meson_saradc.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. /*
  2. * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
  3. *
  4. * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * You should have received a copy of the GNU General Public License
  11. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  12. */
  13. #include <linux/bitfield.h>
  14. #include <linux/clk.h>
  15. #include <linux/clk-provider.h>
  16. #include <linux/delay.h>
  17. #include <linux/io.h>
  18. #include <linux/iio/iio.h>
  19. #include <linux/module.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/of.h>
  22. #include <linux/of_irq.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/regmap.h>
  26. #include <linux/regulator/consumer.h>
  27. #define MESON_SAR_ADC_REG0 0x00
  28. #define MESON_SAR_ADC_REG0_PANEL_DETECT BIT(31)
  29. #define MESON_SAR_ADC_REG0_BUSY_MASK GENMASK(30, 28)
  30. #define MESON_SAR_ADC_REG0_DELTA_BUSY BIT(30)
  31. #define MESON_SAR_ADC_REG0_AVG_BUSY BIT(29)
  32. #define MESON_SAR_ADC_REG0_SAMPLE_BUSY BIT(28)
  33. #define MESON_SAR_ADC_REG0_FIFO_FULL BIT(27)
  34. #define MESON_SAR_ADC_REG0_FIFO_EMPTY BIT(26)
  35. #define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK GENMASK(25, 21)
  36. #define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK GENMASK(20, 19)
  37. #define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK GENMASK(18, 16)
  38. #define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL BIT(15)
  39. #define MESON_SAR_ADC_REG0_SAMPLING_STOP BIT(14)
  40. #define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK GENMASK(13, 12)
  41. #define MESON_SAR_ADC_REG0_DETECT_IRQ_POL BIT(10)
  42. #define MESON_SAR_ADC_REG0_DETECT_IRQ_EN BIT(9)
  43. #define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK GENMASK(8, 4)
  44. #define MESON_SAR_ADC_REG0_FIFO_IRQ_EN BIT(3)
  45. #define MESON_SAR_ADC_REG0_SAMPLING_START BIT(2)
  46. #define MESON_SAR_ADC_REG0_CONTINUOUS_EN BIT(1)
  47. #define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE BIT(0)
  48. #define MESON_SAR_ADC_CHAN_LIST 0x04
  49. #define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK GENMASK(26, 24)
  50. #define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan) \
  51. (GENMASK(2, 0) << ((_chan) * 3))
  52. #define MESON_SAR_ADC_AVG_CNTL 0x08
  53. #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan) \
  54. (16 + ((_chan) * 2))
  55. #define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan) \
  56. (GENMASK(17, 16) << ((_chan) * 2))
  57. #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan) \
  58. (0 + ((_chan) * 2))
  59. #define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan) \
  60. (GENMASK(1, 0) << ((_chan) * 2))
  61. #define MESON_SAR_ADC_REG3 0x0c
  62. #define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY BIT(31)
  63. #define MESON_SAR_ADC_REG3_CLK_EN BIT(30)
  64. #define MESON_SAR_ADC_REG3_BL30_INITIALIZED BIT(28)
  65. #define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN BIT(27)
  66. #define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE BIT(26)
  67. #define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK GENMASK(25, 23)
  68. #define MESON_SAR_ADC_REG3_DETECT_EN BIT(22)
  69. #define MESON_SAR_ADC_REG3_ADC_EN BIT(21)
  70. #define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK GENMASK(20, 18)
  71. #define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK GENMASK(17, 16)
  72. #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT 10
  73. #define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH 5
  74. #define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK GENMASK(9, 8)
  75. #define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK GENMASK(7, 0)
  76. #define MESON_SAR_ADC_DELAY 0x10
  77. #define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK GENMASK(25, 24)
  78. #define MESON_SAR_ADC_DELAY_BL30_BUSY BIT(15)
  79. #define MESON_SAR_ADC_DELAY_KERNEL_BUSY BIT(14)
  80. #define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK GENMASK(23, 16)
  81. #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK GENMASK(9, 8)
  82. #define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK GENMASK(7, 0)
  83. #define MESON_SAR_ADC_LAST_RD 0x14
  84. #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK GENMASK(23, 16)
  85. #define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK GENMASK(9, 0)
  86. #define MESON_SAR_ADC_FIFO_RD 0x18
  87. #define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK GENMASK(14, 12)
  88. #define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK GENMASK(11, 0)
  89. #define MESON_SAR_ADC_AUX_SW 0x1c
  90. #define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan) \
  91. (8 + (((_chan) - 2) * 3))
  92. #define MESON_SAR_ADC_AUX_SW_VREF_P_MUX BIT(6)
  93. #define MESON_SAR_ADC_AUX_SW_VREF_N_MUX BIT(5)
  94. #define MESON_SAR_ADC_AUX_SW_MODE_SEL BIT(4)
  95. #define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW BIT(3)
  96. #define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW BIT(2)
  97. #define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW BIT(1)
  98. #define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW BIT(0)
  99. #define MESON_SAR_ADC_CHAN_10_SW 0x20
  100. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK GENMASK(25, 23)
  101. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX BIT(22)
  102. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX BIT(21)
  103. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL BIT(20)
  104. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW BIT(19)
  105. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW BIT(18)
  106. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW BIT(17)
  107. #define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW BIT(16)
  108. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK GENMASK(9, 7)
  109. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX BIT(6)
  110. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX BIT(5)
  111. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL BIT(4)
  112. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW BIT(3)
  113. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW BIT(2)
  114. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW BIT(1)
  115. #define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW BIT(0)
  116. #define MESON_SAR_ADC_DETECT_IDLE_SW 0x24
  117. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN BIT(26)
  118. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK GENMASK(25, 23)
  119. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX BIT(22)
  120. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX BIT(21)
  121. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL BIT(20)
  122. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW BIT(19)
  123. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW BIT(18)
  124. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW BIT(17)
  125. #define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW BIT(16)
  126. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK GENMASK(9, 7)
  127. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX BIT(6)
  128. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX BIT(5)
  129. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL BIT(4)
  130. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW BIT(3)
  131. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW BIT(2)
  132. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW BIT(1)
  133. #define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW BIT(0)
  134. #define MESON_SAR_ADC_DELTA_10 0x28
  135. #define MESON_SAR_ADC_DELTA_10_TEMP_SEL BIT(27)
  136. #define MESON_SAR_ADC_DELTA_10_TS_REVE1 BIT(26)
  137. #define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK GENMASK(25, 16)
  138. #define MESON_SAR_ADC_DELTA_10_TS_REVE0 BIT(15)
  139. #define MESON_SAR_ADC_DELTA_10_TS_C_SHIFT 11
  140. #define MESON_SAR_ADC_DELTA_10_TS_C_MASK GENMASK(14, 11)
  141. #define MESON_SAR_ADC_DELTA_10_TS_VBG_EN BIT(10)
  142. #define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK GENMASK(9, 0)
  143. /*
  144. * NOTE: registers from here are undocumented (the vendor Linux kernel driver
  145. * and u-boot source served as reference). These only seem to be relevant on
  146. * GXBB and newer.
  147. */
  148. #define MESON_SAR_ADC_REG11 0x2c
  149. #define MESON_SAR_ADC_REG11_BANDGAP_EN BIT(13)
  150. #define MESON_SAR_ADC_REG13 0x34
  151. #define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK GENMASK(13, 8)
  152. #define MESON_SAR_ADC_MAX_FIFO_SIZE 32
  153. #define MESON_SAR_ADC_TIMEOUT 100 /* ms */
  154. /* for use with IIO_VAL_INT_PLUS_MICRO */
  155. #define MILLION 1000000
  156. #define MESON_SAR_ADC_CHAN(_chan) { \
  157. .type = IIO_VOLTAGE, \
  158. .indexed = 1, \
  159. .channel = _chan, \
  160. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  161. BIT(IIO_CHAN_INFO_AVERAGE_RAW), \
  162. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  163. BIT(IIO_CHAN_INFO_CALIBBIAS) | \
  164. BIT(IIO_CHAN_INFO_CALIBSCALE), \
  165. .datasheet_name = "SAR_ADC_CH"#_chan, \
  166. }
  167. /*
  168. * TODO: the hardware supports IIO_TEMP for channel 6 as well which is
  169. * currently not supported by this driver.
  170. */
  171. static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
  172. MESON_SAR_ADC_CHAN(0),
  173. MESON_SAR_ADC_CHAN(1),
  174. MESON_SAR_ADC_CHAN(2),
  175. MESON_SAR_ADC_CHAN(3),
  176. MESON_SAR_ADC_CHAN(4),
  177. MESON_SAR_ADC_CHAN(5),
  178. MESON_SAR_ADC_CHAN(6),
  179. MESON_SAR_ADC_CHAN(7),
  180. IIO_CHAN_SOFT_TIMESTAMP(8),
  181. };
  182. enum meson_sar_adc_avg_mode {
  183. NO_AVERAGING = 0x0,
  184. MEAN_AVERAGING = 0x1,
  185. MEDIAN_AVERAGING = 0x2,
  186. };
  187. enum meson_sar_adc_num_samples {
  188. ONE_SAMPLE = 0x0,
  189. TWO_SAMPLES = 0x1,
  190. FOUR_SAMPLES = 0x2,
  191. EIGHT_SAMPLES = 0x3,
  192. };
  193. enum meson_sar_adc_chan7_mux_sel {
  194. CHAN7_MUX_VSS = 0x0,
  195. CHAN7_MUX_VDD_DIV4 = 0x1,
  196. CHAN7_MUX_VDD_DIV2 = 0x2,
  197. CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
  198. CHAN7_MUX_VDD = 0x4,
  199. CHAN7_MUX_CH7_INPUT = 0x7,
  200. };
  201. struct meson_sar_adc_data {
  202. bool has_bl30_integration;
  203. unsigned long clock_rate;
  204. u32 bandgap_reg;
  205. unsigned int resolution;
  206. const char *name;
  207. const struct regmap_config *regmap_config;
  208. };
  209. struct meson_sar_adc_priv {
  210. struct regmap *regmap;
  211. struct regulator *vref;
  212. const struct meson_sar_adc_data *data;
  213. struct clk *clkin;
  214. struct clk *core_clk;
  215. struct clk *adc_sel_clk;
  216. struct clk *adc_clk;
  217. struct clk_gate clk_gate;
  218. struct clk *adc_div_clk;
  219. struct clk_divider clk_div;
  220. struct completion done;
  221. int calibbias;
  222. int calibscale;
  223. };
  224. static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
  225. .reg_bits = 8,
  226. .val_bits = 32,
  227. .reg_stride = 4,
  228. .max_register = MESON_SAR_ADC_REG13,
  229. };
  230. static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
  231. .reg_bits = 8,
  232. .val_bits = 32,
  233. .reg_stride = 4,
  234. .max_register = MESON_SAR_ADC_DELTA_10,
  235. };
  236. static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
  237. {
  238. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  239. u32 regval;
  240. regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
  241. return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
  242. }
  243. static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
  244. {
  245. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  246. int tmp;
  247. /* use val_calib = scale * val_raw + offset calibration function */
  248. tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
  249. return clamp(tmp, 0, (1 << priv->data->resolution) - 1);
  250. }
  251. static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
  252. {
  253. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  254. int regval, timeout = 10000;
  255. /*
  256. * NOTE: we need a small delay before reading the status, otherwise
  257. * the sample engine may not have started internally (which would
  258. * seem to us that sampling is already finished).
  259. */
  260. do {
  261. udelay(1);
  262. regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
  263. } while (FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, regval) && timeout--);
  264. if (timeout < 0)
  265. return -ETIMEDOUT;
  266. return 0;
  267. }
  268. static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
  269. const struct iio_chan_spec *chan,
  270. int *val)
  271. {
  272. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  273. int regval, fifo_chan, fifo_val, count;
  274. if(!wait_for_completion_timeout(&priv->done,
  275. msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
  276. return -ETIMEDOUT;
  277. count = meson_sar_adc_get_fifo_count(indio_dev);
  278. if (count != 1) {
  279. dev_err(&indio_dev->dev,
  280. "ADC FIFO has %d element(s) instead of one\n", count);
  281. return -EINVAL;
  282. }
  283. regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &regval);
  284. fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
  285. if (fifo_chan != chan->channel) {
  286. dev_err(&indio_dev->dev,
  287. "ADC FIFO entry belongs to channel %d instead of %d\n",
  288. fifo_chan, chan->channel);
  289. return -EINVAL;
  290. }
  291. fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
  292. fifo_val &= GENMASK(priv->data->resolution - 1, 0);
  293. *val = meson_sar_adc_calib_val(indio_dev, fifo_val);
  294. return 0;
  295. }
  296. static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
  297. const struct iio_chan_spec *chan,
  298. enum meson_sar_adc_avg_mode mode,
  299. enum meson_sar_adc_num_samples samples)
  300. {
  301. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  302. int val, channel = chan->channel;
  303. val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(channel);
  304. regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
  305. MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(channel),
  306. val);
  307. val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(channel);
  308. regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
  309. MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(channel), val);
  310. }
  311. static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
  312. const struct iio_chan_spec *chan)
  313. {
  314. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  315. u32 regval;
  316. /*
  317. * the SAR ADC engine allows sampling multiple channels at the same
  318. * time. to keep it simple we're only working with one *internal*
  319. * channel, which starts counting at index 0 (which means: count = 1).
  320. */
  321. regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
  322. regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
  323. MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
  324. /* map channel index 0 to the channel which we want to read */
  325. regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
  326. chan->channel);
  327. regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
  328. MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
  329. regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
  330. chan->channel);
  331. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
  332. MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
  333. regval);
  334. regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
  335. chan->channel);
  336. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
  337. MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
  338. regval);
  339. if (chan->channel == 6)
  340. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
  341. MESON_SAR_ADC_DELTA_10_TEMP_SEL, 0);
  342. }
  343. static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
  344. enum meson_sar_adc_chan7_mux_sel sel)
  345. {
  346. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  347. u32 regval;
  348. regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
  349. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  350. MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
  351. usleep_range(10, 20);
  352. }
  353. static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
  354. {
  355. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  356. reinit_completion(&priv->done);
  357. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  358. MESON_SAR_ADC_REG0_FIFO_IRQ_EN,
  359. MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
  360. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  361. MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE,
  362. MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
  363. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  364. MESON_SAR_ADC_REG0_SAMPLING_START,
  365. MESON_SAR_ADC_REG0_SAMPLING_START);
  366. }
  367. static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
  368. {
  369. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  370. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  371. MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0);
  372. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  373. MESON_SAR_ADC_REG0_SAMPLING_STOP,
  374. MESON_SAR_ADC_REG0_SAMPLING_STOP);
  375. /* wait until all modules are stopped */
  376. meson_sar_adc_wait_busy_clear(indio_dev);
  377. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  378. MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0);
  379. }
  380. static int meson_sar_adc_lock(struct iio_dev *indio_dev)
  381. {
  382. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  383. int val, timeout = 10000;
  384. mutex_lock(&indio_dev->mlock);
  385. if (priv->data->has_bl30_integration) {
  386. /* prevent BL30 from using the SAR ADC while we are using it */
  387. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  388. MESON_SAR_ADC_DELAY_KERNEL_BUSY,
  389. MESON_SAR_ADC_DELAY_KERNEL_BUSY);
  390. /*
  391. * wait until BL30 releases it's lock (so we can use the SAR
  392. * ADC)
  393. */
  394. do {
  395. udelay(1);
  396. regmap_read(priv->regmap, MESON_SAR_ADC_DELAY, &val);
  397. } while (val & MESON_SAR_ADC_DELAY_BL30_BUSY && timeout--);
  398. if (timeout < 0) {
  399. mutex_unlock(&indio_dev->mlock);
  400. return -ETIMEDOUT;
  401. }
  402. }
  403. return 0;
  404. }
  405. static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
  406. {
  407. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  408. if (priv->data->has_bl30_integration)
  409. /* allow BL30 to use the SAR ADC again */
  410. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  411. MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0);
  412. mutex_unlock(&indio_dev->mlock);
  413. }
  414. static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
  415. {
  416. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  417. unsigned int count, tmp;
  418. for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
  419. if (!meson_sar_adc_get_fifo_count(indio_dev))
  420. break;
  421. regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
  422. }
  423. }
  424. static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
  425. const struct iio_chan_spec *chan,
  426. enum meson_sar_adc_avg_mode avg_mode,
  427. enum meson_sar_adc_num_samples avg_samples,
  428. int *val)
  429. {
  430. int ret;
  431. ret = meson_sar_adc_lock(indio_dev);
  432. if (ret)
  433. return ret;
  434. /* clear the FIFO to make sure we're not reading old values */
  435. meson_sar_adc_clear_fifo(indio_dev);
  436. meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
  437. meson_sar_adc_enable_channel(indio_dev, chan);
  438. meson_sar_adc_start_sample_engine(indio_dev);
  439. ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
  440. meson_sar_adc_stop_sample_engine(indio_dev);
  441. meson_sar_adc_unlock(indio_dev);
  442. if (ret) {
  443. dev_warn(indio_dev->dev.parent,
  444. "failed to read sample for channel %d: %d\n",
  445. chan->channel, ret);
  446. return ret;
  447. }
  448. return IIO_VAL_INT;
  449. }
  450. static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
  451. const struct iio_chan_spec *chan,
  452. int *val, int *val2, long mask)
  453. {
  454. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  455. int ret;
  456. switch (mask) {
  457. case IIO_CHAN_INFO_RAW:
  458. return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
  459. ONE_SAMPLE, val);
  460. break;
  461. case IIO_CHAN_INFO_AVERAGE_RAW:
  462. return meson_sar_adc_get_sample(indio_dev, chan,
  463. MEAN_AVERAGING, EIGHT_SAMPLES,
  464. val);
  465. break;
  466. case IIO_CHAN_INFO_SCALE:
  467. ret = regulator_get_voltage(priv->vref);
  468. if (ret < 0) {
  469. dev_err(indio_dev->dev.parent,
  470. "failed to get vref voltage: %d\n", ret);
  471. return ret;
  472. }
  473. *val = ret / 1000;
  474. *val2 = priv->data->resolution;
  475. return IIO_VAL_FRACTIONAL_LOG2;
  476. case IIO_CHAN_INFO_CALIBBIAS:
  477. *val = priv->calibbias;
  478. return IIO_VAL_INT;
  479. case IIO_CHAN_INFO_CALIBSCALE:
  480. *val = priv->calibscale / MILLION;
  481. *val2 = priv->calibscale % MILLION;
  482. return IIO_VAL_INT_PLUS_MICRO;
  483. default:
  484. return -EINVAL;
  485. }
  486. }
  487. static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
  488. void __iomem *base)
  489. {
  490. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  491. struct clk_init_data init;
  492. const char *clk_parents[1];
  493. init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%pOF#adc_div",
  494. indio_dev->dev.of_node);
  495. init.flags = 0;
  496. init.ops = &clk_divider_ops;
  497. clk_parents[0] = __clk_get_name(priv->clkin);
  498. init.parent_names = clk_parents;
  499. init.num_parents = 1;
  500. priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
  501. priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
  502. priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
  503. priv->clk_div.hw.init = &init;
  504. priv->clk_div.flags = 0;
  505. priv->adc_div_clk = devm_clk_register(&indio_dev->dev,
  506. &priv->clk_div.hw);
  507. if (WARN_ON(IS_ERR(priv->adc_div_clk)))
  508. return PTR_ERR(priv->adc_div_clk);
  509. init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%pOF#adc_en",
  510. indio_dev->dev.of_node);
  511. init.flags = CLK_SET_RATE_PARENT;
  512. init.ops = &clk_gate_ops;
  513. clk_parents[0] = __clk_get_name(priv->adc_div_clk);
  514. init.parent_names = clk_parents;
  515. init.num_parents = 1;
  516. priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
  517. priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
  518. priv->clk_gate.hw.init = &init;
  519. priv->adc_clk = devm_clk_register(&indio_dev->dev, &priv->clk_gate.hw);
  520. if (WARN_ON(IS_ERR(priv->adc_clk)))
  521. return PTR_ERR(priv->adc_clk);
  522. return 0;
  523. }
  524. static int meson_sar_adc_init(struct iio_dev *indio_dev)
  525. {
  526. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  527. int regval, i, ret;
  528. /*
  529. * make sure we start at CH7 input since the other muxes are only used
  530. * for internal calibration.
  531. */
  532. meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
  533. if (priv->data->has_bl30_integration) {
  534. /*
  535. * leave sampling delay and the input clocks as configured by
  536. * BL30 to make sure BL30 gets the values it expects when
  537. * reading the temperature sensor.
  538. */
  539. regmap_read(priv->regmap, MESON_SAR_ADC_REG3, &regval);
  540. if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
  541. return 0;
  542. }
  543. meson_sar_adc_stop_sample_engine(indio_dev);
  544. /* update the channel 6 MUX to select the temperature sensor */
  545. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  546. MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL,
  547. MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL);
  548. /* disable all channels by default */
  549. regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
  550. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  551. MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0);
  552. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  553. MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY,
  554. MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
  555. /* delay between two samples = (10+1) * 1uS */
  556. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  557. MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
  558. FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
  559. 10));
  560. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  561. MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
  562. FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
  563. 0));
  564. /* delay between two samples = (10+1) * 1uS */
  565. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  566. MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
  567. FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
  568. 10));
  569. regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
  570. MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
  571. FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
  572. 1));
  573. /*
  574. * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
  575. * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
  576. */
  577. regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
  578. regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
  579. MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
  580. regval);
  581. regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
  582. regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
  583. MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
  584. regval);
  585. /*
  586. * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
  587. * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
  588. * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
  589. * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
  590. */
  591. regval = 0;
  592. for (i = 2; i <= 7; i++)
  593. regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
  594. regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
  595. regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
  596. regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
  597. ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
  598. if (ret) {
  599. dev_err(indio_dev->dev.parent,
  600. "failed to set adc parent to clkin\n");
  601. return ret;
  602. }
  603. ret = clk_set_rate(priv->adc_clk, priv->data->clock_rate);
  604. if (ret) {
  605. dev_err(indio_dev->dev.parent,
  606. "failed to set adc clock rate\n");
  607. return ret;
  608. }
  609. return 0;
  610. }
  611. static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
  612. {
  613. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  614. u32 enable_mask;
  615. if (priv->data->bandgap_reg == MESON_SAR_ADC_REG11)
  616. enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
  617. else
  618. enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
  619. regmap_update_bits(priv->regmap, priv->data->bandgap_reg, enable_mask,
  620. on_off ? enable_mask : 0);
  621. }
  622. static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
  623. {
  624. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  625. int ret;
  626. u32 regval;
  627. ret = meson_sar_adc_lock(indio_dev);
  628. if (ret)
  629. goto err_lock;
  630. ret = regulator_enable(priv->vref);
  631. if (ret < 0) {
  632. dev_err(indio_dev->dev.parent,
  633. "failed to enable vref regulator\n");
  634. goto err_vref;
  635. }
  636. ret = clk_prepare_enable(priv->core_clk);
  637. if (ret) {
  638. dev_err(indio_dev->dev.parent, "failed to enable core clk\n");
  639. goto err_core_clk;
  640. }
  641. regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
  642. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
  643. MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
  644. meson_sar_adc_set_bandgap(indio_dev, true);
  645. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  646. MESON_SAR_ADC_REG3_ADC_EN,
  647. MESON_SAR_ADC_REG3_ADC_EN);
  648. udelay(5);
  649. ret = clk_prepare_enable(priv->adc_clk);
  650. if (ret) {
  651. dev_err(indio_dev->dev.parent, "failed to enable adc clk\n");
  652. goto err_adc_clk;
  653. }
  654. meson_sar_adc_unlock(indio_dev);
  655. return 0;
  656. err_adc_clk:
  657. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  658. MESON_SAR_ADC_REG3_ADC_EN, 0);
  659. meson_sar_adc_set_bandgap(indio_dev, false);
  660. clk_disable_unprepare(priv->core_clk);
  661. err_core_clk:
  662. regulator_disable(priv->vref);
  663. err_vref:
  664. meson_sar_adc_unlock(indio_dev);
  665. err_lock:
  666. return ret;
  667. }
  668. static int meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
  669. {
  670. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  671. int ret;
  672. ret = meson_sar_adc_lock(indio_dev);
  673. if (ret)
  674. return ret;
  675. clk_disable_unprepare(priv->adc_clk);
  676. regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
  677. MESON_SAR_ADC_REG3_ADC_EN, 0);
  678. meson_sar_adc_set_bandgap(indio_dev, false);
  679. clk_disable_unprepare(priv->core_clk);
  680. regulator_disable(priv->vref);
  681. meson_sar_adc_unlock(indio_dev);
  682. return 0;
  683. }
  684. static irqreturn_t meson_sar_adc_irq(int irq, void *data)
  685. {
  686. struct iio_dev *indio_dev = data;
  687. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  688. unsigned int cnt, threshold;
  689. u32 regval;
  690. regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
  691. cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
  692. threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
  693. if (cnt < threshold)
  694. return IRQ_NONE;
  695. complete(&priv->done);
  696. return IRQ_HANDLED;
  697. }
  698. static int meson_sar_adc_calib(struct iio_dev *indio_dev)
  699. {
  700. struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
  701. int ret, nominal0, nominal1, value0, value1;
  702. /* use points 25% and 75% for calibration */
  703. nominal0 = (1 << priv->data->resolution) / 4;
  704. nominal1 = (1 << priv->data->resolution) * 3 / 4;
  705. meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
  706. usleep_range(10, 20);
  707. ret = meson_sar_adc_get_sample(indio_dev,
  708. &meson_sar_adc_iio_channels[7],
  709. MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
  710. if (ret < 0)
  711. goto out;
  712. meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
  713. usleep_range(10, 20);
  714. ret = meson_sar_adc_get_sample(indio_dev,
  715. &meson_sar_adc_iio_channels[7],
  716. MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
  717. if (ret < 0)
  718. goto out;
  719. if (value1 <= value0) {
  720. ret = -EINVAL;
  721. goto out;
  722. }
  723. priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
  724. value1 - value0);
  725. priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
  726. MILLION);
  727. ret = 0;
  728. out:
  729. meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
  730. return ret;
  731. }
  732. static const struct iio_info meson_sar_adc_iio_info = {
  733. .read_raw = meson_sar_adc_iio_info_read_raw,
  734. };
  735. static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
  736. .has_bl30_integration = false,
  737. .clock_rate = 1150000,
  738. .bandgap_reg = MESON_SAR_ADC_DELTA_10,
  739. .regmap_config = &meson_sar_adc_regmap_config_meson8,
  740. .resolution = 10,
  741. .name = "meson-meson8-saradc",
  742. };
  743. static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
  744. .has_bl30_integration = false,
  745. .clock_rate = 1150000,
  746. .bandgap_reg = MESON_SAR_ADC_DELTA_10,
  747. .regmap_config = &meson_sar_adc_regmap_config_meson8,
  748. .resolution = 10,
  749. .name = "meson-meson8b-saradc",
  750. };
  751. static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
  752. .has_bl30_integration = true,
  753. .clock_rate = 1200000,
  754. .bandgap_reg = MESON_SAR_ADC_REG11,
  755. .regmap_config = &meson_sar_adc_regmap_config_gxbb,
  756. .resolution = 10,
  757. .name = "meson-gxbb-saradc",
  758. };
  759. static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
  760. .has_bl30_integration = true,
  761. .clock_rate = 1200000,
  762. .bandgap_reg = MESON_SAR_ADC_REG11,
  763. .regmap_config = &meson_sar_adc_regmap_config_gxbb,
  764. .resolution = 12,
  765. .name = "meson-gxl-saradc",
  766. };
  767. static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
  768. .has_bl30_integration = true,
  769. .clock_rate = 1200000,
  770. .bandgap_reg = MESON_SAR_ADC_REG11,
  771. .regmap_config = &meson_sar_adc_regmap_config_gxbb,
  772. .resolution = 12,
  773. .name = "meson-gxm-saradc",
  774. };
  775. static const struct of_device_id meson_sar_adc_of_match[] = {
  776. {
  777. .compatible = "amlogic,meson8-saradc",
  778. .data = &meson_sar_adc_meson8_data,
  779. },
  780. {
  781. .compatible = "amlogic,meson8b-saradc",
  782. .data = &meson_sar_adc_meson8b_data,
  783. },
  784. {
  785. .compatible = "amlogic,meson-gxbb-saradc",
  786. .data = &meson_sar_adc_gxbb_data,
  787. }, {
  788. .compatible = "amlogic,meson-gxl-saradc",
  789. .data = &meson_sar_adc_gxl_data,
  790. }, {
  791. .compatible = "amlogic,meson-gxm-saradc",
  792. .data = &meson_sar_adc_gxm_data,
  793. },
  794. {},
  795. };
  796. MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
  797. static int meson_sar_adc_probe(struct platform_device *pdev)
  798. {
  799. struct meson_sar_adc_priv *priv;
  800. struct iio_dev *indio_dev;
  801. struct resource *res;
  802. void __iomem *base;
  803. const struct of_device_id *match;
  804. int irq, ret;
  805. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
  806. if (!indio_dev) {
  807. dev_err(&pdev->dev, "failed allocating iio device\n");
  808. return -ENOMEM;
  809. }
  810. priv = iio_priv(indio_dev);
  811. init_completion(&priv->done);
  812. match = of_match_device(meson_sar_adc_of_match, &pdev->dev);
  813. if (!match) {
  814. dev_err(&pdev->dev, "failed to match device\n");
  815. return -ENODEV;
  816. }
  817. priv->data = match->data;
  818. indio_dev->name = priv->data->name;
  819. indio_dev->dev.parent = &pdev->dev;
  820. indio_dev->dev.of_node = pdev->dev.of_node;
  821. indio_dev->modes = INDIO_DIRECT_MODE;
  822. indio_dev->info = &meson_sar_adc_iio_info;
  823. indio_dev->channels = meson_sar_adc_iio_channels;
  824. indio_dev->num_channels = ARRAY_SIZE(meson_sar_adc_iio_channels);
  825. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  826. base = devm_ioremap_resource(&pdev->dev, res);
  827. if (IS_ERR(base))
  828. return PTR_ERR(base);
  829. irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  830. if (!irq)
  831. return -EINVAL;
  832. ret = devm_request_irq(&pdev->dev, irq, meson_sar_adc_irq, IRQF_SHARED,
  833. dev_name(&pdev->dev), indio_dev);
  834. if (ret)
  835. return ret;
  836. priv->regmap = devm_regmap_init_mmio(&pdev->dev, base,
  837. priv->data->regmap_config);
  838. if (IS_ERR(priv->regmap))
  839. return PTR_ERR(priv->regmap);
  840. priv->clkin = devm_clk_get(&pdev->dev, "clkin");
  841. if (IS_ERR(priv->clkin)) {
  842. dev_err(&pdev->dev, "failed to get clkin\n");
  843. return PTR_ERR(priv->clkin);
  844. }
  845. priv->core_clk = devm_clk_get(&pdev->dev, "core");
  846. if (IS_ERR(priv->core_clk)) {
  847. dev_err(&pdev->dev, "failed to get core clk\n");
  848. return PTR_ERR(priv->core_clk);
  849. }
  850. priv->adc_clk = devm_clk_get(&pdev->dev, "adc_clk");
  851. if (IS_ERR(priv->adc_clk)) {
  852. if (PTR_ERR(priv->adc_clk) == -ENOENT) {
  853. priv->adc_clk = NULL;
  854. } else {
  855. dev_err(&pdev->dev, "failed to get adc clk\n");
  856. return PTR_ERR(priv->adc_clk);
  857. }
  858. }
  859. priv->adc_sel_clk = devm_clk_get(&pdev->dev, "adc_sel");
  860. if (IS_ERR(priv->adc_sel_clk)) {
  861. if (PTR_ERR(priv->adc_sel_clk) == -ENOENT) {
  862. priv->adc_sel_clk = NULL;
  863. } else {
  864. dev_err(&pdev->dev, "failed to get adc_sel clk\n");
  865. return PTR_ERR(priv->adc_sel_clk);
  866. }
  867. }
  868. /* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
  869. if (!priv->adc_clk) {
  870. ret = meson_sar_adc_clk_init(indio_dev, base);
  871. if (ret)
  872. return ret;
  873. }
  874. priv->vref = devm_regulator_get(&pdev->dev, "vref");
  875. if (IS_ERR(priv->vref)) {
  876. dev_err(&pdev->dev, "failed to get vref regulator\n");
  877. return PTR_ERR(priv->vref);
  878. }
  879. priv->calibscale = MILLION;
  880. ret = meson_sar_adc_init(indio_dev);
  881. if (ret)
  882. goto err;
  883. ret = meson_sar_adc_hw_enable(indio_dev);
  884. if (ret)
  885. goto err;
  886. ret = meson_sar_adc_calib(indio_dev);
  887. if (ret)
  888. dev_warn(&pdev->dev, "calibration failed\n");
  889. platform_set_drvdata(pdev, indio_dev);
  890. ret = iio_device_register(indio_dev);
  891. if (ret)
  892. goto err_hw;
  893. return 0;
  894. err_hw:
  895. meson_sar_adc_hw_disable(indio_dev);
  896. err:
  897. return ret;
  898. }
  899. static int meson_sar_adc_remove(struct platform_device *pdev)
  900. {
  901. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  902. iio_device_unregister(indio_dev);
  903. return meson_sar_adc_hw_disable(indio_dev);
  904. }
  905. static int __maybe_unused meson_sar_adc_suspend(struct device *dev)
  906. {
  907. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  908. return meson_sar_adc_hw_disable(indio_dev);
  909. }
  910. static int __maybe_unused meson_sar_adc_resume(struct device *dev)
  911. {
  912. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  913. return meson_sar_adc_hw_enable(indio_dev);
  914. }
  915. static SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
  916. meson_sar_adc_suspend, meson_sar_adc_resume);
  917. static struct platform_driver meson_sar_adc_driver = {
  918. .probe = meson_sar_adc_probe,
  919. .remove = meson_sar_adc_remove,
  920. .driver = {
  921. .name = "meson-saradc",
  922. .of_match_table = meson_sar_adc_of_match,
  923. .pm = &meson_sar_adc_pm_ops,
  924. },
  925. };
  926. module_platform_driver(meson_sar_adc_driver);
  927. MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
  928. MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
  929. MODULE_LICENSE("GPL v2");