, tx);
  2889. if (rval) {
  2890. __sdma_txclean(dd, tx);
  2891. return rval;
  2892. }
  2893. }
  2894. /* finish the one just added */
  2895. make_tx_sdma_desc(
  2896. tx,
  2897. SDMA_MAP_NONE,
  2898. dd->sdma_pad_phys,
  2899. sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
  2900. _sdma_close_tx(dd, tx);
  2901. return rval;
  2902. }
  2903. /*
  2904. * Add ahg to the sdma_txreq
  2905. *
  2906. * The logic will consume up to 3
  2907. * descriptors at the beginning of
  2908. * sdma_txreq.
  2909. */
  2910. void _sdma_txreq_ahgadd(
  2911. struct sdma_txreq *tx,
  2912. u8 num_ahg,
  2913. u8 ahg_entry,
  2914. u32 *ahg,
  2915. u8 ahg_hlen)
  2916. {
  2917. u32 i, shift = 0, desc = 0;
  2918. u8 mode;
  2919. WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
  2920. /* compute mode */
  2921. if (num_ahg == 1)
  2922. mode = SDMA_AHG_APPLY_UPDATE1;
  2923. else if (num_ahg <= 5)
  2924. mode = SDMA_AHG_APPLY_UPDATE2;
  2925. else
  2926. mode = SDMA_AHG_APPLY_UPDATE3;
  2927. tx->num_desc++;
  2928. /* initialize to consumed descriptors to zero */
  2929. switch (mode) {
  2930. case SDMA_AHG_APPLY_UPDATE3:
  2931. tx->num_desc++;
  2932. tx->descs[2].qw[0] = 0;
  2933. tx->descs[2].qw[1] = 0;
  2934. /* FALLTHROUGH */
  2935. case SDMA_AHG_APPLY_UPDATE2:
  2936. tx->num_desc++;
  2937. tx->descs[1].qw[0] = 0;
  2938. tx->descs[1].qw[1] = 0;
  2939. break;
  2940. }
  2941. ahg_hlen >>= 2;
  2942. tx->descs[0].qw[1] |=
  2943. (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
  2944. << SDMA_DESC1_HEADER_INDEX_SHIFT) |
  2945. (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
  2946. << SDMA_DESC1_HEADER_DWS_SHIFT) |
  2947. (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
  2948. << SDMA_DESC1_HEADER_MODE_SHIFT) |
  2949. (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
  2950. << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
  2951. for (i = 0; i < (num_ahg - 1); i++) {
  2952. if (!shift && !(i & 2))
  2953. desc++;
  2954. tx->descs[desc].qw[!!(i & 2)] |=
  2955. (((u64)ahg[i + 1])
  2956. << shift);
  2957. shift = (shift + 32) & 63;
  2958. }
  2959. }
  2960. /**
  2961. * sdma_ahg_alloc - allocate an AHG entry
  2962. * @sde: engine to allocate from
  2963. *
  2964. * Return:
  2965. * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
  2966. * -ENOSPC if an entry is not available
  2967. */
  2968. int sdma_ahg_alloc(struct sdma_engine *sde)
  2969. {
  2970. int nr;
  2971. int oldbit;
  2972. if (!sde) {
  2973. trace_hfi1_ahg_allocate(sde, -EINVAL);
  2974. return -EINVAL;
  2975. }
  2976. while (1) {
  2977. nr = ffz(READ_ONCE(sde->ahg_bits));
  2978. if (nr > 31) {
  2979. trace_hfi1_ahg_allocate(sde, -ENOSPC);
  2980. return -ENOSPC;
  2981. }
  2982. oldbit = test_and_set_bit(nr, &sde->ahg_bits);
  2983. if (!oldbit)
  2984. break;
  2985. cpu_relax();
  2986. }
  2987. trace_hfi1_ahg_allocate(sde, nr);
  2988. return nr;
  2989. }
  2990. /**
  2991. * sdma_ahg_free - free an AHG entry
  2992. * @sde: engine to return AHG entry
  2993. * @ahg_index: index to free
  2994. *
  2995. * This routine frees the indicate AHG entry.
  2996. */
  2997. void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
  2998. {
  2999. if (!sde)
  3000. return;
  3001. trace_hfi1_ahg_deallocate(sde, ahg_index);
  3002. if (ahg_index < 0 || ahg_index > 31)
  3003. return;
  3004. clear_bit(ahg_index, &sde->ahg_bits);
  3005. }
  3006. /*
  3007. * SPC freeze handling for SDMA engines. Called when the driver knows
  3008. * the SPC is going into a freeze but before the freeze is fully
  3009. * settled. Generally an error interrupt.
  3010. *
  3011. * This event will pull the engine out of running so no more entries can be
  3012. * added to the engine's queue.
  3013. */
  3014. void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
  3015. {
  3016. int i;
  3017. enum sdma_events event = link_down ? sdma_event_e85_link_down :
  3018. sdma_event_e80_hw_freeze;
  3019. /* set up the wait but do not wait here */
  3020. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3021. /* tell all engines to stop running and wait */
  3022. for (i = 0; i < dd->num_sdma; i++)
  3023. sdma_process_event(&dd->per_sdma[i], event);
  3024. /* sdma_freeze() will wait for all engines to have stopped */
  3025. }
  3026. /*
  3027. * SPC freeze handling for SDMA engines. Called when the driver knows
  3028. * the SPC is fully frozen.
  3029. */
  3030. void sdma_freeze(struct hfi1_devdata *dd)
  3031. {
  3032. int i;
  3033. int ret;
  3034. /*
  3035. * Make sure all engines have moved out of the running state before
  3036. * continuing.
  3037. */
  3038. ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
  3039. atomic_read(&dd->sdma_unfreeze_count) <=
  3040. 0);
  3041. /* interrupted or count is negative, then unloading - just exit */
  3042. if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
  3043. return;
  3044. /* set up the count for the next wait */
  3045. atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
  3046. /* tell all engines that the SPC is frozen, they can start cleaning */
  3047. for (i = 0; i < dd->num_sdma; i++)
  3048. sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
  3049. /*
  3050. * Wait for everyone to finish software clean before exiting. The
  3051. * software clean will read engine CSRs, so must be completed before
  3052. * the next step, which will clear the engine CSRs.
  3053. */
  3054. (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
  3055. atomic_read(&dd->sdma_unfreeze_count) <= 0);
  3056. /* no need to check results - done no matter what */
  3057. }
  3058. /*
  3059. * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
  3060. *
  3061. * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
  3062. * that is left is a software clean. We could do it after the SPC is fully
  3063. * frozen, but then we'd have to add another state to wait for the unfreeze.
  3064. * Instead, just defer the software clean until the unfreeze step.
  3065. */
  3066. void sdma_unfreeze(struct hfi1_devdata *dd)
  3067. {
  3068. int i;
  3069. /* tell all engines start freeze clean up */
  3070. for (i = 0; i < dd->num_sdma; i++)
  3071. sdma_process_event(&dd->per_sdma[i],
  3072. sdma_event_e82_hw_unfreeze);
  3073. }
  3074. /**
  3075. * _sdma_engine_progress_schedule() - schedule progress on engine
  3076. * @sde: sdma_engine to schedule progress
  3077. *
  3078. */
  3079. void _sdma_engine_progress_schedule(
  3080. struct sdma_engine *sde)
  3081. {
  3082. trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
  3083. /* assume we have selected a good cpu */
  3084. write_csr(sde->dd,
  3085. CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
  3086. sde->progress_mask);
  3087. }