intel_ddi.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <drm/drm_scdc_helper.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. struct ddi_buf_trans {
  31. u32 trans1; /* balance leg enable, de-emph level */
  32. u32 trans2; /* vref sel, vswing */
  33. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  34. };
  35. static const u8 index_to_dp_signal_levels[] = {
  36. [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  37. [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  38. [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  39. [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3,
  40. [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  41. [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  42. [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2,
  43. [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  44. [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1,
  45. [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0,
  46. };
  47. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  48. * them for both DP and FDI transports, allowing those ports to
  49. * automatically adapt to HDMI connections as well
  50. */
  51. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  52. { 0x00FFFFFF, 0x0006000E, 0x0 },
  53. { 0x00D75FFF, 0x0005000A, 0x0 },
  54. { 0x00C30FFF, 0x00040006, 0x0 },
  55. { 0x80AAAFFF, 0x000B0000, 0x0 },
  56. { 0x00FFFFFF, 0x0005000A, 0x0 },
  57. { 0x00D75FFF, 0x000C0004, 0x0 },
  58. { 0x80C30FFF, 0x000B0000, 0x0 },
  59. { 0x00FFFFFF, 0x00040006, 0x0 },
  60. { 0x80D75FFF, 0x000B0000, 0x0 },
  61. };
  62. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  63. { 0x00FFFFFF, 0x0007000E, 0x0 },
  64. { 0x00D75FFF, 0x000F000A, 0x0 },
  65. { 0x00C30FFF, 0x00060006, 0x0 },
  66. { 0x00AAAFFF, 0x001E0000, 0x0 },
  67. { 0x00FFFFFF, 0x000F000A, 0x0 },
  68. { 0x00D75FFF, 0x00160004, 0x0 },
  69. { 0x00C30FFF, 0x001E0000, 0x0 },
  70. { 0x00FFFFFF, 0x00060006, 0x0 },
  71. { 0x00D75FFF, 0x001E0000, 0x0 },
  72. };
  73. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  74. /* Idx NT mV d T mV d db */
  75. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  76. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  77. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  78. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  79. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  80. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  81. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  82. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  83. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  84. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  85. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  86. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  87. };
  88. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  89. { 0x00FFFFFF, 0x00000012, 0x0 },
  90. { 0x00EBAFFF, 0x00020011, 0x0 },
  91. { 0x00C71FFF, 0x0006000F, 0x0 },
  92. { 0x00AAAFFF, 0x000E000A, 0x0 },
  93. { 0x00FFFFFF, 0x00020011, 0x0 },
  94. { 0x00DB6FFF, 0x0005000F, 0x0 },
  95. { 0x00BEEFFF, 0x000A000C, 0x0 },
  96. { 0x00FFFFFF, 0x0005000F, 0x0 },
  97. { 0x00DB6FFF, 0x000A000C, 0x0 },
  98. };
  99. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  100. { 0x00FFFFFF, 0x0007000E, 0x0 },
  101. { 0x00D75FFF, 0x000E000A, 0x0 },
  102. { 0x00BEFFFF, 0x00140006, 0x0 },
  103. { 0x80B2CFFF, 0x001B0002, 0x0 },
  104. { 0x00FFFFFF, 0x000E000A, 0x0 },
  105. { 0x00DB6FFF, 0x00160005, 0x0 },
  106. { 0x80C71FFF, 0x001A0002, 0x0 },
  107. { 0x00F7DFFF, 0x00180004, 0x0 },
  108. { 0x80D75FFF, 0x001B0002, 0x0 },
  109. };
  110. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  111. { 0x00FFFFFF, 0x0001000E, 0x0 },
  112. { 0x00D75FFF, 0x0004000A, 0x0 },
  113. { 0x00C30FFF, 0x00070006, 0x0 },
  114. { 0x00AAAFFF, 0x000C0000, 0x0 },
  115. { 0x00FFFFFF, 0x0004000A, 0x0 },
  116. { 0x00D75FFF, 0x00090004, 0x0 },
  117. { 0x00C30FFF, 0x000C0000, 0x0 },
  118. { 0x00FFFFFF, 0x00070006, 0x0 },
  119. { 0x00D75FFF, 0x000C0000, 0x0 },
  120. };
  121. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  122. /* Idx NT mV d T mV df db */
  123. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  124. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  125. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  126. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  127. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  128. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  129. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  130. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  131. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  132. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  133. };
  134. /* Skylake H and S */
  135. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  136. { 0x00002016, 0x000000A0, 0x0 },
  137. { 0x00005012, 0x0000009B, 0x0 },
  138. { 0x00007011, 0x00000088, 0x0 },
  139. { 0x80009010, 0x000000C0, 0x1 },
  140. { 0x00002016, 0x0000009B, 0x0 },
  141. { 0x00005012, 0x00000088, 0x0 },
  142. { 0x80007011, 0x000000C0, 0x1 },
  143. { 0x00002016, 0x000000DF, 0x0 },
  144. { 0x80005012, 0x000000C0, 0x1 },
  145. };
  146. /* Skylake U */
  147. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  148. { 0x0000201B, 0x000000A2, 0x0 },
  149. { 0x00005012, 0x00000088, 0x0 },
  150. { 0x80007011, 0x000000CD, 0x1 },
  151. { 0x80009010, 0x000000C0, 0x1 },
  152. { 0x0000201B, 0x0000009D, 0x0 },
  153. { 0x80005012, 0x000000C0, 0x1 },
  154. { 0x80007011, 0x000000C0, 0x1 },
  155. { 0x00002016, 0x00000088, 0x0 },
  156. { 0x80005012, 0x000000C0, 0x1 },
  157. };
  158. /* Skylake Y */
  159. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  160. { 0x00000018, 0x000000A2, 0x0 },
  161. { 0x00005012, 0x00000088, 0x0 },
  162. { 0x80007011, 0x000000CD, 0x3 },
  163. { 0x80009010, 0x000000C0, 0x3 },
  164. { 0x00000018, 0x0000009D, 0x0 },
  165. { 0x80005012, 0x000000C0, 0x3 },
  166. { 0x80007011, 0x000000C0, 0x3 },
  167. { 0x00000018, 0x00000088, 0x0 },
  168. { 0x80005012, 0x000000C0, 0x3 },
  169. };
  170. /* Kabylake H and S */
  171. static const struct ddi_buf_trans kbl_ddi_translations_dp[] = {
  172. { 0x00002016, 0x000000A0, 0x0 },
  173. { 0x00005012, 0x0000009B, 0x0 },
  174. { 0x00007011, 0x00000088, 0x0 },
  175. { 0x80009010, 0x000000C0, 0x1 },
  176. { 0x00002016, 0x0000009B, 0x0 },
  177. { 0x00005012, 0x00000088, 0x0 },
  178. { 0x80007011, 0x000000C0, 0x1 },
  179. { 0x00002016, 0x00000097, 0x0 },
  180. { 0x80005012, 0x000000C0, 0x1 },
  181. };
  182. /* Kabylake U */
  183. static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = {
  184. { 0x0000201B, 0x000000A1, 0x0 },
  185. { 0x00005012, 0x00000088, 0x0 },
  186. { 0x80007011, 0x000000CD, 0x3 },
  187. { 0x80009010, 0x000000C0, 0x3 },
  188. { 0x0000201B, 0x0000009D, 0x0 },
  189. { 0x80005012, 0x000000C0, 0x3 },
  190. { 0x80007011, 0x000000C0, 0x3 },
  191. { 0x00002016, 0x0000004F, 0x0 },
  192. { 0x80005012, 0x000000C0, 0x3 },
  193. };
  194. /* Kabylake Y */
  195. static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = {
  196. { 0x00001017, 0x000000A1, 0x0 },
  197. { 0x00005012, 0x00000088, 0x0 },
  198. { 0x80007011, 0x000000CD, 0x3 },
  199. { 0x8000800F, 0x000000C0, 0x3 },
  200. { 0x00001017, 0x0000009D, 0x0 },
  201. { 0x80005012, 0x000000C0, 0x3 },
  202. { 0x80007011, 0x000000C0, 0x3 },
  203. { 0x00001017, 0x0000004C, 0x0 },
  204. { 0x80005012, 0x000000C0, 0x3 },
  205. };
  206. /*
  207. * Skylake/Kabylake H and S
  208. * eDP 1.4 low vswing translation parameters
  209. */
  210. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  211. { 0x00000018, 0x000000A8, 0x0 },
  212. { 0x00004013, 0x000000A9, 0x0 },
  213. { 0x00007011, 0x000000A2, 0x0 },
  214. { 0x00009010, 0x0000009C, 0x0 },
  215. { 0x00000018, 0x000000A9, 0x0 },
  216. { 0x00006013, 0x000000A2, 0x0 },
  217. { 0x00007011, 0x000000A6, 0x0 },
  218. { 0x00000018, 0x000000AB, 0x0 },
  219. { 0x00007013, 0x0000009F, 0x0 },
  220. { 0x00000018, 0x000000DF, 0x0 },
  221. };
  222. /*
  223. * Skylake/Kabylake U
  224. * eDP 1.4 low vswing translation parameters
  225. */
  226. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  227. { 0x00000018, 0x000000A8, 0x0 },
  228. { 0x00004013, 0x000000A9, 0x0 },
  229. { 0x00007011, 0x000000A2, 0x0 },
  230. { 0x00009010, 0x0000009C, 0x0 },
  231. { 0x00000018, 0x000000A9, 0x0 },
  232. { 0x00006013, 0x000000A2, 0x0 },
  233. { 0x00007011, 0x000000A6, 0x0 },
  234. { 0x00002016, 0x000000AB, 0x0 },
  235. { 0x00005013, 0x0000009F, 0x0 },
  236. { 0x00000018, 0x000000DF, 0x0 },
  237. };
  238. /*
  239. * Skylake/Kabylake Y
  240. * eDP 1.4 low vswing translation parameters
  241. */
  242. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  243. { 0x00000018, 0x000000A8, 0x0 },
  244. { 0x00004013, 0x000000AB, 0x0 },
  245. { 0x00007011, 0x000000A4, 0x0 },
  246. { 0x00009010, 0x000000DF, 0x0 },
  247. { 0x00000018, 0x000000AA, 0x0 },
  248. { 0x00006013, 0x000000A4, 0x0 },
  249. { 0x00007011, 0x0000009D, 0x0 },
  250. { 0x00000018, 0x000000A0, 0x0 },
  251. { 0x00006012, 0x000000DF, 0x0 },
  252. { 0x00000018, 0x0000008A, 0x0 },
  253. };
  254. /* Skylake/Kabylake U, H and S */
  255. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  256. { 0x00000018, 0x000000AC, 0x0 },
  257. { 0x00005012, 0x0000009D, 0x0 },
  258. { 0x00007011, 0x00000088, 0x0 },
  259. { 0x00000018, 0x000000A1, 0x0 },
  260. { 0x00000018, 0x00000098, 0x0 },
  261. { 0x00004013, 0x00000088, 0x0 },
  262. { 0x80006012, 0x000000CD, 0x1 },
  263. { 0x00000018, 0x000000DF, 0x0 },
  264. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  265. { 0x80003015, 0x000000C0, 0x1 },
  266. { 0x80000018, 0x000000C0, 0x1 },
  267. };
  268. /* Skylake/Kabylake Y */
  269. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  270. { 0x00000018, 0x000000A1, 0x0 },
  271. { 0x00005012, 0x000000DF, 0x0 },
  272. { 0x80007011, 0x000000CB, 0x3 },
  273. { 0x00000018, 0x000000A4, 0x0 },
  274. { 0x00000018, 0x0000009D, 0x0 },
  275. { 0x00004013, 0x00000080, 0x0 },
  276. { 0x80006013, 0x000000C0, 0x3 },
  277. { 0x00000018, 0x0000008A, 0x0 },
  278. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  279. { 0x80003015, 0x000000C0, 0x3 },
  280. { 0x80000018, 0x000000C0, 0x3 },
  281. };
  282. struct bxt_ddi_buf_trans {
  283. u8 margin; /* swing value */
  284. u8 scale; /* scale value */
  285. u8 enable; /* scale enable */
  286. u8 deemphasis;
  287. };
  288. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  289. /* Idx NT mV diff db */
  290. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  291. { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  292. { 104, 0x9A, 0, 64, }, /* 2: 400 6 */
  293. { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  294. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  295. { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  296. { 154, 0x9A, 0, 64, }, /* 6: 600 6 */
  297. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  298. { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  299. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  300. };
  301. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  302. /* Idx NT mV diff db */
  303. { 26, 0, 0, 128, }, /* 0: 200 0 */
  304. { 38, 0, 0, 112, }, /* 1: 200 1.5 */
  305. { 48, 0, 0, 96, }, /* 2: 200 4 */
  306. { 54, 0, 0, 69, }, /* 3: 200 6 */
  307. { 32, 0, 0, 128, }, /* 4: 250 0 */
  308. { 48, 0, 0, 104, }, /* 5: 250 1.5 */
  309. { 54, 0, 0, 85, }, /* 6: 250 4 */
  310. { 43, 0, 0, 128, }, /* 7: 300 0 */
  311. { 54, 0, 0, 101, }, /* 8: 300 1.5 */
  312. { 48, 0, 0, 128, }, /* 9: 300 0 */
  313. };
  314. /* BSpec has 2 recommended values - entries 0 and 8.
  315. * Using the entry with higher vswing.
  316. */
  317. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  318. /* Idx NT mV diff db */
  319. { 52, 0x9A, 0, 128, }, /* 0: 400 0 */
  320. { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */
  321. { 52, 0x9A, 0, 64, }, /* 2: 400 6 */
  322. { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */
  323. { 77, 0x9A, 0, 128, }, /* 4: 600 0 */
  324. { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */
  325. { 77, 0x9A, 0, 64, }, /* 6: 600 6 */
  326. { 102, 0x9A, 0, 128, }, /* 7: 800 0 */
  327. { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */
  328. { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */
  329. };
  330. struct cnl_ddi_buf_trans {
  331. u8 dw2_swing_sel;
  332. u8 dw7_n_scalar;
  333. u8 dw4_cursor_coeff;
  334. u8 dw4_post_cursor_2;
  335. u8 dw4_post_cursor_1;
  336. };
  337. /* Voltage Swing Programming for VccIO 0.85V for DP */
  338. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = {
  339. /* NT mV Trans mV db */
  340. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  341. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  342. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  343. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  344. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  345. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  346. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  347. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  348. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  349. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  350. };
  351. /* Voltage Swing Programming for VccIO 0.85V for HDMI */
  352. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = {
  353. /* NT mV Trans mV db */
  354. { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  355. { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */
  356. { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */
  357. { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */
  358. { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */
  359. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */
  360. { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  361. };
  362. /* Voltage Swing Programming for VccIO 0.85V for eDP */
  363. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = {
  364. /* NT mV Trans mV db */
  365. { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  366. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  367. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  368. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  369. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  370. { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  371. { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */
  372. { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */
  373. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  374. };
  375. /* Voltage Swing Programming for VccIO 0.95V for DP */
  376. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = {
  377. /* NT mV Trans mV db */
  378. { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */
  379. { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */
  380. { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */
  381. { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */
  382. { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */
  383. { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */
  384. { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */
  385. { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */
  386. { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */
  387. { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */
  388. };
  389. /* Voltage Swing Programming for VccIO 0.95V for HDMI */
  390. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = {
  391. /* NT mV Trans mV db */
  392. { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  393. { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  394. { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  395. { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  396. { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  397. { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  398. { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  399. { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  400. { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  401. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  402. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  403. };
  404. /* Voltage Swing Programming for VccIO 0.95V for eDP */
  405. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = {
  406. /* NT mV Trans mV db */
  407. { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  408. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  409. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  410. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  411. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  412. { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  413. { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  414. { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  415. { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */
  416. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  417. };
  418. /* Voltage Swing Programming for VccIO 1.05V for DP */
  419. static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = {
  420. /* NT mV Trans mV db */
  421. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  422. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  423. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  424. { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */
  425. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  426. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  427. { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */
  428. { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */
  429. { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */
  430. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  431. };
  432. /* Voltage Swing Programming for VccIO 1.05V for HDMI */
  433. static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = {
  434. /* NT mV Trans mV db */
  435. { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  436. { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */
  437. { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */
  438. { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */
  439. { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */
  440. { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */
  441. { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */
  442. { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */
  443. { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */
  444. { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */
  445. { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */
  446. };
  447. /* Voltage Swing Programming for VccIO 1.05V for eDP */
  448. static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = {
  449. /* NT mV Trans mV db */
  450. { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */
  451. { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */
  452. { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */
  453. { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */
  454. { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */
  455. { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */
  456. { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */
  457. { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */
  458. { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */
  459. };
  460. static const struct ddi_buf_trans *
  461. bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  462. {
  463. if (dev_priv->vbt.edp.low_vswing) {
  464. *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  465. return bdw_ddi_translations_edp;
  466. } else {
  467. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  468. return bdw_ddi_translations_dp;
  469. }
  470. }
  471. static const struct ddi_buf_trans *
  472. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  473. {
  474. if (IS_SKL_ULX(dev_priv)) {
  475. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  476. return skl_y_ddi_translations_dp;
  477. } else if (IS_SKL_ULT(dev_priv)) {
  478. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  479. return skl_u_ddi_translations_dp;
  480. } else {
  481. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  482. return skl_ddi_translations_dp;
  483. }
  484. }
  485. static const struct ddi_buf_trans *
  486. kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  487. {
  488. if (IS_KBL_ULX(dev_priv)) {
  489. *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp);
  490. return kbl_y_ddi_translations_dp;
  491. } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) {
  492. *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp);
  493. return kbl_u_ddi_translations_dp;
  494. } else {
  495. *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp);
  496. return kbl_ddi_translations_dp;
  497. }
  498. }
  499. static const struct ddi_buf_trans *
  500. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  501. {
  502. if (dev_priv->vbt.edp.low_vswing) {
  503. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  504. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  505. return skl_y_ddi_translations_edp;
  506. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) ||
  507. IS_CFL_ULT(dev_priv)) {
  508. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  509. return skl_u_ddi_translations_edp;
  510. } else {
  511. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  512. return skl_ddi_translations_edp;
  513. }
  514. }
  515. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  516. return kbl_get_buf_trans_dp(dev_priv, n_entries);
  517. else
  518. return skl_get_buf_trans_dp(dev_priv, n_entries);
  519. }
  520. static const struct ddi_buf_trans *
  521. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  522. {
  523. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  524. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  525. return skl_y_ddi_translations_hdmi;
  526. } else {
  527. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  528. return skl_ddi_translations_hdmi;
  529. }
  530. }
  531. static int skl_buf_trans_num_entries(enum port port, int n_entries)
  532. {
  533. /* Only DDIA and DDIE can select the 10th register with DP */
  534. if (port == PORT_A || port == PORT_E)
  535. return min(n_entries, 10);
  536. else
  537. return min(n_entries, 9);
  538. }
  539. static const struct ddi_buf_trans *
  540. intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv,
  541. enum port port, int *n_entries)
  542. {
  543. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) {
  544. const struct ddi_buf_trans *ddi_translations =
  545. kbl_get_buf_trans_dp(dev_priv, n_entries);
  546. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  547. return ddi_translations;
  548. } else if (IS_SKYLAKE(dev_priv)) {
  549. const struct ddi_buf_trans *ddi_translations =
  550. skl_get_buf_trans_dp(dev_priv, n_entries);
  551. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  552. return ddi_translations;
  553. } else if (IS_BROADWELL(dev_priv)) {
  554. *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  555. return bdw_ddi_translations_dp;
  556. } else if (IS_HASWELL(dev_priv)) {
  557. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  558. return hsw_ddi_translations_dp;
  559. }
  560. *n_entries = 0;
  561. return NULL;
  562. }
  563. static const struct ddi_buf_trans *
  564. intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv,
  565. enum port port, int *n_entries)
  566. {
  567. if (IS_GEN9_BC(dev_priv)) {
  568. const struct ddi_buf_trans *ddi_translations =
  569. skl_get_buf_trans_edp(dev_priv, n_entries);
  570. *n_entries = skl_buf_trans_num_entries(port, *n_entries);
  571. return ddi_translations;
  572. } else if (IS_BROADWELL(dev_priv)) {
  573. return bdw_get_buf_trans_edp(dev_priv, n_entries);
  574. } else if (IS_HASWELL(dev_priv)) {
  575. *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  576. return hsw_ddi_translations_dp;
  577. }
  578. *n_entries = 0;
  579. return NULL;
  580. }
  581. static const struct ddi_buf_trans *
  582. intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv,
  583. int *n_entries)
  584. {
  585. if (IS_BROADWELL(dev_priv)) {
  586. *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi);
  587. return bdw_ddi_translations_fdi;
  588. } else if (IS_HASWELL(dev_priv)) {
  589. *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi);
  590. return hsw_ddi_translations_fdi;
  591. }
  592. *n_entries = 0;
  593. return NULL;
  594. }
  595. static const struct ddi_buf_trans *
  596. intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv,
  597. int *n_entries)
  598. {
  599. if (IS_GEN9_BC(dev_priv)) {
  600. return skl_get_buf_trans_hdmi(dev_priv, n_entries);
  601. } else if (IS_BROADWELL(dev_priv)) {
  602. *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  603. return bdw_ddi_translations_hdmi;
  604. } else if (IS_HASWELL(dev_priv)) {
  605. *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  606. return hsw_ddi_translations_hdmi;
  607. }
  608. *n_entries = 0;
  609. return NULL;
  610. }
  611. static const struct bxt_ddi_buf_trans *
  612. bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  613. {
  614. *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  615. return bxt_ddi_translations_dp;
  616. }
  617. static const struct bxt_ddi_buf_trans *
  618. bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  619. {
  620. if (dev_priv->vbt.edp.low_vswing) {
  621. *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  622. return bxt_ddi_translations_edp;
  623. }
  624. return bxt_get_buf_trans_dp(dev_priv, n_entries);
  625. }
  626. static const struct bxt_ddi_buf_trans *
  627. bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  628. {
  629. *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  630. return bxt_ddi_translations_hdmi;
  631. }
  632. static const struct cnl_ddi_buf_trans *
  633. cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  634. {
  635. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  636. if (voltage == VOLTAGE_INFO_0_85V) {
  637. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V);
  638. return cnl_ddi_translations_hdmi_0_85V;
  639. } else if (voltage == VOLTAGE_INFO_0_95V) {
  640. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V);
  641. return cnl_ddi_translations_hdmi_0_95V;
  642. } else if (voltage == VOLTAGE_INFO_1_05V) {
  643. *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V);
  644. return cnl_ddi_translations_hdmi_1_05V;
  645. } else {
  646. *n_entries = 1; /* shut up gcc */
  647. MISSING_CASE(voltage);
  648. }
  649. return NULL;
  650. }
  651. static const struct cnl_ddi_buf_trans *
  652. cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  653. {
  654. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  655. if (voltage == VOLTAGE_INFO_0_85V) {
  656. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V);
  657. return cnl_ddi_translations_dp_0_85V;
  658. } else if (voltage == VOLTAGE_INFO_0_95V) {
  659. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V);
  660. return cnl_ddi_translations_dp_0_95V;
  661. } else if (voltage == VOLTAGE_INFO_1_05V) {
  662. *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V);
  663. return cnl_ddi_translations_dp_1_05V;
  664. } else {
  665. *n_entries = 1; /* shut up gcc */
  666. MISSING_CASE(voltage);
  667. }
  668. return NULL;
  669. }
  670. static const struct cnl_ddi_buf_trans *
  671. cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  672. {
  673. u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
  674. if (dev_priv->vbt.edp.low_vswing) {
  675. if (voltage == VOLTAGE_INFO_0_85V) {
  676. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V);
  677. return cnl_ddi_translations_edp_0_85V;
  678. } else if (voltage == VOLTAGE_INFO_0_95V) {
  679. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V);
  680. return cnl_ddi_translations_edp_0_95V;
  681. } else if (voltage == VOLTAGE_INFO_1_05V) {
  682. *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V);
  683. return cnl_ddi_translations_edp_1_05V;
  684. } else {
  685. *n_entries = 1; /* shut up gcc */
  686. MISSING_CASE(voltage);
  687. }
  688. return NULL;
  689. } else {
  690. return cnl_get_buf_trans_dp(dev_priv, n_entries);
  691. }
  692. }
  693. static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
  694. {
  695. int n_entries, level, default_entry;
  696. level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  697. if (IS_CANNONLAKE(dev_priv)) {
  698. cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  699. default_entry = n_entries - 1;
  700. } else if (IS_GEN9_LP(dev_priv)) {
  701. bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  702. default_entry = n_entries - 1;
  703. } else if (IS_GEN9_BC(dev_priv)) {
  704. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  705. default_entry = 8;
  706. } else if (IS_BROADWELL(dev_priv)) {
  707. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  708. default_entry = 7;
  709. } else if (IS_HASWELL(dev_priv)) {
  710. intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  711. default_entry = 6;
  712. } else {
  713. WARN(1, "ddi translation table missing\n");
  714. return 0;
  715. }
  716. /* Choose a good default if VBT is badly populated */
  717. if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries)
  718. level = default_entry;
  719. if (WARN_ON_ONCE(n_entries == 0))
  720. return 0;
  721. if (WARN_ON_ONCE(level >= n_entries))
  722. level = n_entries - 1;
  723. return level;
  724. }
  725. /*
  726. * Starting with Haswell, DDI port buffers must be programmed with correct
  727. * values in advance. This function programs the correct values for
  728. * DP/eDP/FDI use cases.
  729. */
  730. static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder,
  731. const struct intel_crtc_state *crtc_state)
  732. {
  733. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  734. u32 iboost_bit = 0;
  735. int i, n_entries;
  736. enum port port = encoder->port;
  737. const struct ddi_buf_trans *ddi_translations;
  738. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
  739. ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv,
  740. &n_entries);
  741. else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
  742. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port,
  743. &n_entries);
  744. else
  745. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port,
  746. &n_entries);
  747. /* If we're boosting the current, set bit 31 of trans1 */
  748. if (IS_GEN9_BC(dev_priv) &&
  749. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  750. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  751. for (i = 0; i < n_entries; i++) {
  752. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  753. ddi_translations[i].trans1 | iboost_bit);
  754. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  755. ddi_translations[i].trans2);
  756. }
  757. }
  758. /*
  759. * Starting with Haswell, DDI port buffers must be programmed with correct
  760. * values in advance. This function programs the correct values for
  761. * HDMI/DVI use cases.
  762. */
  763. static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder,
  764. int level)
  765. {
  766. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  767. u32 iboost_bit = 0;
  768. int n_entries;
  769. enum port port = encoder->port;
  770. const struct ddi_buf_trans *ddi_translations;
  771. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  772. if (WARN_ON_ONCE(!ddi_translations))
  773. return;
  774. if (WARN_ON_ONCE(level >= n_entries))
  775. level = n_entries - 1;
  776. /* If we're boosting the current, set bit 31 of trans1 */
  777. if (IS_GEN9_BC(dev_priv) &&
  778. dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
  779. iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
  780. /* Entry 9 is for HDMI: */
  781. I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
  782. ddi_translations[level].trans1 | iboost_bit);
  783. I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
  784. ddi_translations[level].trans2);
  785. }
  786. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  787. enum port port)
  788. {
  789. i915_reg_t reg = DDI_BUF_CTL(port);
  790. int i;
  791. for (i = 0; i < 16; i++) {
  792. udelay(1);
  793. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  794. return;
  795. }
  796. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  797. }
  798. static uint32_t hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll)
  799. {
  800. switch (pll->id) {
  801. case DPLL_ID_WRPLL1:
  802. return PORT_CLK_SEL_WRPLL1;
  803. case DPLL_ID_WRPLL2:
  804. return PORT_CLK_SEL_WRPLL2;
  805. case DPLL_ID_SPLL:
  806. return PORT_CLK_SEL_SPLL;
  807. case DPLL_ID_LCPLL_810:
  808. return PORT_CLK_SEL_LCPLL_810;
  809. case DPLL_ID_LCPLL_1350:
  810. return PORT_CLK_SEL_LCPLL_1350;
  811. case DPLL_ID_LCPLL_2700:
  812. return PORT_CLK_SEL_LCPLL_2700;
  813. default:
  814. MISSING_CASE(pll->id);
  815. return PORT_CLK_SEL_NONE;
  816. }
  817. }
  818. /* Starting with Haswell, different DDI ports can work in FDI mode for
  819. * connection to the PCH-located connectors. For this, it is necessary to train
  820. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  821. *
  822. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  823. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  824. * DDI A (which is used for eDP)
  825. */
  826. void hsw_fdi_link_train(struct intel_crtc *crtc,
  827. const struct intel_crtc_state *crtc_state)
  828. {
  829. struct drm_device *dev = crtc->base.dev;
  830. struct drm_i915_private *dev_priv = to_i915(dev);
  831. struct intel_encoder *encoder;
  832. u32 temp, i, rx_ctl_val, ddi_pll_sel;
  833. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  834. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  835. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  836. }
  837. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  838. * mode set "sequence for CRT port" document:
  839. * - TP1 to TP2 time with the default value
  840. * - FDI delay to 90h
  841. *
  842. * WaFDIAutoLinkSetTimingOverrride:hsw
  843. */
  844. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  845. FDI_RX_PWRDN_LANE0_VAL(2) |
  846. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  847. /* Enable the PCH Receiver FDI PLL */
  848. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  849. FDI_RX_PLL_ENABLE |
  850. FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
  851. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  852. POSTING_READ(FDI_RX_CTL(PIPE_A));
  853. udelay(220);
  854. /* Switch from Rawclk to PCDclk */
  855. rx_ctl_val |= FDI_PCDCLK;
  856. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  857. /* Configure Port Clock Select */
  858. ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll);
  859. I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel);
  860. WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL);
  861. /* Start the training iterating through available voltages and emphasis,
  862. * testing each value twice. */
  863. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  864. /* Configure DP_TP_CTL with auto-training */
  865. I915_WRITE(DP_TP_CTL(PORT_E),
  866. DP_TP_CTL_FDI_AUTOTRAIN |
  867. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  868. DP_TP_CTL_LINK_TRAIN_PAT1 |
  869. DP_TP_CTL_ENABLE);
  870. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  871. * DDI E does not support port reversal, the functionality is
  872. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  873. * port reversal bit */
  874. I915_WRITE(DDI_BUF_CTL(PORT_E),
  875. DDI_BUF_CTL_ENABLE |
  876. ((crtc_state->fdi_lanes - 1) << 1) |
  877. DDI_BUF_TRANS_SELECT(i / 2));
  878. POSTING_READ(DDI_BUF_CTL(PORT_E));
  879. udelay(600);
  880. /* Program PCH FDI Receiver TU */
  881. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  882. /* Enable PCH FDI Receiver with auto-training */
  883. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  884. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  885. POSTING_READ(FDI_RX_CTL(PIPE_A));
  886. /* Wait for FDI receiver lane calibration */
  887. udelay(30);
  888. /* Unset FDI_RX_MISC pwrdn lanes */
  889. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  890. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  891. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  892. POSTING_READ(FDI_RX_MISC(PIPE_A));
  893. /* Wait for FDI auto training time */
  894. udelay(5);
  895. temp = I915_READ(DP_TP_STATUS(PORT_E));
  896. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  897. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  898. break;
  899. }
  900. /*
  901. * Leave things enabled even if we failed to train FDI.
  902. * Results in less fireworks from the state checker.
  903. */
  904. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  905. DRM_ERROR("FDI link training failed!\n");
  906. break;
  907. }
  908. rx_ctl_val &= ~FDI_RX_ENABLE;
  909. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  910. POSTING_READ(FDI_RX_CTL(PIPE_A));
  911. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  912. temp &= ~DDI_BUF_CTL_ENABLE;
  913. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  914. POSTING_READ(DDI_BUF_CTL(PORT_E));
  915. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  916. temp = I915_READ(DP_TP_CTL(PORT_E));
  917. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  918. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  919. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  920. POSTING_READ(DP_TP_CTL(PORT_E));
  921. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  922. /* Reset FDI_RX_MISC pwrdn lanes */
  923. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  924. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  925. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  926. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  927. POSTING_READ(FDI_RX_MISC(PIPE_A));
  928. }
  929. /* Enable normal pixel sending for FDI */
  930. I915_WRITE(DP_TP_CTL(PORT_E),
  931. DP_TP_CTL_FDI_AUTOTRAIN |
  932. DP_TP_CTL_LINK_TRAIN_NORMAL |
  933. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  934. DP_TP_CTL_ENABLE);
  935. }
  936. static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  937. {
  938. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  939. struct intel_digital_port *intel_dig_port =
  940. enc_to_dig_port(&encoder->base);
  941. intel_dp->DP = intel_dig_port->saved_port_bits |
  942. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  943. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  944. }
  945. static struct intel_encoder *
  946. intel_ddi_get_crtc_encoder(struct intel_crtc *crtc)
  947. {
  948. struct drm_device *dev = crtc->base.dev;
  949. struct intel_encoder *encoder, *ret = NULL;
  950. int num_encoders = 0;
  951. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  952. ret = encoder;
  953. num_encoders++;
  954. }
  955. if (num_encoders != 1)
  956. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  957. pipe_name(crtc->pipe));
  958. BUG_ON(ret == NULL);
  959. return ret;
  960. }
  961. /* Finds the only possible encoder associated with the given CRTC. */
  962. struct intel_encoder *
  963. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  964. {
  965. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  966. struct intel_encoder *ret = NULL;
  967. struct drm_atomic_state *state;
  968. struct drm_connector *connector;
  969. struct drm_connector_state *connector_state;
  970. int num_encoders = 0;
  971. int i;
  972. state = crtc_state->base.state;
  973. for_each_new_connector_in_state(state, connector, connector_state, i) {
  974. if (connector_state->crtc != crtc_state->base.crtc)
  975. continue;
  976. ret = to_intel_encoder(connector_state->best_encoder);
  977. num_encoders++;
  978. }
  979. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  980. pipe_name(crtc->pipe));
  981. BUG_ON(ret == NULL);
  982. return ret;
  983. }
  984. #define LC_FREQ 2700
  985. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  986. i915_reg_t reg)
  987. {
  988. int refclk = LC_FREQ;
  989. int n, p, r;
  990. u32 wrpll;
  991. wrpll = I915_READ(reg);
  992. switch (wrpll & WRPLL_PLL_REF_MASK) {
  993. case WRPLL_PLL_SSC:
  994. case WRPLL_PLL_NON_SSC:
  995. /*
  996. * We could calculate spread here, but our checking
  997. * code only cares about 5% accuracy, and spread is a max of
  998. * 0.5% downspread.
  999. */
  1000. refclk = 135;
  1001. break;
  1002. case WRPLL_PLL_LCPLL:
  1003. refclk = LC_FREQ;
  1004. break;
  1005. default:
  1006. WARN(1, "bad wrpll refclk\n");
  1007. return 0;
  1008. }
  1009. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  1010. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  1011. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  1012. /* Convert to KHz, p & r have a fixed point portion */
  1013. return (refclk * n * 100) / (p * r);
  1014. }
  1015. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1016. enum intel_dpll_id pll_id)
  1017. {
  1018. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  1019. uint32_t cfgcr1_val, cfgcr2_val;
  1020. uint32_t p0, p1, p2, dco_freq;
  1021. cfgcr1_reg = DPLL_CFGCR1(pll_id);
  1022. cfgcr2_reg = DPLL_CFGCR2(pll_id);
  1023. cfgcr1_val = I915_READ(cfgcr1_reg);
  1024. cfgcr2_val = I915_READ(cfgcr2_reg);
  1025. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  1026. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  1027. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  1028. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  1029. else
  1030. p1 = 1;
  1031. switch (p0) {
  1032. case DPLL_CFGCR2_PDIV_1:
  1033. p0 = 1;
  1034. break;
  1035. case DPLL_CFGCR2_PDIV_2:
  1036. p0 = 2;
  1037. break;
  1038. case DPLL_CFGCR2_PDIV_3:
  1039. p0 = 3;
  1040. break;
  1041. case DPLL_CFGCR2_PDIV_7:
  1042. p0 = 7;
  1043. break;
  1044. }
  1045. switch (p2) {
  1046. case DPLL_CFGCR2_KDIV_5:
  1047. p2 = 5;
  1048. break;
  1049. case DPLL_CFGCR2_KDIV_2:
  1050. p2 = 2;
  1051. break;
  1052. case DPLL_CFGCR2_KDIV_3:
  1053. p2 = 3;
  1054. break;
  1055. case DPLL_CFGCR2_KDIV_1:
  1056. p2 = 1;
  1057. break;
  1058. }
  1059. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  1060. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  1061. 1000) / 0x8000;
  1062. return dco_freq / (p0 * p1 * p2 * 5);
  1063. }
  1064. static int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  1065. enum intel_dpll_id pll_id)
  1066. {
  1067. uint32_t cfgcr0, cfgcr1;
  1068. uint32_t p0, p1, p2, dco_freq, ref_clock;
  1069. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1070. cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll_id));
  1071. p0 = cfgcr1 & DPLL_CFGCR1_PDIV_MASK;
  1072. p2 = cfgcr1 & DPLL_CFGCR1_KDIV_MASK;
  1073. if (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1))
  1074. p1 = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
  1075. DPLL_CFGCR1_QDIV_RATIO_SHIFT;
  1076. else
  1077. p1 = 1;
  1078. switch (p0) {
  1079. case DPLL_CFGCR1_PDIV_2:
  1080. p0 = 2;
  1081. break;
  1082. case DPLL_CFGCR1_PDIV_3:
  1083. p0 = 3;
  1084. break;
  1085. case DPLL_CFGCR1_PDIV_5:
  1086. p0 = 5;
  1087. break;
  1088. case DPLL_CFGCR1_PDIV_7:
  1089. p0 = 7;
  1090. break;
  1091. }
  1092. switch (p2) {
  1093. case DPLL_CFGCR1_KDIV_1:
  1094. p2 = 1;
  1095. break;
  1096. case DPLL_CFGCR1_KDIV_2:
  1097. p2 = 2;
  1098. break;
  1099. case DPLL_CFGCR1_KDIV_4:
  1100. p2 = 4;
  1101. break;
  1102. }
  1103. ref_clock = dev_priv->cdclk.hw.ref;
  1104. dco_freq = (cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock;
  1105. dco_freq += (((cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
  1106. DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000;
  1107. if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0))
  1108. return 0;
  1109. return dco_freq / (p0 * p1 * p2 * 5);
  1110. }
  1111. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  1112. {
  1113. int dotclock;
  1114. if (pipe_config->has_pch_encoder)
  1115. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1116. &pipe_config->fdi_m_n);
  1117. else if (intel_crtc_has_dp_encoder(pipe_config))
  1118. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1119. &pipe_config->dp_m_n);
  1120. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  1121. dotclock = pipe_config->port_clock * 2 / 3;
  1122. else
  1123. dotclock = pipe_config->port_clock;
  1124. if (pipe_config->ycbcr420)
  1125. dotclock *= 2;
  1126. if (pipe_config->pixel_multiplier)
  1127. dotclock /= pipe_config->pixel_multiplier;
  1128. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  1129. }
  1130. static void cnl_ddi_clock_get(struct intel_encoder *encoder,
  1131. struct intel_crtc_state *pipe_config)
  1132. {
  1133. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1134. int link_clock = 0;
  1135. uint32_t cfgcr0;
  1136. enum intel_dpll_id pll_id;
  1137. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1138. cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id));
  1139. if (cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
  1140. link_clock = cnl_calc_wrpll_link(dev_priv, pll_id);
  1141. } else {
  1142. link_clock = cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK;
  1143. switch (link_clock) {
  1144. case DPLL_CFGCR0_LINK_RATE_810:
  1145. link_clock = 81000;
  1146. break;
  1147. case DPLL_CFGCR0_LINK_RATE_1080:
  1148. link_clock = 108000;
  1149. break;
  1150. case DPLL_CFGCR0_LINK_RATE_1350:
  1151. link_clock = 135000;
  1152. break;
  1153. case DPLL_CFGCR0_LINK_RATE_1620:
  1154. link_clock = 162000;
  1155. break;
  1156. case DPLL_CFGCR0_LINK_RATE_2160:
  1157. link_clock = 216000;
  1158. break;
  1159. case DPLL_CFGCR0_LINK_RATE_2700:
  1160. link_clock = 270000;
  1161. break;
  1162. case DPLL_CFGCR0_LINK_RATE_3240:
  1163. link_clock = 324000;
  1164. break;
  1165. case DPLL_CFGCR0_LINK_RATE_4050:
  1166. link_clock = 405000;
  1167. break;
  1168. default:
  1169. WARN(1, "Unsupported link rate\n");
  1170. break;
  1171. }
  1172. link_clock *= 2;
  1173. }
  1174. pipe_config->port_clock = link_clock;
  1175. ddi_dotclock_get(pipe_config);
  1176. }
  1177. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  1178. struct intel_crtc_state *pipe_config)
  1179. {
  1180. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1181. int link_clock = 0;
  1182. uint32_t dpll_ctl1;
  1183. enum intel_dpll_id pll_id;
  1184. pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll);
  1185. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  1186. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(pll_id)) {
  1187. link_clock = skl_calc_wrpll_link(dev_priv, pll_id);
  1188. } else {
  1189. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(pll_id);
  1190. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(pll_id);
  1191. switch (link_clock) {
  1192. case DPLL_CTRL1_LINK_RATE_810:
  1193. link_clock = 81000;
  1194. break;
  1195. case DPLL_CTRL1_LINK_RATE_1080:
  1196. link_clock = 108000;
  1197. break;
  1198. case DPLL_CTRL1_LINK_RATE_1350:
  1199. link_clock = 135000;
  1200. break;
  1201. case DPLL_CTRL1_LINK_RATE_1620:
  1202. link_clock = 162000;
  1203. break;
  1204. case DPLL_CTRL1_LINK_RATE_2160:
  1205. link_clock = 216000;
  1206. break;
  1207. case DPLL_CTRL1_LINK_RATE_2700:
  1208. link_clock = 270000;
  1209. break;
  1210. default:
  1211. WARN(1, "Unsupported link rate\n");
  1212. break;
  1213. }
  1214. link_clock *= 2;
  1215. }
  1216. pipe_config->port_clock = link_clock;
  1217. ddi_dotclock_get(pipe_config);
  1218. }
  1219. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  1220. struct intel_crtc_state *pipe_config)
  1221. {
  1222. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1223. int link_clock = 0;
  1224. u32 val, pll;
  1225. val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll);
  1226. switch (val & PORT_CLK_SEL_MASK) {
  1227. case PORT_CLK_SEL_LCPLL_810:
  1228. link_clock = 81000;
  1229. break;
  1230. case PORT_CLK_SEL_LCPLL_1350:
  1231. link_clock = 135000;
  1232. break;
  1233. case PORT_CLK_SEL_LCPLL_2700:
  1234. link_clock = 270000;
  1235. break;
  1236. case PORT_CLK_SEL_WRPLL1:
  1237. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  1238. break;
  1239. case PORT_CLK_SEL_WRPLL2:
  1240. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  1241. break;
  1242. case PORT_CLK_SEL_SPLL:
  1243. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  1244. if (pll == SPLL_PLL_FREQ_810MHz)
  1245. link_clock = 81000;
  1246. else if (pll == SPLL_PLL_FREQ_1350MHz)
  1247. link_clock = 135000;
  1248. else if (pll == SPLL_PLL_FREQ_2700MHz)
  1249. link_clock = 270000;
  1250. else {
  1251. WARN(1, "bad spll freq\n");
  1252. return;
  1253. }
  1254. break;
  1255. default:
  1256. WARN(1, "bad port clock sel\n");
  1257. return;
  1258. }
  1259. pipe_config->port_clock = link_clock * 2;
  1260. ddi_dotclock_get(pipe_config);
  1261. }
  1262. static int bxt_calc_pll_link(struct intel_crtc_state *crtc_state)
  1263. {
  1264. struct intel_dpll_hw_state *state;
  1265. struct dpll clock;
  1266. /* For DDI ports we always use a shared PLL. */
  1267. if (WARN_ON(!crtc_state->shared_dpll))
  1268. return 0;
  1269. state = &crtc_state->dpll_hw_state;
  1270. clock.m1 = 2;
  1271. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1272. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1273. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1274. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1275. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1276. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1277. return chv_calc_dpll_params(100000, &clock);
  1278. }
  1279. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1280. struct intel_crtc_state *pipe_config)
  1281. {
  1282. pipe_config->port_clock = bxt_calc_pll_link(pipe_config);
  1283. ddi_dotclock_get(pipe_config);
  1284. }
  1285. static void intel_ddi_clock_get(struct intel_encoder *encoder,
  1286. struct intel_crtc_state *pipe_config)
  1287. {
  1288. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1289. if (INTEL_GEN(dev_priv) <= 8)
  1290. hsw_ddi_clock_get(encoder, pipe_config);
  1291. else if (IS_GEN9_BC(dev_priv))
  1292. skl_ddi_clock_get(encoder, pipe_config);
  1293. else if (IS_GEN9_LP(dev_priv))
  1294. bxt_ddi_clock_get(encoder, pipe_config);
  1295. else if (IS_CANNONLAKE(dev_priv))
  1296. cnl_ddi_clock_get(encoder, pipe_config);
  1297. }
  1298. void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state)
  1299. {
  1300. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1301. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1302. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1303. u32 temp;
  1304. if (!intel_crtc_has_dp_encoder(crtc_state))
  1305. return;
  1306. WARN_ON(transcoder_is_dsi(cpu_transcoder));
  1307. temp = TRANS_MSA_SYNC_CLK;
  1308. switch (crtc_state->pipe_bpp) {
  1309. case 18:
  1310. temp |= TRANS_MSA_6_BPC;
  1311. break;
  1312. case 24:
  1313. temp |= TRANS_MSA_8_BPC;
  1314. break;
  1315. case 30:
  1316. temp |= TRANS_MSA_10_BPC;
  1317. break;
  1318. case 36:
  1319. temp |= TRANS_MSA_12_BPC;
  1320. break;
  1321. default:
  1322. MISSING_CASE(crtc_state->pipe_bpp);
  1323. break;
  1324. }
  1325. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1326. }
  1327. void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state,
  1328. bool state)
  1329. {
  1330. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1331. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1332. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1333. uint32_t temp;
  1334. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1335. if (state == true)
  1336. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1337. else
  1338. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1339. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1340. }
  1341. void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state)
  1342. {
  1343. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1344. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1345. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1346. enum pipe pipe = crtc->pipe;
  1347. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1348. enum port port = encoder->port;
  1349. uint32_t temp;
  1350. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1351. temp = TRANS_DDI_FUNC_ENABLE;
  1352. temp |= TRANS_DDI_SELECT_PORT(port);
  1353. switch (crtc_state->pipe_bpp) {
  1354. case 18:
  1355. temp |= TRANS_DDI_BPC_6;
  1356. break;
  1357. case 24:
  1358. temp |= TRANS_DDI_BPC_8;
  1359. break;
  1360. case 30:
  1361. temp |= TRANS_DDI_BPC_10;
  1362. break;
  1363. case 36:
  1364. temp |= TRANS_DDI_BPC_12;
  1365. break;
  1366. default:
  1367. BUG();
  1368. }
  1369. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1370. temp |= TRANS_DDI_PVSYNC;
  1371. if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1372. temp |= TRANS_DDI_PHSYNC;
  1373. if (cpu_transcoder == TRANSCODER_EDP) {
  1374. switch (pipe) {
  1375. case PIPE_A:
  1376. /* On Haswell, can only use the always-on power well for
  1377. * eDP when not using the panel fitter, and when not
  1378. * using motion blur mitigation (which we don't
  1379. * support). */
  1380. if (IS_HASWELL(dev_priv) &&
  1381. (crtc_state->pch_pfit.enabled ||
  1382. crtc_state->pch_pfit.force_thru))
  1383. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1384. else
  1385. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1386. break;
  1387. case PIPE_B:
  1388. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1389. break;
  1390. case PIPE_C:
  1391. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1392. break;
  1393. default:
  1394. BUG();
  1395. break;
  1396. }
  1397. }
  1398. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
  1399. if (crtc_state->has_hdmi_sink)
  1400. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1401. else
  1402. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1403. if (crtc_state->hdmi_scrambling)
  1404. temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK;
  1405. if (crtc_state->hdmi_high_tmds_clock_ratio)
  1406. temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE;
  1407. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
  1408. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1409. temp |= (crtc_state->fdi_lanes - 1) << 1;
  1410. } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
  1411. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1412. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1413. } else {
  1414. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1415. temp |= DDI_PORT_WIDTH(crtc_state->lane_count);
  1416. }
  1417. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1418. }
  1419. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1420. enum transcoder cpu_transcoder)
  1421. {
  1422. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1423. uint32_t val = I915_READ(reg);
  1424. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1425. val |= TRANS_DDI_PORT_NONE;
  1426. I915_WRITE(reg, val);
  1427. }
  1428. int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder,
  1429. bool enable)
  1430. {
  1431. struct drm_device *dev = intel_encoder->base.dev;
  1432. struct drm_i915_private *dev_priv = to_i915(dev);
  1433. enum pipe pipe = 0;
  1434. int ret = 0;
  1435. uint32_t tmp;
  1436. if (WARN_ON(!intel_display_power_get_if_enabled(dev_priv,
  1437. intel_encoder->power_domain)))
  1438. return -ENXIO;
  1439. if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) {
  1440. ret = -EIO;
  1441. goto out;
  1442. }
  1443. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe));
  1444. if (enable)
  1445. tmp |= TRANS_DDI_HDCP_SIGNALLING;
  1446. else
  1447. tmp &= ~TRANS_DDI_HDCP_SIGNALLING;
  1448. I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp);
  1449. out:
  1450. intel_display_power_put(dev_priv, intel_encoder->power_domain);
  1451. return ret;
  1452. }
  1453. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1454. {
  1455. struct drm_device *dev = intel_connector->base.dev;
  1456. struct drm_i915_private *dev_priv = to_i915(dev);
  1457. struct intel_encoder *encoder = intel_connector->encoder;
  1458. int type = intel_connector->base.connector_type;
  1459. enum port port = encoder->port;
  1460. enum pipe pipe = 0;
  1461. enum transcoder cpu_transcoder;
  1462. uint32_t tmp;
  1463. bool ret;
  1464. if (!intel_display_power_get_if_enabled(dev_priv,
  1465. encoder->power_domain))
  1466. return false;
  1467. if (!encoder->get_hw_state(encoder, &pipe)) {
  1468. ret = false;
  1469. goto out;
  1470. }
  1471. if (port == PORT_A)
  1472. cpu_transcoder = TRANSCODER_EDP;
  1473. else
  1474. cpu_transcoder = (enum transcoder) pipe;
  1475. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1476. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1477. case TRANS_DDI_MODE_SELECT_HDMI:
  1478. case TRANS_DDI_MODE_SELECT_DVI:
  1479. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1480. break;
  1481. case TRANS_DDI_MODE_SELECT_DP_SST:
  1482. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1483. type == DRM_MODE_CONNECTOR_DisplayPort;
  1484. break;
  1485. case TRANS_DDI_MODE_SELECT_DP_MST:
  1486. /* if the transcoder is in MST state then
  1487. * connector isn't connected */
  1488. ret = false;
  1489. break;
  1490. case TRANS_DDI_MODE_SELECT_FDI:
  1491. ret = type == DRM_MODE_CONNECTOR_VGA;
  1492. break;
  1493. default:
  1494. ret = false;
  1495. break;
  1496. }
  1497. out:
  1498. intel_display_power_put(dev_priv, encoder->power_domain);
  1499. return ret;
  1500. }
  1501. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1502. enum pipe *pipe)
  1503. {
  1504. struct drm_device *dev = encoder->base.dev;
  1505. struct drm_i915_private *dev_priv = to_i915(dev);
  1506. enum port port = encoder->port;
  1507. enum pipe p;
  1508. u32 tmp;
  1509. bool ret;
  1510. if (!intel_display_power_get_if_enabled(dev_priv,
  1511. encoder->power_domain))
  1512. return false;
  1513. ret = false;
  1514. tmp = I915_READ(DDI_BUF_CTL(port));
  1515. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1516. goto out;
  1517. if (port == PORT_A) {
  1518. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1519. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1520. case TRANS_DDI_EDP_INPUT_A_ON:
  1521. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1522. *pipe = PIPE_A;
  1523. break;
  1524. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1525. *pipe = PIPE_B;
  1526. break;
  1527. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1528. *pipe = PIPE_C;
  1529. break;
  1530. }
  1531. ret = true;
  1532. goto out;
  1533. }
  1534. for_each_pipe(dev_priv, p) {
  1535. enum transcoder cpu_transcoder = (enum transcoder) p;
  1536. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1537. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1538. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1539. TRANS_DDI_MODE_SELECT_DP_MST)
  1540. goto out;
  1541. *pipe = p;
  1542. ret = true;
  1543. goto out;
  1544. }
  1545. }
  1546. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1547. out:
  1548. if (ret && IS_GEN9_LP(dev_priv)) {
  1549. tmp = I915_READ(BXT_PHY_CTL(port));
  1550. if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK |
  1551. BXT_PHY_LANE_POWERDOWN_ACK |
  1552. BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
  1553. DRM_ERROR("Port %c enabled but PHY powered down? "
  1554. "(PHY_CTL %08x)\n", port_name(port), tmp);
  1555. }
  1556. intel_display_power_put(dev_priv, encoder->power_domain);
  1557. return ret;
  1558. }
  1559. static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder)
  1560. {
  1561. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1562. enum pipe pipe;
  1563. if (intel_ddi_get_hw_state(encoder, &pipe))
  1564. return BIT_ULL(dig_port->ddi_io_power_domain);
  1565. return 0;
  1566. }
  1567. void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1568. {
  1569. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1570. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1571. struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc);
  1572. enum port port = encoder->port;
  1573. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1574. if (cpu_transcoder != TRANSCODER_EDP)
  1575. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1576. TRANS_CLK_SEL_PORT(port));
  1577. }
  1578. void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state)
  1579. {
  1580. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1581. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  1582. if (cpu_transcoder != TRANSCODER_EDP)
  1583. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1584. TRANS_CLK_SEL_DISABLED);
  1585. }
  1586. static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1587. enum port port, uint8_t iboost)
  1588. {
  1589. u32 tmp;
  1590. tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1591. tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
  1592. if (iboost)
  1593. tmp |= iboost << BALANCE_LEG_SHIFT(port);
  1594. else
  1595. tmp |= BALANCE_LEG_DISABLE(port);
  1596. I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
  1597. }
  1598. static void skl_ddi_set_iboost(struct intel_encoder *encoder,
  1599. int level, enum intel_output_type type)
  1600. {
  1601. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1602. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1603. enum port port = encoder->port;
  1604. uint8_t iboost;
  1605. if (type == INTEL_OUTPUT_HDMI)
  1606. iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1607. else
  1608. iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1609. if (iboost == 0) {
  1610. const struct ddi_buf_trans *ddi_translations;
  1611. int n_entries;
  1612. if (type == INTEL_OUTPUT_HDMI)
  1613. ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries);
  1614. else if (type == INTEL_OUTPUT_EDP)
  1615. ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1616. else
  1617. ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1618. if (WARN_ON_ONCE(!ddi_translations))
  1619. return;
  1620. if (WARN_ON_ONCE(level >= n_entries))
  1621. level = n_entries - 1;
  1622. iboost = ddi_translations[level].i_boost;
  1623. }
  1624. /* Make sure that the requested I_boost is valid */
  1625. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1626. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1627. return;
  1628. }
  1629. _skl_ddi_set_iboost(dev_priv, port, iboost);
  1630. if (port == PORT_A && intel_dig_port->max_lanes == 4)
  1631. _skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
  1632. }
  1633. static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder,
  1634. int level, enum intel_output_type type)
  1635. {
  1636. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1637. const struct bxt_ddi_buf_trans *ddi_translations;
  1638. enum port port = encoder->port;
  1639. int n_entries;
  1640. if (type == INTEL_OUTPUT_HDMI)
  1641. ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries);
  1642. else if (type == INTEL_OUTPUT_EDP)
  1643. ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1644. else
  1645. ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1646. if (WARN_ON_ONCE(!ddi_translations))
  1647. return;
  1648. if (WARN_ON_ONCE(level >= n_entries))
  1649. level = n_entries - 1;
  1650. bxt_ddi_phy_set_signal_level(dev_priv, port,
  1651. ddi_translations[level].margin,
  1652. ddi_translations[level].scale,
  1653. ddi_translations[level].enable,
  1654. ddi_translations[level].deemphasis);
  1655. }
  1656. u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder)
  1657. {
  1658. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1659. enum port port = encoder->port;
  1660. int n_entries;
  1661. if (IS_CANNONLAKE(dev_priv)) {
  1662. if (encoder->type == INTEL_OUTPUT_EDP)
  1663. cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1664. else
  1665. cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1666. } else if (IS_GEN9_LP(dev_priv)) {
  1667. if (encoder->type == INTEL_OUTPUT_EDP)
  1668. bxt_get_buf_trans_edp(dev_priv, &n_entries);
  1669. else
  1670. bxt_get_buf_trans_dp(dev_priv, &n_entries);
  1671. } else {
  1672. if (encoder->type == INTEL_OUTPUT_EDP)
  1673. intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries);
  1674. else
  1675. intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries);
  1676. }
  1677. if (WARN_ON(n_entries < 1))
  1678. n_entries = 1;
  1679. if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels)))
  1680. n_entries = ARRAY_SIZE(index_to_dp_signal_levels);
  1681. return index_to_dp_signal_levels[n_entries - 1] &
  1682. DP_TRAIN_VOLTAGE_SWING_MASK;
  1683. }
  1684. static void cnl_ddi_vswing_program(struct intel_encoder *encoder,
  1685. int level, enum intel_output_type type)
  1686. {
  1687. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1688. const struct cnl_ddi_buf_trans *ddi_translations;
  1689. enum port port = encoder->port;
  1690. int n_entries, ln;
  1691. u32 val;
  1692. if (type == INTEL_OUTPUT_HDMI)
  1693. ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1694. else if (type == INTEL_OUTPUT_EDP)
  1695. ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries);
  1696. else
  1697. ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries);
  1698. if (WARN_ON_ONCE(!ddi_translations))
  1699. return;
  1700. if (WARN_ON_ONCE(level >= n_entries))
  1701. level = n_entries - 1;
  1702. /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */
  1703. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1704. val &= ~SCALING_MODE_SEL_MASK;
  1705. val |= SCALING_MODE_SEL(2);
  1706. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1707. /* Program PORT_TX_DW2 */
  1708. val = I915_READ(CNL_PORT_TX_DW2_LN0(port));
  1709. val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
  1710. RCOMP_SCALAR_MASK);
  1711. val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel);
  1712. val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel);
  1713. /* Rcomp scalar is fixed as 0x98 for every table entry */
  1714. val |= RCOMP_SCALAR(0x98);
  1715. I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val);
  1716. /* Program PORT_TX_DW4 */
  1717. /* We cannot write to GRP. It would overrite individual loadgen */
  1718. for (ln = 0; ln < 4; ln++) {
  1719. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1720. val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
  1721. CURSOR_COEFF_MASK);
  1722. val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1);
  1723. val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2);
  1724. val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff);
  1725. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1726. }
  1727. /* Program PORT_TX_DW5 */
  1728. /* All DW5 values are fixed for every table entry */
  1729. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1730. val &= ~RTERM_SELECT_MASK;
  1731. val |= RTERM_SELECT(6);
  1732. val |= TAP3_DISABLE;
  1733. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1734. /* Program PORT_TX_DW7 */
  1735. val = I915_READ(CNL_PORT_TX_DW7_LN0(port));
  1736. val &= ~N_SCALAR_MASK;
  1737. val |= N_SCALAR(ddi_translations[level].dw7_n_scalar);
  1738. I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val);
  1739. }
  1740. static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder,
  1741. int level, enum intel_output_type type)
  1742. {
  1743. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1744. enum port port = encoder->port;
  1745. int width, rate, ln;
  1746. u32 val;
  1747. if (type == INTEL_OUTPUT_HDMI) {
  1748. width = 4;
  1749. rate = 0; /* Rate is always < than 6GHz for HDMI */
  1750. } else {
  1751. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1752. width = intel_dp->lane_count;
  1753. rate = intel_dp->link_rate;
  1754. }
  1755. /*
  1756. * 1. If port type is eDP or DP,
  1757. * set PORT_PCS_DW1 cmnkeeper_enable to 1b,
  1758. * else clear to 0b.
  1759. */
  1760. val = I915_READ(CNL_PORT_PCS_DW1_LN0(port));
  1761. if (type != INTEL_OUTPUT_HDMI)
  1762. val |= COMMON_KEEPER_EN;
  1763. else
  1764. val &= ~COMMON_KEEPER_EN;
  1765. I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val);
  1766. /* 2. Program loadgen select */
  1767. /*
  1768. * Program PORT_TX_DW4_LN depending on Bit rate and used lanes
  1769. * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1)
  1770. * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0)
  1771. * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0)
  1772. */
  1773. for (ln = 0; ln <= 3; ln++) {
  1774. val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln));
  1775. val &= ~LOADGEN_SELECT;
  1776. if ((rate <= 600000 && width == 4 && ln >= 1) ||
  1777. (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) {
  1778. val |= LOADGEN_SELECT;
  1779. }
  1780. I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val);
  1781. }
  1782. /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */
  1783. val = I915_READ(CNL_PORT_CL1CM_DW5);
  1784. val |= SUS_CLOCK_CONFIG;
  1785. I915_WRITE(CNL_PORT_CL1CM_DW5, val);
  1786. /* 4. Clear training enable to change swing values */
  1787. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1788. val &= ~TX_TRAINING_EN;
  1789. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1790. /* 5. Program swing and de-emphasis */
  1791. cnl_ddi_vswing_program(encoder, level, type);
  1792. /* 6. Set training enable to trigger update */
  1793. val = I915_READ(CNL_PORT_TX_DW5_LN0(port));
  1794. val |= TX_TRAINING_EN;
  1795. I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val);
  1796. }
  1797. static uint32_t translate_signal_level(int signal_levels)
  1798. {
  1799. int i;
  1800. for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) {
  1801. if (index_to_dp_signal_levels[i] == signal_levels)
  1802. return i;
  1803. }
  1804. WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1805. signal_levels);
  1806. return 0;
  1807. }
  1808. static uint32_t intel_ddi_dp_level(struct intel_dp *intel_dp)
  1809. {
  1810. uint8_t train_set = intel_dp->train_set[0];
  1811. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1812. DP_TRAIN_PRE_EMPHASIS_MASK);
  1813. return translate_signal_level(signal_levels);
  1814. }
  1815. u32 bxt_signal_levels(struct intel_dp *intel_dp)
  1816. {
  1817. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1818. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1819. struct intel_encoder *encoder = &dport->base;
  1820. int level = intel_ddi_dp_level(intel_dp);
  1821. if (IS_CANNONLAKE(dev_priv))
  1822. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  1823. else
  1824. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  1825. return 0;
  1826. }
  1827. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1828. {
  1829. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1830. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1831. struct intel_encoder *encoder = &dport->base;
  1832. int level = intel_ddi_dp_level(intel_dp);
  1833. if (IS_GEN9_BC(dev_priv))
  1834. skl_ddi_set_iboost(encoder, level, encoder->type);
  1835. return DDI_BUF_TRANS_SELECT(level);
  1836. }
  1837. static void intel_ddi_clk_select(struct intel_encoder *encoder,
  1838. const struct intel_shared_dpll *pll)
  1839. {
  1840. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1841. enum port port = encoder->port;
  1842. uint32_t val;
  1843. if (WARN_ON(!pll))
  1844. return;
  1845. mutex_lock(&dev_priv->dpll_lock);
  1846. if (IS_CANNONLAKE(dev_priv)) {
  1847. /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */
  1848. val = I915_READ(DPCLKA_CFGCR0);
  1849. val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
  1850. val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->id, port);
  1851. I915_WRITE(DPCLKA_CFGCR0, val);
  1852. /*
  1853. * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI.
  1854. * This step and the step before must be done with separate
  1855. * register writes.
  1856. */
  1857. val = I915_READ(DPCLKA_CFGCR0);
  1858. val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port);
  1859. I915_WRITE(DPCLKA_CFGCR0, val);
  1860. } else if (IS_GEN9_BC(dev_priv)) {
  1861. /* DDI -> PLL mapping */
  1862. val = I915_READ(DPLL_CTRL2);
  1863. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1864. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1865. val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->id, port) |
  1866. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1867. I915_WRITE(DPLL_CTRL2, val);
  1868. } else if (INTEL_GEN(dev_priv) < 9) {
  1869. I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll));
  1870. }
  1871. mutex_unlock(&dev_priv->dpll_lock);
  1872. }
  1873. static void intel_ddi_clk_disable(struct intel_encoder *encoder)
  1874. {
  1875. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1876. enum port port = encoder->port;
  1877. if (IS_CANNONLAKE(dev_priv))
  1878. I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) |
  1879. DPCLKA_CFGCR0_DDI_CLK_OFF(port));
  1880. else if (IS_GEN9_BC(dev_priv))
  1881. I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) |
  1882. DPLL_CTRL2_DDI_CLK_OFF(port));
  1883. else if (INTEL_GEN(dev_priv) < 9)
  1884. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1885. }
  1886. static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder,
  1887. const struct intel_crtc_state *crtc_state,
  1888. const struct drm_connector_state *conn_state)
  1889. {
  1890. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1891. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1892. enum port port = encoder->port;
  1893. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1894. bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST);
  1895. int level = intel_ddi_dp_level(intel_dp);
  1896. WARN_ON(is_mst && (port == PORT_A || port == PORT_E));
  1897. intel_dp_set_link_params(intel_dp, crtc_state->port_clock,
  1898. crtc_state->lane_count, is_mst);
  1899. intel_edp_panel_on(intel_dp);
  1900. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  1901. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  1902. if (IS_CANNONLAKE(dev_priv))
  1903. cnl_ddi_vswing_sequence(encoder, level, encoder->type);
  1904. else if (IS_GEN9_LP(dev_priv))
  1905. bxt_ddi_vswing_sequence(encoder, level, encoder->type);
  1906. else
  1907. intel_prepare_dp_ddi_buffers(encoder, crtc_state);
  1908. intel_ddi_init_dp_buf_reg(encoder);
  1909. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1910. intel_dp_start_link_train(intel_dp);
  1911. if (port != PORT_A || INTEL_GEN(dev_priv) >= 9)
  1912. intel_dp_stop_link_train(intel_dp);
  1913. }
  1914. static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder,
  1915. const struct intel_crtc_state *crtc_state,
  1916. const struct drm_connector_state *conn_state)
  1917. {
  1918. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
  1919. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1920. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1921. enum port port = encoder->port;
  1922. int level = intel_ddi_hdmi_level(dev_priv, port);
  1923. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1924. intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
  1925. intel_ddi_clk_select(encoder, crtc_state->shared_dpll);
  1926. intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain);
  1927. if (IS_CANNONLAKE(dev_priv))
  1928. cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  1929. else if (IS_GEN9_LP(dev_priv))
  1930. bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI);
  1931. else
  1932. intel_prepare_hdmi_ddi_buffers(encoder, level);
  1933. if (IS_GEN9_BC(dev_priv))
  1934. skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI);
  1935. intel_dig_port->set_infoframes(&encoder->base,
  1936. crtc_state->has_infoframe,
  1937. crtc_state, conn_state);
  1938. }
  1939. static void intel_ddi_pre_enable(struct intel_encoder *encoder,
  1940. const struct intel_crtc_state *crtc_state,
  1941. const struct drm_connector_state *conn_state)
  1942. {
  1943. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1944. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1945. enum pipe pipe = crtc->pipe;
  1946. /*
  1947. * When called from DP MST code:
  1948. * - conn_state will be NULL
  1949. * - encoder will be the main encoder (ie. mst->primary)
  1950. * - the main connector associated with this port
  1951. * won't be active or linked to a crtc
  1952. * - crtc_state will be the state of the first stream to
  1953. * be activated on this port, and it may not be the same
  1954. * stream that will be deactivated last, but each stream
  1955. * should have a state that is identical when it comes to
  1956. * the DP link parameteres
  1957. */
  1958. WARN_ON(crtc_state->has_pch_encoder);
  1959. intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
  1960. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  1961. intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state);
  1962. else
  1963. intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state);
  1964. }
  1965. static void intel_disable_ddi_buf(struct intel_encoder *encoder)
  1966. {
  1967. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1968. enum port port = encoder->port;
  1969. bool wait = false;
  1970. u32 val;
  1971. val = I915_READ(DDI_BUF_CTL(port));
  1972. if (val & DDI_BUF_CTL_ENABLE) {
  1973. val &= ~DDI_BUF_CTL_ENABLE;
  1974. I915_WRITE(DDI_BUF_CTL(port), val);
  1975. wait = true;
  1976. }
  1977. val = I915_READ(DP_TP_CTL(port));
  1978. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1979. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1980. I915_WRITE(DP_TP_CTL(port), val);
  1981. if (wait)
  1982. intel_wait_ddi_buf_idle(dev_priv, port);
  1983. }
  1984. static void intel_ddi_post_disable_dp(struct intel_encoder *encoder,
  1985. const struct intel_crtc_state *old_crtc_state,
  1986. const struct drm_connector_state *old_conn_state)
  1987. {
  1988. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1989. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  1990. struct intel_dp *intel_dp = &dig_port->dp;
  1991. /*
  1992. * Power down sink before disabling the port, otherwise we end
  1993. * up getting interrupts from the sink on detecting link loss.
  1994. */
  1995. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1996. intel_disable_ddi_buf(encoder);
  1997. intel_edp_panel_vdd_on(intel_dp);
  1998. intel_edp_panel_off(intel_dp);
  1999. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2000. intel_ddi_clk_disable(encoder);
  2001. }
  2002. static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder,
  2003. const struct intel_crtc_state *old_crtc_state,
  2004. const struct drm_connector_state *old_conn_state)
  2005. {
  2006. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2007. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2008. struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
  2009. intel_disable_ddi_buf(encoder);
  2010. dig_port->set_infoframes(&encoder->base, false,
  2011. old_crtc_state, old_conn_state);
  2012. intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain);
  2013. intel_ddi_clk_disable(encoder);
  2014. intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
  2015. }
  2016. static void intel_ddi_post_disable(struct intel_encoder *encoder,
  2017. const struct intel_crtc_state *old_crtc_state,
  2018. const struct drm_connector_state *old_conn_state)
  2019. {
  2020. /*
  2021. * When called from DP MST code:
  2022. * - old_conn_state will be NULL
  2023. * - encoder will be the main encoder (ie. mst->primary)
  2024. * - the main connector associated with this port
  2025. * won't be active or linked to a crtc
  2026. * - old_crtc_state will be the state of the last stream to
  2027. * be deactivated on this port, and it may not be the same
  2028. * stream that was activated last, but each stream
  2029. * should have a state that is identical when it comes to
  2030. * the DP link parameteres
  2031. */
  2032. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2033. intel_ddi_post_disable_hdmi(encoder,
  2034. old_crtc_state, old_conn_state);
  2035. else
  2036. intel_ddi_post_disable_dp(encoder,
  2037. old_crtc_state, old_conn_state);
  2038. }
  2039. void intel_ddi_fdi_post_disable(struct intel_encoder *encoder,
  2040. const struct intel_crtc_state *old_crtc_state,
  2041. const struct drm_connector_state *old_conn_state)
  2042. {
  2043. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2044. uint32_t val;
  2045. /*
  2046. * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
  2047. * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
  2048. * step 13 is the correct place for it. Step 18 is where it was
  2049. * originally before the BUN.
  2050. */
  2051. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2052. val &= ~FDI_RX_ENABLE;
  2053. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2054. intel_disable_ddi_buf(encoder);
  2055. intel_ddi_clk_disable(encoder);
  2056. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2057. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2058. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2059. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2060. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2061. val &= ~FDI_PCDCLK;
  2062. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2063. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2064. val &= ~FDI_RX_PLL_ENABLE;
  2065. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2066. }
  2067. static void intel_enable_ddi_dp(struct intel_encoder *encoder,
  2068. const struct intel_crtc_state *crtc_state,
  2069. const struct drm_connector_state *conn_state)
  2070. {
  2071. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2072. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2073. enum port port = encoder->port;
  2074. if (port == PORT_A && INTEL_GEN(dev_priv) < 9)
  2075. intel_dp_stop_link_train(intel_dp);
  2076. intel_edp_backlight_on(crtc_state, conn_state);
  2077. intel_psr_enable(intel_dp, crtc_state);
  2078. intel_edp_drrs_enable(intel_dp, crtc_state);
  2079. if (crtc_state->has_audio)
  2080. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2081. }
  2082. static void intel_enable_ddi_hdmi(struct intel_encoder *encoder,
  2083. const struct intel_crtc_state *crtc_state,
  2084. const struct drm_connector_state *conn_state)
  2085. {
  2086. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2087. struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
  2088. enum port port = encoder->port;
  2089. intel_hdmi_handle_sink_scrambling(encoder,
  2090. conn_state->connector,
  2091. crtc_state->hdmi_high_tmds_clock_ratio,
  2092. crtc_state->hdmi_scrambling);
  2093. /* Display WA #1143: skl,kbl,cfl */
  2094. if (IS_GEN9_BC(dev_priv)) {
  2095. /*
  2096. * For some reason these chicken bits have been
  2097. * stuffed into a transcoder register, event though
  2098. * the bits affect a specific DDI port rather than
  2099. * a specific transcoder.
  2100. */
  2101. static const enum transcoder port_to_transcoder[] = {
  2102. [PORT_A] = TRANSCODER_EDP,
  2103. [PORT_B] = TRANSCODER_A,
  2104. [PORT_C] = TRANSCODER_B,
  2105. [PORT_D] = TRANSCODER_C,
  2106. [PORT_E] = TRANSCODER_A,
  2107. };
  2108. enum transcoder transcoder = port_to_transcoder[port];
  2109. u32 val;
  2110. val = I915_READ(CHICKEN_TRANS(transcoder));
  2111. if (port == PORT_E)
  2112. val |= DDIE_TRAINING_OVERRIDE_ENABLE |
  2113. DDIE_TRAINING_OVERRIDE_VALUE;
  2114. else
  2115. val |= DDI_TRAINING_OVERRIDE_ENABLE |
  2116. DDI_TRAINING_OVERRIDE_VALUE;
  2117. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2118. POSTING_READ(CHICKEN_TRANS(transcoder));
  2119. udelay(1);
  2120. if (port == PORT_E)
  2121. val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE |
  2122. DDIE_TRAINING_OVERRIDE_VALUE);
  2123. else
  2124. val &= ~(DDI_TRAINING_OVERRIDE_ENABLE |
  2125. DDI_TRAINING_OVERRIDE_VALUE);
  2126. I915_WRITE(CHICKEN_TRANS(transcoder), val);
  2127. }
  2128. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2129. * are ignored so nothing special needs to be done besides
  2130. * enabling the port.
  2131. */
  2132. I915_WRITE(DDI_BUF_CTL(port),
  2133. dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE);
  2134. if (crtc_state->has_audio)
  2135. intel_audio_codec_enable(encoder, crtc_state, conn_state);
  2136. }
  2137. static void intel_enable_ddi(struct intel_encoder *encoder,
  2138. const struct intel_crtc_state *crtc_state,
  2139. const struct drm_connector_state *conn_state)
  2140. {
  2141. if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
  2142. intel_enable_ddi_hdmi(encoder, crtc_state, conn_state);
  2143. else
  2144. intel_enable_ddi_dp(encoder, crtc_state, conn_state);
  2145. /* Enable hdcp if it's desired */
  2146. if (conn_state->content_protection ==
  2147. DRM_MODE_CONTENT_PROTECTION_DESIRED)
  2148. intel_hdcp_enable(to_intel_connector(conn_state->connector));
  2149. }
  2150. static void intel_disable_ddi_dp(struct intel_encoder *encoder,
  2151. const struct intel_crtc_state *old_crtc_state,
  2152. const struct drm_connector_state *old_conn_state)
  2153. {
  2154. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  2155. intel_dp->link_trained = false;
  2156. if (old_crtc_state->has_audio)
  2157. intel_audio_codec_disable(encoder,
  2158. old_crtc_state, old_conn_state);
  2159. intel_edp_drrs_disable(intel_dp, old_crtc_state);
  2160. intel_psr_disable(intel_dp, old_crtc_state);
  2161. intel_edp_backlight_off(old_conn_state);
  2162. }
  2163. static void intel_disable_ddi_hdmi(struct intel_encoder *encoder,
  2164. const struct intel_crtc_state *old_crtc_state,
  2165. const struct drm_connector_state *old_conn_state)
  2166. {
  2167. if (old_crtc_state->has_audio)
  2168. intel_audio_codec_disable(encoder,
  2169. old_crtc_state, old_conn_state);
  2170. intel_hdmi_handle_sink_scrambling(encoder,
  2171. old_conn_state->connector,
  2172. false, false);
  2173. }
  2174. static void intel_disable_ddi(struct intel_encoder *encoder,
  2175. const struct intel_crtc_state *old_crtc_state,
  2176. const struct drm_connector_state *old_conn_state)
  2177. {
  2178. intel_hdcp_disable(to_intel_connector(old_conn_state->connector));
  2179. if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI))
  2180. intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state);
  2181. else
  2182. intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state);
  2183. }
  2184. static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder,
  2185. const struct intel_crtc_state *pipe_config,
  2186. const struct drm_connector_state *conn_state)
  2187. {
  2188. uint8_t mask = pipe_config->lane_lat_optim_mask;
  2189. bxt_ddi_phy_set_lane_optim_mask(encoder, mask);
  2190. }
  2191. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2192. {
  2193. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2194. struct drm_i915_private *dev_priv =
  2195. to_i915(intel_dig_port->base.base.dev);
  2196. enum port port = intel_dig_port->base.port;
  2197. uint32_t val;
  2198. bool wait = false;
  2199. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2200. val = I915_READ(DDI_BUF_CTL(port));
  2201. if (val & DDI_BUF_CTL_ENABLE) {
  2202. val &= ~DDI_BUF_CTL_ENABLE;
  2203. I915_WRITE(DDI_BUF_CTL(port), val);
  2204. wait = true;
  2205. }
  2206. val = I915_READ(DP_TP_CTL(port));
  2207. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2208. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2209. I915_WRITE(DP_TP_CTL(port), val);
  2210. POSTING_READ(DP_TP_CTL(port));
  2211. if (wait)
  2212. intel_wait_ddi_buf_idle(dev_priv, port);
  2213. }
  2214. val = DP_TP_CTL_ENABLE |
  2215. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2216. if (intel_dp->link_mst)
  2217. val |= DP_TP_CTL_MODE_MST;
  2218. else {
  2219. val |= DP_TP_CTL_MODE_SST;
  2220. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2221. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2222. }
  2223. I915_WRITE(DP_TP_CTL(port), val);
  2224. POSTING_READ(DP_TP_CTL(port));
  2225. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2226. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2227. POSTING_READ(DDI_BUF_CTL(port));
  2228. udelay(600);
  2229. }
  2230. static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2231. enum transcoder cpu_transcoder)
  2232. {
  2233. if (cpu_transcoder == TRANSCODER_EDP)
  2234. return false;
  2235. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO))
  2236. return false;
  2237. return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) &
  2238. AUDIO_OUTPUT_ENABLE(cpu_transcoder);
  2239. }
  2240. void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv,
  2241. struct intel_crtc_state *crtc_state)
  2242. {
  2243. if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000)
  2244. crtc_state->min_voltage_level = 2;
  2245. }
  2246. void intel_ddi_get_config(struct intel_encoder *encoder,
  2247. struct intel_crtc_state *pipe_config)
  2248. {
  2249. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2250. struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
  2251. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2252. struct intel_digital_port *intel_dig_port;
  2253. u32 temp, flags = 0;
  2254. /* XXX: DSI transcoder paranoia */
  2255. if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
  2256. return;
  2257. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2258. if (temp & TRANS_DDI_PHSYNC)
  2259. flags |= DRM_MODE_FLAG_PHSYNC;
  2260. else
  2261. flags |= DRM_MODE_FLAG_NHSYNC;
  2262. if (temp & TRANS_DDI_PVSYNC)
  2263. flags |= DRM_MODE_FLAG_PVSYNC;
  2264. else
  2265. flags |= DRM_MODE_FLAG_NVSYNC;
  2266. pipe_config->base.adjusted_mode.flags |= flags;
  2267. switch (temp & TRANS_DDI_BPC_MASK) {
  2268. case TRANS_DDI_BPC_6:
  2269. pipe_config->pipe_bpp = 18;
  2270. break;
  2271. case TRANS_DDI_BPC_8:
  2272. pipe_config->pipe_bpp = 24;
  2273. break;
  2274. case TRANS_DDI_BPC_10:
  2275. pipe_config->pipe_bpp = 30;
  2276. break;
  2277. case TRANS_DDI_BPC_12:
  2278. pipe_config->pipe_bpp = 36;
  2279. break;
  2280. default:
  2281. break;
  2282. }
  2283. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2284. case TRANS_DDI_MODE_SELECT_HDMI:
  2285. pipe_config->has_hdmi_sink = true;
  2286. intel_dig_port = enc_to_dig_port(&encoder->base);
  2287. if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config))
  2288. pipe_config->has_infoframe = true;
  2289. if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) ==
  2290. TRANS_DDI_HDMI_SCRAMBLING_MASK)
  2291. pipe_config->hdmi_scrambling = true;
  2292. if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE)
  2293. pipe_config->hdmi_high_tmds_clock_ratio = true;
  2294. /* fall through */
  2295. case TRANS_DDI_MODE_SELECT_DVI:
  2296. pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI);
  2297. pipe_config->lane_count = 4;
  2298. break;
  2299. case TRANS_DDI_MODE_SELECT_FDI:
  2300. pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG);
  2301. break;
  2302. case TRANS_DDI_MODE_SELECT_DP_SST:
  2303. if (encoder->type == INTEL_OUTPUT_EDP)
  2304. pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
  2305. else
  2306. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
  2307. pipe_config->lane_count =
  2308. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2309. intel_dp_get_m_n(intel_crtc, pipe_config);
  2310. break;
  2311. case TRANS_DDI_MODE_SELECT_DP_MST:
  2312. pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST);
  2313. pipe_config->lane_count =
  2314. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2315. intel_dp_get_m_n(intel_crtc, pipe_config);
  2316. break;
  2317. default:
  2318. break;
  2319. }
  2320. pipe_config->has_audio =
  2321. intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder);
  2322. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
  2323. pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
  2324. /*
  2325. * This is a big fat ugly hack.
  2326. *
  2327. * Some machines in UEFI boot mode provide us a VBT that has 18
  2328. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2329. * unknown we fail to light up. Yet the same BIOS boots up with
  2330. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2331. * max, not what it tells us to use.
  2332. *
  2333. * Note: This will still be broken if the eDP panel is not lit
  2334. * up by the BIOS, and thus we can't get the mode at module
  2335. * load.
  2336. */
  2337. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2338. pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
  2339. dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
  2340. }
  2341. intel_ddi_clock_get(encoder, pipe_config);
  2342. if (IS_GEN9_LP(dev_priv))
  2343. pipe_config->lane_lat_optim_mask =
  2344. bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
  2345. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2346. }
  2347. static enum intel_output_type
  2348. intel_ddi_compute_output_type(struct intel_encoder *encoder,
  2349. struct intel_crtc_state *crtc_state,
  2350. struct drm_connector_state *conn_state)
  2351. {
  2352. switch (conn_state->connector->connector_type) {
  2353. case DRM_MODE_CONNECTOR_HDMIA:
  2354. return INTEL_OUTPUT_HDMI;
  2355. case DRM_MODE_CONNECTOR_eDP:
  2356. return INTEL_OUTPUT_EDP;
  2357. case DRM_MODE_CONNECTOR_DisplayPort:
  2358. return INTEL_OUTPUT_DP;
  2359. default:
  2360. MISSING_CASE(conn_state->connector->connector_type);
  2361. return INTEL_OUTPUT_UNUSED;
  2362. }
  2363. }
  2364. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2365. struct intel_crtc_state *pipe_config,
  2366. struct drm_connector_state *conn_state)
  2367. {
  2368. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2369. enum port port = encoder->port;
  2370. int ret;
  2371. if (port == PORT_A)
  2372. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2373. if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
  2374. ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state);
  2375. else
  2376. ret = intel_dp_compute_config(encoder, pipe_config, conn_state);
  2377. if (IS_GEN9_LP(dev_priv) && ret)
  2378. pipe_config->lane_lat_optim_mask =
  2379. bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count);
  2380. intel_ddi_compute_min_voltage_level(dev_priv, pipe_config);
  2381. return ret;
  2382. }
  2383. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2384. .reset = intel_dp_encoder_reset,
  2385. .destroy = intel_dp_encoder_destroy,
  2386. };
  2387. static struct intel_connector *
  2388. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2389. {
  2390. struct intel_connector *connector;
  2391. enum port port = intel_dig_port->base.port;
  2392. connector = intel_connector_alloc();
  2393. if (!connector)
  2394. return NULL;
  2395. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2396. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2397. kfree(connector);
  2398. return NULL;
  2399. }
  2400. return connector;
  2401. }
  2402. static int modeset_pipe(struct drm_crtc *crtc,
  2403. struct drm_modeset_acquire_ctx *ctx)
  2404. {
  2405. struct drm_atomic_state *state;
  2406. struct drm_crtc_state *crtc_state;
  2407. int ret;
  2408. state = drm_atomic_state_alloc(crtc->dev);
  2409. if (!state)
  2410. return -ENOMEM;
  2411. state->acquire_ctx = ctx;
  2412. crtc_state = drm_atomic_get_crtc_state(state, crtc);
  2413. if (IS_ERR(crtc_state)) {
  2414. ret = PTR_ERR(crtc_state);
  2415. goto out;
  2416. }
  2417. crtc_state->mode_changed = true;
  2418. ret = drm_atomic_add_affected_connectors(state, crtc);
  2419. if (ret)
  2420. goto out;
  2421. ret = drm_atomic_add_affected_planes(state, crtc);
  2422. if (ret)
  2423. goto out;
  2424. ret = drm_atomic_commit(state);
  2425. if (ret)
  2426. goto out;
  2427. return 0;
  2428. out:
  2429. drm_atomic_state_put(state);
  2430. return ret;
  2431. }
  2432. static int intel_hdmi_reset_link(struct intel_encoder *encoder,
  2433. struct drm_modeset_acquire_ctx *ctx)
  2434. {
  2435. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  2436. struct intel_hdmi *hdmi = enc_to_intel_hdmi(&encoder->base);
  2437. struct intel_connector *connector = hdmi->attached_connector;
  2438. struct i2c_adapter *adapter =
  2439. intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
  2440. struct drm_connector_state *conn_state;
  2441. struct intel_crtc_state *crtc_state;
  2442. struct intel_crtc *crtc;
  2443. u8 config;
  2444. int ret;
  2445. if (!connector || connector->base.status != connector_status_connected)
  2446. return 0;
  2447. ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
  2448. ctx);
  2449. if (ret)
  2450. return ret;
  2451. conn_state = connector->base.state;
  2452. crtc = to_intel_crtc(conn_state->crtc);
  2453. if (!crtc)
  2454. return 0;
  2455. ret = drm_modeset_lock(&crtc->base.mutex, ctx);
  2456. if (ret)
  2457. return ret;
  2458. crtc_state = to_intel_crtc_state(crtc->base.state);
  2459. WARN_ON(!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI));
  2460. if (!crtc_state->base.active)
  2461. return 0;
  2462. if (!crtc_state->hdmi_high_tmds_clock_ratio &&
  2463. !crtc_state->hdmi_scrambling)
  2464. return 0;
  2465. if (conn_state->commit &&
  2466. !try_wait_for_completion(&conn_state->commit->hw_done))
  2467. return 0;
  2468. ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config);
  2469. if (ret < 0) {
  2470. DRM_ERROR("Failed to read TMDS config: %d\n", ret);
  2471. return 0;
  2472. }
  2473. if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) ==
  2474. crtc_state->hdmi_high_tmds_clock_ratio &&
  2475. !!(config & SCDC_SCRAMBLING_ENABLE) ==
  2476. crtc_state->hdmi_scrambling)
  2477. return 0;
  2478. /*
  2479. * HDMI 2.0 says that one should not send scrambled data
  2480. * prior to configuring the sink scrambling, and that
  2481. * TMDS clock/data transmission should be suspended when
  2482. * changing the TMDS clock rate in the sink. So let's
  2483. * just do a full modeset here, even though some sinks
  2484. * would be perfectly happy if were to just reconfigure
  2485. * the SCDC settings on the fly.
  2486. */
  2487. return modeset_pipe(&crtc->base, ctx);
  2488. }
  2489. static bool intel_ddi_hotplug(struct intel_encoder *encoder,
  2490. struct intel_connector *connector)
  2491. {
  2492. struct drm_modeset_acquire_ctx ctx;
  2493. bool changed;
  2494. int ret;
  2495. changed = intel_encoder_hotplug(encoder, connector);
  2496. drm_modeset_acquire_init(&ctx, 0);
  2497. for (;;) {
  2498. if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA)
  2499. ret = intel_hdmi_reset_link(encoder, &ctx);
  2500. else
  2501. ret = intel_dp_retrain_link(encoder, &ctx);
  2502. if (ret == -EDEADLK) {
  2503. drm_modeset_backoff(&ctx);
  2504. continue;
  2505. }
  2506. break;
  2507. }
  2508. drm_modeset_drop_locks(&ctx);
  2509. drm_modeset_acquire_fini(&ctx);
  2510. WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
  2511. return changed;
  2512. }
  2513. static struct intel_connector *
  2514. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2515. {
  2516. struct intel_connector *connector;
  2517. enum port port = intel_dig_port->base.port;
  2518. connector = intel_connector_alloc();
  2519. if (!connector)
  2520. return NULL;
  2521. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2522. intel_hdmi_init_connector(intel_dig_port, connector);
  2523. return connector;
  2524. }
  2525. static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport)
  2526. {
  2527. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  2528. if (dport->base.port != PORT_A)
  2529. return false;
  2530. if (dport->saved_port_bits & DDI_A_4_LANES)
  2531. return false;
  2532. /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only
  2533. * supported configuration
  2534. */
  2535. if (IS_GEN9_LP(dev_priv))
  2536. return true;
  2537. /* Cannonlake: Most of SKUs don't support DDI_E, and the only
  2538. * one who does also have a full A/E split called
  2539. * DDI_F what makes DDI_E useless. However for this
  2540. * case let's trust VBT info.
  2541. */
  2542. if (IS_CANNONLAKE(dev_priv) &&
  2543. !intel_bios_is_port_present(dev_priv, PORT_E))
  2544. return true;
  2545. return false;
  2546. }
  2547. static int
  2548. intel_ddi_max_lanes(struct intel_digital_port *intel_dport)
  2549. {
  2550. struct drm_i915_private *dev_priv = to_i915(intel_dport->base.base.dev);
  2551. enum port port = intel_dport->base.port;
  2552. int max_lanes = 4;
  2553. if (INTEL_GEN(dev_priv) >= 11)
  2554. return max_lanes;
  2555. if (port == PORT_A || port == PORT_E) {
  2556. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
  2557. max_lanes = port == PORT_A ? 4 : 0;
  2558. else
  2559. /* Both A and E share 2 lanes */
  2560. max_lanes = 2;
  2561. }
  2562. /*
  2563. * Some BIOS might fail to set this bit on port A if eDP
  2564. * wasn't lit up at boot. Force this bit set when needed
  2565. * so we use the proper lane count for our calculations.
  2566. */
  2567. if (intel_ddi_a_force_4_lanes(intel_dport)) {
  2568. DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n");
  2569. intel_dport->saved_port_bits |= DDI_A_4_LANES;
  2570. max_lanes = 4;
  2571. }
  2572. return max_lanes;
  2573. }
  2574. void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port)
  2575. {
  2576. struct intel_digital_port *intel_dig_port;
  2577. struct intel_encoder *intel_encoder;
  2578. struct drm_encoder *encoder;
  2579. bool init_hdmi, init_dp, init_lspcon = false;
  2580. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2581. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2582. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2583. if (intel_bios_is_lspcon_present(dev_priv, port)) {
  2584. /*
  2585. * Lspcon device needs to be driven with DP connector
  2586. * with special detection sequence. So make sure DP
  2587. * is initialized before lspcon.
  2588. */
  2589. init_dp = true;
  2590. init_lspcon = true;
  2591. init_hdmi = false;
  2592. DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port));
  2593. }
  2594. if (!init_dp && !init_hdmi) {
  2595. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2596. port_name(port));
  2597. return;
  2598. }
  2599. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2600. if (!intel_dig_port)
  2601. return;
  2602. intel_encoder = &intel_dig_port->base;
  2603. encoder = &intel_encoder->base;
  2604. drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs,
  2605. DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
  2606. intel_encoder->hotplug = intel_ddi_hotplug;
  2607. intel_encoder->compute_output_type = intel_ddi_compute_output_type;
  2608. intel_encoder->compute_config = intel_ddi_compute_config;
  2609. intel_encoder->enable = intel_enable_ddi;
  2610. if (IS_GEN9_LP(dev_priv))
  2611. intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
  2612. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2613. intel_encoder->disable = intel_disable_ddi;
  2614. intel_encoder->post_disable = intel_ddi_post_disable;
  2615. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2616. intel_encoder->get_config = intel_ddi_get_config;
  2617. intel_encoder->suspend = intel_dp_encoder_suspend;
  2618. intel_encoder->get_power_domains = intel_ddi_get_power_domains;
  2619. intel_encoder->type = INTEL_OUTPUT_DDI;
  2620. intel_encoder->power_domain = intel_port_to_power_domain(port);
  2621. intel_encoder->port = port;
  2622. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2623. intel_encoder->cloneable = 0;
  2624. if (INTEL_GEN(dev_priv) >= 11)
  2625. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2626. DDI_BUF_PORT_REVERSAL;
  2627. else
  2628. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2629. (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES);
  2630. intel_dig_port->dp.output_reg = INVALID_MMIO_REG;
  2631. intel_dig_port->max_lanes = intel_ddi_max_lanes(intel_dig_port);
  2632. switch (port) {
  2633. case PORT_A:
  2634. intel_dig_port->ddi_io_power_domain =
  2635. POWER_DOMAIN_PORT_DDI_A_IO;
  2636. break;
  2637. case PORT_B:
  2638. intel_dig_port->ddi_io_power_domain =
  2639. POWER_DOMAIN_PORT_DDI_B_IO;
  2640. break;
  2641. case PORT_C:
  2642. intel_dig_port->ddi_io_power_domain =
  2643. POWER_DOMAIN_PORT_DDI_C_IO;
  2644. break;
  2645. case PORT_D:
  2646. intel_dig_port->ddi_io_power_domain =
  2647. POWER_DOMAIN_PORT_DDI_D_IO;
  2648. break;
  2649. case PORT_E:
  2650. intel_dig_port->ddi_io_power_domain =
  2651. POWER_DOMAIN_PORT_DDI_E_IO;
  2652. break;
  2653. case PORT_F:
  2654. intel_dig_port->ddi_io_power_domain =
  2655. POWER_DOMAIN_PORT_DDI_F_IO;
  2656. break;
  2657. default:
  2658. MISSING_CASE(port);
  2659. }
  2660. intel_infoframe_init(intel_dig_port);
  2661. if (init_dp) {
  2662. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2663. goto err;
  2664. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2665. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2666. }
  2667. /* In theory we don't need the encoder->type check, but leave it just in
  2668. * case we have some really bad VBTs... */
  2669. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2670. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2671. goto err;
  2672. }
  2673. if (init_lspcon) {
  2674. if (lspcon_init(intel_dig_port))
  2675. /* TODO: handle hdmi info frame part */
  2676. DRM_DEBUG_KMS("LSPCON init success on port %c\n",
  2677. port_name(port));
  2678. else
  2679. /*
  2680. * LSPCON init faied, but DP init was success, so
  2681. * lets try to drive as DP++ port.
  2682. */
  2683. DRM_ERROR("LSPCON init failed on port %c\n",
  2684. port_name(port));
  2685. }
  2686. return;
  2687. err:
  2688. drm_encoder_cleanup(encoder);
  2689. kfree(intel_dig_port);
  2690. }