i915_irq.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN3_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. #define GEN2_IRQ_RESET(type) do { \
  124. I915_WRITE16(type##IMR, 0xffff); \
  125. POSTING_READ16(type##IMR); \
  126. I915_WRITE16(type##IER, 0); \
  127. I915_WRITE16(type##IIR, 0xffff); \
  128. POSTING_READ16(type##IIR); \
  129. I915_WRITE16(type##IIR, 0xffff); \
  130. POSTING_READ16(type##IIR); \
  131. } while (0)
  132. /*
  133. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  134. */
  135. static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  136. i915_reg_t reg)
  137. {
  138. u32 val = I915_READ(reg);
  139. if (val == 0)
  140. return;
  141. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  142. i915_mmio_reg_offset(reg), val);
  143. I915_WRITE(reg, 0xffffffff);
  144. POSTING_READ(reg);
  145. I915_WRITE(reg, 0xffffffff);
  146. POSTING_READ(reg);
  147. }
  148. static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
  149. i915_reg_t reg)
  150. {
  151. u16 val = I915_READ16(reg);
  152. if (val == 0)
  153. return;
  154. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  155. i915_mmio_reg_offset(reg), val);
  156. I915_WRITE16(reg, 0xffff);
  157. POSTING_READ16(reg);
  158. I915_WRITE16(reg, 0xffff);
  159. POSTING_READ16(reg);
  160. }
  161. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  162. gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  163. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  164. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  165. POSTING_READ(GEN8_##type##_IMR(which)); \
  166. } while (0)
  167. #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
  168. gen3_assert_iir_is_zero(dev_priv, type##IIR); \
  169. I915_WRITE(type##IER, (ier_val)); \
  170. I915_WRITE(type##IMR, (imr_val)); \
  171. POSTING_READ(type##IMR); \
  172. } while (0)
  173. #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
  174. gen2_assert_iir_is_zero(dev_priv, type##IIR); \
  175. I915_WRITE16(type##IER, (ier_val)); \
  176. I915_WRITE16(type##IMR, (imr_val)); \
  177. POSTING_READ16(type##IMR); \
  178. } while (0)
  179. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  180. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  181. /* For display hotplug interrupt */
  182. static inline void
  183. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  184. uint32_t mask,
  185. uint32_t bits)
  186. {
  187. uint32_t val;
  188. lockdep_assert_held(&dev_priv->irq_lock);
  189. WARN_ON(bits & ~mask);
  190. val = I915_READ(PORT_HOTPLUG_EN);
  191. val &= ~mask;
  192. val |= bits;
  193. I915_WRITE(PORT_HOTPLUG_EN, val);
  194. }
  195. /**
  196. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  197. * @dev_priv: driver private
  198. * @mask: bits to update
  199. * @bits: bits to enable
  200. * NOTE: the HPD enable bits are modified both inside and outside
  201. * of an interrupt context. To avoid that read-modify-write cycles
  202. * interfer, these bits are protected by a spinlock. Since this
  203. * function is usually not called from a context where the lock is
  204. * held already, this function acquires the lock itself. A non-locking
  205. * version is also available.
  206. */
  207. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  208. uint32_t mask,
  209. uint32_t bits)
  210. {
  211. spin_lock_irq(&dev_priv->irq_lock);
  212. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  213. spin_unlock_irq(&dev_priv->irq_lock);
  214. }
  215. /**
  216. * ilk_update_display_irq - update DEIMR
  217. * @dev_priv: driver private
  218. * @interrupt_mask: mask of interrupt bits to update
  219. * @enabled_irq_mask: mask of interrupt bits to enable
  220. */
  221. void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  222. uint32_t interrupt_mask,
  223. uint32_t enabled_irq_mask)
  224. {
  225. uint32_t new_val;
  226. lockdep_assert_held(&dev_priv->irq_lock);
  227. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  228. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  229. return;
  230. new_val = dev_priv->irq_mask;
  231. new_val &= ~interrupt_mask;
  232. new_val |= (~enabled_irq_mask & interrupt_mask);
  233. if (new_val != dev_priv->irq_mask) {
  234. dev_priv->irq_mask = new_val;
  235. I915_WRITE(DEIMR, dev_priv->irq_mask);
  236. POSTING_READ(DEIMR);
  237. }
  238. }
  239. /**
  240. * ilk_update_gt_irq - update GTIMR
  241. * @dev_priv: driver private
  242. * @interrupt_mask: mask of interrupt bits to update
  243. * @enabled_irq_mask: mask of interrupt bits to enable
  244. */
  245. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  246. uint32_t interrupt_mask,
  247. uint32_t enabled_irq_mask)
  248. {
  249. lockdep_assert_held(&dev_priv->irq_lock);
  250. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  251. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  252. return;
  253. dev_priv->gt_irq_mask &= ~interrupt_mask;
  254. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  255. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  256. }
  257. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  258. {
  259. ilk_update_gt_irq(dev_priv, mask, mask);
  260. POSTING_READ_FW(GTIMR);
  261. }
  262. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  263. {
  264. ilk_update_gt_irq(dev_priv, mask, 0);
  265. }
  266. static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
  267. {
  268. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  269. }
  270. static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
  271. {
  272. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  273. }
  274. static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
  275. {
  276. return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  277. }
  278. /**
  279. * snb_update_pm_irq - update GEN6_PMIMR
  280. * @dev_priv: driver private
  281. * @interrupt_mask: mask of interrupt bits to update
  282. * @enabled_irq_mask: mask of interrupt bits to enable
  283. */
  284. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  285. uint32_t interrupt_mask,
  286. uint32_t enabled_irq_mask)
  287. {
  288. uint32_t new_val;
  289. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  290. lockdep_assert_held(&dev_priv->irq_lock);
  291. new_val = dev_priv->pm_imr;
  292. new_val &= ~interrupt_mask;
  293. new_val |= (~enabled_irq_mask & interrupt_mask);
  294. if (new_val != dev_priv->pm_imr) {
  295. dev_priv->pm_imr = new_val;
  296. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
  297. POSTING_READ(gen6_pm_imr(dev_priv));
  298. }
  299. }
  300. void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  301. {
  302. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  303. return;
  304. snb_update_pm_irq(dev_priv, mask, mask);
  305. }
  306. static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  307. {
  308. snb_update_pm_irq(dev_priv, mask, 0);
  309. }
  310. void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
  311. {
  312. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  313. return;
  314. __gen6_mask_pm_irq(dev_priv, mask);
  315. }
  316. static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
  317. {
  318. i915_reg_t reg = gen6_pm_iir(dev_priv);
  319. lockdep_assert_held(&dev_priv->irq_lock);
  320. I915_WRITE(reg, reset_mask);
  321. I915_WRITE(reg, reset_mask);
  322. POSTING_READ(reg);
  323. }
  324. static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
  325. {
  326. lockdep_assert_held(&dev_priv->irq_lock);
  327. dev_priv->pm_ier |= enable_mask;
  328. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  329. gen6_unmask_pm_irq(dev_priv, enable_mask);
  330. /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
  331. }
  332. static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
  333. {
  334. lockdep_assert_held(&dev_priv->irq_lock);
  335. dev_priv->pm_ier &= ~disable_mask;
  336. __gen6_mask_pm_irq(dev_priv, disable_mask);
  337. I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
  338. /* though a barrier is missing here, but don't really need a one */
  339. }
  340. void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
  341. {
  342. spin_lock_irq(&dev_priv->irq_lock);
  343. gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
  344. dev_priv->gt_pm.rps.pm_iir = 0;
  345. spin_unlock_irq(&dev_priv->irq_lock);
  346. }
  347. void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
  348. {
  349. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  350. if (READ_ONCE(rps->interrupts_enabled))
  351. return;
  352. if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
  353. return;
  354. spin_lock_irq(&dev_priv->irq_lock);
  355. WARN_ON_ONCE(rps->pm_iir);
  356. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  357. rps->interrupts_enabled = true;
  358. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  359. spin_unlock_irq(&dev_priv->irq_lock);
  360. }
  361. void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
  362. {
  363. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  364. if (!READ_ONCE(rps->interrupts_enabled))
  365. return;
  366. if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
  367. return;
  368. spin_lock_irq(&dev_priv->irq_lock);
  369. rps->interrupts_enabled = false;
  370. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
  371. gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  372. spin_unlock_irq(&dev_priv->irq_lock);
  373. synchronize_irq(dev_priv->drm.irq);
  374. /* Now that we will not be generating any more work, flush any
  375. * outstanding tasks. As we are called on the RPS idle path,
  376. * we will reset the GPU to minimum frequencies, so the current
  377. * state of the worker can be discarded.
  378. */
  379. cancel_work_sync(&rps->work);
  380. gen6_reset_rps_interrupts(dev_priv);
  381. }
  382. void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
  383. {
  384. assert_rpm_wakelock_held(dev_priv);
  385. spin_lock_irq(&dev_priv->irq_lock);
  386. gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
  387. spin_unlock_irq(&dev_priv->irq_lock);
  388. }
  389. void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
  390. {
  391. assert_rpm_wakelock_held(dev_priv);
  392. spin_lock_irq(&dev_priv->irq_lock);
  393. if (!dev_priv->guc.interrupts_enabled) {
  394. WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
  395. dev_priv->pm_guc_events);
  396. dev_priv->guc.interrupts_enabled = true;
  397. gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  398. }
  399. spin_unlock_irq(&dev_priv->irq_lock);
  400. }
  401. void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
  402. {
  403. assert_rpm_wakelock_held(dev_priv);
  404. spin_lock_irq(&dev_priv->irq_lock);
  405. dev_priv->guc.interrupts_enabled = false;
  406. gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
  407. spin_unlock_irq(&dev_priv->irq_lock);
  408. synchronize_irq(dev_priv->drm.irq);
  409. gen9_reset_guc_interrupts(dev_priv);
  410. }
  411. /**
  412. * bdw_update_port_irq - update DE port interrupt
  413. * @dev_priv: driver private
  414. * @interrupt_mask: mask of interrupt bits to update
  415. * @enabled_irq_mask: mask of interrupt bits to enable
  416. */
  417. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  418. uint32_t interrupt_mask,
  419. uint32_t enabled_irq_mask)
  420. {
  421. uint32_t new_val;
  422. uint32_t old_val;
  423. lockdep_assert_held(&dev_priv->irq_lock);
  424. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  425. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  426. return;
  427. old_val = I915_READ(GEN8_DE_PORT_IMR);
  428. new_val = old_val;
  429. new_val &= ~interrupt_mask;
  430. new_val |= (~enabled_irq_mask & interrupt_mask);
  431. if (new_val != old_val) {
  432. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  433. POSTING_READ(GEN8_DE_PORT_IMR);
  434. }
  435. }
  436. /**
  437. * bdw_update_pipe_irq - update DE pipe interrupt
  438. * @dev_priv: driver private
  439. * @pipe: pipe whose interrupt to update
  440. * @interrupt_mask: mask of interrupt bits to update
  441. * @enabled_irq_mask: mask of interrupt bits to enable
  442. */
  443. void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
  444. enum pipe pipe,
  445. uint32_t interrupt_mask,
  446. uint32_t enabled_irq_mask)
  447. {
  448. uint32_t new_val;
  449. lockdep_assert_held(&dev_priv->irq_lock);
  450. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  451. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  452. return;
  453. new_val = dev_priv->de_irq_mask[pipe];
  454. new_val &= ~interrupt_mask;
  455. new_val |= (~enabled_irq_mask & interrupt_mask);
  456. if (new_val != dev_priv->de_irq_mask[pipe]) {
  457. dev_priv->de_irq_mask[pipe] = new_val;
  458. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  459. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  460. }
  461. }
  462. /**
  463. * ibx_display_interrupt_update - update SDEIMR
  464. * @dev_priv: driver private
  465. * @interrupt_mask: mask of interrupt bits to update
  466. * @enabled_irq_mask: mask of interrupt bits to enable
  467. */
  468. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  469. uint32_t interrupt_mask,
  470. uint32_t enabled_irq_mask)
  471. {
  472. uint32_t sdeimr = I915_READ(SDEIMR);
  473. sdeimr &= ~interrupt_mask;
  474. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  475. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  476. lockdep_assert_held(&dev_priv->irq_lock);
  477. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  478. return;
  479. I915_WRITE(SDEIMR, sdeimr);
  480. POSTING_READ(SDEIMR);
  481. }
  482. u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
  483. enum pipe pipe)
  484. {
  485. u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
  486. u32 enable_mask = status_mask << 16;
  487. lockdep_assert_held(&dev_priv->irq_lock);
  488. if (INTEL_GEN(dev_priv) < 5)
  489. goto out;
  490. /*
  491. * On pipe A we don't support the PSR interrupt yet,
  492. * on pipe B and C the same bit MBZ.
  493. */
  494. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  495. return 0;
  496. /*
  497. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  498. * A the same bit is for perf counters which we don't use either.
  499. */
  500. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  501. return 0;
  502. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  503. SPRITE0_FLIP_DONE_INT_EN_VLV |
  504. SPRITE1_FLIP_DONE_INT_EN_VLV);
  505. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  506. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  507. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  508. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  509. out:
  510. WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  511. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  512. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  513. pipe_name(pipe), enable_mask, status_mask);
  514. return enable_mask;
  515. }
  516. void i915_enable_pipestat(struct drm_i915_private *dev_priv,
  517. enum pipe pipe, u32 status_mask)
  518. {
  519. i915_reg_t reg = PIPESTAT(pipe);
  520. u32 enable_mask;
  521. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  522. "pipe %c: status_mask=0x%x\n",
  523. pipe_name(pipe), status_mask);
  524. lockdep_assert_held(&dev_priv->irq_lock);
  525. WARN_ON(!intel_irqs_enabled(dev_priv));
  526. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
  527. return;
  528. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  529. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  530. I915_WRITE(reg, enable_mask | status_mask);
  531. POSTING_READ(reg);
  532. }
  533. void i915_disable_pipestat(struct drm_i915_private *dev_priv,
  534. enum pipe pipe, u32 status_mask)
  535. {
  536. i915_reg_t reg = PIPESTAT(pipe);
  537. u32 enable_mask;
  538. WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
  539. "pipe %c: status_mask=0x%x\n",
  540. pipe_name(pipe), status_mask);
  541. lockdep_assert_held(&dev_priv->irq_lock);
  542. WARN_ON(!intel_irqs_enabled(dev_priv));
  543. if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
  544. return;
  545. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  546. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  547. I915_WRITE(reg, enable_mask | status_mask);
  548. POSTING_READ(reg);
  549. }
  550. /**
  551. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  552. * @dev_priv: i915 device private
  553. */
  554. static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
  555. {
  556. if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
  557. return;
  558. spin_lock_irq(&dev_priv->irq_lock);
  559. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  560. if (INTEL_GEN(dev_priv) >= 4)
  561. i915_enable_pipestat(dev_priv, PIPE_A,
  562. PIPE_LEGACY_BLC_EVENT_STATUS);
  563. spin_unlock_irq(&dev_priv->irq_lock);
  564. }
  565. /*
  566. * This timing diagram depicts the video signal in and
  567. * around the vertical blanking period.
  568. *
  569. * Assumptions about the fictitious mode used in this example:
  570. * vblank_start >= 3
  571. * vsync_start = vblank_start + 1
  572. * vsync_end = vblank_start + 2
  573. * vtotal = vblank_start + 3
  574. *
  575. * start of vblank:
  576. * latch double buffered registers
  577. * increment frame counter (ctg+)
  578. * generate start of vblank interrupt (gen4+)
  579. * |
  580. * | frame start:
  581. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  582. * | may be shifted forward 1-3 extra lines via PIPECONF
  583. * | |
  584. * | | start of vsync:
  585. * | | generate vsync interrupt
  586. * | | |
  587. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  588. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  589. * ----va---> <-----------------vb--------------------> <--------va-------------
  590. * | | <----vs-----> |
  591. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  592. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  593. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  594. * | | |
  595. * last visible pixel first visible pixel
  596. * | increment frame counter (gen3/4)
  597. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  598. *
  599. * x = horizontal active
  600. * _ = horizontal blanking
  601. * hs = horizontal sync
  602. * va = vertical active
  603. * vb = vertical blanking
  604. * vs = vertical sync
  605. * vbs = vblank_start (number)
  606. *
  607. * Summary:
  608. * - most events happen at the start of horizontal sync
  609. * - frame start happens at the start of horizontal blank, 1-4 lines
  610. * (depending on PIPECONF settings) after the start of vblank
  611. * - gen3/4 pixel and frame counter are synchronized with the start
  612. * of horizontal active on the first line of vertical active
  613. */
  614. /* Called from drm generic code, passed a 'crtc', which
  615. * we use as a pipe index
  616. */
  617. static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  618. {
  619. struct drm_i915_private *dev_priv = to_i915(dev);
  620. i915_reg_t high_frame, low_frame;
  621. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  622. const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
  623. unsigned long irqflags;
  624. htotal = mode->crtc_htotal;
  625. hsync_start = mode->crtc_hsync_start;
  626. vbl_start = mode->crtc_vblank_start;
  627. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  628. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  629. /* Convert to pixel count */
  630. vbl_start *= htotal;
  631. /* Start of vblank event occurs at start of hsync */
  632. vbl_start -= htotal - hsync_start;
  633. high_frame = PIPEFRAME(pipe);
  634. low_frame = PIPEFRAMEPIXEL(pipe);
  635. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  636. /*
  637. * High & low register fields aren't synchronized, so make sure
  638. * we get a low value that's stable across two reads of the high
  639. * register.
  640. */
  641. do {
  642. high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  643. low = I915_READ_FW(low_frame);
  644. high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
  645. } while (high1 != high2);
  646. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  647. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  648. pixel = low & PIPE_PIXEL_MASK;
  649. low >>= PIPE_FRAME_LOW_SHIFT;
  650. /*
  651. * The frame counter increments at beginning of active.
  652. * Cook up a vblank counter by also checking the pixel
  653. * counter against vblank start.
  654. */
  655. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  656. }
  657. static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
  658. {
  659. struct drm_i915_private *dev_priv = to_i915(dev);
  660. return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
  661. }
  662. /*
  663. * On certain encoders on certain platforms, pipe
  664. * scanline register will not work to get the scanline,
  665. * since the timings are driven from the PORT or issues
  666. * with scanline register updates.
  667. * This function will use Framestamp and current
  668. * timestamp registers to calculate the scanline.
  669. */
  670. static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
  671. {
  672. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  673. struct drm_vblank_crtc *vblank =
  674. &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  675. const struct drm_display_mode *mode = &vblank->hwmode;
  676. u32 vblank_start = mode->crtc_vblank_start;
  677. u32 vtotal = mode->crtc_vtotal;
  678. u32 htotal = mode->crtc_htotal;
  679. u32 clock = mode->crtc_clock;
  680. u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
  681. /*
  682. * To avoid the race condition where we might cross into the
  683. * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
  684. * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
  685. * during the same frame.
  686. */
  687. do {
  688. /*
  689. * This field provides read back of the display
  690. * pipe frame time stamp. The time stamp value
  691. * is sampled at every start of vertical blank.
  692. */
  693. scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  694. /*
  695. * The TIMESTAMP_CTR register has the current
  696. * time stamp value.
  697. */
  698. scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
  699. scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
  700. } while (scan_post_time != scan_prev_time);
  701. scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
  702. clock), 1000 * htotal);
  703. scanline = min(scanline, vtotal - 1);
  704. scanline = (scanline + vblank_start) % vtotal;
  705. return scanline;
  706. }
  707. /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
  708. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  709. {
  710. struct drm_device *dev = crtc->base.dev;
  711. struct drm_i915_private *dev_priv = to_i915(dev);
  712. const struct drm_display_mode *mode;
  713. struct drm_vblank_crtc *vblank;
  714. enum pipe pipe = crtc->pipe;
  715. int position, vtotal;
  716. if (!crtc->active)
  717. return -1;
  718. vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
  719. mode = &vblank->hwmode;
  720. if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
  721. return __intel_get_crtc_scanline_from_timestamp(crtc);
  722. vtotal = mode->crtc_vtotal;
  723. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  724. vtotal /= 2;
  725. if (IS_GEN2(dev_priv))
  726. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  727. else
  728. position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  729. /*
  730. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  731. * read it just before the start of vblank. So try it again
  732. * so we don't accidentally end up spanning a vblank frame
  733. * increment, causing the pipe_update_end() code to squak at us.
  734. *
  735. * The nature of this problem means we can't simply check the ISR
  736. * bit and return the vblank start value; nor can we use the scanline
  737. * debug register in the transcoder as it appears to have the same
  738. * problem. We may need to extend this to include other platforms,
  739. * but so far testing only shows the problem on HSW.
  740. */
  741. if (HAS_DDI(dev_priv) && !position) {
  742. int i, temp;
  743. for (i = 0; i < 100; i++) {
  744. udelay(1);
  745. temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  746. if (temp != position) {
  747. position = temp;
  748. break;
  749. }
  750. }
  751. }
  752. /*
  753. * See update_scanline_offset() for the details on the
  754. * scanline_offset adjustment.
  755. */
  756. return (position + crtc->scanline_offset) % vtotal;
  757. }
  758. static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
  759. bool in_vblank_irq, int *vpos, int *hpos,
  760. ktime_t *stime, ktime_t *etime,
  761. const struct drm_display_mode *mode)
  762. {
  763. struct drm_i915_private *dev_priv = to_i915(dev);
  764. struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
  765. pipe);
  766. int position;
  767. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  768. unsigned long irqflags;
  769. if (WARN_ON(!mode->crtc_clock)) {
  770. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  771. "pipe %c\n", pipe_name(pipe));
  772. return false;
  773. }
  774. htotal = mode->crtc_htotal;
  775. hsync_start = mode->crtc_hsync_start;
  776. vtotal = mode->crtc_vtotal;
  777. vbl_start = mode->crtc_vblank_start;
  778. vbl_end = mode->crtc_vblank_end;
  779. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  780. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  781. vbl_end /= 2;
  782. vtotal /= 2;
  783. }
  784. /*
  785. * Lock uncore.lock, as we will do multiple timing critical raw
  786. * register reads, potentially with preemption disabled, so the
  787. * following code must not block on uncore.lock.
  788. */
  789. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  790. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  791. /* Get optional system timestamp before query. */
  792. if (stime)
  793. *stime = ktime_get();
  794. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  795. /* No obvious pixelcount register. Only query vertical
  796. * scanout position from Display scan line register.
  797. */
  798. position = __intel_get_crtc_scanline(intel_crtc);
  799. } else {
  800. /* Have access to pixelcount since start of frame.
  801. * We can split this into vertical and horizontal
  802. * scanout position.
  803. */
  804. position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  805. /* convert to pixel counts */
  806. vbl_start *= htotal;
  807. vbl_end *= htotal;
  808. vtotal *= htotal;
  809. /*
  810. * In interlaced modes, the pixel counter counts all pixels,
  811. * so one field will have htotal more pixels. In order to avoid
  812. * the reported position from jumping backwards when the pixel
  813. * counter is beyond the length of the shorter field, just
  814. * clamp the position the length of the shorter field. This
  815. * matches how the scanline counter based position works since
  816. * the scanline counter doesn't count the two half lines.
  817. */
  818. if (position >= vtotal)
  819. position = vtotal - 1;
  820. /*
  821. * Start of vblank interrupt is triggered at start of hsync,
  822. * just prior to the first active line of vblank. However we
  823. * consider lines to start at the leading edge of horizontal
  824. * active. So, should we get here before we've crossed into
  825. * the horizontal active of the first line in vblank, we would
  826. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  827. * always add htotal-hsync_start to the current pixel position.
  828. */
  829. position = (position + htotal - hsync_start) % vtotal;
  830. }
  831. /* Get optional system timestamp after query. */
  832. if (etime)
  833. *etime = ktime_get();
  834. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  835. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  836. /*
  837. * While in vblank, position will be negative
  838. * counting up towards 0 at vbl_end. And outside
  839. * vblank, position will be positive counting
  840. * up since vbl_end.
  841. */
  842. if (position >= vbl_start)
  843. position -= vbl_end;
  844. else
  845. position += vtotal - vbl_end;
  846. if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  847. *vpos = position;
  848. *hpos = 0;
  849. } else {
  850. *vpos = position / htotal;
  851. *hpos = position - (*vpos * htotal);
  852. }
  853. return true;
  854. }
  855. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  856. {
  857. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  858. unsigned long irqflags;
  859. int position;
  860. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  861. position = __intel_get_crtc_scanline(crtc);
  862. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  863. return position;
  864. }
  865. static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
  866. {
  867. u32 busy_up, busy_down, max_avg, min_avg;
  868. u8 new_delay;
  869. spin_lock(&mchdev_lock);
  870. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  871. new_delay = dev_priv->ips.cur_delay;
  872. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  873. busy_up = I915_READ(RCPREVBSYTUPAVG);
  874. busy_down = I915_READ(RCPREVBSYTDNAVG);
  875. max_avg = I915_READ(RCBMAXAVG);
  876. min_avg = I915_READ(RCBMINAVG);
  877. /* Handle RCS change request from hw */
  878. if (busy_up > max_avg) {
  879. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  880. new_delay = dev_priv->ips.cur_delay - 1;
  881. if (new_delay < dev_priv->ips.max_delay)
  882. new_delay = dev_priv->ips.max_delay;
  883. } else if (busy_down < min_avg) {
  884. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  885. new_delay = dev_priv->ips.cur_delay + 1;
  886. if (new_delay > dev_priv->ips.min_delay)
  887. new_delay = dev_priv->ips.min_delay;
  888. }
  889. if (ironlake_set_drps(dev_priv, new_delay))
  890. dev_priv->ips.cur_delay = new_delay;
  891. spin_unlock(&mchdev_lock);
  892. return;
  893. }
  894. static void notify_ring(struct intel_engine_cs *engine)
  895. {
  896. struct i915_request *rq = NULL;
  897. struct intel_wait *wait;
  898. if (!engine->breadcrumbs.irq_armed)
  899. return;
  900. atomic_inc(&engine->irq_count);
  901. set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
  902. spin_lock(&engine->breadcrumbs.irq_lock);
  903. wait = engine->breadcrumbs.irq_wait;
  904. if (wait) {
  905. bool wakeup = engine->irq_seqno_barrier;
  906. /* We use a callback from the dma-fence to submit
  907. * requests after waiting on our own requests. To
  908. * ensure minimum delay in queuing the next request to
  909. * hardware, signal the fence now rather than wait for
  910. * the signaler to be woken up. We still wake up the
  911. * waiter in order to handle the irq-seqno coherency
  912. * issues (we may receive the interrupt before the
  913. * seqno is written, see __i915_request_irq_complete())
  914. * and to handle coalescing of multiple seqno updates
  915. * and many waiters.
  916. */
  917. if (i915_seqno_passed(intel_engine_get_seqno(engine),
  918. wait->seqno)) {
  919. struct i915_request *waiter = wait->request;
  920. wakeup = true;
  921. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
  922. &waiter->fence.flags) &&
  923. intel_wait_check_request(wait, waiter))
  924. rq = i915_request_get(waiter);
  925. }
  926. if (wakeup)
  927. wake_up_process(wait->tsk);
  928. } else {
  929. if (engine->breadcrumbs.irq_armed)
  930. __intel_engine_disarm_breadcrumbs(engine);
  931. }
  932. spin_unlock(&engine->breadcrumbs.irq_lock);
  933. if (rq) {
  934. dma_fence_signal(&rq->fence);
  935. GEM_BUG_ON(!i915_request_completed(rq));
  936. i915_request_put(rq);
  937. }
  938. trace_intel_engine_notify(engine, wait);
  939. }
  940. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  941. struct intel_rps_ei *ei)
  942. {
  943. ei->ktime = ktime_get_raw();
  944. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  945. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  946. }
  947. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  948. {
  949. memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
  950. }
  951. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  952. {
  953. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  954. const struct intel_rps_ei *prev = &rps->ei;
  955. struct intel_rps_ei now;
  956. u32 events = 0;
  957. if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
  958. return 0;
  959. vlv_c0_read(dev_priv, &now);
  960. if (prev->ktime) {
  961. u64 time, c0;
  962. u32 render, media;
  963. time = ktime_us_delta(now.ktime, prev->ktime);
  964. time *= dev_priv->czclk_freq;
  965. /* Workload can be split between render + media,
  966. * e.g. SwapBuffers being blitted in X after being rendered in
  967. * mesa. To account for this we need to combine both engines
  968. * into our activity counter.
  969. */
  970. render = now.render_c0 - prev->render_c0;
  971. media = now.media_c0 - prev->media_c0;
  972. c0 = max(render, media);
  973. c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
  974. if (c0 > time * rps->up_threshold)
  975. events = GEN6_PM_RP_UP_THRESHOLD;
  976. else if (c0 < time * rps->down_threshold)
  977. events = GEN6_PM_RP_DOWN_THRESHOLD;
  978. }
  979. rps->ei = now;
  980. return events;
  981. }
  982. static void gen6_pm_rps_work(struct work_struct *work)
  983. {
  984. struct drm_i915_private *dev_priv =
  985. container_of(work, struct drm_i915_private, gt_pm.rps.work);
  986. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  987. bool client_boost = false;
  988. int new_delay, adj, min, max;
  989. u32 pm_iir = 0;
  990. spin_lock_irq(&dev_priv->irq_lock);
  991. if (rps->interrupts_enabled) {
  992. pm_iir = fetch_and_zero(&rps->pm_iir);
  993. client_boost = atomic_read(&rps->num_waiters);
  994. }
  995. spin_unlock_irq(&dev_priv->irq_lock);
  996. /* Make sure we didn't queue anything we're not going to process. */
  997. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  998. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  999. goto out;
  1000. mutex_lock(&dev_priv->pcu_lock);
  1001. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  1002. adj = rps->last_adj;
  1003. new_delay = rps->cur_freq;
  1004. min = rps->min_freq_softlimit;
  1005. max = rps->max_freq_softlimit;
  1006. if (client_boost)
  1007. max = rps->max_freq;
  1008. if (client_boost && new_delay < rps->boost_freq) {
  1009. new_delay = rps->boost_freq;
  1010. adj = 0;
  1011. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  1012. if (adj > 0)
  1013. adj *= 2;
  1014. else /* CHV needs even encode values */
  1015. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  1016. if (new_delay >= rps->max_freq_softlimit)
  1017. adj = 0;
  1018. } else if (client_boost) {
  1019. adj = 0;
  1020. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  1021. if (rps->cur_freq > rps->efficient_freq)
  1022. new_delay = rps->efficient_freq;
  1023. else if (rps->cur_freq > rps->min_freq_softlimit)
  1024. new_delay = rps->min_freq_softlimit;
  1025. adj = 0;
  1026. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  1027. if (adj < 0)
  1028. adj *= 2;
  1029. else /* CHV needs even encode values */
  1030. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  1031. if (new_delay <= rps->min_freq_softlimit)
  1032. adj = 0;
  1033. } else { /* unknown event */
  1034. adj = 0;
  1035. }
  1036. rps->last_adj = adj;
  1037. /* sysfs frequency interfaces may have snuck in while servicing the
  1038. * interrupt
  1039. */
  1040. new_delay += adj;
  1041. new_delay = clamp_t(int, new_delay, min, max);
  1042. if (intel_set_rps(dev_priv, new_delay)) {
  1043. DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
  1044. rps->last_adj = 0;
  1045. }
  1046. mutex_unlock(&dev_priv->pcu_lock);
  1047. out:
  1048. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  1049. spin_lock_irq(&dev_priv->irq_lock);
  1050. if (rps->interrupts_enabled)
  1051. gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
  1052. spin_unlock_irq(&dev_priv->irq_lock);
  1053. }
  1054. /**
  1055. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  1056. * occurred.
  1057. * @work: workqueue struct
  1058. *
  1059. * Doesn't actually do anything except notify userspace. As a consequence of
  1060. * this event, userspace should try to remap the bad rows since statistically
  1061. * it is likely the same row is more likely to go bad again.
  1062. */
  1063. static void ivybridge_parity_work(struct work_struct *work)
  1064. {
  1065. struct drm_i915_private *dev_priv =
  1066. container_of(work, typeof(*dev_priv), l3_parity.error_work);
  1067. u32 error_status, row, bank, subbank;
  1068. char *parity_event[6];
  1069. uint32_t misccpctl;
  1070. uint8_t slice = 0;
  1071. /* We must turn off DOP level clock gating to access the L3 registers.
  1072. * In order to prevent a get/put style interface, acquire struct mutex
  1073. * any time we access those registers.
  1074. */
  1075. mutex_lock(&dev_priv->drm.struct_mutex);
  1076. /* If we've screwed up tracking, just let the interrupt fire again */
  1077. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  1078. goto out;
  1079. misccpctl = I915_READ(GEN7_MISCCPCTL);
  1080. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  1081. POSTING_READ(GEN7_MISCCPCTL);
  1082. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  1083. i915_reg_t reg;
  1084. slice--;
  1085. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
  1086. break;
  1087. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  1088. reg = GEN7_L3CDERRST1(slice);
  1089. error_status = I915_READ(reg);
  1090. row = GEN7_PARITY_ERROR_ROW(error_status);
  1091. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1092. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1093. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1094. POSTING_READ(reg);
  1095. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1096. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1097. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1098. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1099. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1100. parity_event[5] = NULL;
  1101. kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
  1102. KOBJ_CHANGE, parity_event);
  1103. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1104. slice, row, bank, subbank);
  1105. kfree(parity_event[4]);
  1106. kfree(parity_event[3]);
  1107. kfree(parity_event[2]);
  1108. kfree(parity_event[1]);
  1109. }
  1110. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1111. out:
  1112. WARN_ON(dev_priv->l3_parity.which_slice);
  1113. spin_lock_irq(&dev_priv->irq_lock);
  1114. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1115. spin_unlock_irq(&dev_priv->irq_lock);
  1116. mutex_unlock(&dev_priv->drm.struct_mutex);
  1117. }
  1118. static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
  1119. u32 iir)
  1120. {
  1121. if (!HAS_L3_DPF(dev_priv))
  1122. return;
  1123. spin_lock(&dev_priv->irq_lock);
  1124. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
  1125. spin_unlock(&dev_priv->irq_lock);
  1126. iir &= GT_PARITY_ERROR(dev_priv);
  1127. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1128. dev_priv->l3_parity.which_slice |= 1 << 1;
  1129. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1130. dev_priv->l3_parity.which_slice |= 1 << 0;
  1131. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1132. }
  1133. static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
  1134. u32 gt_iir)
  1135. {
  1136. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1137. notify_ring(dev_priv->engine[RCS]);
  1138. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1139. notify_ring(dev_priv->engine[VCS]);
  1140. }
  1141. static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
  1142. u32 gt_iir)
  1143. {
  1144. if (gt_iir & GT_RENDER_USER_INTERRUPT)
  1145. notify_ring(dev_priv->engine[RCS]);
  1146. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1147. notify_ring(dev_priv->engine[VCS]);
  1148. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1149. notify_ring(dev_priv->engine[BCS]);
  1150. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1151. GT_BSD_CS_ERROR_INTERRUPT |
  1152. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1153. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1154. if (gt_iir & GT_PARITY_ERROR(dev_priv))
  1155. ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
  1156. }
  1157. static void
  1158. gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
  1159. {
  1160. struct intel_engine_execlists * const execlists = &engine->execlists;
  1161. bool tasklet = false;
  1162. if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
  1163. if (READ_ONCE(engine->execlists.active)) {
  1164. __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
  1165. tasklet = true;
  1166. }
  1167. }
  1168. if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
  1169. notify_ring(engine);
  1170. tasklet |= USES_GUC_SUBMISSION(engine->i915);
  1171. }
  1172. if (tasklet)
  1173. tasklet_hi_schedule(&execlists->tasklet);
  1174. }
  1175. static void gen8_gt_irq_ack(struct drm_i915_private *i915,
  1176. u32 master_ctl, u32 gt_iir[4])
  1177. {
  1178. void __iomem * const regs = i915->regs;
  1179. #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
  1180. GEN8_GT_BCS_IRQ | \
  1181. GEN8_GT_VCS1_IRQ | \
  1182. GEN8_GT_VCS2_IRQ | \
  1183. GEN8_GT_VECS_IRQ | \
  1184. GEN8_GT_PM_IRQ | \
  1185. GEN8_GT_GUC_IRQ)
  1186. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1187. gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
  1188. if (likely(gt_iir[0]))
  1189. raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
  1190. }
  1191. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1192. gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
  1193. if (likely(gt_iir[1]))
  1194. raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
  1195. }
  1196. if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
  1197. gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
  1198. if (likely(gt_iir[2] & (i915->pm_rps_events |
  1199. i915->pm_guc_events)))
  1200. raw_reg_write(regs, GEN8_GT_IIR(2),
  1201. gt_iir[2] & (i915->pm_rps_events |
  1202. i915->pm_guc_events));
  1203. }
  1204. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1205. gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
  1206. if (likely(gt_iir[3]))
  1207. raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
  1208. }
  1209. }
  1210. static void gen8_gt_irq_handler(struct drm_i915_private *i915,
  1211. u32 master_ctl, u32 gt_iir[4])
  1212. {
  1213. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1214. gen8_cs_irq_handler(i915->engine[RCS],
  1215. gt_iir[0], GEN8_RCS_IRQ_SHIFT);
  1216. gen8_cs_irq_handler(i915->engine[BCS],
  1217. gt_iir[0], GEN8_BCS_IRQ_SHIFT);
  1218. }
  1219. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1220. gen8_cs_irq_handler(i915->engine[VCS],
  1221. gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
  1222. gen8_cs_irq_handler(i915->engine[VCS2],
  1223. gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
  1224. }
  1225. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1226. gen8_cs_irq_handler(i915->engine[VECS],
  1227. gt_iir[3], GEN8_VECS_IRQ_SHIFT);
  1228. }
  1229. if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
  1230. gen6_rps_irq_handler(i915, gt_iir[2]);
  1231. gen9_guc_irq_handler(i915, gt_iir[2]);
  1232. }
  1233. }
  1234. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1235. {
  1236. switch (port) {
  1237. case PORT_A:
  1238. return val & PORTA_HOTPLUG_LONG_DETECT;
  1239. case PORT_B:
  1240. return val & PORTB_HOTPLUG_LONG_DETECT;
  1241. case PORT_C:
  1242. return val & PORTC_HOTPLUG_LONG_DETECT;
  1243. default:
  1244. return false;
  1245. }
  1246. }
  1247. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1248. {
  1249. switch (port) {
  1250. case PORT_E:
  1251. return val & PORTE_HOTPLUG_LONG_DETECT;
  1252. default:
  1253. return false;
  1254. }
  1255. }
  1256. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1257. {
  1258. switch (port) {
  1259. case PORT_A:
  1260. return val & PORTA_HOTPLUG_LONG_DETECT;
  1261. case PORT_B:
  1262. return val & PORTB_HOTPLUG_LONG_DETECT;
  1263. case PORT_C:
  1264. return val & PORTC_HOTPLUG_LONG_DETECT;
  1265. case PORT_D:
  1266. return val & PORTD_HOTPLUG_LONG_DETECT;
  1267. default:
  1268. return false;
  1269. }
  1270. }
  1271. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1272. {
  1273. switch (port) {
  1274. case PORT_A:
  1275. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1276. default:
  1277. return false;
  1278. }
  1279. }
  1280. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1281. {
  1282. switch (port) {
  1283. case PORT_B:
  1284. return val & PORTB_HOTPLUG_LONG_DETECT;
  1285. case PORT_C:
  1286. return val & PORTC_HOTPLUG_LONG_DETECT;
  1287. case PORT_D:
  1288. return val & PORTD_HOTPLUG_LONG_DETECT;
  1289. default:
  1290. return false;
  1291. }
  1292. }
  1293. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1294. {
  1295. switch (port) {
  1296. case PORT_B:
  1297. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1298. case PORT_C:
  1299. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1300. case PORT_D:
  1301. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1302. default:
  1303. return false;
  1304. }
  1305. }
  1306. /*
  1307. * Get a bit mask of pins that have triggered, and which ones may be long.
  1308. * This can be called multiple times with the same masks to accumulate
  1309. * hotplug detection results from several registers.
  1310. *
  1311. * Note that the caller is expected to zero out the masks initially.
  1312. */
  1313. static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
  1314. u32 *pin_mask, u32 *long_mask,
  1315. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1316. const u32 hpd[HPD_NUM_PINS],
  1317. bool long_pulse_detect(enum port port, u32 val))
  1318. {
  1319. enum port port;
  1320. int i;
  1321. for_each_hpd_pin(i) {
  1322. if ((hpd[i] & hotplug_trigger) == 0)
  1323. continue;
  1324. *pin_mask |= BIT(i);
  1325. port = intel_hpd_pin_to_port(dev_priv, i);
  1326. if (port == PORT_NONE)
  1327. continue;
  1328. if (long_pulse_detect(port, dig_hotplug_reg))
  1329. *long_mask |= BIT(i);
  1330. }
  1331. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1332. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1333. }
  1334. static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
  1335. {
  1336. wake_up_all(&dev_priv->gmbus_wait_queue);
  1337. }
  1338. static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
  1339. {
  1340. wake_up_all(&dev_priv->gmbus_wait_queue);
  1341. }
  1342. #if defined(CONFIG_DEBUG_FS)
  1343. static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1344. enum pipe pipe,
  1345. uint32_t crc0, uint32_t crc1,
  1346. uint32_t crc2, uint32_t crc3,
  1347. uint32_t crc4)
  1348. {
  1349. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1350. struct intel_pipe_crc_entry *entry;
  1351. struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  1352. struct drm_driver *driver = dev_priv->drm.driver;
  1353. uint32_t crcs[5];
  1354. int head, tail;
  1355. spin_lock(&pipe_crc->lock);
  1356. if (pipe_crc->source) {
  1357. if (!pipe_crc->entries) {
  1358. spin_unlock(&pipe_crc->lock);
  1359. DRM_DEBUG_KMS("spurious interrupt\n");
  1360. return;
  1361. }
  1362. head = pipe_crc->head;
  1363. tail = pipe_crc->tail;
  1364. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1365. spin_unlock(&pipe_crc->lock);
  1366. DRM_ERROR("CRC buffer overflowing\n");
  1367. return;
  1368. }
  1369. entry = &pipe_crc->entries[head];
  1370. entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
  1371. entry->crc[0] = crc0;
  1372. entry->crc[1] = crc1;
  1373. entry->crc[2] = crc2;
  1374. entry->crc[3] = crc3;
  1375. entry->crc[4] = crc4;
  1376. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1377. pipe_crc->head = head;
  1378. spin_unlock(&pipe_crc->lock);
  1379. wake_up_interruptible(&pipe_crc->wq);
  1380. } else {
  1381. /*
  1382. * For some not yet identified reason, the first CRC is
  1383. * bonkers. So let's just wait for the next vblank and read
  1384. * out the buggy result.
  1385. *
  1386. * On GEN8+ sometimes the second CRC is bonkers as well, so
  1387. * don't trust that one either.
  1388. */
  1389. if (pipe_crc->skipped == 0 ||
  1390. (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
  1391. pipe_crc->skipped++;
  1392. spin_unlock(&pipe_crc->lock);
  1393. return;
  1394. }
  1395. spin_unlock(&pipe_crc->lock);
  1396. crcs[0] = crc0;
  1397. crcs[1] = crc1;
  1398. crcs[2] = crc2;
  1399. crcs[3] = crc3;
  1400. crcs[4] = crc4;
  1401. drm_crtc_add_crc_entry(&crtc->base, true,
  1402. drm_crtc_accurate_vblank_count(&crtc->base),
  1403. crcs);
  1404. }
  1405. }
  1406. #else
  1407. static inline void
  1408. display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1409. enum pipe pipe,
  1410. uint32_t crc0, uint32_t crc1,
  1411. uint32_t crc2, uint32_t crc3,
  1412. uint32_t crc4) {}
  1413. #endif
  1414. static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1415. enum pipe pipe)
  1416. {
  1417. display_pipe_crc_irq_handler(dev_priv, pipe,
  1418. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1419. 0, 0, 0, 0);
  1420. }
  1421. static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1422. enum pipe pipe)
  1423. {
  1424. display_pipe_crc_irq_handler(dev_priv, pipe,
  1425. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1426. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1427. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1428. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1429. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1430. }
  1431. static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
  1432. enum pipe pipe)
  1433. {
  1434. uint32_t res1, res2;
  1435. if (INTEL_GEN(dev_priv) >= 3)
  1436. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1437. else
  1438. res1 = 0;
  1439. if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
  1440. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1441. else
  1442. res2 = 0;
  1443. display_pipe_crc_irq_handler(dev_priv, pipe,
  1444. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1445. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1446. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1447. res1, res2);
  1448. }
  1449. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1450. * IMR bits until the work is done. Other interrupts can be processed without
  1451. * the work queue. */
  1452. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1453. {
  1454. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1455. if (pm_iir & dev_priv->pm_rps_events) {
  1456. spin_lock(&dev_priv->irq_lock);
  1457. gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1458. if (rps->interrupts_enabled) {
  1459. rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1460. schedule_work(&rps->work);
  1461. }
  1462. spin_unlock(&dev_priv->irq_lock);
  1463. }
  1464. if (INTEL_GEN(dev_priv) >= 8)
  1465. return;
  1466. if (HAS_VEBOX(dev_priv)) {
  1467. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1468. notify_ring(dev_priv->engine[VECS]);
  1469. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1470. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1471. }
  1472. }
  1473. static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
  1474. {
  1475. if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
  1476. /* Sample the log buffer flush related bits & clear them out now
  1477. * itself from the message identity register to minimize the
  1478. * probability of losing a flush interrupt, when there are back
  1479. * to back flush interrupts.
  1480. * There can be a new flush interrupt, for different log buffer
  1481. * type (like for ISR), whilst Host is handling one (for DPC).
  1482. * Since same bit is used in message register for ISR & DPC, it
  1483. * could happen that GuC sets the bit for 2nd interrupt but Host
  1484. * clears out the bit on handling the 1st interrupt.
  1485. */
  1486. u32 msg, flush;
  1487. msg = I915_READ(SOFT_SCRATCH(15));
  1488. flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
  1489. INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
  1490. if (flush) {
  1491. /* Clear the message bits that are handled */
  1492. I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
  1493. /* Handle flush interrupt in bottom half */
  1494. queue_work(dev_priv->guc.log.runtime.flush_wq,
  1495. &dev_priv->guc.log.runtime.flush_work);
  1496. dev_priv->guc.log.flush_interrupt_count++;
  1497. } else {
  1498. /* Not clearing of unhandled event bits won't result in
  1499. * re-triggering of the interrupt.
  1500. */
  1501. }
  1502. }
  1503. }
  1504. static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
  1505. {
  1506. enum pipe pipe;
  1507. for_each_pipe(dev_priv, pipe) {
  1508. I915_WRITE(PIPESTAT(pipe),
  1509. PIPESTAT_INT_STATUS_MASK |
  1510. PIPE_FIFO_UNDERRUN_STATUS);
  1511. dev_priv->pipestat_irq_mask[pipe] = 0;
  1512. }
  1513. }
  1514. static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
  1515. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1516. {
  1517. int pipe;
  1518. spin_lock(&dev_priv->irq_lock);
  1519. if (!dev_priv->display_irqs_enabled) {
  1520. spin_unlock(&dev_priv->irq_lock);
  1521. return;
  1522. }
  1523. for_each_pipe(dev_priv, pipe) {
  1524. i915_reg_t reg;
  1525. u32 status_mask, enable_mask, iir_bit = 0;
  1526. /*
  1527. * PIPESTAT bits get signalled even when the interrupt is
  1528. * disabled with the mask bits, and some of the status bits do
  1529. * not generate interrupts at all (like the underrun bit). Hence
  1530. * we need to be careful that we only handle what we want to
  1531. * handle.
  1532. */
  1533. /* fifo underruns are filterered in the underrun handler. */
  1534. status_mask = PIPE_FIFO_UNDERRUN_STATUS;
  1535. switch (pipe) {
  1536. case PIPE_A:
  1537. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1538. break;
  1539. case PIPE_B:
  1540. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1541. break;
  1542. case PIPE_C:
  1543. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1544. break;
  1545. }
  1546. if (iir & iir_bit)
  1547. status_mask |= dev_priv->pipestat_irq_mask[pipe];
  1548. if (!status_mask)
  1549. continue;
  1550. reg = PIPESTAT(pipe);
  1551. pipe_stats[pipe] = I915_READ(reg) & status_mask;
  1552. enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
  1553. /*
  1554. * Clear the PIPE*STAT regs before the IIR
  1555. */
  1556. if (pipe_stats[pipe])
  1557. I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
  1558. }
  1559. spin_unlock(&dev_priv->irq_lock);
  1560. }
  1561. static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1562. u16 iir, u32 pipe_stats[I915_MAX_PIPES])
  1563. {
  1564. enum pipe pipe;
  1565. for_each_pipe(dev_priv, pipe) {
  1566. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1567. drm_handle_vblank(&dev_priv->drm, pipe);
  1568. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1569. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1570. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1571. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1572. }
  1573. }
  1574. static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1575. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1576. {
  1577. bool blc_event = false;
  1578. enum pipe pipe;
  1579. for_each_pipe(dev_priv, pipe) {
  1580. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
  1581. drm_handle_vblank(&dev_priv->drm, pipe);
  1582. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1583. blc_event = true;
  1584. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1585. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1586. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1587. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1588. }
  1589. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1590. intel_opregion_asle_intr(dev_priv);
  1591. }
  1592. static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1593. u32 iir, u32 pipe_stats[I915_MAX_PIPES])
  1594. {
  1595. bool blc_event = false;
  1596. enum pipe pipe;
  1597. for_each_pipe(dev_priv, pipe) {
  1598. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1599. drm_handle_vblank(&dev_priv->drm, pipe);
  1600. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  1601. blc_event = true;
  1602. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1603. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1604. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1605. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1606. }
  1607. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  1608. intel_opregion_asle_intr(dev_priv);
  1609. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1610. gmbus_irq_handler(dev_priv);
  1611. }
  1612. static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
  1613. u32 pipe_stats[I915_MAX_PIPES])
  1614. {
  1615. enum pipe pipe;
  1616. for_each_pipe(dev_priv, pipe) {
  1617. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
  1618. drm_handle_vblank(&dev_priv->drm, pipe);
  1619. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1620. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1621. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1622. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1623. }
  1624. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1625. gmbus_irq_handler(dev_priv);
  1626. }
  1627. static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
  1628. {
  1629. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1630. if (hotplug_status)
  1631. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1632. return hotplug_status;
  1633. }
  1634. static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1635. u32 hotplug_status)
  1636. {
  1637. u32 pin_mask = 0, long_mask = 0;
  1638. if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
  1639. IS_CHERRYVIEW(dev_priv)) {
  1640. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1641. if (hotplug_trigger) {
  1642. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1643. hotplug_trigger, hotplug_trigger,
  1644. hpd_status_g4x,
  1645. i9xx_port_hotplug_long_detect);
  1646. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1647. }
  1648. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1649. dp_aux_irq_handler(dev_priv);
  1650. } else {
  1651. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1652. if (hotplug_trigger) {
  1653. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1654. hotplug_trigger, hotplug_trigger,
  1655. hpd_status_i915,
  1656. i9xx_port_hotplug_long_detect);
  1657. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1658. }
  1659. }
  1660. }
  1661. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1662. {
  1663. struct drm_device *dev = arg;
  1664. struct drm_i915_private *dev_priv = to_i915(dev);
  1665. irqreturn_t ret = IRQ_NONE;
  1666. if (!intel_irqs_enabled(dev_priv))
  1667. return IRQ_NONE;
  1668. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1669. disable_rpm_wakeref_asserts(dev_priv);
  1670. do {
  1671. u32 iir, gt_iir, pm_iir;
  1672. u32 pipe_stats[I915_MAX_PIPES] = {};
  1673. u32 hotplug_status = 0;
  1674. u32 ier = 0;
  1675. gt_iir = I915_READ(GTIIR);
  1676. pm_iir = I915_READ(GEN6_PMIIR);
  1677. iir = I915_READ(VLV_IIR);
  1678. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1679. break;
  1680. ret = IRQ_HANDLED;
  1681. /*
  1682. * Theory on interrupt generation, based on empirical evidence:
  1683. *
  1684. * x = ((VLV_IIR & VLV_IER) ||
  1685. * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
  1686. * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
  1687. *
  1688. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1689. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
  1690. * guarantee the CPU interrupt will be raised again even if we
  1691. * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
  1692. * bits this time around.
  1693. */
  1694. I915_WRITE(VLV_MASTER_IER, 0);
  1695. ier = I915_READ(VLV_IER);
  1696. I915_WRITE(VLV_IER, 0);
  1697. if (gt_iir)
  1698. I915_WRITE(GTIIR, gt_iir);
  1699. if (pm_iir)
  1700. I915_WRITE(GEN6_PMIIR, pm_iir);
  1701. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1702. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1703. /* Call regardless, as some status bits might not be
  1704. * signalled in iir */
  1705. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1706. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1707. I915_LPE_PIPE_B_INTERRUPT))
  1708. intel_lpe_audio_irq_handler(dev_priv);
  1709. /*
  1710. * VLV_IIR is single buffered, and reflects the level
  1711. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1712. */
  1713. if (iir)
  1714. I915_WRITE(VLV_IIR, iir);
  1715. I915_WRITE(VLV_IER, ier);
  1716. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  1717. POSTING_READ(VLV_MASTER_IER);
  1718. if (gt_iir)
  1719. snb_gt_irq_handler(dev_priv, gt_iir);
  1720. if (pm_iir)
  1721. gen6_rps_irq_handler(dev_priv, pm_iir);
  1722. if (hotplug_status)
  1723. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1724. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1725. } while (0);
  1726. enable_rpm_wakeref_asserts(dev_priv);
  1727. return ret;
  1728. }
  1729. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1730. {
  1731. struct drm_device *dev = arg;
  1732. struct drm_i915_private *dev_priv = to_i915(dev);
  1733. irqreturn_t ret = IRQ_NONE;
  1734. if (!intel_irqs_enabled(dev_priv))
  1735. return IRQ_NONE;
  1736. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  1737. disable_rpm_wakeref_asserts(dev_priv);
  1738. do {
  1739. u32 master_ctl, iir;
  1740. u32 pipe_stats[I915_MAX_PIPES] = {};
  1741. u32 hotplug_status = 0;
  1742. u32 gt_iir[4];
  1743. u32 ier = 0;
  1744. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1745. iir = I915_READ(VLV_IIR);
  1746. if (master_ctl == 0 && iir == 0)
  1747. break;
  1748. ret = IRQ_HANDLED;
  1749. /*
  1750. * Theory on interrupt generation, based on empirical evidence:
  1751. *
  1752. * x = ((VLV_IIR & VLV_IER) ||
  1753. * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
  1754. * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
  1755. *
  1756. * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
  1757. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
  1758. * guarantee the CPU interrupt will be raised again even if we
  1759. * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
  1760. * bits this time around.
  1761. */
  1762. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1763. ier = I915_READ(VLV_IER);
  1764. I915_WRITE(VLV_IER, 0);
  1765. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  1766. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1767. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  1768. /* Call regardless, as some status bits might not be
  1769. * signalled in iir */
  1770. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  1771. if (iir & (I915_LPE_PIPE_A_INTERRUPT |
  1772. I915_LPE_PIPE_B_INTERRUPT |
  1773. I915_LPE_PIPE_C_INTERRUPT))
  1774. intel_lpe_audio_irq_handler(dev_priv);
  1775. /*
  1776. * VLV_IIR is single buffered, and reflects the level
  1777. * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
  1778. */
  1779. if (iir)
  1780. I915_WRITE(VLV_IIR, iir);
  1781. I915_WRITE(VLV_IER, ier);
  1782. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1783. POSTING_READ(GEN8_MASTER_IRQ);
  1784. gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
  1785. if (hotplug_status)
  1786. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  1787. valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
  1788. } while (0);
  1789. enable_rpm_wakeref_asserts(dev_priv);
  1790. return ret;
  1791. }
  1792. static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1793. u32 hotplug_trigger,
  1794. const u32 hpd[HPD_NUM_PINS])
  1795. {
  1796. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1797. /*
  1798. * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
  1799. * unless we touch the hotplug register, even if hotplug_trigger is
  1800. * zero. Not acking leads to "The master control interrupt lied (SDE)!"
  1801. * errors.
  1802. */
  1803. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1804. if (!hotplug_trigger) {
  1805. u32 mask = PORTA_HOTPLUG_STATUS_MASK |
  1806. PORTD_HOTPLUG_STATUS_MASK |
  1807. PORTC_HOTPLUG_STATUS_MASK |
  1808. PORTB_HOTPLUG_STATUS_MASK;
  1809. dig_hotplug_reg &= ~mask;
  1810. }
  1811. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1812. if (!hotplug_trigger)
  1813. return;
  1814. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  1815. dig_hotplug_reg, hpd,
  1816. pch_port_hotplug_long_detect);
  1817. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1818. }
  1819. static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1820. {
  1821. int pipe;
  1822. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1823. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
  1824. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1825. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1826. SDE_AUDIO_POWER_SHIFT);
  1827. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1828. port_name(port));
  1829. }
  1830. if (pch_iir & SDE_AUX_MASK)
  1831. dp_aux_irq_handler(dev_priv);
  1832. if (pch_iir & SDE_GMBUS)
  1833. gmbus_irq_handler(dev_priv);
  1834. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1835. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1836. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1837. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1838. if (pch_iir & SDE_POISON)
  1839. DRM_ERROR("PCH poison interrupt\n");
  1840. if (pch_iir & SDE_FDI_MASK)
  1841. for_each_pipe(dev_priv, pipe)
  1842. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1843. pipe_name(pipe),
  1844. I915_READ(FDI_RX_IIR(pipe)));
  1845. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1846. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1847. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1848. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1849. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1850. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
  1851. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1852. intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
  1853. }
  1854. static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
  1855. {
  1856. u32 err_int = I915_READ(GEN7_ERR_INT);
  1857. enum pipe pipe;
  1858. if (err_int & ERR_INT_POISON)
  1859. DRM_ERROR("Poison interrupt\n");
  1860. for_each_pipe(dev_priv, pipe) {
  1861. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1862. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1863. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1864. if (IS_IVYBRIDGE(dev_priv))
  1865. ivb_pipe_crc_irq_handler(dev_priv, pipe);
  1866. else
  1867. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  1868. }
  1869. }
  1870. I915_WRITE(GEN7_ERR_INT, err_int);
  1871. }
  1872. static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
  1873. {
  1874. u32 serr_int = I915_READ(SERR_INT);
  1875. enum pipe pipe;
  1876. if (serr_int & SERR_INT_POISON)
  1877. DRM_ERROR("PCH poison interrupt\n");
  1878. for_each_pipe(dev_priv, pipe)
  1879. if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
  1880. intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
  1881. I915_WRITE(SERR_INT, serr_int);
  1882. }
  1883. static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1884. {
  1885. int pipe;
  1886. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1887. ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
  1888. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1889. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1890. SDE_AUDIO_POWER_SHIFT_CPT);
  1891. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1892. port_name(port));
  1893. }
  1894. if (pch_iir & SDE_AUX_MASK_CPT)
  1895. dp_aux_irq_handler(dev_priv);
  1896. if (pch_iir & SDE_GMBUS_CPT)
  1897. gmbus_irq_handler(dev_priv);
  1898. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1899. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1900. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1901. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1902. if (pch_iir & SDE_FDI_MASK_CPT)
  1903. for_each_pipe(dev_priv, pipe)
  1904. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1905. pipe_name(pipe),
  1906. I915_READ(FDI_RX_IIR(pipe)));
  1907. if (pch_iir & SDE_ERROR_CPT)
  1908. cpt_serr_int_handler(dev_priv);
  1909. }
  1910. static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
  1911. {
  1912. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1913. ~SDE_PORTE_HOTPLUG_SPT;
  1914. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1915. u32 pin_mask = 0, long_mask = 0;
  1916. if (hotplug_trigger) {
  1917. u32 dig_hotplug_reg;
  1918. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1919. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1920. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1921. hotplug_trigger, dig_hotplug_reg, hpd_spt,
  1922. spt_port_hotplug_long_detect);
  1923. }
  1924. if (hotplug2_trigger) {
  1925. u32 dig_hotplug_reg;
  1926. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1927. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1928. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
  1929. hotplug2_trigger, dig_hotplug_reg, hpd_spt,
  1930. spt_port_hotplug2_long_detect);
  1931. }
  1932. if (pin_mask)
  1933. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1934. if (pch_iir & SDE_GMBUS_CPT)
  1935. gmbus_irq_handler(dev_priv);
  1936. }
  1937. static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
  1938. u32 hotplug_trigger,
  1939. const u32 hpd[HPD_NUM_PINS])
  1940. {
  1941. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1942. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1943. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1944. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  1945. dig_hotplug_reg, hpd,
  1946. ilk_port_hotplug_long_detect);
  1947. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  1948. }
  1949. static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
  1950. u32 de_iir)
  1951. {
  1952. enum pipe pipe;
  1953. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1954. if (hotplug_trigger)
  1955. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
  1956. if (de_iir & DE_AUX_CHANNEL_A)
  1957. dp_aux_irq_handler(dev_priv);
  1958. if (de_iir & DE_GSE)
  1959. intel_opregion_asle_intr(dev_priv);
  1960. if (de_iir & DE_POISON)
  1961. DRM_ERROR("Poison interrupt\n");
  1962. for_each_pipe(dev_priv, pipe) {
  1963. if (de_iir & DE_PIPE_VBLANK(pipe))
  1964. drm_handle_vblank(&dev_priv->drm, pipe);
  1965. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1966. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1967. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1968. i9xx_pipe_crc_irq_handler(dev_priv, pipe);
  1969. }
  1970. /* check event from PCH */
  1971. if (de_iir & DE_PCH_EVENT) {
  1972. u32 pch_iir = I915_READ(SDEIIR);
  1973. if (HAS_PCH_CPT(dev_priv))
  1974. cpt_irq_handler(dev_priv, pch_iir);
  1975. else
  1976. ibx_irq_handler(dev_priv, pch_iir);
  1977. /* should clear PCH hotplug event before clear CPU irq */
  1978. I915_WRITE(SDEIIR, pch_iir);
  1979. }
  1980. if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
  1981. ironlake_rps_change_irq_handler(dev_priv);
  1982. }
  1983. static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
  1984. u32 de_iir)
  1985. {
  1986. enum pipe pipe;
  1987. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1988. if (hotplug_trigger)
  1989. ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
  1990. if (de_iir & DE_ERR_INT_IVB)
  1991. ivb_err_int_handler(dev_priv);
  1992. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1993. dp_aux_irq_handler(dev_priv);
  1994. if (de_iir & DE_GSE_IVB)
  1995. intel_opregion_asle_intr(dev_priv);
  1996. for_each_pipe(dev_priv, pipe) {
  1997. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
  1998. drm_handle_vblank(&dev_priv->drm, pipe);
  1999. }
  2000. /* check event from PCH */
  2001. if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
  2002. u32 pch_iir = I915_READ(SDEIIR);
  2003. cpt_irq_handler(dev_priv, pch_iir);
  2004. /* clear PCH hotplug event before clear CPU irq */
  2005. I915_WRITE(SDEIIR, pch_iir);
  2006. }
  2007. }
  2008. /*
  2009. * To handle irqs with the minimum potential races with fresh interrupts, we:
  2010. * 1 - Disable Master Interrupt Control.
  2011. * 2 - Find the source(s) of the interrupt.
  2012. * 3 - Clear the Interrupt Identity bits (IIR).
  2013. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  2014. * 5 - Re-enable Master Interrupt Control.
  2015. */
  2016. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  2017. {
  2018. struct drm_device *dev = arg;
  2019. struct drm_i915_private *dev_priv = to_i915(dev);
  2020. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  2021. irqreturn_t ret = IRQ_NONE;
  2022. if (!intel_irqs_enabled(dev_priv))
  2023. return IRQ_NONE;
  2024. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2025. disable_rpm_wakeref_asserts(dev_priv);
  2026. /* disable master interrupt before clearing iir */
  2027. de_ier = I915_READ(DEIER);
  2028. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  2029. POSTING_READ(DEIER);
  2030. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  2031. * interrupts will will be stored on its back queue, and then we'll be
  2032. * able to process them after we restore SDEIER (as soon as we restore
  2033. * it, we'll get an interrupt if SDEIIR still has something to process
  2034. * due to its back queue). */
  2035. if (!HAS_PCH_NOP(dev_priv)) {
  2036. sde_ier = I915_READ(SDEIER);
  2037. I915_WRITE(SDEIER, 0);
  2038. POSTING_READ(SDEIER);
  2039. }
  2040. /* Find, clear, then process each source of interrupt */
  2041. gt_iir = I915_READ(GTIIR);
  2042. if (gt_iir) {
  2043. I915_WRITE(GTIIR, gt_iir);
  2044. ret = IRQ_HANDLED;
  2045. if (INTEL_GEN(dev_priv) >= 6)
  2046. snb_gt_irq_handler(dev_priv, gt_iir);
  2047. else
  2048. ilk_gt_irq_handler(dev_priv, gt_iir);
  2049. }
  2050. de_iir = I915_READ(DEIIR);
  2051. if (de_iir) {
  2052. I915_WRITE(DEIIR, de_iir);
  2053. ret = IRQ_HANDLED;
  2054. if (INTEL_GEN(dev_priv) >= 7)
  2055. ivb_display_irq_handler(dev_priv, de_iir);
  2056. else
  2057. ilk_display_irq_handler(dev_priv, de_iir);
  2058. }
  2059. if (INTEL_GEN(dev_priv) >= 6) {
  2060. u32 pm_iir = I915_READ(GEN6_PMIIR);
  2061. if (pm_iir) {
  2062. I915_WRITE(GEN6_PMIIR, pm_iir);
  2063. ret = IRQ_HANDLED;
  2064. gen6_rps_irq_handler(dev_priv, pm_iir);
  2065. }
  2066. }
  2067. I915_WRITE(DEIER, de_ier);
  2068. POSTING_READ(DEIER);
  2069. if (!HAS_PCH_NOP(dev_priv)) {
  2070. I915_WRITE(SDEIER, sde_ier);
  2071. POSTING_READ(SDEIER);
  2072. }
  2073. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2074. enable_rpm_wakeref_asserts(dev_priv);
  2075. return ret;
  2076. }
  2077. static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
  2078. u32 hotplug_trigger,
  2079. const u32 hpd[HPD_NUM_PINS])
  2080. {
  2081. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  2082. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  2083. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  2084. intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
  2085. dig_hotplug_reg, hpd,
  2086. bxt_port_hotplug_long_detect);
  2087. intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
  2088. }
  2089. static irqreturn_t
  2090. gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
  2091. {
  2092. irqreturn_t ret = IRQ_NONE;
  2093. u32 iir;
  2094. enum pipe pipe;
  2095. if (master_ctl & GEN8_DE_MISC_IRQ) {
  2096. iir = I915_READ(GEN8_DE_MISC_IIR);
  2097. if (iir) {
  2098. I915_WRITE(GEN8_DE_MISC_IIR, iir);
  2099. ret = IRQ_HANDLED;
  2100. if (iir & GEN8_DE_MISC_GSE)
  2101. intel_opregion_asle_intr(dev_priv);
  2102. else
  2103. DRM_ERROR("Unexpected DE Misc interrupt\n");
  2104. }
  2105. else
  2106. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  2107. }
  2108. if (master_ctl & GEN8_DE_PORT_IRQ) {
  2109. iir = I915_READ(GEN8_DE_PORT_IIR);
  2110. if (iir) {
  2111. u32 tmp_mask;
  2112. bool found = false;
  2113. I915_WRITE(GEN8_DE_PORT_IIR, iir);
  2114. ret = IRQ_HANDLED;
  2115. tmp_mask = GEN8_AUX_CHANNEL_A;
  2116. if (INTEL_GEN(dev_priv) >= 9)
  2117. tmp_mask |= GEN9_AUX_CHANNEL_B |
  2118. GEN9_AUX_CHANNEL_C |
  2119. GEN9_AUX_CHANNEL_D;
  2120. if (IS_CNL_WITH_PORT_F(dev_priv))
  2121. tmp_mask |= CNL_AUX_CHANNEL_F;
  2122. if (iir & tmp_mask) {
  2123. dp_aux_irq_handler(dev_priv);
  2124. found = true;
  2125. }
  2126. if (IS_GEN9_LP(dev_priv)) {
  2127. tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
  2128. if (tmp_mask) {
  2129. bxt_hpd_irq_handler(dev_priv, tmp_mask,
  2130. hpd_bxt);
  2131. found = true;
  2132. }
  2133. } else if (IS_BROADWELL(dev_priv)) {
  2134. tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
  2135. if (tmp_mask) {
  2136. ilk_hpd_irq_handler(dev_priv,
  2137. tmp_mask, hpd_bdw);
  2138. found = true;
  2139. }
  2140. }
  2141. if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
  2142. gmbus_irq_handler(dev_priv);
  2143. found = true;
  2144. }
  2145. if (!found)
  2146. DRM_ERROR("Unexpected DE Port interrupt\n");
  2147. }
  2148. else
  2149. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  2150. }
  2151. for_each_pipe(dev_priv, pipe) {
  2152. u32 fault_errors;
  2153. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  2154. continue;
  2155. iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  2156. if (!iir) {
  2157. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  2158. continue;
  2159. }
  2160. ret = IRQ_HANDLED;
  2161. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
  2162. if (iir & GEN8_PIPE_VBLANK)
  2163. drm_handle_vblank(&dev_priv->drm, pipe);
  2164. if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
  2165. hsw_pipe_crc_irq_handler(dev_priv, pipe);
  2166. if (iir & GEN8_PIPE_FIFO_UNDERRUN)
  2167. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  2168. fault_errors = iir;
  2169. if (INTEL_GEN(dev_priv) >= 9)
  2170. fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2171. else
  2172. fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2173. if (fault_errors)
  2174. DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
  2175. pipe_name(pipe),
  2176. fault_errors);
  2177. }
  2178. if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
  2179. master_ctl & GEN8_DE_PCH_IRQ) {
  2180. /*
  2181. * FIXME(BDW): Assume for now that the new interrupt handling
  2182. * scheme also closed the SDE interrupt handling race we've seen
  2183. * on older pch-split platforms. But this needs testing.
  2184. */
  2185. iir = I915_READ(SDEIIR);
  2186. if (iir) {
  2187. I915_WRITE(SDEIIR, iir);
  2188. ret = IRQ_HANDLED;
  2189. if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  2190. HAS_PCH_CNP(dev_priv))
  2191. spt_irq_handler(dev_priv, iir);
  2192. else
  2193. cpt_irq_handler(dev_priv, iir);
  2194. } else {
  2195. /*
  2196. * Like on previous PCH there seems to be something
  2197. * fishy going on with forwarding PCH interrupts.
  2198. */
  2199. DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
  2200. }
  2201. }
  2202. return ret;
  2203. }
  2204. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  2205. {
  2206. struct drm_i915_private *dev_priv = to_i915(arg);
  2207. u32 master_ctl;
  2208. u32 gt_iir[4];
  2209. if (!intel_irqs_enabled(dev_priv))
  2210. return IRQ_NONE;
  2211. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  2212. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  2213. if (!master_ctl)
  2214. return IRQ_NONE;
  2215. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  2216. /* Find, clear, then process each source of interrupt */
  2217. gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
  2218. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2219. if (master_ctl & ~GEN8_GT_IRQS) {
  2220. disable_rpm_wakeref_asserts(dev_priv);
  2221. gen8_de_irq_handler(dev_priv, master_ctl);
  2222. enable_rpm_wakeref_asserts(dev_priv);
  2223. }
  2224. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  2225. gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
  2226. return IRQ_HANDLED;
  2227. }
  2228. struct wedge_me {
  2229. struct delayed_work work;
  2230. struct drm_i915_private *i915;
  2231. const char *name;
  2232. };
  2233. static void wedge_me(struct work_struct *work)
  2234. {
  2235. struct wedge_me *w = container_of(work, typeof(*w), work.work);
  2236. dev_err(w->i915->drm.dev,
  2237. "%s timed out, cancelling all in-flight rendering.\n",
  2238. w->name);
  2239. i915_gem_set_wedged(w->i915);
  2240. }
  2241. static void __init_wedge(struct wedge_me *w,
  2242. struct drm_i915_private *i915,
  2243. long timeout,
  2244. const char *name)
  2245. {
  2246. w->i915 = i915;
  2247. w->name = name;
  2248. INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
  2249. schedule_delayed_work(&w->work, timeout);
  2250. }
  2251. static void __fini_wedge(struct wedge_me *w)
  2252. {
  2253. cancel_delayed_work_sync(&w->work);
  2254. destroy_delayed_work_on_stack(&w->work);
  2255. w->i915 = NULL;
  2256. }
  2257. #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
  2258. for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
  2259. (W)->i915; \
  2260. __fini_wedge((W)))
  2261. static __always_inline void
  2262. gen11_cs_irq_handler(struct intel_engine_cs * const engine, const u32 iir)
  2263. {
  2264. gen8_cs_irq_handler(engine, iir, 0);
  2265. }
  2266. static void
  2267. gen11_gt_engine_irq_handler(struct drm_i915_private * const i915,
  2268. const unsigned int bank,
  2269. const unsigned int engine_n,
  2270. const u16 iir)
  2271. {
  2272. struct intel_engine_cs ** const engine = i915->engine;
  2273. switch (bank) {
  2274. case 0:
  2275. switch (engine_n) {
  2276. case GEN11_RCS0:
  2277. return gen11_cs_irq_handler(engine[RCS], iir);
  2278. case GEN11_BCS:
  2279. return gen11_cs_irq_handler(engine[BCS], iir);
  2280. }
  2281. case 1:
  2282. switch (engine_n) {
  2283. case GEN11_VCS(0):
  2284. return gen11_cs_irq_handler(engine[_VCS(0)], iir);
  2285. case GEN11_VCS(1):
  2286. return gen11_cs_irq_handler(engine[_VCS(1)], iir);
  2287. case GEN11_VCS(2):
  2288. return gen11_cs_irq_handler(engine[_VCS(2)], iir);
  2289. case GEN11_VCS(3):
  2290. return gen11_cs_irq_handler(engine[_VCS(3)], iir);
  2291. case GEN11_VECS(0):
  2292. return gen11_cs_irq_handler(engine[_VECS(0)], iir);
  2293. case GEN11_VECS(1):
  2294. return gen11_cs_irq_handler(engine[_VECS(1)], iir);
  2295. }
  2296. }
  2297. }
  2298. static u32
  2299. gen11_gt_engine_intr(struct drm_i915_private * const i915,
  2300. const unsigned int bank, const unsigned int bit)
  2301. {
  2302. void __iomem * const regs = i915->regs;
  2303. u32 timeout_ts;
  2304. u32 ident;
  2305. raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
  2306. /*
  2307. * NB: Specs do not specify how long to spin wait,
  2308. * so we do ~100us as an educated guess.
  2309. */
  2310. timeout_ts = (local_clock() >> 10) + 100;
  2311. do {
  2312. ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
  2313. } while (!(ident & GEN11_INTR_DATA_VALID) &&
  2314. !time_after32(local_clock() >> 10, timeout_ts));
  2315. if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
  2316. DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
  2317. bank, bit, ident);
  2318. return 0;
  2319. }
  2320. raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
  2321. GEN11_INTR_DATA_VALID);
  2322. return ident & GEN11_INTR_ENGINE_MASK;
  2323. }
  2324. static void
  2325. gen11_gt_irq_handler(struct drm_i915_private * const i915,
  2326. const u32 master_ctl)
  2327. {
  2328. void __iomem * const regs = i915->regs;
  2329. unsigned int bank;
  2330. for (bank = 0; bank < 2; bank++) {
  2331. unsigned long intr_dw;
  2332. unsigned int bit;
  2333. if (!(master_ctl & GEN11_GT_DW_IRQ(bank)))
  2334. continue;
  2335. intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
  2336. if (unlikely(!intr_dw)) {
  2337. DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
  2338. continue;
  2339. }
  2340. for_each_set_bit(bit, &intr_dw, 32) {
  2341. const u16 iir = gen11_gt_engine_intr(i915, bank, bit);
  2342. if (unlikely(!iir))
  2343. continue;
  2344. gen11_gt_engine_irq_handler(i915, bank, bit, iir);
  2345. }
  2346. /* Clear must be after shared has been served for engine */
  2347. raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
  2348. }
  2349. }
  2350. static irqreturn_t gen11_irq_handler(int irq, void *arg)
  2351. {
  2352. struct drm_i915_private * const i915 = to_i915(arg);
  2353. void __iomem * const regs = i915->regs;
  2354. u32 master_ctl;
  2355. if (!intel_irqs_enabled(i915))
  2356. return IRQ_NONE;
  2357. master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
  2358. master_ctl &= ~GEN11_MASTER_IRQ;
  2359. if (!master_ctl)
  2360. return IRQ_NONE;
  2361. /* Disable interrupts. */
  2362. raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
  2363. /* Find, clear, then process each source of interrupt. */
  2364. gen11_gt_irq_handler(i915, master_ctl);
  2365. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  2366. if (master_ctl & GEN11_DISPLAY_IRQ) {
  2367. const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
  2368. disable_rpm_wakeref_asserts(i915);
  2369. /*
  2370. * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
  2371. * for the display related bits.
  2372. */
  2373. gen8_de_irq_handler(i915, disp_ctl);
  2374. enable_rpm_wakeref_asserts(i915);
  2375. }
  2376. /* Acknowledge and enable interrupts. */
  2377. raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
  2378. return IRQ_HANDLED;
  2379. }
  2380. /**
  2381. * i915_reset_device - do process context error handling work
  2382. * @dev_priv: i915 device private
  2383. *
  2384. * Fire an error uevent so userspace can see that a hang or error
  2385. * was detected.
  2386. */
  2387. static void i915_reset_device(struct drm_i915_private *dev_priv)
  2388. {
  2389. struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
  2390. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  2391. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  2392. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  2393. struct wedge_me w;
  2394. kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
  2395. DRM_DEBUG_DRIVER("resetting chip\n");
  2396. kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
  2397. /* Use a watchdog to ensure that our reset completes */
  2398. i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
  2399. intel_prepare_reset(dev_priv);
  2400. /* Signal that locked waiters should reset the GPU */
  2401. set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
  2402. wake_up_all(&dev_priv->gpu_error.wait_queue);
  2403. /* Wait for anyone holding the lock to wakeup, without
  2404. * blocking indefinitely on struct_mutex.
  2405. */
  2406. do {
  2407. if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
  2408. i915_reset(dev_priv, 0);
  2409. mutex_unlock(&dev_priv->drm.struct_mutex);
  2410. }
  2411. } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
  2412. I915_RESET_HANDOFF,
  2413. TASK_UNINTERRUPTIBLE,
  2414. 1));
  2415. intel_finish_reset(dev_priv);
  2416. }
  2417. if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  2418. kobject_uevent_env(kobj,
  2419. KOBJ_CHANGE, reset_done_event);
  2420. }
  2421. static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
  2422. {
  2423. u32 eir;
  2424. if (!IS_GEN2(dev_priv))
  2425. I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
  2426. if (INTEL_GEN(dev_priv) < 4)
  2427. I915_WRITE(IPEIR, I915_READ(IPEIR));
  2428. else
  2429. I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
  2430. I915_WRITE(EIR, I915_READ(EIR));
  2431. eir = I915_READ(EIR);
  2432. if (eir) {
  2433. /*
  2434. * some errors might have become stuck,
  2435. * mask them.
  2436. */
  2437. DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
  2438. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2439. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2440. }
  2441. }
  2442. /**
  2443. * i915_handle_error - handle a gpu error
  2444. * @dev_priv: i915 device private
  2445. * @engine_mask: mask representing engines that are hung
  2446. * @fmt: Error message format string
  2447. *
  2448. * Do some basic checking of register state at error time and
  2449. * dump it to the syslog. Also call i915_capture_error_state() to make
  2450. * sure we get a record and make it available in debugfs. Fire a uevent
  2451. * so userspace knows something bad happened (should trigger collection
  2452. * of a ring dump etc.).
  2453. */
  2454. void i915_handle_error(struct drm_i915_private *dev_priv,
  2455. u32 engine_mask,
  2456. const char *fmt, ...)
  2457. {
  2458. struct intel_engine_cs *engine;
  2459. unsigned int tmp;
  2460. va_list args;
  2461. char error_msg[80];
  2462. va_start(args, fmt);
  2463. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2464. va_end(args);
  2465. /*
  2466. * In most cases it's guaranteed that we get here with an RPM
  2467. * reference held, for example because there is a pending GPU
  2468. * request that won't finish until the reset is done. This
  2469. * isn't the case at least when we get here by doing a
  2470. * simulated reset via debugfs, so get an RPM reference.
  2471. */
  2472. intel_runtime_pm_get(dev_priv);
  2473. i915_capture_error_state(dev_priv, engine_mask, error_msg);
  2474. i915_clear_error_registers(dev_priv);
  2475. /*
  2476. * Try engine reset when available. We fall back to full reset if
  2477. * single reset fails.
  2478. */
  2479. if (intel_has_reset_engine(dev_priv)) {
  2480. for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
  2481. BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
  2482. if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2483. &dev_priv->gpu_error.flags))
  2484. continue;
  2485. if (i915_reset_engine(engine, 0) == 0)
  2486. engine_mask &= ~intel_engine_flag(engine);
  2487. clear_bit(I915_RESET_ENGINE + engine->id,
  2488. &dev_priv->gpu_error.flags);
  2489. wake_up_bit(&dev_priv->gpu_error.flags,
  2490. I915_RESET_ENGINE + engine->id);
  2491. }
  2492. }
  2493. if (!engine_mask)
  2494. goto out;
  2495. /* Full reset needs the mutex, stop any other user trying to do so. */
  2496. if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
  2497. wait_event(dev_priv->gpu_error.reset_queue,
  2498. !test_bit(I915_RESET_BACKOFF,
  2499. &dev_priv->gpu_error.flags));
  2500. goto out;
  2501. }
  2502. /* Prevent any other reset-engine attempt. */
  2503. for_each_engine(engine, dev_priv, tmp) {
  2504. while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
  2505. &dev_priv->gpu_error.flags))
  2506. wait_on_bit(&dev_priv->gpu_error.flags,
  2507. I915_RESET_ENGINE + engine->id,
  2508. TASK_UNINTERRUPTIBLE);
  2509. }
  2510. i915_reset_device(dev_priv);
  2511. for_each_engine(engine, dev_priv, tmp) {
  2512. clear_bit(I915_RESET_ENGINE + engine->id,
  2513. &dev_priv->gpu_error.flags);
  2514. }
  2515. clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
  2516. wake_up_all(&dev_priv->gpu_error.reset_queue);
  2517. out:
  2518. intel_runtime_pm_put(dev_priv);
  2519. }
  2520. /* Called from drm generic code, passed 'crtc' which
  2521. * we use as a pipe index
  2522. */
  2523. static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2524. {
  2525. struct drm_i915_private *dev_priv = to_i915(dev);
  2526. unsigned long irqflags;
  2527. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2528. i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2529. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2530. return 0;
  2531. }
  2532. static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2533. {
  2534. struct drm_i915_private *dev_priv = to_i915(dev);
  2535. unsigned long irqflags;
  2536. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2537. i915_enable_pipestat(dev_priv, pipe,
  2538. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2539. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2540. return 0;
  2541. }
  2542. static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2543. {
  2544. struct drm_i915_private *dev_priv = to_i915(dev);
  2545. unsigned long irqflags;
  2546. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2547. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2548. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2549. ilk_enable_display_irq(dev_priv, bit);
  2550. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2551. /* Even though there is no DMC, frame counter can get stuck when
  2552. * PSR is active as no frames are generated.
  2553. */
  2554. if (HAS_PSR(dev_priv))
  2555. drm_vblank_restore(dev, pipe);
  2556. return 0;
  2557. }
  2558. static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
  2559. {
  2560. struct drm_i915_private *dev_priv = to_i915(dev);
  2561. unsigned long irqflags;
  2562. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2563. bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2564. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2565. /* Even if there is no DMC, frame counter can get stuck when
  2566. * PSR is active as no frames are generated, so check only for PSR.
  2567. */
  2568. if (HAS_PSR(dev_priv))
  2569. drm_vblank_restore(dev, pipe);
  2570. return 0;
  2571. }
  2572. /* Called from drm generic code, passed 'crtc' which
  2573. * we use as a pipe index
  2574. */
  2575. static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2576. {
  2577. struct drm_i915_private *dev_priv = to_i915(dev);
  2578. unsigned long irqflags;
  2579. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2580. i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
  2581. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2582. }
  2583. static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2584. {
  2585. struct drm_i915_private *dev_priv = to_i915(dev);
  2586. unsigned long irqflags;
  2587. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2588. i915_disable_pipestat(dev_priv, pipe,
  2589. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2590. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2591. }
  2592. static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2593. {
  2594. struct drm_i915_private *dev_priv = to_i915(dev);
  2595. unsigned long irqflags;
  2596. uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
  2597. DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
  2598. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2599. ilk_disable_display_irq(dev_priv, bit);
  2600. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2601. }
  2602. static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
  2603. {
  2604. struct drm_i915_private *dev_priv = to_i915(dev);
  2605. unsigned long irqflags;
  2606. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2607. bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
  2608. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2609. }
  2610. static void ibx_irq_reset(struct drm_i915_private *dev_priv)
  2611. {
  2612. if (HAS_PCH_NOP(dev_priv))
  2613. return;
  2614. GEN3_IRQ_RESET(SDE);
  2615. if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  2616. I915_WRITE(SERR_INT, 0xffffffff);
  2617. }
  2618. /*
  2619. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2620. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2621. * instead we unconditionally enable all PCH interrupt sources here, but then
  2622. * only unmask them as needed with SDEIMR.
  2623. *
  2624. * This function needs to be called before interrupts are enabled.
  2625. */
  2626. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2627. {
  2628. struct drm_i915_private *dev_priv = to_i915(dev);
  2629. if (HAS_PCH_NOP(dev_priv))
  2630. return;
  2631. WARN_ON(I915_READ(SDEIER) != 0);
  2632. I915_WRITE(SDEIER, 0xffffffff);
  2633. POSTING_READ(SDEIER);
  2634. }
  2635. static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
  2636. {
  2637. GEN3_IRQ_RESET(GT);
  2638. if (INTEL_GEN(dev_priv) >= 6)
  2639. GEN3_IRQ_RESET(GEN6_PM);
  2640. }
  2641. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2642. {
  2643. if (IS_CHERRYVIEW(dev_priv))
  2644. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2645. else
  2646. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2647. i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
  2648. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2649. i9xx_pipestat_irq_reset(dev_priv);
  2650. GEN3_IRQ_RESET(VLV_);
  2651. dev_priv->irq_mask = ~0u;
  2652. }
  2653. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2654. {
  2655. u32 pipestat_mask;
  2656. u32 enable_mask;
  2657. enum pipe pipe;
  2658. pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
  2659. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2660. for_each_pipe(dev_priv, pipe)
  2661. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2662. enable_mask = I915_DISPLAY_PORT_INTERRUPT |
  2663. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2664. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2665. I915_LPE_PIPE_A_INTERRUPT |
  2666. I915_LPE_PIPE_B_INTERRUPT;
  2667. if (IS_CHERRYVIEW(dev_priv))
  2668. enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
  2669. I915_LPE_PIPE_C_INTERRUPT;
  2670. WARN_ON(dev_priv->irq_mask != ~0u);
  2671. dev_priv->irq_mask = ~enable_mask;
  2672. GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
  2673. }
  2674. /* drm_dma.h hooks
  2675. */
  2676. static void ironlake_irq_reset(struct drm_device *dev)
  2677. {
  2678. struct drm_i915_private *dev_priv = to_i915(dev);
  2679. if (IS_GEN5(dev_priv))
  2680. I915_WRITE(HWSTAM, 0xffffffff);
  2681. GEN3_IRQ_RESET(DE);
  2682. if (IS_GEN7(dev_priv))
  2683. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2684. gen5_gt_irq_reset(dev_priv);
  2685. ibx_irq_reset(dev_priv);
  2686. }
  2687. static void valleyview_irq_reset(struct drm_device *dev)
  2688. {
  2689. struct drm_i915_private *dev_priv = to_i915(dev);
  2690. I915_WRITE(VLV_MASTER_IER, 0);
  2691. POSTING_READ(VLV_MASTER_IER);
  2692. gen5_gt_irq_reset(dev_priv);
  2693. spin_lock_irq(&dev_priv->irq_lock);
  2694. if (dev_priv->display_irqs_enabled)
  2695. vlv_display_irq_reset(dev_priv);
  2696. spin_unlock_irq(&dev_priv->irq_lock);
  2697. }
  2698. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2699. {
  2700. GEN8_IRQ_RESET_NDX(GT, 0);
  2701. GEN8_IRQ_RESET_NDX(GT, 1);
  2702. GEN8_IRQ_RESET_NDX(GT, 2);
  2703. GEN8_IRQ_RESET_NDX(GT, 3);
  2704. }
  2705. static void gen8_irq_reset(struct drm_device *dev)
  2706. {
  2707. struct drm_i915_private *dev_priv = to_i915(dev);
  2708. int pipe;
  2709. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2710. POSTING_READ(GEN8_MASTER_IRQ);
  2711. gen8_gt_irq_reset(dev_priv);
  2712. for_each_pipe(dev_priv, pipe)
  2713. if (intel_display_power_is_enabled(dev_priv,
  2714. POWER_DOMAIN_PIPE(pipe)))
  2715. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2716. GEN3_IRQ_RESET(GEN8_DE_PORT_);
  2717. GEN3_IRQ_RESET(GEN8_DE_MISC_);
  2718. GEN3_IRQ_RESET(GEN8_PCU_);
  2719. if (HAS_PCH_SPLIT(dev_priv))
  2720. ibx_irq_reset(dev_priv);
  2721. }
  2722. static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
  2723. {
  2724. /* Disable RCS, BCS, VCS and VECS class engines. */
  2725. I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
  2726. I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
  2727. /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
  2728. I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
  2729. I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
  2730. I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
  2731. I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
  2732. I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
  2733. }
  2734. static void gen11_irq_reset(struct drm_device *dev)
  2735. {
  2736. struct drm_i915_private *dev_priv = dev->dev_private;
  2737. int pipe;
  2738. I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
  2739. POSTING_READ(GEN11_GFX_MSTR_IRQ);
  2740. gen11_gt_irq_reset(dev_priv);
  2741. I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
  2742. for_each_pipe(dev_priv, pipe)
  2743. if (intel_display_power_is_enabled(dev_priv,
  2744. POWER_DOMAIN_PIPE(pipe)))
  2745. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2746. GEN3_IRQ_RESET(GEN8_DE_PORT_);
  2747. GEN3_IRQ_RESET(GEN8_DE_MISC_);
  2748. GEN3_IRQ_RESET(GEN8_PCU_);
  2749. }
  2750. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2751. u8 pipe_mask)
  2752. {
  2753. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2754. enum pipe pipe;
  2755. spin_lock_irq(&dev_priv->irq_lock);
  2756. if (!intel_irqs_enabled(dev_priv)) {
  2757. spin_unlock_irq(&dev_priv->irq_lock);
  2758. return;
  2759. }
  2760. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2761. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2762. dev_priv->de_irq_mask[pipe],
  2763. ~dev_priv->de_irq_mask[pipe] | extra_ier);
  2764. spin_unlock_irq(&dev_priv->irq_lock);
  2765. }
  2766. void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
  2767. u8 pipe_mask)
  2768. {
  2769. enum pipe pipe;
  2770. spin_lock_irq(&dev_priv->irq_lock);
  2771. if (!intel_irqs_enabled(dev_priv)) {
  2772. spin_unlock_irq(&dev_priv->irq_lock);
  2773. return;
  2774. }
  2775. for_each_pipe_masked(dev_priv, pipe, pipe_mask)
  2776. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2777. spin_unlock_irq(&dev_priv->irq_lock);
  2778. /* make sure we're done processing display irqs */
  2779. synchronize_irq(dev_priv->drm.irq);
  2780. }
  2781. static void cherryview_irq_reset(struct drm_device *dev)
  2782. {
  2783. struct drm_i915_private *dev_priv = to_i915(dev);
  2784. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2785. POSTING_READ(GEN8_MASTER_IRQ);
  2786. gen8_gt_irq_reset(dev_priv);
  2787. GEN3_IRQ_RESET(GEN8_PCU_);
  2788. spin_lock_irq(&dev_priv->irq_lock);
  2789. if (dev_priv->display_irqs_enabled)
  2790. vlv_display_irq_reset(dev_priv);
  2791. spin_unlock_irq(&dev_priv->irq_lock);
  2792. }
  2793. static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
  2794. const u32 hpd[HPD_NUM_PINS])
  2795. {
  2796. struct intel_encoder *encoder;
  2797. u32 enabled_irqs = 0;
  2798. for_each_intel_encoder(&dev_priv->drm, encoder)
  2799. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2800. enabled_irqs |= hpd[encoder->hpd_pin];
  2801. return enabled_irqs;
  2802. }
  2803. static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2804. {
  2805. u32 hotplug;
  2806. /*
  2807. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2808. * duration to 2ms (which is the minimum in the Display Port spec).
  2809. * The pulse duration bits are reserved on LPT+.
  2810. */
  2811. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2812. hotplug &= ~(PORTB_PULSE_DURATION_MASK |
  2813. PORTC_PULSE_DURATION_MASK |
  2814. PORTD_PULSE_DURATION_MASK);
  2815. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2816. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2817. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2818. /*
  2819. * When CPU and PCH are on the same package, port A
  2820. * HPD must be enabled in both north and south.
  2821. */
  2822. if (HAS_PCH_LPT_LP(dev_priv))
  2823. hotplug |= PORTA_HOTPLUG_ENABLE;
  2824. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2825. }
  2826. static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2827. {
  2828. u32 hotplug_irqs, enabled_irqs;
  2829. if (HAS_PCH_IBX(dev_priv)) {
  2830. hotplug_irqs = SDE_HOTPLUG_MASK;
  2831. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
  2832. } else {
  2833. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2834. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
  2835. }
  2836. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2837. ibx_hpd_detection_setup(dev_priv);
  2838. }
  2839. static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2840. {
  2841. u32 val, hotplug;
  2842. /* Display WA #1179 WaHardHangonHotPlug: cnp */
  2843. if (HAS_PCH_CNP(dev_priv)) {
  2844. val = I915_READ(SOUTH_CHICKEN1);
  2845. val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
  2846. val |= CHASSIS_CLK_REQ_DURATION(0xf);
  2847. I915_WRITE(SOUTH_CHICKEN1, val);
  2848. }
  2849. /* Enable digital hotplug on the PCH */
  2850. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2851. hotplug |= PORTA_HOTPLUG_ENABLE |
  2852. PORTB_HOTPLUG_ENABLE |
  2853. PORTC_HOTPLUG_ENABLE |
  2854. PORTD_HOTPLUG_ENABLE;
  2855. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2856. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2857. hotplug |= PORTE_HOTPLUG_ENABLE;
  2858. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2859. }
  2860. static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2861. {
  2862. u32 hotplug_irqs, enabled_irqs;
  2863. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2864. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
  2865. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2866. spt_hpd_detection_setup(dev_priv);
  2867. }
  2868. static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2869. {
  2870. u32 hotplug;
  2871. /*
  2872. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2873. * duration to 2ms (which is the minimum in the Display Port spec)
  2874. * The pulse duration bits are reserved on HSW+.
  2875. */
  2876. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2877. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2878. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
  2879. DIGITAL_PORTA_PULSE_DURATION_2ms;
  2880. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2881. }
  2882. static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2883. {
  2884. u32 hotplug_irqs, enabled_irqs;
  2885. if (INTEL_GEN(dev_priv) >= 8) {
  2886. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2887. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
  2888. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2889. } else if (INTEL_GEN(dev_priv) >= 7) {
  2890. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2891. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
  2892. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2893. } else {
  2894. hotplug_irqs = DE_DP_A_HOTPLUG;
  2895. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
  2896. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2897. }
  2898. ilk_hpd_detection_setup(dev_priv);
  2899. ibx_hpd_irq_setup(dev_priv);
  2900. }
  2901. static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
  2902. u32 enabled_irqs)
  2903. {
  2904. u32 hotplug;
  2905. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2906. hotplug |= PORTA_HOTPLUG_ENABLE |
  2907. PORTB_HOTPLUG_ENABLE |
  2908. PORTC_HOTPLUG_ENABLE;
  2909. DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
  2910. hotplug, enabled_irqs);
  2911. hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
  2912. /*
  2913. * For BXT invert bit has to be set based on AOB design
  2914. * for HPD detection logic, update it based on VBT fields.
  2915. */
  2916. if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
  2917. intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
  2918. hotplug |= BXT_DDIA_HPD_INVERT;
  2919. if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
  2920. intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
  2921. hotplug |= BXT_DDIB_HPD_INVERT;
  2922. if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
  2923. intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
  2924. hotplug |= BXT_DDIC_HPD_INVERT;
  2925. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2926. }
  2927. static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
  2928. {
  2929. __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
  2930. }
  2931. static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
  2932. {
  2933. u32 hotplug_irqs, enabled_irqs;
  2934. enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
  2935. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2936. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2937. __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
  2938. }
  2939. static void ibx_irq_postinstall(struct drm_device *dev)
  2940. {
  2941. struct drm_i915_private *dev_priv = to_i915(dev);
  2942. u32 mask;
  2943. if (HAS_PCH_NOP(dev_priv))
  2944. return;
  2945. if (HAS_PCH_IBX(dev_priv))
  2946. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2947. else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
  2948. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2949. else
  2950. mask = SDE_GMBUS_CPT;
  2951. gen3_assert_iir_is_zero(dev_priv, SDEIIR);
  2952. I915_WRITE(SDEIMR, ~mask);
  2953. if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
  2954. HAS_PCH_LPT(dev_priv))
  2955. ibx_hpd_detection_setup(dev_priv);
  2956. else
  2957. spt_hpd_detection_setup(dev_priv);
  2958. }
  2959. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2960. {
  2961. struct drm_i915_private *dev_priv = to_i915(dev);
  2962. u32 pm_irqs, gt_irqs;
  2963. pm_irqs = gt_irqs = 0;
  2964. dev_priv->gt_irq_mask = ~0;
  2965. if (HAS_L3_DPF(dev_priv)) {
  2966. /* L3 parity interrupt is always unmasked. */
  2967. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
  2968. gt_irqs |= GT_PARITY_ERROR(dev_priv);
  2969. }
  2970. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2971. if (IS_GEN5(dev_priv)) {
  2972. gt_irqs |= ILK_BSD_USER_INTERRUPT;
  2973. } else {
  2974. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2975. }
  2976. GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2977. if (INTEL_GEN(dev_priv) >= 6) {
  2978. /*
  2979. * RPS interrupts will get enabled/disabled on demand when RPS
  2980. * itself is enabled/disabled.
  2981. */
  2982. if (HAS_VEBOX(dev_priv)) {
  2983. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2984. dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
  2985. }
  2986. dev_priv->pm_imr = 0xffffffff;
  2987. GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
  2988. }
  2989. }
  2990. static int ironlake_irq_postinstall(struct drm_device *dev)
  2991. {
  2992. struct drm_i915_private *dev_priv = to_i915(dev);
  2993. u32 display_mask, extra_mask;
  2994. if (INTEL_GEN(dev_priv) >= 7) {
  2995. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2996. DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
  2997. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2998. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  2999. DE_DP_A_HOTPLUG_IVB);
  3000. } else {
  3001. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  3002. DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
  3003. DE_PIPEA_CRC_DONE | DE_POISON);
  3004. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  3005. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  3006. DE_DP_A_HOTPLUG);
  3007. }
  3008. dev_priv->irq_mask = ~display_mask;
  3009. ibx_irq_pre_postinstall(dev);
  3010. GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  3011. gen5_gt_irq_postinstall(dev);
  3012. ilk_hpd_detection_setup(dev_priv);
  3013. ibx_irq_postinstall(dev);
  3014. if (IS_IRONLAKE_M(dev_priv)) {
  3015. /* Enable PCU event interrupts
  3016. *
  3017. * spinlocking not required here for correctness since interrupt
  3018. * setup is guaranteed to run in single-threaded context. But we
  3019. * need it to make the assert_spin_locked happy. */
  3020. spin_lock_irq(&dev_priv->irq_lock);
  3021. ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
  3022. spin_unlock_irq(&dev_priv->irq_lock);
  3023. }
  3024. return 0;
  3025. }
  3026. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  3027. {
  3028. lockdep_assert_held(&dev_priv->irq_lock);
  3029. if (dev_priv->display_irqs_enabled)
  3030. return;
  3031. dev_priv->display_irqs_enabled = true;
  3032. if (intel_irqs_enabled(dev_priv)) {
  3033. vlv_display_irq_reset(dev_priv);
  3034. vlv_display_irq_postinstall(dev_priv);
  3035. }
  3036. }
  3037. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  3038. {
  3039. lockdep_assert_held(&dev_priv->irq_lock);
  3040. if (!dev_priv->display_irqs_enabled)
  3041. return;
  3042. dev_priv->display_irqs_enabled = false;
  3043. if (intel_irqs_enabled(dev_priv))
  3044. vlv_display_irq_reset(dev_priv);
  3045. }
  3046. static int valleyview_irq_postinstall(struct drm_device *dev)
  3047. {
  3048. struct drm_i915_private *dev_priv = to_i915(dev);
  3049. gen5_gt_irq_postinstall(dev);
  3050. spin_lock_irq(&dev_priv->irq_lock);
  3051. if (dev_priv->display_irqs_enabled)
  3052. vlv_display_irq_postinstall(dev_priv);
  3053. spin_unlock_irq(&dev_priv->irq_lock);
  3054. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  3055. POSTING_READ(VLV_MASTER_IER);
  3056. return 0;
  3057. }
  3058. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3059. {
  3060. /* These are interrupts we'll toggle with the ring mask register */
  3061. uint32_t gt_interrupts[] = {
  3062. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3063. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  3064. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  3065. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  3066. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3067. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  3068. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  3069. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  3070. 0,
  3071. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  3072. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  3073. };
  3074. if (HAS_L3_DPF(dev_priv))
  3075. gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  3076. dev_priv->pm_ier = 0x0;
  3077. dev_priv->pm_imr = ~dev_priv->pm_ier;
  3078. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  3079. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  3080. /*
  3081. * RPS interrupts will get enabled/disabled on demand when RPS itself
  3082. * is enabled/disabled. Same wil be the case for GuC interrupts.
  3083. */
  3084. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
  3085. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  3086. }
  3087. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  3088. {
  3089. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  3090. uint32_t de_pipe_enables;
  3091. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  3092. u32 de_port_enables;
  3093. u32 de_misc_masked = GEN8_DE_MISC_GSE;
  3094. enum pipe pipe;
  3095. if (INTEL_GEN(dev_priv) >= 9) {
  3096. de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  3097. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  3098. GEN9_AUX_CHANNEL_D;
  3099. if (IS_GEN9_LP(dev_priv))
  3100. de_port_masked |= BXT_DE_PORT_GMBUS;
  3101. } else {
  3102. de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  3103. }
  3104. if (IS_CNL_WITH_PORT_F(dev_priv))
  3105. de_port_masked |= CNL_AUX_CHANNEL_F;
  3106. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  3107. GEN8_PIPE_FIFO_UNDERRUN;
  3108. de_port_enables = de_port_masked;
  3109. if (IS_GEN9_LP(dev_priv))
  3110. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  3111. else if (IS_BROADWELL(dev_priv))
  3112. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  3113. for_each_pipe(dev_priv, pipe) {
  3114. dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
  3115. if (intel_display_power_is_enabled(dev_priv,
  3116. POWER_DOMAIN_PIPE(pipe)))
  3117. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  3118. dev_priv->de_irq_mask[pipe],
  3119. de_pipe_enables);
  3120. }
  3121. GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3122. GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
  3123. if (IS_GEN9_LP(dev_priv))
  3124. bxt_hpd_detection_setup(dev_priv);
  3125. else if (IS_BROADWELL(dev_priv))
  3126. ilk_hpd_detection_setup(dev_priv);
  3127. }
  3128. static int gen8_irq_postinstall(struct drm_device *dev)
  3129. {
  3130. struct drm_i915_private *dev_priv = to_i915(dev);
  3131. if (HAS_PCH_SPLIT(dev_priv))
  3132. ibx_irq_pre_postinstall(dev);
  3133. gen8_gt_irq_postinstall(dev_priv);
  3134. gen8_de_irq_postinstall(dev_priv);
  3135. if (HAS_PCH_SPLIT(dev_priv))
  3136. ibx_irq_postinstall(dev);
  3137. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3138. POSTING_READ(GEN8_MASTER_IRQ);
  3139. return 0;
  3140. }
  3141. static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  3142. {
  3143. const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
  3144. BUILD_BUG_ON(irqs & 0xffff0000);
  3145. /* Enable RCS, BCS, VCS and VECS class interrupts. */
  3146. I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
  3147. I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
  3148. /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
  3149. I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
  3150. I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
  3151. I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
  3152. I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
  3153. I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
  3154. dev_priv->pm_imr = 0xffffffff; /* TODO */
  3155. }
  3156. static int gen11_irq_postinstall(struct drm_device *dev)
  3157. {
  3158. struct drm_i915_private *dev_priv = dev->dev_private;
  3159. gen11_gt_irq_postinstall(dev_priv);
  3160. gen8_de_irq_postinstall(dev_priv);
  3161. I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
  3162. I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
  3163. POSTING_READ(GEN11_GFX_MSTR_IRQ);
  3164. return 0;
  3165. }
  3166. static int cherryview_irq_postinstall(struct drm_device *dev)
  3167. {
  3168. struct drm_i915_private *dev_priv = to_i915(dev);
  3169. gen8_gt_irq_postinstall(dev_priv);
  3170. spin_lock_irq(&dev_priv->irq_lock);
  3171. if (dev_priv->display_irqs_enabled)
  3172. vlv_display_irq_postinstall(dev_priv);
  3173. spin_unlock_irq(&dev_priv->irq_lock);
  3174. I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  3175. POSTING_READ(GEN8_MASTER_IRQ);
  3176. return 0;
  3177. }
  3178. static void i8xx_irq_reset(struct drm_device *dev)
  3179. {
  3180. struct drm_i915_private *dev_priv = to_i915(dev);
  3181. i9xx_pipestat_irq_reset(dev_priv);
  3182. I915_WRITE16(HWSTAM, 0xffff);
  3183. GEN2_IRQ_RESET();
  3184. }
  3185. static int i8xx_irq_postinstall(struct drm_device *dev)
  3186. {
  3187. struct drm_i915_private *dev_priv = to_i915(dev);
  3188. u16 enable_mask;
  3189. I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
  3190. I915_ERROR_MEMORY_REFRESH));
  3191. /* Unmask the interrupts that we always want on. */
  3192. dev_priv->irq_mask =
  3193. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3194. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3195. enable_mask =
  3196. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3197. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3198. I915_USER_INTERRUPT;
  3199. GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3200. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3201. * just to make the assert_spin_locked check happy. */
  3202. spin_lock_irq(&dev_priv->irq_lock);
  3203. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3204. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3205. spin_unlock_irq(&dev_priv->irq_lock);
  3206. return 0;
  3207. }
  3208. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3209. {
  3210. struct drm_device *dev = arg;
  3211. struct drm_i915_private *dev_priv = to_i915(dev);
  3212. irqreturn_t ret = IRQ_NONE;
  3213. if (!intel_irqs_enabled(dev_priv))
  3214. return IRQ_NONE;
  3215. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3216. disable_rpm_wakeref_asserts(dev_priv);
  3217. do {
  3218. u32 pipe_stats[I915_MAX_PIPES] = {};
  3219. u16 iir;
  3220. iir = I915_READ16(IIR);
  3221. if (iir == 0)
  3222. break;
  3223. ret = IRQ_HANDLED;
  3224. /* Call regardless, as some status bits might not be
  3225. * signalled in iir */
  3226. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3227. I915_WRITE16(IIR, iir);
  3228. if (iir & I915_USER_INTERRUPT)
  3229. notify_ring(dev_priv->engine[RCS]);
  3230. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3231. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3232. i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3233. } while (0);
  3234. enable_rpm_wakeref_asserts(dev_priv);
  3235. return ret;
  3236. }
  3237. static void i915_irq_reset(struct drm_device *dev)
  3238. {
  3239. struct drm_i915_private *dev_priv = to_i915(dev);
  3240. if (I915_HAS_HOTPLUG(dev_priv)) {
  3241. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3242. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3243. }
  3244. i9xx_pipestat_irq_reset(dev_priv);
  3245. I915_WRITE(HWSTAM, 0xffffffff);
  3246. GEN3_IRQ_RESET();
  3247. }
  3248. static int i915_irq_postinstall(struct drm_device *dev)
  3249. {
  3250. struct drm_i915_private *dev_priv = to_i915(dev);
  3251. u32 enable_mask;
  3252. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
  3253. I915_ERROR_MEMORY_REFRESH));
  3254. /* Unmask the interrupts that we always want on. */
  3255. dev_priv->irq_mask =
  3256. ~(I915_ASLE_INTERRUPT |
  3257. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3258. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
  3259. enable_mask =
  3260. I915_ASLE_INTERRUPT |
  3261. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3262. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3263. I915_USER_INTERRUPT;
  3264. if (I915_HAS_HOTPLUG(dev_priv)) {
  3265. /* Enable in IER... */
  3266. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3267. /* and unmask in IMR */
  3268. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3269. }
  3270. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3271. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3272. * just to make the assert_spin_locked check happy. */
  3273. spin_lock_irq(&dev_priv->irq_lock);
  3274. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3275. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3276. spin_unlock_irq(&dev_priv->irq_lock);
  3277. i915_enable_asle_pipestat(dev_priv);
  3278. return 0;
  3279. }
  3280. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3281. {
  3282. struct drm_device *dev = arg;
  3283. struct drm_i915_private *dev_priv = to_i915(dev);
  3284. irqreturn_t ret = IRQ_NONE;
  3285. if (!intel_irqs_enabled(dev_priv))
  3286. return IRQ_NONE;
  3287. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3288. disable_rpm_wakeref_asserts(dev_priv);
  3289. do {
  3290. u32 pipe_stats[I915_MAX_PIPES] = {};
  3291. u32 hotplug_status = 0;
  3292. u32 iir;
  3293. iir = I915_READ(IIR);
  3294. if (iir == 0)
  3295. break;
  3296. ret = IRQ_HANDLED;
  3297. if (I915_HAS_HOTPLUG(dev_priv) &&
  3298. iir & I915_DISPLAY_PORT_INTERRUPT)
  3299. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3300. /* Call regardless, as some status bits might not be
  3301. * signalled in iir */
  3302. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3303. I915_WRITE(IIR, iir);
  3304. if (iir & I915_USER_INTERRUPT)
  3305. notify_ring(dev_priv->engine[RCS]);
  3306. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3307. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3308. if (hotplug_status)
  3309. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3310. i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3311. } while (0);
  3312. enable_rpm_wakeref_asserts(dev_priv);
  3313. return ret;
  3314. }
  3315. static void i965_irq_reset(struct drm_device *dev)
  3316. {
  3317. struct drm_i915_private *dev_priv = to_i915(dev);
  3318. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3319. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3320. i9xx_pipestat_irq_reset(dev_priv);
  3321. I915_WRITE(HWSTAM, 0xffffffff);
  3322. GEN3_IRQ_RESET();
  3323. }
  3324. static int i965_irq_postinstall(struct drm_device *dev)
  3325. {
  3326. struct drm_i915_private *dev_priv = to_i915(dev);
  3327. u32 enable_mask;
  3328. u32 error_mask;
  3329. /*
  3330. * Enable some error detection, note the instruction error mask
  3331. * bit is reserved, so we leave it masked.
  3332. */
  3333. if (IS_G4X(dev_priv)) {
  3334. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3335. GM45_ERROR_MEM_PRIV |
  3336. GM45_ERROR_CP_PRIV |
  3337. I915_ERROR_MEMORY_REFRESH);
  3338. } else {
  3339. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3340. I915_ERROR_MEMORY_REFRESH);
  3341. }
  3342. I915_WRITE(EMR, error_mask);
  3343. /* Unmask the interrupts that we always want on. */
  3344. dev_priv->irq_mask =
  3345. ~(I915_ASLE_INTERRUPT |
  3346. I915_DISPLAY_PORT_INTERRUPT |
  3347. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3348. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3349. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3350. enable_mask =
  3351. I915_ASLE_INTERRUPT |
  3352. I915_DISPLAY_PORT_INTERRUPT |
  3353. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3354. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3355. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
  3356. I915_USER_INTERRUPT;
  3357. if (IS_G4X(dev_priv))
  3358. enable_mask |= I915_BSD_USER_INTERRUPT;
  3359. GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
  3360. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3361. * just to make the assert_spin_locked check happy. */
  3362. spin_lock_irq(&dev_priv->irq_lock);
  3363. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3364. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3365. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3366. spin_unlock_irq(&dev_priv->irq_lock);
  3367. i915_enable_asle_pipestat(dev_priv);
  3368. return 0;
  3369. }
  3370. static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
  3371. {
  3372. u32 hotplug_en;
  3373. lockdep_assert_held(&dev_priv->irq_lock);
  3374. /* Note HDMI and DP share hotplug bits */
  3375. /* enable bits are the same for all generations */
  3376. hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
  3377. /* Programming the CRT detection parameters tends
  3378. to generate a spurious hotplug event about three
  3379. seconds later. So just do it once.
  3380. */
  3381. if (IS_G4X(dev_priv))
  3382. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3383. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3384. /* Ignore TV since it's buggy */
  3385. i915_hotplug_interrupt_update_locked(dev_priv,
  3386. HOTPLUG_INT_EN_MASK |
  3387. CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
  3388. CRT_HOTPLUG_ACTIVATION_PERIOD_64,
  3389. hotplug_en);
  3390. }
  3391. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3392. {
  3393. struct drm_device *dev = arg;
  3394. struct drm_i915_private *dev_priv = to_i915(dev);
  3395. irqreturn_t ret = IRQ_NONE;
  3396. if (!intel_irqs_enabled(dev_priv))
  3397. return IRQ_NONE;
  3398. /* IRQs are synced during runtime_suspend, we don't require a wakeref */
  3399. disable_rpm_wakeref_asserts(dev_priv);
  3400. do {
  3401. u32 pipe_stats[I915_MAX_PIPES] = {};
  3402. u32 hotplug_status = 0;
  3403. u32 iir;
  3404. iir = I915_READ(IIR);
  3405. if (iir == 0)
  3406. break;
  3407. ret = IRQ_HANDLED;
  3408. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3409. hotplug_status = i9xx_hpd_irq_ack(dev_priv);
  3410. /* Call regardless, as some status bits might not be
  3411. * signalled in iir */
  3412. i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
  3413. I915_WRITE(IIR, iir);
  3414. if (iir & I915_USER_INTERRUPT)
  3415. notify_ring(dev_priv->engine[RCS]);
  3416. if (iir & I915_BSD_USER_INTERRUPT)
  3417. notify_ring(dev_priv->engine[VCS]);
  3418. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3419. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3420. if (hotplug_status)
  3421. i9xx_hpd_irq_handler(dev_priv, hotplug_status);
  3422. i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
  3423. } while (0);
  3424. enable_rpm_wakeref_asserts(dev_priv);
  3425. return ret;
  3426. }
  3427. /**
  3428. * intel_irq_init - initializes irq support
  3429. * @dev_priv: i915 device instance
  3430. *
  3431. * This function initializes all the irq support including work items, timers
  3432. * and all the vtables. It does not setup the interrupt itself though.
  3433. */
  3434. void intel_irq_init(struct drm_i915_private *dev_priv)
  3435. {
  3436. struct drm_device *dev = &dev_priv->drm;
  3437. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3438. int i;
  3439. intel_hpd_init_work(dev_priv);
  3440. INIT_WORK(&rps->work, gen6_pm_rps_work);
  3441. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3442. for (i = 0; i < MAX_L3_SLICES; ++i)
  3443. dev_priv->l3_parity.remap_info[i] = NULL;
  3444. if (HAS_GUC_SCHED(dev_priv))
  3445. dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
  3446. /* Let's track the enabled rps events */
  3447. if (IS_VALLEYVIEW(dev_priv))
  3448. /* WaGsvRC0ResidencyMethod:vlv */
  3449. dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
  3450. else
  3451. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3452. rps->pm_intrmsk_mbz = 0;
  3453. /*
  3454. * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
  3455. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3456. *
  3457. * TODO: verify if this can be reproduced on VLV,CHV.
  3458. */
  3459. if (INTEL_GEN(dev_priv) <= 7)
  3460. rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
  3461. if (INTEL_GEN(dev_priv) >= 8)
  3462. rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
  3463. if (IS_GEN2(dev_priv)) {
  3464. /* Gen2 doesn't have a hardware frame counter */
  3465. dev->max_vblank_count = 0;
  3466. } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
  3467. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3468. dev->driver->get_vblank_counter = g4x_get_vblank_counter;
  3469. } else {
  3470. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3471. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3472. }
  3473. /*
  3474. * Opt out of the vblank disable timer on everything except gen2.
  3475. * Gen2 doesn't have a hardware frame counter and so depends on
  3476. * vblank interrupts to produce sane vblank seuquence numbers.
  3477. */
  3478. if (!IS_GEN2(dev_priv))
  3479. dev->vblank_disable_immediate = true;
  3480. /* Most platforms treat the display irq block as an always-on
  3481. * power domain. vlv/chv can disable it at runtime and need
  3482. * special care to avoid writing any of the display block registers
  3483. * outside of the power domain. We defer setting up the display irqs
  3484. * in this case to the runtime pm.
  3485. */
  3486. dev_priv->display_irqs_enabled = true;
  3487. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3488. dev_priv->display_irqs_enabled = false;
  3489. dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3490. dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
  3491. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3492. if (IS_CHERRYVIEW(dev_priv)) {
  3493. dev->driver->irq_handler = cherryview_irq_handler;
  3494. dev->driver->irq_preinstall = cherryview_irq_reset;
  3495. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3496. dev->driver->irq_uninstall = cherryview_irq_reset;
  3497. dev->driver->enable_vblank = i965_enable_vblank;
  3498. dev->driver->disable_vblank = i965_disable_vblank;
  3499. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3500. } else if (IS_VALLEYVIEW(dev_priv)) {
  3501. dev->driver->irq_handler = valleyview_irq_handler;
  3502. dev->driver->irq_preinstall = valleyview_irq_reset;
  3503. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3504. dev->driver->irq_uninstall = valleyview_irq_reset;
  3505. dev->driver->enable_vblank = i965_enable_vblank;
  3506. dev->driver->disable_vblank = i965_disable_vblank;
  3507. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3508. } else if (INTEL_GEN(dev_priv) >= 11) {
  3509. dev->driver->irq_handler = gen11_irq_handler;
  3510. dev->driver->irq_preinstall = gen11_irq_reset;
  3511. dev->driver->irq_postinstall = gen11_irq_postinstall;
  3512. dev->driver->irq_uninstall = gen11_irq_reset;
  3513. dev->driver->enable_vblank = gen8_enable_vblank;
  3514. dev->driver->disable_vblank = gen8_disable_vblank;
  3515. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3516. } else if (INTEL_GEN(dev_priv) >= 8) {
  3517. dev->driver->irq_handler = gen8_irq_handler;
  3518. dev->driver->irq_preinstall = gen8_irq_reset;
  3519. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3520. dev->driver->irq_uninstall = gen8_irq_reset;
  3521. dev->driver->enable_vblank = gen8_enable_vblank;
  3522. dev->driver->disable_vblank = gen8_disable_vblank;
  3523. if (IS_GEN9_LP(dev_priv))
  3524. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3525. else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
  3526. HAS_PCH_CNP(dev_priv))
  3527. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3528. else
  3529. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3530. } else if (HAS_PCH_SPLIT(dev_priv)) {
  3531. dev->driver->irq_handler = ironlake_irq_handler;
  3532. dev->driver->irq_preinstall = ironlake_irq_reset;
  3533. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3534. dev->driver->irq_uninstall = ironlake_irq_reset;
  3535. dev->driver->enable_vblank = ironlake_enable_vblank;
  3536. dev->driver->disable_vblank = ironlake_disable_vblank;
  3537. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3538. } else {
  3539. if (IS_GEN2(dev_priv)) {
  3540. dev->driver->irq_preinstall = i8xx_irq_reset;
  3541. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3542. dev->driver->irq_handler = i8xx_irq_handler;
  3543. dev->driver->irq_uninstall = i8xx_irq_reset;
  3544. dev->driver->enable_vblank = i8xx_enable_vblank;
  3545. dev->driver->disable_vblank = i8xx_disable_vblank;
  3546. } else if (IS_GEN3(dev_priv)) {
  3547. dev->driver->irq_preinstall = i915_irq_reset;
  3548. dev->driver->irq_postinstall = i915_irq_postinstall;
  3549. dev->driver->irq_uninstall = i915_irq_reset;
  3550. dev->driver->irq_handler = i915_irq_handler;
  3551. dev->driver->enable_vblank = i8xx_enable_vblank;
  3552. dev->driver->disable_vblank = i8xx_disable_vblank;
  3553. } else {
  3554. dev->driver->irq_preinstall = i965_irq_reset;
  3555. dev->driver->irq_postinstall = i965_irq_postinstall;
  3556. dev->driver->irq_uninstall = i965_irq_reset;
  3557. dev->driver->irq_handler = i965_irq_handler;
  3558. dev->driver->enable_vblank = i965_enable_vblank;
  3559. dev->driver->disable_vblank = i965_disable_vblank;
  3560. }
  3561. if (I915_HAS_HOTPLUG(dev_priv))
  3562. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3563. }
  3564. }
  3565. /**
  3566. * intel_irq_fini - deinitializes IRQ support
  3567. * @i915: i915 device instance
  3568. *
  3569. * This function deinitializes all the IRQ support.
  3570. */
  3571. void intel_irq_fini(struct drm_i915_private *i915)
  3572. {
  3573. int i;
  3574. for (i = 0; i < MAX_L3_SLICES; ++i)
  3575. kfree(i915->l3_parity.remap_info[i]);
  3576. }
  3577. /**
  3578. * intel_irq_install - enables the hardware interrupt
  3579. * @dev_priv: i915 device instance
  3580. *
  3581. * This function enables the hardware interrupt handling, but leaves the hotplug
  3582. * handling still disabled. It is called after intel_irq_init().
  3583. *
  3584. * In the driver load and resume code we need working interrupts in a few places
  3585. * but don't want to deal with the hassle of concurrent probe and hotplug
  3586. * workers. Hence the split into this two-stage approach.
  3587. */
  3588. int intel_irq_install(struct drm_i915_private *dev_priv)
  3589. {
  3590. /*
  3591. * We enable some interrupt sources in our postinstall hooks, so mark
  3592. * interrupts as enabled _before_ actually enabling them to avoid
  3593. * special cases in our ordering checks.
  3594. */
  3595. dev_priv->runtime_pm.irqs_enabled = true;
  3596. return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
  3597. }
  3598. /**
  3599. * intel_irq_uninstall - finilizes all irq handling
  3600. * @dev_priv: i915 device instance
  3601. *
  3602. * This stops interrupt and hotplug handling and unregisters and frees all
  3603. * resources acquired in the init functions.
  3604. */
  3605. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3606. {
  3607. drm_irq_uninstall(&dev_priv->drm);
  3608. intel_hpd_cancel_work(dev_priv);
  3609. dev_priv->runtime_pm.irqs_enabled = false;
  3610. }
  3611. /**
  3612. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3613. * @dev_priv: i915 device instance
  3614. *
  3615. * This function is used to disable interrupts at runtime, both in the runtime
  3616. * pm and the system suspend/resume code.
  3617. */
  3618. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3619. {
  3620. dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
  3621. dev_priv->runtime_pm.irqs_enabled = false;
  3622. synchronize_irq(dev_priv->drm.irq);
  3623. }
  3624. /**
  3625. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3626. * @dev_priv: i915 device instance
  3627. *
  3628. * This function is used to enable interrupts at runtime, both in the runtime
  3629. * pm and the system suspend/resume code.
  3630. */
  3631. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3632. {
  3633. dev_priv->runtime_pm.irqs_enabled = true;
  3634. dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
  3635. dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
  3636. }