verbs.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <linux/security.h>
  47. #include <rdma/ib_verbs.h>
  48. #include <rdma/ib_cache.h>
  49. #include <rdma/ib_addr.h>
  50. #include <rdma/rw.h>
  51. #include "core_priv.h"
  52. static int ib_resolve_eth_dmac(struct ib_device *device,
  53. struct rdma_ah_attr *ah_attr);
  54. static const char * const ib_events[] = {
  55. [IB_EVENT_CQ_ERR] = "CQ error",
  56. [IB_EVENT_QP_FATAL] = "QP fatal error",
  57. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  58. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  59. [IB_EVENT_COMM_EST] = "communication established",
  60. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  61. [IB_EVENT_PATH_MIG] = "path migration successful",
  62. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  63. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  64. [IB_EVENT_PORT_ACTIVE] = "port active",
  65. [IB_EVENT_PORT_ERR] = "port error",
  66. [IB_EVENT_LID_CHANGE] = "LID change",
  67. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  68. [IB_EVENT_SM_CHANGE] = "SM change",
  69. [IB_EVENT_SRQ_ERR] = "SRQ error",
  70. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  71. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  72. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  73. [IB_EVENT_GID_CHANGE] = "GID changed",
  74. };
  75. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  76. {
  77. size_t index = event;
  78. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  79. ib_events[index] : "unrecognized event";
  80. }
  81. EXPORT_SYMBOL(ib_event_msg);
  82. static const char * const wc_statuses[] = {
  83. [IB_WC_SUCCESS] = "success",
  84. [IB_WC_LOC_LEN_ERR] = "local length error",
  85. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  86. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  87. [IB_WC_LOC_PROT_ERR] = "local protection error",
  88. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  89. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  90. [IB_WC_BAD_RESP_ERR] = "bad response error",
  91. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  92. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  93. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  94. [IB_WC_REM_OP_ERR] = "remote operation error",
  95. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  96. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  97. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  98. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  99. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  100. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  101. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  102. [IB_WC_FATAL_ERR] = "fatal error",
  103. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  104. [IB_WC_GENERAL_ERR] = "general error",
  105. };
  106. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  107. {
  108. size_t index = status;
  109. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  110. wc_statuses[index] : "unrecognized status";
  111. }
  112. EXPORT_SYMBOL(ib_wc_status_msg);
  113. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  114. {
  115. switch (rate) {
  116. case IB_RATE_2_5_GBPS: return 1;
  117. case IB_RATE_5_GBPS: return 2;
  118. case IB_RATE_10_GBPS: return 4;
  119. case IB_RATE_20_GBPS: return 8;
  120. case IB_RATE_30_GBPS: return 12;
  121. case IB_RATE_40_GBPS: return 16;
  122. case IB_RATE_60_GBPS: return 24;
  123. case IB_RATE_80_GBPS: return 32;
  124. case IB_RATE_120_GBPS: return 48;
  125. case IB_RATE_14_GBPS: return 6;
  126. case IB_RATE_56_GBPS: return 22;
  127. case IB_RATE_112_GBPS: return 45;
  128. case IB_RATE_168_GBPS: return 67;
  129. case IB_RATE_25_GBPS: return 10;
  130. case IB_RATE_100_GBPS: return 40;
  131. case IB_RATE_200_GBPS: return 80;
  132. case IB_RATE_300_GBPS: return 120;
  133. default: return -1;
  134. }
  135. }
  136. EXPORT_SYMBOL(ib_rate_to_mult);
  137. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  138. {
  139. switch (mult) {
  140. case 1: return IB_RATE_2_5_GBPS;
  141. case 2: return IB_RATE_5_GBPS;
  142. case 4: return IB_RATE_10_GBPS;
  143. case 8: return IB_RATE_20_GBPS;
  144. case 12: return IB_RATE_30_GBPS;
  145. case 16: return IB_RATE_40_GBPS;
  146. case 24: return IB_RATE_60_GBPS;
  147. case 32: return IB_RATE_80_GBPS;
  148. case 48: return IB_RATE_120_GBPS;
  149. case 6: return IB_RATE_14_GBPS;
  150. case 22: return IB_RATE_56_GBPS;
  151. case 45: return IB_RATE_112_GBPS;
  152. case 67: return IB_RATE_168_GBPS;
  153. case 10: return IB_RATE_25_GBPS;
  154. case 40: return IB_RATE_100_GBPS;
  155. case 80: return IB_RATE_200_GBPS;
  156. case 120: return IB_RATE_300_GBPS;
  157. default: return IB_RATE_PORT_CURRENT;
  158. }
  159. }
  160. EXPORT_SYMBOL(mult_to_ib_rate);
  161. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  162. {
  163. switch (rate) {
  164. case IB_RATE_2_5_GBPS: return 2500;
  165. case IB_RATE_5_GBPS: return 5000;
  166. case IB_RATE_10_GBPS: return 10000;
  167. case IB_RATE_20_GBPS: return 20000;
  168. case IB_RATE_30_GBPS: return 30000;
  169. case IB_RATE_40_GBPS: return 40000;
  170. case IB_RATE_60_GBPS: return 60000;
  171. case IB_RATE_80_GBPS: return 80000;
  172. case IB_RATE_120_GBPS: return 120000;
  173. case IB_RATE_14_GBPS: return 14062;
  174. case IB_RATE_56_GBPS: return 56250;
  175. case IB_RATE_112_GBPS: return 112500;
  176. case IB_RATE_168_GBPS: return 168750;
  177. case IB_RATE_25_GBPS: return 25781;
  178. case IB_RATE_100_GBPS: return 103125;
  179. case IB_RATE_200_GBPS: return 206250;
  180. case IB_RATE_300_GBPS: return 309375;
  181. default: return -1;
  182. }
  183. }
  184. EXPORT_SYMBOL(ib_rate_to_mbps);
  185. __attribute_const__ enum rdma_transport_type
  186. rdma_node_get_transport(enum rdma_node_type node_type)
  187. {
  188. if (node_type == RDMA_NODE_USNIC)
  189. return RDMA_TRANSPORT_USNIC;
  190. if (node_type == RDMA_NODE_USNIC_UDP)
  191. return RDMA_TRANSPORT_USNIC_UDP;
  192. if (node_type == RDMA_NODE_RNIC)
  193. return RDMA_TRANSPORT_IWARP;
  194. return RDMA_TRANSPORT_IB;
  195. }
  196. EXPORT_SYMBOL(rdma_node_get_transport);
  197. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  198. {
  199. enum rdma_transport_type lt;
  200. if (device->get_link_layer)
  201. return device->get_link_layer(device, port_num);
  202. lt = rdma_node_get_transport(device->node_type);
  203. if (lt == RDMA_TRANSPORT_IB)
  204. return IB_LINK_LAYER_INFINIBAND;
  205. return IB_LINK_LAYER_ETHERNET;
  206. }
  207. EXPORT_SYMBOL(rdma_port_get_link_layer);
  208. /* Protection domains */
  209. /**
  210. * ib_alloc_pd - Allocates an unused protection domain.
  211. * @device: The device on which to allocate the protection domain.
  212. *
  213. * A protection domain object provides an association between QPs, shared
  214. * receive queues, address handles, memory regions, and memory windows.
  215. *
  216. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  217. * memory operations.
  218. */
  219. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  220. const char *caller)
  221. {
  222. struct ib_pd *pd;
  223. int mr_access_flags = 0;
  224. pd = device->alloc_pd(device, NULL, NULL);
  225. if (IS_ERR(pd))
  226. return pd;
  227. pd->device = device;
  228. pd->uobject = NULL;
  229. pd->__internal_mr = NULL;
  230. atomic_set(&pd->usecnt, 0);
  231. pd->flags = flags;
  232. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  233. pd->local_dma_lkey = device->local_dma_lkey;
  234. else
  235. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  236. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  237. pr_warn("%s: enabling unsafe global rkey\n", caller);
  238. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  239. }
  240. pd->res.type = RDMA_RESTRACK_PD;
  241. pd->res.kern_name = caller;
  242. rdma_restrack_add(&pd->res);
  243. if (mr_access_flags) {
  244. struct ib_mr *mr;
  245. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  246. if (IS_ERR(mr)) {
  247. ib_dealloc_pd(pd);
  248. return ERR_CAST(mr);
  249. }
  250. mr->device = pd->device;
  251. mr->pd = pd;
  252. mr->uobject = NULL;
  253. mr->need_inval = false;
  254. pd->__internal_mr = mr;
  255. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  256. pd->local_dma_lkey = pd->__internal_mr->lkey;
  257. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  258. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  259. }
  260. return pd;
  261. }
  262. EXPORT_SYMBOL(__ib_alloc_pd);
  263. /**
  264. * ib_dealloc_pd - Deallocates a protection domain.
  265. * @pd: The protection domain to deallocate.
  266. *
  267. * It is an error to call this function while any resources in the pd still
  268. * exist. The caller is responsible to synchronously destroy them and
  269. * guarantee no new allocations will happen.
  270. */
  271. void ib_dealloc_pd(struct ib_pd *pd)
  272. {
  273. int ret;
  274. if (pd->__internal_mr) {
  275. ret = pd->device->dereg_mr(pd->__internal_mr);
  276. WARN_ON(ret);
  277. pd->__internal_mr = NULL;
  278. }
  279. /* uverbs manipulates usecnt with proper locking, while the kabi
  280. requires the caller to guarantee we can't race here. */
  281. WARN_ON(atomic_read(&pd->usecnt));
  282. rdma_restrack_del(&pd->res);
  283. /* Making delalloc_pd a void return is a WIP, no driver should return
  284. an error here. */
  285. ret = pd->device->dealloc_pd(pd);
  286. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  287. }
  288. EXPORT_SYMBOL(ib_dealloc_pd);
  289. /* Address handles */
  290. static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
  291. struct rdma_ah_attr *ah_attr,
  292. struct ib_udata *udata)
  293. {
  294. struct ib_ah *ah;
  295. ah = pd->device->create_ah(pd, ah_attr, udata);
  296. if (!IS_ERR(ah)) {
  297. ah->device = pd->device;
  298. ah->pd = pd;
  299. ah->uobject = NULL;
  300. ah->type = ah_attr->type;
  301. atomic_inc(&pd->usecnt);
  302. }
  303. return ah;
  304. }
  305. struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
  306. {
  307. return _rdma_create_ah(pd, ah_attr, NULL);
  308. }
  309. EXPORT_SYMBOL(rdma_create_ah);
  310. /**
  311. * rdma_create_user_ah - Creates an address handle for the
  312. * given address vector.
  313. * It resolves destination mac address for ah attribute of RoCE type.
  314. * @pd: The protection domain associated with the address handle.
  315. * @ah_attr: The attributes of the address vector.
  316. * @udata: pointer to user's input output buffer information need by
  317. * provider driver.
  318. *
  319. * It returns 0 on success and returns appropriate error code on error.
  320. * The address handle is used to reference a local or global destination
  321. * in all UD QP post sends.
  322. */
  323. struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
  324. struct rdma_ah_attr *ah_attr,
  325. struct ib_udata *udata)
  326. {
  327. int err;
  328. if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
  329. err = ib_resolve_eth_dmac(pd->device, ah_attr);
  330. if (err)
  331. return ERR_PTR(err);
  332. }
  333. return _rdma_create_ah(pd, ah_attr, udata);
  334. }
  335. EXPORT_SYMBOL(rdma_create_user_ah);
  336. int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
  337. {
  338. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  339. struct iphdr ip4h_checked;
  340. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  341. /* If it's IPv6, the version must be 6, otherwise, the first
  342. * 20 bytes (before the IPv4 header) are garbled.
  343. */
  344. if (ip6h->version != 6)
  345. return (ip4h->version == 4) ? 4 : 0;
  346. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  347. /* RoCE v2 requires no options, thus header length
  348. * must be 5 words
  349. */
  350. if (ip4h->ihl != 5)
  351. return 6;
  352. /* Verify checksum.
  353. * We can't write on scattered buffers so we need to copy to
  354. * temp buffer.
  355. */
  356. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  357. ip4h_checked.check = 0;
  358. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  359. /* if IPv4 header checksum is OK, believe it */
  360. if (ip4h->check == ip4h_checked.check)
  361. return 4;
  362. return 6;
  363. }
  364. EXPORT_SYMBOL(ib_get_rdma_header_version);
  365. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  366. u8 port_num,
  367. const struct ib_grh *grh)
  368. {
  369. int grh_version;
  370. if (rdma_protocol_ib(device, port_num))
  371. return RDMA_NETWORK_IB;
  372. grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
  373. if (grh_version == 4)
  374. return RDMA_NETWORK_IPV4;
  375. if (grh->next_hdr == IPPROTO_UDP)
  376. return RDMA_NETWORK_IPV6;
  377. return RDMA_NETWORK_ROCE_V1;
  378. }
  379. struct find_gid_index_context {
  380. u16 vlan_id;
  381. enum ib_gid_type gid_type;
  382. };
  383. static bool find_gid_index(const union ib_gid *gid,
  384. const struct ib_gid_attr *gid_attr,
  385. void *context)
  386. {
  387. struct find_gid_index_context *ctx = context;
  388. if (ctx->gid_type != gid_attr->gid_type)
  389. return false;
  390. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  391. (is_vlan_dev(gid_attr->ndev) &&
  392. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  393. return false;
  394. return true;
  395. }
  396. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  397. u16 vlan_id, const union ib_gid *sgid,
  398. enum ib_gid_type gid_type,
  399. u16 *gid_index)
  400. {
  401. struct find_gid_index_context context = {.vlan_id = vlan_id,
  402. .gid_type = gid_type};
  403. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  404. &context, gid_index);
  405. }
  406. int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
  407. enum rdma_network_type net_type,
  408. union ib_gid *sgid, union ib_gid *dgid)
  409. {
  410. struct sockaddr_in src_in;
  411. struct sockaddr_in dst_in;
  412. __be32 src_saddr, dst_saddr;
  413. if (!sgid || !dgid)
  414. return -EINVAL;
  415. if (net_type == RDMA_NETWORK_IPV4) {
  416. memcpy(&src_in.sin_addr.s_addr,
  417. &hdr->roce4grh.saddr, 4);
  418. memcpy(&dst_in.sin_addr.s_addr,
  419. &hdr->roce4grh.daddr, 4);
  420. src_saddr = src_in.sin_addr.s_addr;
  421. dst_saddr = dst_in.sin_addr.s_addr;
  422. ipv6_addr_set_v4mapped(src_saddr,
  423. (struct in6_addr *)sgid);
  424. ipv6_addr_set_v4mapped(dst_saddr,
  425. (struct in6_addr *)dgid);
  426. return 0;
  427. } else if (net_type == RDMA_NETWORK_IPV6 ||
  428. net_type == RDMA_NETWORK_IB) {
  429. *dgid = hdr->ibgrh.dgid;
  430. *sgid = hdr->ibgrh.sgid;
  431. return 0;
  432. } else {
  433. return -EINVAL;
  434. }
  435. }
  436. EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
  437. /* Resolve destination mac address and hop limit for unicast destination
  438. * GID entry, considering the source GID entry as well.
  439. * ah_attribute must have have valid port_num, sgid_index.
  440. */
  441. static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
  442. struct rdma_ah_attr *ah_attr)
  443. {
  444. struct ib_gid_attr sgid_attr;
  445. struct ib_global_route *grh;
  446. int hop_limit = 0xff;
  447. union ib_gid sgid;
  448. int ret;
  449. grh = rdma_ah_retrieve_grh(ah_attr);
  450. ret = ib_query_gid(device,
  451. rdma_ah_get_port_num(ah_attr),
  452. grh->sgid_index,
  453. &sgid, &sgid_attr);
  454. if (ret || !sgid_attr.ndev) {
  455. if (!ret)
  456. ret = -ENXIO;
  457. return ret;
  458. }
  459. /* If destination is link local and source GID is RoCEv1,
  460. * IP stack is not used.
  461. */
  462. if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
  463. sgid_attr.gid_type == IB_GID_TYPE_ROCE) {
  464. rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
  465. ah_attr->roce.dmac);
  466. goto done;
  467. }
  468. ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
  469. ah_attr->roce.dmac,
  470. sgid_attr.ndev, &hop_limit);
  471. done:
  472. dev_put(sgid_attr.ndev);
  473. grh->hop_limit = hop_limit;
  474. return ret;
  475. }
  476. /*
  477. * This function initializes address handle attributes from the incoming packet.
  478. * Incoming packet has dgid of the receiver node on which this code is
  479. * getting executed and, sgid contains the GID of the sender.
  480. *
  481. * When resolving mac address of destination, the arrived dgid is used
  482. * as sgid and, sgid is used as dgid because sgid contains destinations
  483. * GID whom to respond to.
  484. *
  485. */
  486. int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
  487. const struct ib_wc *wc, const struct ib_grh *grh,
  488. struct rdma_ah_attr *ah_attr)
  489. {
  490. u32 flow_class;
  491. u16 gid_index;
  492. int ret;
  493. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  494. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  495. int hoplimit = 0xff;
  496. union ib_gid dgid;
  497. union ib_gid sgid;
  498. might_sleep();
  499. memset(ah_attr, 0, sizeof *ah_attr);
  500. ah_attr->type = rdma_ah_find_type(device, port_num);
  501. if (rdma_cap_eth_ah(device, port_num)) {
  502. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  503. net_type = wc->network_hdr_type;
  504. else
  505. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  506. gid_type = ib_network_to_gid_type(net_type);
  507. }
  508. ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  509. &sgid, &dgid);
  510. if (ret)
  511. return ret;
  512. rdma_ah_set_sl(ah_attr, wc->sl);
  513. rdma_ah_set_port_num(ah_attr, port_num);
  514. if (rdma_protocol_roce(device, port_num)) {
  515. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  516. wc->vlan_id : 0xffff;
  517. if (!(wc->wc_flags & IB_WC_GRH))
  518. return -EPROTOTYPE;
  519. ret = get_sgid_index_from_eth(device, port_num,
  520. vlan_id, &dgid,
  521. gid_type, &gid_index);
  522. if (ret)
  523. return ret;
  524. flow_class = be32_to_cpu(grh->version_tclass_flow);
  525. rdma_ah_set_grh(ah_attr, &sgid,
  526. flow_class & 0xFFFFF,
  527. (u8)gid_index, hoplimit,
  528. (flow_class >> 20) & 0xFF);
  529. return ib_resolve_unicast_gid_dmac(device, ah_attr);
  530. } else {
  531. rdma_ah_set_dlid(ah_attr, wc->slid);
  532. rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
  533. if (wc->wc_flags & IB_WC_GRH) {
  534. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  535. ret = ib_find_cached_gid_by_port(device, &dgid,
  536. IB_GID_TYPE_IB,
  537. port_num, NULL,
  538. &gid_index);
  539. if (ret)
  540. return ret;
  541. } else {
  542. gid_index = 0;
  543. }
  544. flow_class = be32_to_cpu(grh->version_tclass_flow);
  545. rdma_ah_set_grh(ah_attr, &sgid,
  546. flow_class & 0xFFFFF,
  547. (u8)gid_index, hoplimit,
  548. (flow_class >> 20) & 0xFF);
  549. }
  550. return 0;
  551. }
  552. }
  553. EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
  554. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  555. const struct ib_grh *grh, u8 port_num)
  556. {
  557. struct rdma_ah_attr ah_attr;
  558. int ret;
  559. ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  560. if (ret)
  561. return ERR_PTR(ret);
  562. return rdma_create_ah(pd, &ah_attr);
  563. }
  564. EXPORT_SYMBOL(ib_create_ah_from_wc);
  565. int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  566. {
  567. if (ah->type != ah_attr->type)
  568. return -EINVAL;
  569. return ah->device->modify_ah ?
  570. ah->device->modify_ah(ah, ah_attr) :
  571. -EOPNOTSUPP;
  572. }
  573. EXPORT_SYMBOL(rdma_modify_ah);
  574. int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  575. {
  576. return ah->device->query_ah ?
  577. ah->device->query_ah(ah, ah_attr) :
  578. -EOPNOTSUPP;
  579. }
  580. EXPORT_SYMBOL(rdma_query_ah);
  581. int rdma_destroy_ah(struct ib_ah *ah)
  582. {
  583. struct ib_pd *pd;
  584. int ret;
  585. pd = ah->pd;
  586. ret = ah->device->destroy_ah(ah);
  587. if (!ret)
  588. atomic_dec(&pd->usecnt);
  589. return ret;
  590. }
  591. EXPORT_SYMBOL(rdma_destroy_ah);
  592. /* Shared receive queues */
  593. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  594. struct ib_srq_init_attr *srq_init_attr)
  595. {
  596. struct ib_srq *srq;
  597. if (!pd->device->create_srq)
  598. return ERR_PTR(-EOPNOTSUPP);
  599. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  600. if (!IS_ERR(srq)) {
  601. srq->device = pd->device;
  602. srq->pd = pd;
  603. srq->uobject = NULL;
  604. srq->event_handler = srq_init_attr->event_handler;
  605. srq->srq_context = srq_init_attr->srq_context;
  606. srq->srq_type = srq_init_attr->srq_type;
  607. if (ib_srq_has_cq(srq->srq_type)) {
  608. srq->ext.cq = srq_init_attr->ext.cq;
  609. atomic_inc(&srq->ext.cq->usecnt);
  610. }
  611. if (srq->srq_type == IB_SRQT_XRC) {
  612. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  613. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  614. }
  615. atomic_inc(&pd->usecnt);
  616. atomic_set(&srq->usecnt, 0);
  617. }
  618. return srq;
  619. }
  620. EXPORT_SYMBOL(ib_create_srq);
  621. int ib_modify_srq(struct ib_srq *srq,
  622. struct ib_srq_attr *srq_attr,
  623. enum ib_srq_attr_mask srq_attr_mask)
  624. {
  625. return srq->device->modify_srq ?
  626. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  627. -EOPNOTSUPP;
  628. }
  629. EXPORT_SYMBOL(ib_modify_srq);
  630. int ib_query_srq(struct ib_srq *srq,
  631. struct ib_srq_attr *srq_attr)
  632. {
  633. return srq->device->query_srq ?
  634. srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
  635. }
  636. EXPORT_SYMBOL(ib_query_srq);
  637. int ib_destroy_srq(struct ib_srq *srq)
  638. {
  639. struct ib_pd *pd;
  640. enum ib_srq_type srq_type;
  641. struct ib_xrcd *uninitialized_var(xrcd);
  642. struct ib_cq *uninitialized_var(cq);
  643. int ret;
  644. if (atomic_read(&srq->usecnt))
  645. return -EBUSY;
  646. pd = srq->pd;
  647. srq_type = srq->srq_type;
  648. if (ib_srq_has_cq(srq_type))
  649. cq = srq->ext.cq;
  650. if (srq_type == IB_SRQT_XRC)
  651. xrcd = srq->ext.xrc.xrcd;
  652. ret = srq->device->destroy_srq(srq);
  653. if (!ret) {
  654. atomic_dec(&pd->usecnt);
  655. if (srq_type == IB_SRQT_XRC)
  656. atomic_dec(&xrcd->usecnt);
  657. if (ib_srq_has_cq(srq_type))
  658. atomic_dec(&cq->usecnt);
  659. }
  660. return ret;
  661. }
  662. EXPORT_SYMBOL(ib_destroy_srq);
  663. /* Queue pairs */
  664. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  665. {
  666. struct ib_qp *qp = context;
  667. unsigned long flags;
  668. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  669. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  670. if (event->element.qp->event_handler)
  671. event->element.qp->event_handler(event, event->element.qp->qp_context);
  672. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  673. }
  674. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  675. {
  676. mutex_lock(&xrcd->tgt_qp_mutex);
  677. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  678. mutex_unlock(&xrcd->tgt_qp_mutex);
  679. }
  680. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  681. void (*event_handler)(struct ib_event *, void *),
  682. void *qp_context)
  683. {
  684. struct ib_qp *qp;
  685. unsigned long flags;
  686. int err;
  687. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  688. if (!qp)
  689. return ERR_PTR(-ENOMEM);
  690. qp->real_qp = real_qp;
  691. err = ib_open_shared_qp_security(qp, real_qp->device);
  692. if (err) {
  693. kfree(qp);
  694. return ERR_PTR(err);
  695. }
  696. qp->real_qp = real_qp;
  697. atomic_inc(&real_qp->usecnt);
  698. qp->device = real_qp->device;
  699. qp->event_handler = event_handler;
  700. qp->qp_context = qp_context;
  701. qp->qp_num = real_qp->qp_num;
  702. qp->qp_type = real_qp->qp_type;
  703. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  704. list_add(&qp->open_list, &real_qp->open_list);
  705. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  706. return qp;
  707. }
  708. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  709. struct ib_qp_open_attr *qp_open_attr)
  710. {
  711. struct ib_qp *qp, *real_qp;
  712. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  713. return ERR_PTR(-EINVAL);
  714. qp = ERR_PTR(-EINVAL);
  715. mutex_lock(&xrcd->tgt_qp_mutex);
  716. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  717. if (real_qp->qp_num == qp_open_attr->qp_num) {
  718. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  719. qp_open_attr->qp_context);
  720. break;
  721. }
  722. }
  723. mutex_unlock(&xrcd->tgt_qp_mutex);
  724. return qp;
  725. }
  726. EXPORT_SYMBOL(ib_open_qp);
  727. static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
  728. struct ib_qp_init_attr *qp_init_attr)
  729. {
  730. struct ib_qp *real_qp = qp;
  731. qp->event_handler = __ib_shared_qp_event_handler;
  732. qp->qp_context = qp;
  733. qp->pd = NULL;
  734. qp->send_cq = qp->recv_cq = NULL;
  735. qp->srq = NULL;
  736. qp->xrcd = qp_init_attr->xrcd;
  737. atomic_inc(&qp_init_attr->xrcd->usecnt);
  738. INIT_LIST_HEAD(&qp->open_list);
  739. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  740. qp_init_attr->qp_context);
  741. if (!IS_ERR(qp))
  742. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  743. else
  744. real_qp->device->destroy_qp(real_qp);
  745. return qp;
  746. }
  747. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  748. struct ib_qp_init_attr *qp_init_attr)
  749. {
  750. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  751. struct ib_qp *qp;
  752. int ret;
  753. if (qp_init_attr->rwq_ind_tbl &&
  754. (qp_init_attr->recv_cq ||
  755. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  756. qp_init_attr->cap.max_recv_sge))
  757. return ERR_PTR(-EINVAL);
  758. /*
  759. * If the callers is using the RDMA API calculate the resources
  760. * needed for the RDMA READ/WRITE operations.
  761. *
  762. * Note that these callers need to pass in a port number.
  763. */
  764. if (qp_init_attr->cap.max_rdma_ctxs)
  765. rdma_rw_init_qp(device, qp_init_attr);
  766. qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
  767. if (IS_ERR(qp))
  768. return qp;
  769. ret = ib_create_qp_security(qp, device);
  770. if (ret) {
  771. ib_destroy_qp(qp);
  772. return ERR_PTR(ret);
  773. }
  774. qp->real_qp = qp;
  775. qp->qp_type = qp_init_attr->qp_type;
  776. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  777. atomic_set(&qp->usecnt, 0);
  778. qp->mrs_used = 0;
  779. spin_lock_init(&qp->mr_lock);
  780. INIT_LIST_HEAD(&qp->rdma_mrs);
  781. INIT_LIST_HEAD(&qp->sig_mrs);
  782. qp->port = 0;
  783. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
  784. return ib_create_xrc_qp(qp, qp_init_attr);
  785. qp->event_handler = qp_init_attr->event_handler;
  786. qp->qp_context = qp_init_attr->qp_context;
  787. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  788. qp->recv_cq = NULL;
  789. qp->srq = NULL;
  790. } else {
  791. qp->recv_cq = qp_init_attr->recv_cq;
  792. if (qp_init_attr->recv_cq)
  793. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  794. qp->srq = qp_init_attr->srq;
  795. if (qp->srq)
  796. atomic_inc(&qp_init_attr->srq->usecnt);
  797. }
  798. qp->send_cq = qp_init_attr->send_cq;
  799. qp->xrcd = NULL;
  800. atomic_inc(&pd->usecnt);
  801. if (qp_init_attr->send_cq)
  802. atomic_inc(&qp_init_attr->send_cq->usecnt);
  803. if (qp_init_attr->rwq_ind_tbl)
  804. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  805. if (qp_init_attr->cap.max_rdma_ctxs) {
  806. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  807. if (ret) {
  808. pr_err("failed to init MR pool ret= %d\n", ret);
  809. ib_destroy_qp(qp);
  810. return ERR_PTR(ret);
  811. }
  812. }
  813. /*
  814. * Note: all hw drivers guarantee that max_send_sge is lower than
  815. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  816. * max_send_sge <= max_sge_rd.
  817. */
  818. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  819. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  820. device->attrs.max_sge_rd);
  821. return qp;
  822. }
  823. EXPORT_SYMBOL(ib_create_qp);
  824. static const struct {
  825. int valid;
  826. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  827. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  828. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  829. [IB_QPS_RESET] = {
  830. [IB_QPS_RESET] = { .valid = 1 },
  831. [IB_QPS_INIT] = {
  832. .valid = 1,
  833. .req_param = {
  834. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  835. IB_QP_PORT |
  836. IB_QP_QKEY),
  837. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  838. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  839. IB_QP_PORT |
  840. IB_QP_ACCESS_FLAGS),
  841. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  842. IB_QP_PORT |
  843. IB_QP_ACCESS_FLAGS),
  844. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  845. IB_QP_PORT |
  846. IB_QP_ACCESS_FLAGS),
  847. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  848. IB_QP_PORT |
  849. IB_QP_ACCESS_FLAGS),
  850. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  851. IB_QP_QKEY),
  852. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  853. IB_QP_QKEY),
  854. }
  855. },
  856. },
  857. [IB_QPS_INIT] = {
  858. [IB_QPS_RESET] = { .valid = 1 },
  859. [IB_QPS_ERR] = { .valid = 1 },
  860. [IB_QPS_INIT] = {
  861. .valid = 1,
  862. .opt_param = {
  863. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  864. IB_QP_PORT |
  865. IB_QP_QKEY),
  866. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  867. IB_QP_PORT |
  868. IB_QP_ACCESS_FLAGS),
  869. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  870. IB_QP_PORT |
  871. IB_QP_ACCESS_FLAGS),
  872. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  873. IB_QP_PORT |
  874. IB_QP_ACCESS_FLAGS),
  875. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  876. IB_QP_PORT |
  877. IB_QP_ACCESS_FLAGS),
  878. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  879. IB_QP_QKEY),
  880. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  881. IB_QP_QKEY),
  882. }
  883. },
  884. [IB_QPS_RTR] = {
  885. .valid = 1,
  886. .req_param = {
  887. [IB_QPT_UC] = (IB_QP_AV |
  888. IB_QP_PATH_MTU |
  889. IB_QP_DEST_QPN |
  890. IB_QP_RQ_PSN),
  891. [IB_QPT_RC] = (IB_QP_AV |
  892. IB_QP_PATH_MTU |
  893. IB_QP_DEST_QPN |
  894. IB_QP_RQ_PSN |
  895. IB_QP_MAX_DEST_RD_ATOMIC |
  896. IB_QP_MIN_RNR_TIMER),
  897. [IB_QPT_XRC_INI] = (IB_QP_AV |
  898. IB_QP_PATH_MTU |
  899. IB_QP_DEST_QPN |
  900. IB_QP_RQ_PSN),
  901. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  902. IB_QP_PATH_MTU |
  903. IB_QP_DEST_QPN |
  904. IB_QP_RQ_PSN |
  905. IB_QP_MAX_DEST_RD_ATOMIC |
  906. IB_QP_MIN_RNR_TIMER),
  907. },
  908. .opt_param = {
  909. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  910. IB_QP_QKEY),
  911. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  912. IB_QP_ACCESS_FLAGS |
  913. IB_QP_PKEY_INDEX),
  914. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  915. IB_QP_ACCESS_FLAGS |
  916. IB_QP_PKEY_INDEX),
  917. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  918. IB_QP_ACCESS_FLAGS |
  919. IB_QP_PKEY_INDEX),
  920. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  921. IB_QP_ACCESS_FLAGS |
  922. IB_QP_PKEY_INDEX),
  923. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  924. IB_QP_QKEY),
  925. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  926. IB_QP_QKEY),
  927. },
  928. },
  929. },
  930. [IB_QPS_RTR] = {
  931. [IB_QPS_RESET] = { .valid = 1 },
  932. [IB_QPS_ERR] = { .valid = 1 },
  933. [IB_QPS_RTS] = {
  934. .valid = 1,
  935. .req_param = {
  936. [IB_QPT_UD] = IB_QP_SQ_PSN,
  937. [IB_QPT_UC] = IB_QP_SQ_PSN,
  938. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  939. IB_QP_RETRY_CNT |
  940. IB_QP_RNR_RETRY |
  941. IB_QP_SQ_PSN |
  942. IB_QP_MAX_QP_RD_ATOMIC),
  943. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  944. IB_QP_RETRY_CNT |
  945. IB_QP_RNR_RETRY |
  946. IB_QP_SQ_PSN |
  947. IB_QP_MAX_QP_RD_ATOMIC),
  948. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  949. IB_QP_SQ_PSN),
  950. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  951. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  952. },
  953. .opt_param = {
  954. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  955. IB_QP_QKEY),
  956. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  957. IB_QP_ALT_PATH |
  958. IB_QP_ACCESS_FLAGS |
  959. IB_QP_PATH_MIG_STATE),
  960. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  961. IB_QP_ALT_PATH |
  962. IB_QP_ACCESS_FLAGS |
  963. IB_QP_MIN_RNR_TIMER |
  964. IB_QP_PATH_MIG_STATE),
  965. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  966. IB_QP_ALT_PATH |
  967. IB_QP_ACCESS_FLAGS |
  968. IB_QP_PATH_MIG_STATE),
  969. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  970. IB_QP_ALT_PATH |
  971. IB_QP_ACCESS_FLAGS |
  972. IB_QP_MIN_RNR_TIMER |
  973. IB_QP_PATH_MIG_STATE),
  974. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  975. IB_QP_QKEY),
  976. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  977. IB_QP_QKEY),
  978. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  979. }
  980. }
  981. },
  982. [IB_QPS_RTS] = {
  983. [IB_QPS_RESET] = { .valid = 1 },
  984. [IB_QPS_ERR] = { .valid = 1 },
  985. [IB_QPS_RTS] = {
  986. .valid = 1,
  987. .opt_param = {
  988. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  989. IB_QP_QKEY),
  990. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  991. IB_QP_ACCESS_FLAGS |
  992. IB_QP_ALT_PATH |
  993. IB_QP_PATH_MIG_STATE),
  994. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  995. IB_QP_ACCESS_FLAGS |
  996. IB_QP_ALT_PATH |
  997. IB_QP_PATH_MIG_STATE |
  998. IB_QP_MIN_RNR_TIMER),
  999. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  1000. IB_QP_ACCESS_FLAGS |
  1001. IB_QP_ALT_PATH |
  1002. IB_QP_PATH_MIG_STATE),
  1003. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  1004. IB_QP_ACCESS_FLAGS |
  1005. IB_QP_ALT_PATH |
  1006. IB_QP_PATH_MIG_STATE |
  1007. IB_QP_MIN_RNR_TIMER),
  1008. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1009. IB_QP_QKEY),
  1010. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1011. IB_QP_QKEY),
  1012. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  1013. }
  1014. },
  1015. [IB_QPS_SQD] = {
  1016. .valid = 1,
  1017. .opt_param = {
  1018. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  1019. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  1020. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  1021. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  1022. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  1023. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  1024. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  1025. }
  1026. },
  1027. },
  1028. [IB_QPS_SQD] = {
  1029. [IB_QPS_RESET] = { .valid = 1 },
  1030. [IB_QPS_ERR] = { .valid = 1 },
  1031. [IB_QPS_RTS] = {
  1032. .valid = 1,
  1033. .opt_param = {
  1034. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1035. IB_QP_QKEY),
  1036. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1037. IB_QP_ALT_PATH |
  1038. IB_QP_ACCESS_FLAGS |
  1039. IB_QP_PATH_MIG_STATE),
  1040. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  1041. IB_QP_ALT_PATH |
  1042. IB_QP_ACCESS_FLAGS |
  1043. IB_QP_MIN_RNR_TIMER |
  1044. IB_QP_PATH_MIG_STATE),
  1045. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  1046. IB_QP_ALT_PATH |
  1047. IB_QP_ACCESS_FLAGS |
  1048. IB_QP_PATH_MIG_STATE),
  1049. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  1050. IB_QP_ALT_PATH |
  1051. IB_QP_ACCESS_FLAGS |
  1052. IB_QP_MIN_RNR_TIMER |
  1053. IB_QP_PATH_MIG_STATE),
  1054. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1055. IB_QP_QKEY),
  1056. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1057. IB_QP_QKEY),
  1058. }
  1059. },
  1060. [IB_QPS_SQD] = {
  1061. .valid = 1,
  1062. .opt_param = {
  1063. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  1064. IB_QP_QKEY),
  1065. [IB_QPT_UC] = (IB_QP_AV |
  1066. IB_QP_ALT_PATH |
  1067. IB_QP_ACCESS_FLAGS |
  1068. IB_QP_PKEY_INDEX |
  1069. IB_QP_PATH_MIG_STATE),
  1070. [IB_QPT_RC] = (IB_QP_PORT |
  1071. IB_QP_AV |
  1072. IB_QP_TIMEOUT |
  1073. IB_QP_RETRY_CNT |
  1074. IB_QP_RNR_RETRY |
  1075. IB_QP_MAX_QP_RD_ATOMIC |
  1076. IB_QP_MAX_DEST_RD_ATOMIC |
  1077. IB_QP_ALT_PATH |
  1078. IB_QP_ACCESS_FLAGS |
  1079. IB_QP_PKEY_INDEX |
  1080. IB_QP_MIN_RNR_TIMER |
  1081. IB_QP_PATH_MIG_STATE),
  1082. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1083. IB_QP_AV |
  1084. IB_QP_TIMEOUT |
  1085. IB_QP_RETRY_CNT |
  1086. IB_QP_RNR_RETRY |
  1087. IB_QP_MAX_QP_RD_ATOMIC |
  1088. IB_QP_ALT_PATH |
  1089. IB_QP_ACCESS_FLAGS |
  1090. IB_QP_PKEY_INDEX |
  1091. IB_QP_PATH_MIG_STATE),
  1092. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1093. IB_QP_AV |
  1094. IB_QP_TIMEOUT |
  1095. IB_QP_MAX_DEST_RD_ATOMIC |
  1096. IB_QP_ALT_PATH |
  1097. IB_QP_ACCESS_FLAGS |
  1098. IB_QP_PKEY_INDEX |
  1099. IB_QP_MIN_RNR_TIMER |
  1100. IB_QP_PATH_MIG_STATE),
  1101. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1102. IB_QP_QKEY),
  1103. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1104. IB_QP_QKEY),
  1105. }
  1106. }
  1107. },
  1108. [IB_QPS_SQE] = {
  1109. [IB_QPS_RESET] = { .valid = 1 },
  1110. [IB_QPS_ERR] = { .valid = 1 },
  1111. [IB_QPS_RTS] = {
  1112. .valid = 1,
  1113. .opt_param = {
  1114. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1115. IB_QP_QKEY),
  1116. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1117. IB_QP_ACCESS_FLAGS),
  1118. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1119. IB_QP_QKEY),
  1120. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1121. IB_QP_QKEY),
  1122. }
  1123. }
  1124. },
  1125. [IB_QPS_ERR] = {
  1126. [IB_QPS_RESET] = { .valid = 1 },
  1127. [IB_QPS_ERR] = { .valid = 1 }
  1128. }
  1129. };
  1130. bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1131. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1132. enum rdma_link_layer ll)
  1133. {
  1134. enum ib_qp_attr_mask req_param, opt_param;
  1135. if (mask & IB_QP_CUR_STATE &&
  1136. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1137. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1138. return false;
  1139. if (!qp_state_table[cur_state][next_state].valid)
  1140. return false;
  1141. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1142. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1143. if ((mask & req_param) != req_param)
  1144. return false;
  1145. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1146. return false;
  1147. return true;
  1148. }
  1149. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1150. static int ib_resolve_eth_dmac(struct ib_device *device,
  1151. struct rdma_ah_attr *ah_attr)
  1152. {
  1153. int ret = 0;
  1154. struct ib_global_route *grh;
  1155. if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
  1156. return -EINVAL;
  1157. grh = rdma_ah_retrieve_grh(ah_attr);
  1158. if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1159. if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1160. __be32 addr = 0;
  1161. memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
  1162. ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
  1163. } else {
  1164. ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
  1165. (char *)ah_attr->roce.dmac);
  1166. }
  1167. } else {
  1168. ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
  1169. }
  1170. return ret;
  1171. }
  1172. /**
  1173. * IB core internal function to perform QP attributes modification.
  1174. */
  1175. static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
  1176. int attr_mask, struct ib_udata *udata)
  1177. {
  1178. u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
  1179. int ret;
  1180. if (rdma_ib_or_roce(qp->device, port)) {
  1181. if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
  1182. pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
  1183. __func__, qp->device->name);
  1184. attr->rq_psn &= 0xffffff;
  1185. }
  1186. if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
  1187. pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
  1188. __func__, qp->device->name);
  1189. attr->sq_psn &= 0xffffff;
  1190. }
  1191. }
  1192. ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
  1193. if (!ret && (attr_mask & IB_QP_PORT))
  1194. qp->port = attr->port_num;
  1195. return ret;
  1196. }
  1197. static bool is_qp_type_connected(const struct ib_qp *qp)
  1198. {
  1199. return (qp->qp_type == IB_QPT_UC ||
  1200. qp->qp_type == IB_QPT_RC ||
  1201. qp->qp_type == IB_QPT_XRC_INI ||
  1202. qp->qp_type == IB_QPT_XRC_TGT);
  1203. }
  1204. /**
  1205. * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
  1206. * @ib_qp: The QP to modify.
  1207. * @attr: On input, specifies the QP attributes to modify. On output,
  1208. * the current values of selected QP attributes are returned.
  1209. * @attr_mask: A bit-mask used to specify which attributes of the QP
  1210. * are being modified.
  1211. * @udata: pointer to user's input output buffer information
  1212. * are being modified.
  1213. * It returns 0 on success and returns appropriate error code on error.
  1214. */
  1215. int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
  1216. int attr_mask, struct ib_udata *udata)
  1217. {
  1218. struct ib_qp *qp = ib_qp->real_qp;
  1219. int ret;
  1220. if (attr_mask & IB_QP_AV &&
  1221. attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
  1222. is_qp_type_connected(qp)) {
  1223. ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
  1224. if (ret)
  1225. return ret;
  1226. }
  1227. return _ib_modify_qp(qp, attr, attr_mask, udata);
  1228. }
  1229. EXPORT_SYMBOL(ib_modify_qp_with_udata);
  1230. int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
  1231. {
  1232. int rc;
  1233. u32 netdev_speed;
  1234. struct net_device *netdev;
  1235. struct ethtool_link_ksettings lksettings;
  1236. if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
  1237. return -EINVAL;
  1238. if (!dev->get_netdev)
  1239. return -EOPNOTSUPP;
  1240. netdev = dev->get_netdev(dev, port_num);
  1241. if (!netdev)
  1242. return -ENODEV;
  1243. rtnl_lock();
  1244. rc = __ethtool_get_link_ksettings(netdev, &lksettings);
  1245. rtnl_unlock();
  1246. dev_put(netdev);
  1247. if (!rc) {
  1248. netdev_speed = lksettings.base.speed;
  1249. } else {
  1250. netdev_speed = SPEED_1000;
  1251. pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
  1252. netdev_speed);
  1253. }
  1254. if (netdev_speed <= SPEED_1000) {
  1255. *width = IB_WIDTH_1X;
  1256. *speed = IB_SPEED_SDR;
  1257. } else if (netdev_speed <= SPEED_10000) {
  1258. *width = IB_WIDTH_1X;
  1259. *speed = IB_SPEED_FDR10;
  1260. } else if (netdev_speed <= SPEED_20000) {
  1261. *width = IB_WIDTH_4X;
  1262. *speed = IB_SPEED_DDR;
  1263. } else if (netdev_speed <= SPEED_25000) {
  1264. *width = IB_WIDTH_1X;
  1265. *speed = IB_SPEED_EDR;
  1266. } else if (netdev_speed <= SPEED_40000) {
  1267. *width = IB_WIDTH_4X;
  1268. *speed = IB_SPEED_FDR10;
  1269. } else {
  1270. *width = IB_WIDTH_4X;
  1271. *speed = IB_SPEED_EDR;
  1272. }
  1273. return 0;
  1274. }
  1275. EXPORT_SYMBOL(ib_get_eth_speed);
  1276. int ib_modify_qp(struct ib_qp *qp,
  1277. struct ib_qp_attr *qp_attr,
  1278. int qp_attr_mask)
  1279. {
  1280. return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
  1281. }
  1282. EXPORT_SYMBOL(ib_modify_qp);
  1283. int ib_query_qp(struct ib_qp *qp,
  1284. struct ib_qp_attr *qp_attr,
  1285. int qp_attr_mask,
  1286. struct ib_qp_init_attr *qp_init_attr)
  1287. {
  1288. return qp->device->query_qp ?
  1289. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1290. -EOPNOTSUPP;
  1291. }
  1292. EXPORT_SYMBOL(ib_query_qp);
  1293. int ib_close_qp(struct ib_qp *qp)
  1294. {
  1295. struct ib_qp *real_qp;
  1296. unsigned long flags;
  1297. real_qp = qp->real_qp;
  1298. if (real_qp == qp)
  1299. return -EINVAL;
  1300. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1301. list_del(&qp->open_list);
  1302. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1303. atomic_dec(&real_qp->usecnt);
  1304. if (qp->qp_sec)
  1305. ib_close_shared_qp_security(qp->qp_sec);
  1306. kfree(qp);
  1307. return 0;
  1308. }
  1309. EXPORT_SYMBOL(ib_close_qp);
  1310. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1311. {
  1312. struct ib_xrcd *xrcd;
  1313. struct ib_qp *real_qp;
  1314. int ret;
  1315. real_qp = qp->real_qp;
  1316. xrcd = real_qp->xrcd;
  1317. mutex_lock(&xrcd->tgt_qp_mutex);
  1318. ib_close_qp(qp);
  1319. if (atomic_read(&real_qp->usecnt) == 0)
  1320. list_del(&real_qp->xrcd_list);
  1321. else
  1322. real_qp = NULL;
  1323. mutex_unlock(&xrcd->tgt_qp_mutex);
  1324. if (real_qp) {
  1325. ret = ib_destroy_qp(real_qp);
  1326. if (!ret)
  1327. atomic_dec(&xrcd->usecnt);
  1328. else
  1329. __ib_insert_xrcd_qp(xrcd, real_qp);
  1330. }
  1331. return 0;
  1332. }
  1333. int ib_destroy_qp(struct ib_qp *qp)
  1334. {
  1335. struct ib_pd *pd;
  1336. struct ib_cq *scq, *rcq;
  1337. struct ib_srq *srq;
  1338. struct ib_rwq_ind_table *ind_tbl;
  1339. struct ib_qp_security *sec;
  1340. int ret;
  1341. WARN_ON_ONCE(qp->mrs_used > 0);
  1342. if (atomic_read(&qp->usecnt))
  1343. return -EBUSY;
  1344. if (qp->real_qp != qp)
  1345. return __ib_destroy_shared_qp(qp);
  1346. pd = qp->pd;
  1347. scq = qp->send_cq;
  1348. rcq = qp->recv_cq;
  1349. srq = qp->srq;
  1350. ind_tbl = qp->rwq_ind_tbl;
  1351. sec = qp->qp_sec;
  1352. if (sec)
  1353. ib_destroy_qp_security_begin(sec);
  1354. if (!qp->uobject)
  1355. rdma_rw_cleanup_mrs(qp);
  1356. rdma_restrack_del(&qp->res);
  1357. ret = qp->device->destroy_qp(qp);
  1358. if (!ret) {
  1359. if (pd)
  1360. atomic_dec(&pd->usecnt);
  1361. if (scq)
  1362. atomic_dec(&scq->usecnt);
  1363. if (rcq)
  1364. atomic_dec(&rcq->usecnt);
  1365. if (srq)
  1366. atomic_dec(&srq->usecnt);
  1367. if (ind_tbl)
  1368. atomic_dec(&ind_tbl->usecnt);
  1369. if (sec)
  1370. ib_destroy_qp_security_end(sec);
  1371. } else {
  1372. if (sec)
  1373. ib_destroy_qp_security_abort(sec);
  1374. }
  1375. return ret;
  1376. }
  1377. EXPORT_SYMBOL(ib_destroy_qp);
  1378. /* Completion queues */
  1379. struct ib_cq *ib_create_cq(struct ib_device *device,
  1380. ib_comp_handler comp_handler,
  1381. void (*event_handler)(struct ib_event *, void *),
  1382. void *cq_context,
  1383. const struct ib_cq_init_attr *cq_attr)
  1384. {
  1385. struct ib_cq *cq;
  1386. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1387. if (!IS_ERR(cq)) {
  1388. cq->device = device;
  1389. cq->uobject = NULL;
  1390. cq->comp_handler = comp_handler;
  1391. cq->event_handler = event_handler;
  1392. cq->cq_context = cq_context;
  1393. atomic_set(&cq->usecnt, 0);
  1394. cq->res.type = RDMA_RESTRACK_CQ;
  1395. rdma_restrack_add(&cq->res);
  1396. }
  1397. return cq;
  1398. }
  1399. EXPORT_SYMBOL(ib_create_cq);
  1400. int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1401. {
  1402. return cq->device->modify_cq ?
  1403. cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
  1404. }
  1405. EXPORT_SYMBOL(rdma_set_cq_moderation);
  1406. int ib_destroy_cq(struct ib_cq *cq)
  1407. {
  1408. if (atomic_read(&cq->usecnt))
  1409. return -EBUSY;
  1410. rdma_restrack_del(&cq->res);
  1411. return cq->device->destroy_cq(cq);
  1412. }
  1413. EXPORT_SYMBOL(ib_destroy_cq);
  1414. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1415. {
  1416. return cq->device->resize_cq ?
  1417. cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
  1418. }
  1419. EXPORT_SYMBOL(ib_resize_cq);
  1420. /* Memory regions */
  1421. int ib_dereg_mr(struct ib_mr *mr)
  1422. {
  1423. struct ib_pd *pd = mr->pd;
  1424. struct ib_dm *dm = mr->dm;
  1425. int ret;
  1426. rdma_restrack_del(&mr->res);
  1427. ret = mr->device->dereg_mr(mr);
  1428. if (!ret) {
  1429. atomic_dec(&pd->usecnt);
  1430. if (dm)
  1431. atomic_dec(&dm->usecnt);
  1432. }
  1433. return ret;
  1434. }
  1435. EXPORT_SYMBOL(ib_dereg_mr);
  1436. /**
  1437. * ib_alloc_mr() - Allocates a memory region
  1438. * @pd: protection domain associated with the region
  1439. * @mr_type: memory region type
  1440. * @max_num_sg: maximum sg entries available for registration.
  1441. *
  1442. * Notes:
  1443. * Memory registeration page/sg lists must not exceed max_num_sg.
  1444. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1445. * max_num_sg * used_page_size.
  1446. *
  1447. */
  1448. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1449. enum ib_mr_type mr_type,
  1450. u32 max_num_sg)
  1451. {
  1452. struct ib_mr *mr;
  1453. if (!pd->device->alloc_mr)
  1454. return ERR_PTR(-EOPNOTSUPP);
  1455. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1456. if (!IS_ERR(mr)) {
  1457. mr->device = pd->device;
  1458. mr->pd = pd;
  1459. mr->dm = NULL;
  1460. mr->uobject = NULL;
  1461. atomic_inc(&pd->usecnt);
  1462. mr->need_inval = false;
  1463. mr->res.type = RDMA_RESTRACK_MR;
  1464. rdma_restrack_add(&mr->res);
  1465. }
  1466. return mr;
  1467. }
  1468. EXPORT_SYMBOL(ib_alloc_mr);
  1469. /* "Fast" memory regions */
  1470. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1471. int mr_access_flags,
  1472. struct ib_fmr_attr *fmr_attr)
  1473. {
  1474. struct ib_fmr *fmr;
  1475. if (!pd->device->alloc_fmr)
  1476. return ERR_PTR(-EOPNOTSUPP);
  1477. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1478. if (!IS_ERR(fmr)) {
  1479. fmr->device = pd->device;
  1480. fmr->pd = pd;
  1481. atomic_inc(&pd->usecnt);
  1482. }
  1483. return fmr;
  1484. }
  1485. EXPORT_SYMBOL(ib_alloc_fmr);
  1486. int ib_unmap_fmr(struct list_head *fmr_list)
  1487. {
  1488. struct ib_fmr *fmr;
  1489. if (list_empty(fmr_list))
  1490. return 0;
  1491. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1492. return fmr->device->unmap_fmr(fmr_list);
  1493. }
  1494. EXPORT_SYMBOL(ib_unmap_fmr);
  1495. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1496. {
  1497. struct ib_pd *pd;
  1498. int ret;
  1499. pd = fmr->pd;
  1500. ret = fmr->device->dealloc_fmr(fmr);
  1501. if (!ret)
  1502. atomic_dec(&pd->usecnt);
  1503. return ret;
  1504. }
  1505. EXPORT_SYMBOL(ib_dealloc_fmr);
  1506. /* Multicast groups */
  1507. static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
  1508. {
  1509. struct ib_qp_init_attr init_attr = {};
  1510. struct ib_qp_attr attr = {};
  1511. int num_eth_ports = 0;
  1512. int port;
  1513. /* If QP state >= init, it is assigned to a port and we can check this
  1514. * port only.
  1515. */
  1516. if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
  1517. if (attr.qp_state >= IB_QPS_INIT) {
  1518. if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
  1519. IB_LINK_LAYER_INFINIBAND)
  1520. return true;
  1521. goto lid_check;
  1522. }
  1523. }
  1524. /* Can't get a quick answer, iterate over all ports */
  1525. for (port = 0; port < qp->device->phys_port_cnt; port++)
  1526. if (rdma_port_get_link_layer(qp->device, port) !=
  1527. IB_LINK_LAYER_INFINIBAND)
  1528. num_eth_ports++;
  1529. /* If we have at lease one Ethernet port, RoCE annex declares that
  1530. * multicast LID should be ignored. We can't tell at this step if the
  1531. * QP belongs to an IB or Ethernet port.
  1532. */
  1533. if (num_eth_ports)
  1534. return true;
  1535. /* If all the ports are IB, we can check according to IB spec. */
  1536. lid_check:
  1537. return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1538. lid == be16_to_cpu(IB_LID_PERMISSIVE));
  1539. }
  1540. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1541. {
  1542. int ret;
  1543. if (!qp->device->attach_mcast)
  1544. return -EOPNOTSUPP;
  1545. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1546. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1547. return -EINVAL;
  1548. ret = qp->device->attach_mcast(qp, gid, lid);
  1549. if (!ret)
  1550. atomic_inc(&qp->usecnt);
  1551. return ret;
  1552. }
  1553. EXPORT_SYMBOL(ib_attach_mcast);
  1554. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1555. {
  1556. int ret;
  1557. if (!qp->device->detach_mcast)
  1558. return -EOPNOTSUPP;
  1559. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1560. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1561. return -EINVAL;
  1562. ret = qp->device->detach_mcast(qp, gid, lid);
  1563. if (!ret)
  1564. atomic_dec(&qp->usecnt);
  1565. return ret;
  1566. }
  1567. EXPORT_SYMBOL(ib_detach_mcast);
  1568. struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
  1569. {
  1570. struct ib_xrcd *xrcd;
  1571. if (!device->alloc_xrcd)
  1572. return ERR_PTR(-EOPNOTSUPP);
  1573. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1574. if (!IS_ERR(xrcd)) {
  1575. xrcd->device = device;
  1576. xrcd->inode = NULL;
  1577. atomic_set(&xrcd->usecnt, 0);
  1578. mutex_init(&xrcd->tgt_qp_mutex);
  1579. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1580. }
  1581. return xrcd;
  1582. }
  1583. EXPORT_SYMBOL(__ib_alloc_xrcd);
  1584. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1585. {
  1586. struct ib_qp *qp;
  1587. int ret;
  1588. if (atomic_read(&xrcd->usecnt))
  1589. return -EBUSY;
  1590. while (!list_empty(&xrcd->tgt_qp_list)) {
  1591. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1592. ret = ib_destroy_qp(qp);
  1593. if (ret)
  1594. return ret;
  1595. }
  1596. return xrcd->device->dealloc_xrcd(xrcd);
  1597. }
  1598. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1599. /**
  1600. * ib_create_wq - Creates a WQ associated with the specified protection
  1601. * domain.
  1602. * @pd: The protection domain associated with the WQ.
  1603. * @wq_attr: A list of initial attributes required to create the
  1604. * WQ. If WQ creation succeeds, then the attributes are updated to
  1605. * the actual capabilities of the created WQ.
  1606. *
  1607. * wq_attr->max_wr and wq_attr->max_sge determine
  1608. * the requested size of the WQ, and set to the actual values allocated
  1609. * on return.
  1610. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1611. * at least as large as the requested values.
  1612. */
  1613. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1614. struct ib_wq_init_attr *wq_attr)
  1615. {
  1616. struct ib_wq *wq;
  1617. if (!pd->device->create_wq)
  1618. return ERR_PTR(-EOPNOTSUPP);
  1619. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1620. if (!IS_ERR(wq)) {
  1621. wq->event_handler = wq_attr->event_handler;
  1622. wq->wq_context = wq_attr->wq_context;
  1623. wq->wq_type = wq_attr->wq_type;
  1624. wq->cq = wq_attr->cq;
  1625. wq->device = pd->device;
  1626. wq->pd = pd;
  1627. wq->uobject = NULL;
  1628. atomic_inc(&pd->usecnt);
  1629. atomic_inc(&wq_attr->cq->usecnt);
  1630. atomic_set(&wq->usecnt, 0);
  1631. }
  1632. return wq;
  1633. }
  1634. EXPORT_SYMBOL(ib_create_wq);
  1635. /**
  1636. * ib_destroy_wq - Destroys the specified WQ.
  1637. * @wq: The WQ to destroy.
  1638. */
  1639. int ib_destroy_wq(struct ib_wq *wq)
  1640. {
  1641. int err;
  1642. struct ib_cq *cq = wq->cq;
  1643. struct ib_pd *pd = wq->pd;
  1644. if (atomic_read(&wq->usecnt))
  1645. return -EBUSY;
  1646. err = wq->device->destroy_wq(wq);
  1647. if (!err) {
  1648. atomic_dec(&pd->usecnt);
  1649. atomic_dec(&cq->usecnt);
  1650. }
  1651. return err;
  1652. }
  1653. EXPORT_SYMBOL(ib_destroy_wq);
  1654. /**
  1655. * ib_modify_wq - Modifies the specified WQ.
  1656. * @wq: The WQ to modify.
  1657. * @wq_attr: On input, specifies the WQ attributes to modify.
  1658. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1659. * are being modified.
  1660. * On output, the current values of selected WQ attributes are returned.
  1661. */
  1662. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1663. u32 wq_attr_mask)
  1664. {
  1665. int err;
  1666. if (!wq->device->modify_wq)
  1667. return -EOPNOTSUPP;
  1668. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1669. return err;
  1670. }
  1671. EXPORT_SYMBOL(ib_modify_wq);
  1672. /*
  1673. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1674. * @device: The device on which to create the rwq indirection table.
  1675. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1676. * create the Indirection Table.
  1677. *
  1678. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1679. * than the created ib_rwq_ind_table object and the caller is responsible
  1680. * for its memory allocation/free.
  1681. */
  1682. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1683. struct ib_rwq_ind_table_init_attr *init_attr)
  1684. {
  1685. struct ib_rwq_ind_table *rwq_ind_table;
  1686. int i;
  1687. u32 table_size;
  1688. if (!device->create_rwq_ind_table)
  1689. return ERR_PTR(-EOPNOTSUPP);
  1690. table_size = (1 << init_attr->log_ind_tbl_size);
  1691. rwq_ind_table = device->create_rwq_ind_table(device,
  1692. init_attr, NULL);
  1693. if (IS_ERR(rwq_ind_table))
  1694. return rwq_ind_table;
  1695. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1696. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1697. rwq_ind_table->device = device;
  1698. rwq_ind_table->uobject = NULL;
  1699. atomic_set(&rwq_ind_table->usecnt, 0);
  1700. for (i = 0; i < table_size; i++)
  1701. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1702. return rwq_ind_table;
  1703. }
  1704. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1705. /*
  1706. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1707. * @wq_ind_table: The Indirection Table to destroy.
  1708. */
  1709. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1710. {
  1711. int err, i;
  1712. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1713. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1714. if (atomic_read(&rwq_ind_table->usecnt))
  1715. return -EBUSY;
  1716. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1717. if (!err) {
  1718. for (i = 0; i < table_size; i++)
  1719. atomic_dec(&ind_tbl[i]->usecnt);
  1720. }
  1721. return err;
  1722. }
  1723. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1724. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1725. struct ib_flow_attr *flow_attr,
  1726. int domain)
  1727. {
  1728. struct ib_flow *flow_id;
  1729. if (!qp->device->create_flow)
  1730. return ERR_PTR(-EOPNOTSUPP);
  1731. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1732. if (!IS_ERR(flow_id)) {
  1733. atomic_inc(&qp->usecnt);
  1734. flow_id->qp = qp;
  1735. }
  1736. return flow_id;
  1737. }
  1738. EXPORT_SYMBOL(ib_create_flow);
  1739. int ib_destroy_flow(struct ib_flow *flow_id)
  1740. {
  1741. int err;
  1742. struct ib_qp *qp = flow_id->qp;
  1743. err = qp->device->destroy_flow(flow_id);
  1744. if (!err)
  1745. atomic_dec(&qp->usecnt);
  1746. return err;
  1747. }
  1748. EXPORT_SYMBOL(ib_destroy_flow);
  1749. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1750. struct ib_mr_status *mr_status)
  1751. {
  1752. return mr->device->check_mr_status ?
  1753. mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
  1754. }
  1755. EXPORT_SYMBOL(ib_check_mr_status);
  1756. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1757. int state)
  1758. {
  1759. if (!device->set_vf_link_state)
  1760. return -EOPNOTSUPP;
  1761. return device->set_vf_link_state(device, vf, port, state);
  1762. }
  1763. EXPORT_SYMBOL(ib_set_vf_link_state);
  1764. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1765. struct ifla_vf_info *info)
  1766. {
  1767. if (!device->get_vf_config)
  1768. return -EOPNOTSUPP;
  1769. return device->get_vf_config(device, vf, port, info);
  1770. }
  1771. EXPORT_SYMBOL(ib_get_vf_config);
  1772. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1773. struct ifla_vf_stats *stats)
  1774. {
  1775. if (!device->get_vf_stats)
  1776. return -EOPNOTSUPP;
  1777. return device->get_vf_stats(device, vf, port, stats);
  1778. }
  1779. EXPORT_SYMBOL(ib_get_vf_stats);
  1780. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1781. int type)
  1782. {
  1783. if (!device->set_vf_guid)
  1784. return -EOPNOTSUPP;
  1785. return device->set_vf_guid(device, vf, port, guid, type);
  1786. }
  1787. EXPORT_SYMBOL(ib_set_vf_guid);
  1788. /**
  1789. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1790. * and set it the memory region.
  1791. * @mr: memory region
  1792. * @sg: dma mapped scatterlist
  1793. * @sg_nents: number of entries in sg
  1794. * @sg_offset: offset in bytes into sg
  1795. * @page_size: page vector desired page size
  1796. *
  1797. * Constraints:
  1798. * - The first sg element is allowed to have an offset.
  1799. * - Each sg element must either be aligned to page_size or virtually
  1800. * contiguous to the previous element. In case an sg element has a
  1801. * non-contiguous offset, the mapping prefix will not include it.
  1802. * - The last sg element is allowed to have length less than page_size.
  1803. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1804. * then only max_num_sg entries will be mapped.
  1805. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1806. * constraints holds and the page_size argument is ignored.
  1807. *
  1808. * Returns the number of sg elements that were mapped to the memory region.
  1809. *
  1810. * After this completes successfully, the memory region
  1811. * is ready for registration.
  1812. */
  1813. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1814. unsigned int *sg_offset, unsigned int page_size)
  1815. {
  1816. if (unlikely(!mr->device->map_mr_sg))
  1817. return -EOPNOTSUPP;
  1818. mr->page_size = page_size;
  1819. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1820. }
  1821. EXPORT_SYMBOL(ib_map_mr_sg);
  1822. /**
  1823. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1824. * to a page vector
  1825. * @mr: memory region
  1826. * @sgl: dma mapped scatterlist
  1827. * @sg_nents: number of entries in sg
  1828. * @sg_offset_p: IN: start offset in bytes into sg
  1829. * OUT: offset in bytes for element n of the sg of the first
  1830. * byte that has not been processed where n is the return
  1831. * value of this function.
  1832. * @set_page: driver page assignment function pointer
  1833. *
  1834. * Core service helper for drivers to convert the largest
  1835. * prefix of given sg list to a page vector. The sg list
  1836. * prefix converted is the prefix that meet the requirements
  1837. * of ib_map_mr_sg.
  1838. *
  1839. * Returns the number of sg elements that were assigned to
  1840. * a page vector.
  1841. */
  1842. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1843. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1844. {
  1845. struct scatterlist *sg;
  1846. u64 last_end_dma_addr = 0;
  1847. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1848. unsigned int last_page_off = 0;
  1849. u64 page_mask = ~((u64)mr->page_size - 1);
  1850. int i, ret;
  1851. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1852. return -EINVAL;
  1853. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1854. mr->length = 0;
  1855. for_each_sg(sgl, sg, sg_nents, i) {
  1856. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1857. u64 prev_addr = dma_addr;
  1858. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1859. u64 end_dma_addr = dma_addr + dma_len;
  1860. u64 page_addr = dma_addr & page_mask;
  1861. /*
  1862. * For the second and later elements, check whether either the
  1863. * end of element i-1 or the start of element i is not aligned
  1864. * on a page boundary.
  1865. */
  1866. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1867. /* Stop mapping if there is a gap. */
  1868. if (last_end_dma_addr != dma_addr)
  1869. break;
  1870. /*
  1871. * Coalesce this element with the last. If it is small
  1872. * enough just update mr->length. Otherwise start
  1873. * mapping from the next page.
  1874. */
  1875. goto next_page;
  1876. }
  1877. do {
  1878. ret = set_page(mr, page_addr);
  1879. if (unlikely(ret < 0)) {
  1880. sg_offset = prev_addr - sg_dma_address(sg);
  1881. mr->length += prev_addr - dma_addr;
  1882. if (sg_offset_p)
  1883. *sg_offset_p = sg_offset;
  1884. return i || sg_offset ? i : ret;
  1885. }
  1886. prev_addr = page_addr;
  1887. next_page:
  1888. page_addr += mr->page_size;
  1889. } while (page_addr < end_dma_addr);
  1890. mr->length += dma_len;
  1891. last_end_dma_addr = end_dma_addr;
  1892. last_page_off = end_dma_addr & ~page_mask;
  1893. sg_offset = 0;
  1894. }
  1895. if (sg_offset_p)
  1896. *sg_offset_p = 0;
  1897. return i;
  1898. }
  1899. EXPORT_SYMBOL(ib_sg_to_pages);
  1900. struct ib_drain_cqe {
  1901. struct ib_cqe cqe;
  1902. struct completion done;
  1903. };
  1904. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1905. {
  1906. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1907. cqe);
  1908. complete(&cqe->done);
  1909. }
  1910. /*
  1911. * Post a WR and block until its completion is reaped for the SQ.
  1912. */
  1913. static void __ib_drain_sq(struct ib_qp *qp)
  1914. {
  1915. struct ib_cq *cq = qp->send_cq;
  1916. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1917. struct ib_drain_cqe sdrain;
  1918. struct ib_send_wr *bad_swr;
  1919. struct ib_rdma_wr swr = {
  1920. .wr = {
  1921. .next = NULL,
  1922. { .wr_cqe = &sdrain.cqe, },
  1923. .opcode = IB_WR_RDMA_WRITE,
  1924. },
  1925. };
  1926. int ret;
  1927. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1928. if (ret) {
  1929. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1930. return;
  1931. }
  1932. sdrain.cqe.done = ib_drain_qp_done;
  1933. init_completion(&sdrain.done);
  1934. ret = ib_post_send(qp, &swr.wr, &bad_swr);
  1935. if (ret) {
  1936. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1937. return;
  1938. }
  1939. if (cq->poll_ctx == IB_POLL_DIRECT)
  1940. while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
  1941. ib_process_cq_direct(cq, -1);
  1942. else
  1943. wait_for_completion(&sdrain.done);
  1944. }
  1945. /*
  1946. * Post a WR and block until its completion is reaped for the RQ.
  1947. */
  1948. static void __ib_drain_rq(struct ib_qp *qp)
  1949. {
  1950. struct ib_cq *cq = qp->recv_cq;
  1951. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1952. struct ib_drain_cqe rdrain;
  1953. struct ib_recv_wr rwr = {}, *bad_rwr;
  1954. int ret;
  1955. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1956. if (ret) {
  1957. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1958. return;
  1959. }
  1960. rwr.wr_cqe = &rdrain.cqe;
  1961. rdrain.cqe.done = ib_drain_qp_done;
  1962. init_completion(&rdrain.done);
  1963. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1964. if (ret) {
  1965. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1966. return;
  1967. }
  1968. if (cq->poll_ctx == IB_POLL_DIRECT)
  1969. while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
  1970. ib_process_cq_direct(cq, -1);
  1971. else
  1972. wait_for_completion(&rdrain.done);
  1973. }
  1974. /**
  1975. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1976. * application.
  1977. * @qp: queue pair to drain
  1978. *
  1979. * If the device has a provider-specific drain function, then
  1980. * call that. Otherwise call the generic drain function
  1981. * __ib_drain_sq().
  1982. *
  1983. * The caller must:
  1984. *
  1985. * ensure there is room in the CQ and SQ for the drain work request and
  1986. * completion.
  1987. *
  1988. * allocate the CQ using ib_alloc_cq().
  1989. *
  1990. * ensure that there are no other contexts that are posting WRs concurrently.
  1991. * Otherwise the drain is not guaranteed.
  1992. */
  1993. void ib_drain_sq(struct ib_qp *qp)
  1994. {
  1995. if (qp->device->drain_sq)
  1996. qp->device->drain_sq(qp);
  1997. else
  1998. __ib_drain_sq(qp);
  1999. }
  2000. EXPORT_SYMBOL(ib_drain_sq);
  2001. /**
  2002. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  2003. * application.
  2004. * @qp: queue pair to drain
  2005. *
  2006. * If the device has a provider-specific drain function, then
  2007. * call that. Otherwise call the generic drain function
  2008. * __ib_drain_rq().
  2009. *
  2010. * The caller must:
  2011. *
  2012. * ensure there is room in the CQ and RQ for the drain work request and
  2013. * completion.
  2014. *
  2015. * allocate the CQ using ib_alloc_cq().
  2016. *
  2017. * ensure that there are no other contexts that are posting WRs concurrently.
  2018. * Otherwise the drain is not guaranteed.
  2019. */
  2020. void ib_drain_rq(struct ib_qp *qp)
  2021. {
  2022. if (qp->device->drain_rq)
  2023. qp->device->drain_rq(qp);
  2024. else
  2025. __ib_drain_rq(qp);
  2026. }
  2027. EXPORT_SYMBOL(ib_drain_rq);
  2028. /**
  2029. * ib_drain_qp() - Block until all CQEs have been consumed by the
  2030. * application on both the RQ and SQ.
  2031. * @qp: queue pair to drain
  2032. *
  2033. * The caller must:
  2034. *
  2035. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  2036. * and completions.
  2037. *
  2038. * allocate the CQs using ib_alloc_cq().
  2039. *
  2040. * ensure that there are no other contexts that are posting WRs concurrently.
  2041. * Otherwise the drain is not guaranteed.
  2042. */
  2043. void ib_drain_qp(struct ib_qp *qp)
  2044. {
  2045. ib_drain_sq(qp);
  2046. if (!qp->srq)
  2047. ib_drain_rq(qp);
  2048. }
  2049. EXPORT_SYMBOL(ib_drain_qp);